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2 Numeration systems 7.1Cantor sets can be de�ned by digital expansions.In computer arithmetic, it is recognized that algorithmic possibilities dependon the representation of numbers. For instance, addition of two integers repre-sented in the usual binary system, with digits 0 and 1, takes a time proportionalto the size of the data. But if these numbers are represented with signed digits0, 1, and �1, then addition can be realized in parallel in a time independent ofthe size of the data.Since numbers are words, �nite state automata are relevant tools to describesets of number representations, and also to characterize the complexity of arith-metic operations. For instance, addition in the usual binary system is a functioncomputable by a �nite automaton, but multiplication is not.Usual numeration systems, such that the binary and the decimal ones, aredescribed in the �rst section. In fact, these systems are a particular case of allthe various generalizations that will be presented in the next sections.The second section is devoted to the study of the so-called beta-expansions,introduced by R�enyi, see Notes. It consists in taking for base a real number� > 1. When � is actually an integer, we get the standard representation. When� is not an integer, a number may have several di�erent �-representations. Aparticular �-representation, playing an important role, is obtained by a greedyalgorithm, and is called the �-expansion; it is the greatest in the lexicographicorder. The set of �-expansions of numbers of [0; 1[ is shift-invariant, and itsclosure, called the �-shift, is a symbolic dynamical system. We give severalresults on these topics. We do not cover the whole �eld, which is very lively andstill growing. It has interesting connections with number theory and symbolicdynamics.In the third section we consider the representation of integers with respectto a sequence of integers, which can be seen as a generalization of the notionof base. The most popular example is the one of Fibonacci numbers. Everypositive integer can be represented in such a system with digits 0 and 1. This�eld is closely related to the theory of beta-expansions.The last section is devoted to complex numbers. Representing complex num-bers as strings of digits allows to handle them without separating real and imag-inary part. We show that every complex number has a representation in base�n � i, where n is an integer � 1, with digits in f0; : : : ; n2g. This numerationsystem enjoys properties similar to those of the standard �-ary system.For notations concerning automata and words the reader may want to con-sult Chapter 1.7.1. Standard representation of numbersIn this section we will study standard numeration systems, where the base isa natural number. We will represent �rst the natural numbers, and then thenonnegative real numbers. The notation introduced in this section will be usedin the other sections.Version April 18, 2001



7.1. Standard representation of numbers 37.1.1. Representation of integersLet � � 2 be an integer called the base. The (usual) �-ary representation of aninteger N � 0 is a �nite word dk � � �d0 over the digit alphabet A = f0; : : : ; ��1g,and such that N = kXi=0 di�i:Such a representation is unique, with the condition that dk 6= 0. This represen-tation is called normal, and is denoted byhN i� = dk � � �d0most signi�cant digit �rst.The set of all the representations of the positive integers is equal to A�.Let us consider the addition of two integers represented in the �-ary system.Let dk � � �d0 and ck � � �c0 be two �-ary representations of respectively N andM . It is not a restriction to suppose that the two representations have thesame length, since the shortest one can be padded to the left by enough zeroes.Let us form a new word ak � � �a0, with ai = di + ci for 0 � i � k. Obviously,Pki=0 ai�i = N +M , but the ai's belong to the set f0; : : : ; 2(� � 1)g. So theword ak � � �a0 has to be transformed into an equivalent one (i.e. having thesame numerical value) belonging to A�.More generally, let C be a �nite alphabet of integers, which can be positiveor negative. The numerical value in base � on C� is the function�� : C� �! Zwhich maps a word w = cn � � �c0 of C� onto Pni=0 ci�i. The normalization onC� is the partial function �C : C� �! A�that maps a word w = cn � � � c0 of C� such that N = ��(w) is nonnegative ontoits normal representation hN i�. Our aim is to prove that the normalization iscomputable by a �nite transducer. We �rst prove a lemma.Lemma 7.1.1. Let C be an alphabet containing A. There exists a right sub-sequential transducer that maps a word w of C� such that N = ��(w) � 0 ontoa word v belonging to A� and such that ��(v) = N .Proof. Let m = maxfjc � aj j c 2 C; a 2 Ag, and let  = m=(� � 1). Firstobserve that, for s 2Zand c 2 C, by the Euclidean division there exist uniquea 2 A and s0 2 Zsuch that s + c = �s0 + a. Furthermore, if jsj < , thenjs0j � (jsj+ jc� aj)=� < ( +m)=� = .Consider the subsequential �nite transducer (A; !) over C� � A�, whereA = (Q;E; 0) is de�ned as follows. The set Q = fs 2Zj jsj < g is the set ofpossible carries, the set of edges isE = fs c=a�! s0 j s + c = �s0 + ag: Version April 18, 2001



4 Numeration systems 7.1�1��� 0�������?~1/0} �1/1 /0/0, 1/1/�1/0, 0/1Figure 7.1. Right subsequential transducer realizing the conversion inbase 2 from f�1; 0; 1g onto f0; 1gObserve that the edges are \letter-to-letter". The terminal function is de�nedby !(s) = hsi� for s 2 Q such that ��(s) � 0.Now let w = cn � � �c0 2 C� and N = Pni=0 ci�i. Setting s0 = 0, there is aunique path s0 c0=a0�! s1 c1=a1�! s2 c2=a2�! � � � cn�1=an�1�! sn cn=an�! sn+1:By construction N = a0 + a1� + � � �+ an�n + sn+1�n+1, hence the word v =!(sn+1)an � � �a0 has the same numerical value in base � as w.Remark that v is equal to the normal representation of N if and only if itdoes not begin with zeroes.Example 7.1.2. Figure 7.1 gives the right subsequential transducer realizingthe conversion in base 2 from the alphabet f�1; 0; 1g onto f0; 1g. The signeddigit (�1) is denoted by �1.The two following results are a direct consequence of Lemma 7.1.1.Proposition 7.1.3. In base �, for every alphabet C of positive integers con-taining A, the normalization restricted to the domain C� n 0C� is a right sub-sequential function.Removing the zeroes at the beginning of a word can be realized by a leftsequential transducer, so the following property holds true for any alphabet.Proposition 7.1.4. In base �, for every alphabet C containing A, the nor-malization on C� is computable by a �nite transducer.Corollary 7.1.5. In base �, addition and subtraction (with possibly zeroesahead) are right subsequential functions.Proof. Take in Lemma 7.1.1 C = f0; : : : ; 2(� � 1)g for addition, and C =f�(� � 1); : : : ; � � 1g for subtraction.Version April 18, 2001



7.1. Standard representation of numbers 5One proves easily that multiplication by a �xed integer is a right subsequen-tial function, and that division by a �xed integer is a left subsequential function,see the Problems Section. On the other hand, the following result shows thatthe power of functions computable by �nite transducers is quite reduced.Proposition 7.1.6. In base �, multiplication is not computable by a �nitetransducer.Proof. It is enough to show that the squaring function  : A� �! A� whichmaps hN i� onto hN2i� is not computable by a �nite transducer. Take forinstance � = 2, and consider h2n�1i2 = 1n. Then  (1n) = h22n�2n+1+1i2 =1n�10n1. Thus the image by  of the set f1n j n � 1g which is recognizable bya �nite automaton, is the set f1n�10n1 j n � 1g which is not recognizable, thus cannot be computed by a �nite transducer.7.1.2. Representation of real numbersLet � � 2 be an integer and set A = f0; : : : ; � � 1g. A �-ary representation ofa nonnegative real number x is an in�nite sequence (xi)i�k of ANsuch thatx =Xi�k xi�i:This representation is unique, and said to be normal if it does not end by(� � 1)!, and if xk 6= 0 when x � 1. It is traditionally denoted byhxi� = xk � � �x0 � x�1x�2 � � �If x < 1, then there exists some i � 0 such that x < 1=�i. We then putx�1, . . . , x�i+1 = 0. The set of �-ary expansions of numbers � 1 is equal to(A n 0)(ANnA�(� � 1)!), the one of numbers of [0; 1] is ANn A�(� � 1)!. Theset ANis the set of all �-ary representations (not necessarily normal).The word xk � � �x0 is the integer part of x and the in�nite word x�1x�2 � � � isthe fractional part of x. Note that the natural numbers are exactly those havinga zero fractional part (compare with the representation of complex numbers in7.4.1).If hxi� = xk � � �x0 � x�1x�2 � � �, then x=�k+1 < 1, and by shifting we obtainthat hx=�k+1i� = �xk � � �x0x�1x�2 � � �thus from now on we consider only numbers from the interval [0; 1]. Whenx 2 [0; 1], we will change our notation for indices and denote hxi� = (xi)i�1.Let C be a �nite alphabet of integers, which can be positive or negative.The numerical value in base � on CNis the function�� : CN�! R Version April 18, 2001



6 Numeration systems 7.2which maps a word w = (ci)i�1 of CNonto Pi�1 ci��i. The normalization onCNis the partial function �C : CN�! ANthat maps a word w = (ci)i�1 such that x = ��(w) belongs to [0; 1] onto its�-ary expansion hxi� 2 ANnA�(� � 1)!.Proposition 7.1.7. For every alphabet C containing A, the normalization onCNis computable by a �nite transducer.Proof. First we construct a �nite transducer B where edges are the reverseof the edges of the transducer A de�ned in the proof of Lemma 7.1.1. LetB = (Q;F; 0; Q) with set of edgesF = ft c=a�! s j s c=a�! t 2 Eg:Every state is terminal.Let s0 c1=a1�! s1 c2=a2�! s2 c3=a3�! � � � cn=an�! snbe a path in B starting in s0 = 0. Thenc1� + � � �+ cn�n = a1� + � � �+ an�n � sn�n :Since A is sequential, the automaton B is unambiguous, that is, given an inputword (ci)i�1 2 CN, there is a unique in�nite path in B starting in 0 and labelledby (ci; ai)i�1 in (C � A)N, and such that Pi�1 ci�i = Pi�1 ai�i, because foreach n, jsnj < .To end the proof it remains to show that the function which, given a word inAN, transforms it into an equivalent word not ending by (��1)!, is computableby a �nite transducer, and this is clear from the fact that AN�(ANnA�(��1)!)is a rational subset of AN� AN(see Chapter 1).Corollary 7.1.8. Addition/subtraction, multiplication/division by a �xedinteger of real numbers in base � are computable by a �nite transducer.Example 7.1.9. Figure 7.2 gives the �nite transducer realizing non normal-ized addition (meaning that the result can end by the improper su�x 1!) ofreal numbers on the interval [0; 1] in base 2.7.2. Beta-expansionsWe now consider numeration systems where the base is a real number � >1. Representations of real numbers in such systems were introduced by R�enyiunder the name of �-expansions. They arise from the orbits of a piecewise-monotone transformation of the unit interval T� : x 7! �x (mod 1), see below.Such transformations were extensively studied in ergodic theory and symbolicdynamics.Version April 18, 2001



7.2. Beta-expansions 70���- 1������? ���?~0/1} 2/0 /1/0, 2/1/0/0, 1/1Figure 7.2. Finite transducer realizing non normalized addition of realnumbers in base 27.2.1. De�nitionsLet the base � > 1 be a real number. Let x be a real number in the interval[0; 1]. A representation in base � (or a �-representation) of x is an in�nite word(xi)i�1 such that x =Xi�1 xi��i:A particular �-representation | called the �-expansion | can be computedby the \greedy algorithm" : denote by byc and fyg the integer part and thefractional part of a number y. Set r0 = x and let for i � 1, xi = b�ri�1c,ri = f�ri�1g. Then x =Pi�1 xi��i.The �-expansion of x will be denoted by d�(x).An equivalent de�nition is obtained by using the �-transformation of theunit interval which is the mappingT� : x 7! �x (mod 1):Then d�(x) = (xi)i�1 if and only if xi = b�T i�1� (x)c.Let x be any real number greater than 1. There exists k 2 N such that�k � x < �k+1. Hence 0 � x=�k+1 < 1, thus it is enough to represent numbersfrom the interval [0; 1], since by shifting we will get the representation of anypositive real number.Example 7.2.1. Let � = (1 +p5)=2 be the golden ratio. For x = 3�p5 wehave d�(x) = 10010!.If � is not an integer, the digits xi obtained by the greedy algorithm areelements of the alphabet A = f0; � � � ; b�cg, called the canonical alphabet.When � is an integer, the �-expansion of a number x of [0; 1[ is exactlythe standard �-ary expansion, i.e. d�(x) = hxi�, and the digits xi belong tof0; � � � ; ��1g. However, for x = 1 there is a di�erence: h1i� = 1� but d�(1) = �� .As we shall see later, the �-expansion of 1 plays a key role in this theory.Another characterization of a �-expansion is the following one.Version April 18, 2001



8 Numeration systems 7.2Lemma 7.2.2. An in�nite sequence of nonnegative integers (xi)i�1 is the �-expansion of a real number x of [0; 1[ (resp. of 1) if and only if for every i � 1(resp. i � 2), xi��i + xi+1��i�1 + � � � < ��i+1.Proof. Let 0 � x < 1 and let d�(x) = (xi)i�1. By construction, for i � 1,ri�1 = xi=� + xi�1=�2 + � � � < 1, thus the result follows.A real number may have several �-representations. However, the �-expan-sion, obtained by the greedy algorithm, is characterized by the following prop-erty.Proposition 7.2.3. The �-expansion of a real number x of [0; 1] is the greatestof all the �-representations of x with respect to the lexicographic order.Proof. Let d�(x) = (xi)i�1 and let (si)i�1 be another �-representation ofx. Suppose that (xi)i�1 < (si)i�1, then there exists k � 1 such that xk <sk and x1 � � �xk�1 = s1 � � �sk�1. From Pi�k xi��i = Pi�k si��i one getsPi�k+1 xi��i � ��k+Pi�k+1 si��i, which is impossible since by Lemma 7.2.2Pi�k+1 xi��i < ��k.Example 7.2.1 (continued). Let � be the golden ratio. The �-expansion ofx = 3�p5 is equal to 10010!. Di�erent �-representations of x are 01110!, or100(01)! for instance.As in the usual numeration systems, the order between real numbers is givenby the lexicographic order on �-expansions.Proposition 7.2.4. Let x and y be two real numbers from [0; 1]. Then x < yif and only if d�(x) < d�(y).Proof. Let d�(x) = (xi)i�1 and let d�(y) = (yi)i�1, and suppose that d�(x) <d�(y). There exists k � 1 such that xk < yk and x1 � � �xk�1 = y1 � � �yk�1. Hencex � y1��1+ � � �+yk�1��k+1+(yk�1)��k+xk+1��k�1+xk+2��k�2+ � � � < ysince xk+1��k�1 + xk+2��k�2 + � � � < ��k. The converse is immediate.If a representation ends in in�nitely many zeros, like v0!, the ending zerosare omitted and the representation is said to be �nite. Remark that the �-expansion of x 2 [0; 1] is �nite if and only if T i�(x) = 0 for some i, and it iseventually periodic if and only if the set fT i�(x) j i � 1g is �nite. Numbers �such that d�(1) is eventually periodic are called �-numbers and those such thatd�(1) is �nite are called simple �-numbers.Remark 7.2.5. The �-expansion of 1 is never purely periodic.Indeed, suppose that d�(1) is purely periodic, d�(1) = (a1 � � �an)!, with nminimal, ai 2 A. Then 1 = a1��1 + � � � + an��n + ��n, which means thata1 � � �an�1(an + 1) is a �-representation of 1, and a1 � � �an�1(an + 1) > d�(1),which is impossible.Version April 18, 2001



7.2. Beta-expansions 9Example 7.2.6. 1. Let � be the golden ratio (1 +p5)=2. The expansion of 1is �nite, equal to d�(1) = 11.2. Let � = (3 + p5)=2. The expansion of 1 is eventually periodic, equal tod�(1) = 21!.3. Let � = 3=2. Then d�(1) = 101000001 � � �. We shall see later that it isaperiodic.7.2.2. The �-shiftRecall that the set ANis endowed with the lexicographic order, the producttopology, and the (one-sided) shift �, de�ned by �((xi)i�1) = (xi+1)i�1. Denoteby D� the set of �-expansions of numbers of [0; 1[. It is a shift-invariant subsetof AN. The �-shift S� is the closure of D� and it is a subshift of AN. When �is an integer, S� is the full �-shift AN.The greedy algorithm computing the �-expansion can be rephrased as fol-lows.Lemma 7.2.7. The identity d� � T� = � � d�holds on the interval [0; 1].Proof. Let x 2 [0; 1], and let d�(x) = (xi)i�1. Then T�(x) = Pi�1 xi��i, andthe result follows.In the case where the �-expansion of 1 is �nite, there is a special repre-sentation playing an important role. Let us introduce the following notation.Let d�(1) = (ti)i�1 and set d��(1) = d�(1) if d�(1) is in�nite and d��(1) =(t1 � � � tm�1(tm � 1))! if d�(1) = t1 � � � tm�1tm is �nite.When � is an integer, �-representations ending by the in�nite word d��(1)are the \improper" representations.Example 7.2.8. Let � = 2, then d�(1) = 2 and d��(1) = 1!.For � = (1 +p5)=2, d�(1) = 11 and d��(1) = (10)!.The set D� is characterized by the expansion of 1, as shown by the followingresult below. Notice that the sets of �nite factors of D� and of S� are the same,and that d��(1) is the supremum of S� , but that, in case d�(1) is �nite, d�(1) isnot an element of S� .Theorem 7.2.9. Let � > 1 be a real number, and let s be an in�nite sequenceof nonnegative integers. The sequence s belongs to D� if and only if for allp � 0 �p(s) < d��(1)and s belongs to S� if and only if for all p � 0�p(s) � d��(1): Version April 18, 2001



10 Numeration systems 7.2Proof. First suppose that s = (si)i�1 belongs to D� , then there exists x in [0; 1[such that s = d�(x). By Lemma 7.2.7, for every p � 0, �p � d�(x) = d� �T p� (x).Since T p� (x) < 1 and d� is a strictly increasing function (Proposition 7.2.4),�p � d�(x) = �p(s) < d�(1).In the case where d�(1) = t1 � � � tm is �nite, suppose there exists a p � 0 suchthat �p(s) � d��(1). Since �p(s) < d�(1), we get sp+1 = t1, . . . , sp+m�1 = tm�1,sp+m = tm � 1. Iterating this process, we see that �p(s) = d��(1), which doesnot belong to D�, a contradiction.Conversely, let d��(1) = (di)i�1 and suppose that for all p � 0; �p(s) < d��(1).By induction, let us show that for all r � 1, for all i � 0,sp+1 � � �sp+r < di+1 � � �di+r ) sp+1� + � � �+ sp+r�r < di+1� + � � �+ di+r�r :This is obviously satis�ed for r = 1.Suppose that sp+1 � � �sp+r+1 < di+1 � � �di+r+1.First assume that sp+1 = di+1, then sp+2 � � � sp+r+1 < di+2 � � �di+r+1. Byinduction hypothesis,sp+2�2 + � � �+ sp+r+1�r+1 < di+2�2 + � � �+ di+r+1�r+1and the result follows.Next, suppose that sp+1 < di+1. Since for all p � 0, �p(s) < d��(1) thensp+2 � � �sp+r+1 � d1 � � �dr, thussp+1� + � � �+ sp+r+1�r+1 � di+1 � 1� + d1�2 + � � �+ dr�r+1 < di+1�since d1=�2 + � � �+ dr=�r+1 < 1=�:Thus for all p � 0, for all i � 0,Xr�1 sp+r��r �Xr�1 di+r��r :In particular for i = 1, Pr�1 sp+r��r � Pr�1 dr+1��r < 1 if � is not aninteger, and the result follows by Lemma 7.2.2.If � is an integer then d��(1) = (� � 1)!. If for all p � 0, �p(s) < d��(1),then every letter of s is smaller than or equal to � � 1 and s does not end by(� � 1)!, therefore s belongs to D�.For the �-shift, we have the following situation. A sequence s belongs to D�if and only if for each n � 1 there exists a word v(n) of D� such that s1 � � � sn isa pre�x of v(n). Hence, s belongs to S� if and only if for every p � 0, for everyn � 1, �p(s1 � � � sn0!) < d��(1), or equivalently if �p(s) � d��(1).From this result follows the following characterization : a sequence is the�-expansion of 1 for a certain number � if and only if it is greater than all itsshifted sequences.Version April 18, 2001



7.2. Beta-expansions 11Corollary 7.2.10. Let s = (si)i�1 be a sequence of nonnegative integerswith s1 � 1 and for i � 2, si � s1, and which is di�erent from 10!. Then thereexists a unique real number � > 0 such thatPi�1 si��i = 1. Furthermore, s isthe �-expansion of 1 if and only if for every n � 1, �n(s) < s.Proof. Let f be the formal series de�ned by f(z) = Pi�1 sizi, and denote by� its radius of convergence. Since 0 � si � s1, we get � � 1=(s1 + 1). Sincefor 0 < z < � the function f is continuous and increasing, and since f(0) = 0and f(z) > 1 for z su�cient close to �, it follows that the equation f(z) = 1has a unique solution. If � > 1 exists such that f(1=�) = 1, we get thats1=� � f(1=�) � s1=(� � 1), thus � must be between s1 and s1 + 1. On theother hand, f(1=(s1 + 1)) � s1=s1 = 1. If s1 � 2, f(1=s1) � 1. If s1 = 1 and ifthe si's are eventually 0, then f(1=s1) � 1, otherwise limz!1 f(z) = +1. Thusin any case there exists a real � 2 [s1; s1 + 1] such that f(1=�) = 1.Now we make the following hypothesis (H) : for all n � 1, �n(s) < s. Supposethat the �-expansion of 1 is d�(1) = t 6= s. Since s is a �-representation of 1,s < t. Hence, for each n � 1, �n(s) < s < d�(1). If d�(1) is in�nite, byTheorem 7.2.9, s belongs to D� , a contradiction.If d�(1) is �nite, say d�(1) = t1 � � � tm, either s < d��(1), and as above we getthat s is in D� , or d��(1) � s < d�(1). In fact, s cannot be purely periodicbecause of hypothesis (H), thus it is di�erent from d��(1). Thus s is necessarilyof the form (t1 � � � tm�1(tm � 1))kt1 � � � tm for some k � 1. So skm+1 = t1, . . . ,skm+m = tm, and �km(s) > s because sm = tm � 1, contradicting hypothesis(H). Hence the �-expansion of 1 is s.Conversely, suppose that s = d�(1) for some � > 1. From Theorem 7.2.9,for every n � 1, �n(s) < d��(1). If d�(1) is in�nite, d�(1) = d��(1). If d�(1) is�nite, d��(1) < d�(1).Let us recall some de�nitions on symbolic dynamical systems or subshifts(see Chapter 1 Section ??). Let S � ANbe a subshift, and let I(S) = A+ nF (S)be the set of factors avoided by S. Denote by X(S) the set of words of I(S)which have no proper factor in I(S). The subshift S is of �nite type i� the setX(S) is �nite. The subshift S is so�c i� X(S) is a rational set. It is equivalentto say that F (S) is recognized by a �nite automaton. The subshift S is saidto be coded if there exists a pre�x code Y � A� such that F (S) = F (Y �), orequivalently if S is the closure of Y !.To the �-shift a pre�x code Y = Y� is associated as follows. It is the setof words which, for each length, are strictly smaller than the pre�x of d�(1) ofsame length, more precisely: if d�(1) = (ti)i�1 is in�nite, set Y = ft1 � � � tn�1a j0 � a < tn; n � 1g, with the convention that if n = 1, t1 � � � tn�1 = ". Ifd�(1) = t1 � � � tm, let Y = ft1 � � � tn�1a j 0 � a < tn; 1 � n � mg.Proposition 7.2.11. The �-shift S� is coded by the code Y .Proof. First if d�(1) = (ti)i�1 is in�nite, let us show that D� = Y !. Let s 2 D� .Version April 18, 2001



12 Numeration systems 7.2By Theorem 7.2.9, s < d�(1), thus can be written as s = t1 � � � tn1�1an1v1,with an1 < tn1 and v1 < d�(1). Iterating this process, we see that s 2Y !. Conversely, let s = u1u2 � � � 2 Y !, with ui = t1 � � � tni�1ani , ani < tni .Then s < d�(1). For each p � 0, �p(s) begins with a word of the formtjp tjp+1 � � � tjp+r�1bjp+r with bjp+r < tjp+r , thus �p(s) < �jp�1(d�(1)) < d�(1).Next, if d�(1) = t1 � � � tm, is �nite, we claim that Y ! = S� . First, let s 2 S� .By Theorem 7.2.9, s � d��(1), thus s = t1 � � � tn1�1an1v1, with n1 � m, an1 < tn1and v1 � d��(1). Iterating the process we get s 2 S� . Conversely, let s 2 Y !,s = u1u2 � � � with ui = t1 � � � tni�1ani, ni � m. As above, one gets that, for eachp � 0, �p(s) < d��(1).We now compute the topological entropy of the �-shifth(S�) = � log(�F (S� ))(see ?? for de�nitions and notations). In the case where the �-shift is so�c, byTheorem ?? the entropy h(S�) can be shown to be equal to log �. We showbelow that the same result holds true for any kind of �-shift.Proposition 7.2.12. The topological entropy of the �-shift is equal to log�.Proof. For n � 1, the number of words of length n of Y is clearly equal to tn,thus the generating series of Y is equal tofY (z) =Xn�1 tnzn:By Corollary 7.2.10, ��1 is the unique positive solution of fY (z) = 1. Since Y isa code, by Lemma ?? �Y � = ��1. It is thus enough to show that �Y � = �F (S� ).Let pn be the number of factors of length n of the elements of S� and letfF (S� ) =Xn�0pnzn:Let cn be the number of words of length n of Y �, and letfF (Y �) =Xn�0 cnzn:Since any word of Y � is in F (S�), we have cn � pn. On the other hand, letw be a word of length n in F (S�). By Proposition 7.2.11, w can be uniquelywritten as w = uit1 � � � ti, where ui 2 Y �, juij = n � i, and 0 � i � n. Thuspn = cn + � � � + c0. Hence the series fF (S� ) and fY � have the same radius ofconvergence, and the result is proved.We now show that the nature of the subshift as a symbolic dynamical systemis entirely determined by the �-expansion of 1.Version April 18, 2001



7.2. Beta-expansions 13Theorem 7.2.13. The �-shift S� is so�c if and only if d�(1) is eventuallyperiodic.Proof. Suppose that d�(1) is in�nite eventually periodicd�(1) = t1 � � � tN (tN+1 � � � tN+p)!with N and p minimal. We use the classical construction of minimal �niteautomata by right congruent classes (see Chapter 1). Let F (D�) be the set of�nite factors of D� . We construct an automaton A� with N + p states q1, . . . ,qN+p, where qi, i � 2, represents the right class [t1 � � � ti�1]F (D�) and q1 standsfor ["]F (D� ). For each i, 1 � i < N + p; there is an edge labelled ti from qi toqi+1. There is an edge labelled tN+p from qN+p to qN+1. For 1 � i � N + p,there are edges labelled by 0, 1, . . . , ti�1 from qi to q1. Let q1 be the only initialstate, and all states be terminal. That F (D�) is precisely the set recognizedby the automaton A� follows from Theorem 7.2.9. Remark that, when the �-expansion of 1 happens to be �nite, say d�(1) = t1 � � � tm, the same constructionapplies with N = m, p = 0 and all edges from qm (labelled by 0, 1, . . . , tm � 1)leading to q1:Suppose now that d�(1) = (ti)i�1 is not eventually periodic nor �nite. Thereexists an in�nite sequence of indexes i1 < i2 < i3 < � � � such that the sequencestiktik+1tik+2 � � � be all di�erent for all k � 1. Thus for all pairs (ij ; i`), j; ` � 1,there exists p � 0 such that, for instance, tij+p < ti`+p and tij � � � tij+p�1 =ti` � � � ti`+p�1 = w (with the convention that, when p = 0, w = "). We havethat t1 � � � tij�1wtij+p 2 F (D�), t1 � � � ti`�1wti`+p 2 F (D�), t1 � � � ti`�1wtij+p 2F (D�), but t1 � � � tij�1wti`+p does not belong to F (D�). Hence t1 � � � tij andt1 � � � ti` are not right congruent moduloF (D�). The number of right congruenceclasses is thus in�nite, and F (D�) is not recognizable by a �nite automaton.Example 7.2.14. For � = (3 +p5)=2, d�(1) = 21!, and the �-shift is so�c.We have a similar result when the �-expansion of 1 is �nite.Theorem 7.2.15. The �-shift S� is of �nite type if and only if d�(1) is �nite.Proof. Let us suppose that d�(1) = t1 � � � tm is �nite and letZ = [2�i�m�1fu 2 Ai j u > t1 � � � tig [ fu 2 Am j u�t1 � � � tmg:Clearly Z � A+ n F (S�). The set X(S� ) of words forbidden in S� which areminimal for the factor order is a subset of Z. Since Z is �nite, X(S�) is �nite,and thus S� is of �nite type.Conversely, suppose that the �-shift is of �nite type. It is thus so�c, andby Theorem 7.2.13, d�(1) is eventually periodic. Suppose that d�(1) is notVersion April 18, 2001



14 Numeration systems 7.2�nite, d�(1) = t1 � � � tN (tN+1 � � � tN+p)! with N � 1 and p � 1 minimal, andtN+1 � � � tN+p 6= 0p. LetZ = f t1 � � � tj�1(tj + hj) j 2 � j � N; 1 � hj � t1 � tjg[ f t1 � � � tN (tN+1 � � � tN+p)ktN+1 � � � tN+j�1(tN+j + hN+j)j k � 0; 1 � j � p; 1 � hN+j � t1 � tN+jg:Clearly Z � A+ n F (S�).Case 1. Suppose there exists 1 � j � p such that tj > tN+j and t1 = tN+1, . . . ,tj�1 = tN+j�1. For k � 0 �xed, let w(k) = t1 � � � tN (tN+1 � � � tN+p)kt1 � � � tj 2 Z.We have t1 � � � tN (tN+1 � � � tN+p)ktN+1 � � � tN+j�1 2 F (S�). On the other hand,for n � 2, tn � � � tN (tN+1 � � � tN+p)k is strictly smaller in the lexicographic orderthan the pre�x of d�(1) of same length (the inequality is strict, since the ti'sare not all equal for 1 � i � N + p), thus tn � � � tN (tN+1 � � � tN+p)k t1 � � � tj 2F (S�). Hence any strict factor of w(k) is in F (S�). Therefore for any k � 0,w(k) 2 X(S� ), and X(S� ) is thus in�nite: the �-shift is not of �nite type.Case 2. No such j exists, then d�(1) = (t1 � � � tN )! , which is impossible byRemark 7.2.5.Example 7.2.16. For � = (1 + p5)=2, the �-shift is of �nite type, it is thegolden mean shift described in Example ??.7.2.3. Classes of numbersRecall that an algebraic integer is a root of a monic polynomial with integralcoe�cients. An algebraic integer � > 1 is called a Pisot number if all its Galoisconjugates have modulus less than one. It is a Salem number if all its conjugateshave modulus � 1 and at least one conjugate has modulus one. It is a Perronnumber if all its conjugates have modulus less than �.Example 7.2.17. 1. Every integer is a Pisot number. The golden ratio (1 +p5)=2 and its square (3 +p5)=2 are Pisot numbers, with minimal polynomialrespectively X2 �X � 1 and X2 � 3X + 1.2. A rational number which is not an integer is never an algebraic integer.3. (5 +p5)=2 is a Perron number which is neither Pisot nor Salem.The most important result linking �-shifts and numbers is the following one.Theorem 7.2.18. If � is a Pisot number then the �-shift S� is so�c.This result is a consequence of a more general result on �-expansions ofnumbers of the �eldQ(�) when � is a Pisot number. It is a partial generalizationof the well known fact that, when � is an integer, numbers having an eventuallyperiodic �-expansion are the rational numbers of [0; 1] (see Problems Section).Proposition 7.2.19. If � is a Pisot number then every number of Q(�)\[0; 1]has an eventually periodic �-expansion.Version April 18, 2001



7.2. Beta-expansions 15Proof. Let P (X) = Xd � a1Xd�1 � � � � � ad be the minimal polynomial of� = �1 and denote by �2, . . . , �d the conjugates of �. Let x be arbitrarily �xedin Q(�)\ [0; 1]. It can be expressed asx = q�1 d�1Xi=0 pi�iwith q and pi inZ, q > 0 as small as possible in order to have uniqueness.Let (xk)k�1 be the �-expansion of x, and denote byrn = r(1)n = rn(x) = xn+1� + xn+2�2 + � � � = �n(x� nXk=1xk��k) = Tn� (x) < 1:For 2 � j � d, letr(j)n = r(j)n (x) = �nj (q�1 d�1Xi=0 pi�ij � nXk=1xk��kj ):Let � = max2�j�d j�j j < 1 since � is a Pisot number. Since xk � b�c we getjr(j)n j � q�1 d�1Xi=0 jpij�n+i + b�c n�1Xk=0 �kand, since � < 1, max1�j�d supn jr(j)n j < +1.We need a technical result. Set Rn = (r(1)n ; � � � ; r(d)n ) and let B be the matrixB = (��ij )1�i;j�d.Lemma 7.2.20. Let x = q�1Pd�1i=0 pi�i. For every n � 0, there exists a uniqued-uple Zn = (z(1)n ; � � � ; z(d)n ) in Zd such that Rn = q�1ZnB.Proof. By induction on n. First, r1 = r(1)1 = �x � x1, thusr1 = q�1(d�1Xi=0 pi�i+1 � qx1) = q�1(z(1)1� + � � �+ z(d)1�d )using the fact that �d = a1�d�1 + � � � + ad, aj 2 Z. Now, rn+1 = r(1)n+1 =�rn � xn+1, hencern+1 = q�1(z(1)n + z(2)n� + � � �+ z(d)n�d�1 � qxn+1) = q�1(z(1)n+1� + � � �+ z(d)n+1�d )since z(1)n � qxn+1 2Z.Thus rn = r(1)n = �n(q�1 d�1Xi=0 pi�i � nXk=1xk��k) = q�1 dXk=1 z(k)n ��k:Version April 18, 2001



16 Numeration systems 7.2Since the latter equation has integral coe�cients and is satis�ed by �, it is alsosatis�ed by each conjugate �j , 2 � j � d,r(j)n = �nj (q�1 d�1Xi=0 pi�ij � nXk=1xk��kj ) = q�1 dXk=1 z(k)n ��kj :We resume the proof of Proposition 7.2.19. Let Vn = qRn. The (Vn)n�1have bounded norm, since max1�j�d supn jr(j)n j < +1. As the matrix B isinvertible, for every n � 1,jjZnjj = jj(z(1)n ; � � � ; z(d)n )jj = max1�j�d jz(j)n j < +1so there exist p and m � 1 such that Zm+p = Zm, hence rm+p = rm and the�-expansion of x is eventually periodic.On the other hand, there is a gap between Pisot and Perron numbers asshown be the following result.Proposition 7.2.21. If S� is so�c then � is a Perron number.Proof. With the automaton A� de�ned in the proof of Theorem 7.2.13 oneassociates a matrix M = M� by taking for M [i; j] the number of edges fromstate qi to state qj, that is, if d�(1) = t1 � � � tN (tN+1 � � � tN+p)!,M [i; 1] = tiM [i; i+ 1] = 1 for i 6= N + pM [N + p;N + 1] = 1and other entries are equal to 0.Claim 1. The matrix M is primitive: MN+p > 0, since MN+p[i; j] is equal tothe number of paths of length N + p from qi to qj in the strongly connectedautomaton A� .Claim 2. The characteristic polynomial of M is equal toK(X) = XN+p � N+pXi=1 tiXN+p�i �XN + NXi=1 tiXN�iand � is one of its roots: it can be checked by a straightforward computation.When d�(1) = t1 � � � tm is �nite, the matrix associated with the automaton issimpler, it is the companion matrix of the polynomialK(X) = Xm� t1Xm�1�� � � � tm, which is primitive, since Mm > 0.Since � > 1 is an eigenvalue of a primitive matrix, by the theorem of Perron-Frobenius, � is strictly greater in modulus than its algebraic conjugates.Thus when � is a non-integral rational number (for instance 3=2), the �-shiftS� cannot be so�c.Version April 18, 2001



7.3. U -representations 17Example 7.2.22. There are Perron numbers which are neither Pisot nor Sa-lem numbers and such that the �-shift is of �nite type: for instance the root� � 3:616 of X4 � 3X3� 2X2� 3 satis�es d�(1) = 3203, and � has a conjugate � �1:096.Remark 7.2.23. If � is a Perron number with a real conjugate > 1, then d�(1)cannot be eventually periodic.In fact, suppose that d�(1) = t1 � � � tN (tN+1 � � � tN+p)!, and that � has a conju-gate  > 1. Since � is a zero of the polynomial K(X) of Z[X],  is also a zeroof this polynomial. Thus d(1) = d�(1), and by Corollary 7.2.10,  = �.For instance the quadratic Perron number � = (5+p5)=2 has a real conjugate> 1, and thus S� is not so�c.7.3. U-representationsWe now consider another generalization of the notion of numeration system,which only allow to represent the natural numbers. The base is replaced by anin�nite sequence of integers. The basic example is the well-known Fibonaccinumeration system.7.3.1. De�nitionsLet U = (un)n�0 be a strictly increasing sequence of integers with u0 = 1. Arepresentation in the system U | or a U -representation | of a nonnegativeinteger N is a �nite sequence of integers (di)k�i�0 such thatN = kXi=0 diui:Such a representation will be written dk � � �d0, most signi�cant digit �rst.Among all possible U -representations of a given nonnegative integer N oneis distinguished and called the normal U -representation of N : it is sometimescalled the greedy representation, since it can be obtained by the following greedyalgorithm : given integers m and p let us denote by q(m; p) and r(m; p) thequotient and the remainder of the Euclidean division of m by p. Let k � 0 suchthat uk � N < uk+1 and let dk = q(N; uk) and rk = r(N; uk), and, for i = k�1,. . . , 0, di = q(ri+1; ui) and ri = r(ri+1; ui). Then N = dkuk + � � �+ d0u0. Thenormal U -representation of N is denoted by hN iU .By convention the normal representation of 0 is the empty word ". Underthe hypothesis that the ratio un+1=un is bounded by a constant as n tendsto in�nity, the integers of the normal U -representation of any integer N arebounded and contained in a canonical �nite alphabet A associated with U .Example 7.3.1. Let U = f2n j n � 0g. The normal U -representation of aninteger is nothing else than its 2-ary standard expansion.Version April 18, 2001



18 Numeration systems 7.3Example 7.3.2. Let F = (Fn)n�0 be the sequence of Fibonacci numbers (seeExample ??). The canonical alphabet is equal to A = f0; 1g. The normalF -representation of the number 15 is 100010, another representation is 11010.An equivalent de�nition of the notion of normal U -representation is thefollowing one.Lemma 7.3.3. The word dk � � �d0, where each di, for k � i � 0, is a nonnega-tive integer and dk 6= 0, is the normal U -representation of some integer if andonly if for each i, diui + � � �+ d0u0 < ui+1.Proof. If dk � � �d0 is obtained by the greedy algorithm, ri+1 = diui+� � �+d0u0 <ui+1 by construction.As for �-expansions, the U -representation obtained by the greedy algorithmis the greatest one for some order we de�ne now. Let v and w be two words.We say that v < w if jvj < jwj or if jvj = jwj and there exist letters a < b suchthat v = uav0 and w = ubw0. This order is sometimes called \radix order" or\genealogic order", or even \lexicographic order" in the literature, although thede�nition is slightly di�erent from the usual de�nition of lexicographic order on�nite words (see Chapter 1).Proposition 7.3.4. The normal U -representation of an integer is the greatestin the radix order of all the U -representations of that integer.Proof. Let d = dk � � �d0 be the normal U -representation of N , and let w =wj � � �w0 be another representation. Since uk � N < uk+1, k � j. If k > j,then d > w. If k = j, suppose d < w. Thus there exists i, k � i � 0such that di < wi and dk � � �di+1 = wk � � �wi+1. Hence diui + � � � + d0u0 =wiui + � � �+ w0u0, but diui + � � �+ d0u0 � (wi � 1)ui + di�1ui�1 + � � �+ d0u0,so ui + wi�1ui�1 + � � �+ w0u0 � di�1ui�1 + � � �+ d0u0 < ui since d is normal,which is absurd.The order between natural numbers is given by their radix order betweentheir normal U -representations.Proposition 7.3.5. Let M and N be two nonnegative integers, then M < Nif and only if hM iU < hN iU .Proof. Let v = vk � � �v0 = hM iU with uk � M < uk+1, and w = wj � � �w0 =hN iU with uj � N < uj+1, and suppose that v < w. Then k � j. If k < j,uk+1 � uj , and M < N . If k = j, there exists i such that vi < wi andvk � � �vi+1 = wk � � �wi+1. HenceM = vkuk + � � �+ v0u0� wkuk + � � �+wi+1ui+1 + (wi � 1)ui + vi�1ui�1 + � � �+ v0u0< wkuk + � � �+wi+1ui+1 +wiui � Nsince vi�1ui�1 + � � �+ v0u0 < ui by Lemma 7.3.3, thus M < N .Version April 18, 2001



7.3. U -representations 197.3.2. The set of normal U -representationsThe set of normal U -representations of all the nonnegative integers is denotedby L(U ).Example 7.3.2 (continued). Let F be the sequence of Fibonacci numbers. Theset L(F ) is the set of words without the factor 11, and not beginning with a 0,L(F ) = 1f0; 1g� n f0; 1g�11f0; 1g� [ ":First the analogue of Theorem 7.2.9 is the following result.Proposition 7.3.6. The set L(U ) is the set of words over A such that eachsu�x of length n is less in the radix order than hun � 1iU .Proof. Let v = vk � � �v0 be in L(U ), and 0 � n � k + 1. By Lemma 7.3.3vn�1un�1+� � �+v0u0 � un�1, and by Proposition 7.3.5, vn�1 � � �v0 � hun�1iU .The converse is immediate.An important case is when L(U ) is recognizable by a �nite automaton, as itis the case for usual numeration systems. We �rst give a necessary condition.Recall that a formal series with coe�cients in N is said to be N-rational if itbelongs to the smallest class containing polynomial with coe�cients in N, andclosed under addition, multiplication and star operation, where F � is the series1 + F + F 2 + Fn + � � � = 1=(1 � F ), F being a series such that F (0) = 0. AN-rational series is necessarilyZ-rational, and thus can be written P (X)=Q(X),with P (X) and Q(X) in Z[X], and Q(0) = 1. Therefore the sequence of coe�-cients of a N-rational series satis�es a linear recurrent relation with coe�cientsin Z. It is classical that, if L is recognizable by a �nite automaton, then theseries fL(X) =Pn�0 `nXn, where `n denotes the number of words of length nin L, is N-rational (see Berstel and Reutenauer 1988).Proposition 7.3.7. If the set L(U ) is recognizable by a �nite automaton,then the series U (X) = Pn�0 unXn is N-rational, and thus the sequence Usatis�es a linear recurrence with integral coe�cients.Proof. Let `n be the number of words of length n in L(U ). The series fL(U)(X) =Pn�0 `nXn is N-rational. We have un = `n + � � �+ `0, because the number ofwords of length � n in L(U ) is equal to the number of naturals smaller than un,whose normal representation has length n+1. Thus U (X) = fL(U)(X)=(1�X),and it is N-rational.When the sequence U satis�es a linear recurrence with integral coe�cients,we say that U de�nes a linear numeration system.To determine su�cient conditions on the sequence U for the set L(U ) to berecognizable by a �nite automaton is a di�cult question (see Problem 7.3.1). Itis strongly related to the theory of �-expansions where � is the dominant root ofthe characteristic polynomial of the linear recurrence of U . Nevertheless, thereis a case where the set L(U ) and the factors of the �-shift coincide. This meansVersion April 18, 2001



20 Numeration systems 7.3that the dynamical systems generated by the �-expansions of real numbers andby normal U -representations of integers are the same.It is obvious that if a word of the form v0n belongs to L(U ) then v itself isa word of L(U ), but the converse is not true in general. We will say that a setL � A is right-extendable if the following property holdsv 2 L) v0 2 L:Theorem 7.3.8. Let U = (un)n�0 be a strictly increasing sequence of integers,with u0 = 1, and such that sup un+1=un < +1, and let A be the canonicalalphabet. There exists a real number � > 1 such that L(U ) = F (D�) if andonly if L(U ) is right-extendable. In that case, if d��(1) = (di)i�1, the sequenceU is determined by un = d1un�1 + � � �+ dnu0 + 1:Proof. Clearly, if L(U ) = F (D�) for some � > 1, then L(U ) is right-extendable.Conversely, suppose that L(U ) is right-extendable. For each n, denotehun � 1iU = d(n)1 � � �d(n)n :Since L(U ) is right-extendable, for each k < n, d(k)1 � � �d(k)k 0n�k 2 L(U ), andthus d(k)1 � � �d(k)k � d(n)1 � � �d(n)k . Therefore d(k)1 � � �d(k)k = d(n)1 � � �d(n)k becaused(k)1 � � �d(k)k is the greatest word of length k in the radix order.Let dn = d(n)n , then dndn+1 � � � � d1d2 � � �. Let d = (di)i�1. If there exists msuch that d = �m(d) then d is periodic. Let m be the smallest such index. Inthat case, put t1 = d1, . . . , tm�1 = dm�1, tm = dm + 1, ti = 0 for i > m. Incase d is not periodic, put ti = di for every i. Then the sequence (ti)i�1 satis�estntn+1 � � � < t1t2 � � � for all n � 2, and thus by Corollary 7.2.10 there exists aunique � > 1 such that d�(1) = (ti)i�1.Let us show that L(U ) = F (D�). Recall thatD� = fs j 8p � 0; �p(s) < d��(1) = (di)i�1ghenceF (D�) = fv = vk � � �v0 j 8n; 0 � n � k; vn�1 � � �v0 � d1 � � �dn = hun � 1iUg= L(U )by Proposition 7.3.6.Now, since by de�nition d1 � � �dn = hun � 1iU , we getun = d1un�1 + � � �+ dnu0 + 1:The numeration systems satisfying Theorem 7.3.8 will be called canonicalnumeration systems associated with �, and denoted by U� . Note that if d�(1)is eventually periodic, then L(U�) is recognizable by a �nite automaton and U�satis�es a linear recurrent sequence.Example 7.3.2 (continued). The Fibonacci numeration system is the canoni-cal numeration system associated with the golden ratio.Version April 18, 2001



7.3. U -representations 217.3.3. Normalization in a canonical linear numeration systemWe �rst give general de�nitions, valid for any linear numeration system de�nedby a sequence U . The numerical value in the system U of a representationw = dk � � �d0 is equal to �U(w) = Pki=0 diui. Let C be a �nite alphabet ofintegers. The normalization in the system U on C� is the partial function�C : C� �! A�that maps a word w of C� such that �U (w) is nonnegative onto the normalU -representation of �U(w).In the sequel, we assume that U = U� is the canonical numeration systemassociated with a number � which is a Pisot number. Thus U satis�es anequation of the formun = a1un�1 + a2un�2 + � � �+ amun�m; ai 2Z; am 6= 0; n � m:In that case, the canonical alphabet A associated with U is A = f0; : : : ;Kgwhere K < max(ui+1=ui). The polynomial P (X) = Xm � a1Xm�1 � � � � � amwill be called the characteristic polynomial of U .We also make the hypothesis that P is exactly the minimal polynomial of �(in general, P is a multiple of the minimal polynomial).Our aim is to prove the following result.Theorem 7.3.9. Let U = U� be a canonical linear numeration system associ-ated with a Pisot number �, and such that the characteristic polynomial of Uis equal to the minimal polynomial of �. Then, for every alphabet C of nonneg-ative integers, the normalization on C� is computable by a �nite transducer.The proof is in several steps. Let C = f0; : : : ; cg, eC = f�c; : : : ; cg, and letZ(U; c) = fdk � � �d0 j di 2 eC; kXi=0 diui = 0gbe the set of words on eC having numerical value 0 in the system U . We �rstprove a general result.Proposition 7.3.10. If Z(U; c) and L(U ) are recognizable by a �nite automa-ton then �C is a function computable by a �nite transducer.Proof. Let f = fn � � �f0 and g = gk � � �g0 be two words of C�, with for instancen � k. We denote by f 	g the word of eC� equal to fn � � �fk+1(fk�gk) � � � (f0�g0). The graph of �C is equal to c�C = f(f; g) 2 C� � A� j g 2 L(U ); f 	 g 2Z(U; c)g.Let R be the graph of 	 :R = [([a2C((a; "); a))� [ ([a2C(("; a);�a))�][[a;b2C((a; b); a� b)]�Version April 18, 2001



22 Numeration systems 7.3R is a rational subset of (C� �C�)� eC�. Let us consider the setR0 = R \ ((C� � L(U )) � Z(U; c)) � (C� �A�)� eC�:Then c�C is the projection of R0 on C��A�. As L(U ) and Z(U; c) are rational byassumption, (C��L(U ))�Z(U; c) is a recognizable subset of (C��A�)� eC� asa Cartesian product of rational sets (see Berstel 1979). Since R is rational, R0is a rational subset of (C��A�)� eC�. So, c�C being the projection of R0, c�C is arational subset of C��A�, that is, �C is computable by a �nite transducer.The core of the proof relies in the following result.Proposition 7.3.11. Let U be a linear numeration system such that its char-acteristic polynomial is equal to the minimal polynomial of a Pisot number �.Then Z(U; c) is recognizable by a �nite automaton.Proof. Set Z = Z(U; c) for short. We de�ne on the set H of pre�xes of Z theequivalence relation � as follows (m is the degree of P )f � g , [8n; 0 � n � m� 1; �U(f0n) = �U(g0n)]:Let f � g. It is clear that the sequences (�U (f0n))n�0 and (�U (g0n))n�0 satisfythe same recurrence relation as U . Since they coincide on the �rst m values,they are equal. Thus, for any h 2 eC,fh 2 Z , �U(f0jhj) + �U(h) = 0, �U(g0jhj) + �U (h) = 0, gh 2 Zwhich means that f and g are right congruent modulo Z. If f and g are not inH, then f �Z g as well.It remains to prove that � has �nite index. This will be achieved by showingthat there are only �nitely many possible values of �U(f0n) for f 2 H and forall 0 � n � m � 1. Recall that, if � = �1, �2, . . . , �m are the roots of P , sinceP is minimal they are all distinct, and there exist complex constants �1 > 0,�2, . . . , �m such that for all n 2 Nun = mXi=1 �i�ni :If f = fk � � �f0, let ��(f) = fk�k + � � �+ f1� + f0.Claim 1. There exists � such that for all f 2 eCj�U(f) � �1��(f)j < �:Version April 18, 2001



7.3. U -representations 23We have �U (f) � �1��(f) = kXj=0 fjuj � �1 kXj=0 fj�j= kXj=0 fj( mXi=1 �i�ji )� �1 kXj=0 fj�j= kXj=0 fj( mXi=2 �i�ji ):Since � is a Pisot number, j�ij < 1 for 2 � i � m andj�U(f) � �1��(f)j < c mXi=2 j�ij 11� j�ij = �:Claim 2. There exists  such that for all f 2 H, j��(f)j < .Since f 2 H there exists h 2 eC such that fh 2 Z. Thus0 = �U (f0jhj) + �U(h) < �1��(f0jhj) + �1��(h) + 2�< �1��(f)�jhj + �1(c + 1)�jhj + 2��jhjthus ��(f) > �c�1�2���11 . Similarly ��(f) < c+1+2���11 , hence j��(f)j <c+ 1 + 2���11 = .Claim 3. There exists � such that for all f 2 H, for all 0 � n � m � 1j�U(f0n)j < �:We have j�U(f0n)j � j�U(f0n)� �1��(f0n)j+ j�1��(f0n)j< � + j�1��(f)j�n< � + �1�nhence j�U(f0n)j < � = � + �1�m�1.Thus there are only �nitely many possible values of �U (f0n) for f 2 H andfor all 0 � n � m� 1, therefore � has �nite index, and Z(U; c) is rational.Proof of the theorem. Since U is canonical for a Pisot number, L(U ) is recog-nizable by a �nite automaton. The result follows from Proposition 7.3.10 andProposition 7.3.11.Corollary 7.3.12. Under the same hypothesis as in Theorem 7.3.9, addi-tion of integers represented in the canonical linear numeration system U� iscomputable by a �nite transducer.Proof. The canonical alphabet being A = f0; : : : ;Kg, take C = f0; : : : ; 2Kg inTheorem 7.3.9. Version April 18, 2001



24 Numeration systems 7.4?���? ��� ��������� /0 -1� �1 -�1� 1 } 0>0 ~1 = �1Figure 7.3. Automaton recognizing the set of words on f�1; 0; 1g havingvalue 0 in the Fibonacci numeration system?���? ���?������ /0=0 -1=1� 0=1� 1=0 } 0=0>0=0; 1=1 ~1=0Figure 7.4. Normalization on f0; 1g in the Fibonacci numeration systemExample 7.3.2 (continued). Let F be the sequence of Fibonacci numbers. Thecharacteristic polynomial of F is X2�X�1, and it is the minimal polynomial ofthe Pisot number � = (1 +p5)=2. Figure 7.3 gives the automaton recognizingthe set Z(F; 1) of words on the alphabet f�1; 0; 1g having numerical value 0 inthe Fibonacci numeration system.Figure 7.4 shows a �nite transducer realizing the normalization on f0; 1g inthe Fibonacci numeration system. For simplicity, we assume that input andoutput words have the same length.The result stated in Theorem 7.3.9 can be extended to the case where Uis not the canonical numeration system associated with a Pisot number �, butwhere the characteristic polynomial of U is still equal to the minimal polynomialof �. There is a partial converse to this result, see Notes.7.4. Representation of complex numbersThe usual method of representing real numbers by their decimal or binary ex-pansions can be generalized to complex numbers. It is possible (see the ProblemSection) to represent complex numbers with an integral base and complex digits,but we present here results when the base is some complex number.Version April 18, 2001



7.4. Representation of complex numbers 257.4.1. Gaussian integersIn this section we focus on representing complex numbers using integral digits.The set of Gaussian integers, denoted byZ[i], is the set fa+ bi j a; b 2Zg. Thebase � will be chosen as a Gaussian integer. It is quite natural to extend prop-erties satis�ed by integral base for real numbers, namely the fact that integerscoincide with numbers having a zero fractional part. More precisely, given abase � of modulus > 1 and an alphabet A of digits that are Gaussian integers,we will say that (�;A) is an integral numeration system for the �eld of complexnumbers C if every Gaussian integer z has a unique integer representation ofthe form dk � � �d0 such that z = Pkj=0 dj�j , with dj 2 A. We shall see laterthat, in that case, every complex number has a representation.We �rst show preliminary results. A set A �Z[i] is a complete residue systemfor Z[i] modulo � if every element of Z[i] is congruent modulo � to a uniqueelement of A. The norm of a Gaussian integer z = x + yi is N (z) = x2 + y2.The following result is well known in elementary number theory.Theorem 7.4.1 (Gauss). Let � = a+ bi be a non-zero Gaussian integer, andlet N be the norm of �. If a and b are coprime, then a complete residue systemfor Z[i] modulo � is the set f0; : : : ; N � 1g:If gcd(a; b) = �, a complete residue system for Z[i]modulo � is the setfp+ iq j p = 0; 1; : : :; (N=�) � 1; q = 0; 1; : : : ; �� 1g:We use it in the following circumstances.Proposition 7.4.2. Suppose that every Gaussian integer has an integer rep-resentation in (�;A). Then this representation is unique if and only if A is acomplete residue system for Z[i] modulo �, that contains 0.Proof. Let us suppose that A is a complete residue system containing 0, andlet dk � � �d0 and cp � � �c0 be two representations of z in (�;A). One can supposed0 6= c0. Then c0 � d0 = �(dk�k�1 + � � �+ d1 � cp�p�1 � � � � � c1), thus d0 andc0 are congruent modulo �, and are elements of A, thus they are equal, whichis absurd.Conversely, suppose that every Gaussian integer z has a unique representa-tion of the form dk � � �d0, with digits dj in A. Then z is congruent to d0 modulo�, thus the digit set A must contain a complete residue system.Now let c and d be two digits of A that are congruent modulo �. Thenc � d = �q with q in Z[i]. Let qn � � �q0 be the representation of q. Hence c hastwo representations, c itself and qn � � �q0d.If we require the digits to be natural numbers, the base must be a Gaussianinteger � = a+ bi with a and b coprime, and the choice is drastically restricted.Version April 18, 2001



26 Numeration systems 7.4Theorem 7.4.3. Let � be a Gaussian integer of norm N , and let A = f0; : : : ;N � 1g. Then (�;A) is an integral numeration system for the complex numbersif and only if � = �n � i, for some n � 1.Proof. First let � = a + bi, a and b coprime, and let A = f0; : : : ; a2 + b2 � 1g.Suppose that a > 0. We shall show that the Gaussian integer z = (1� a) + ibhas no representation. Suppose in the contrary that z has a representationdk � � �d0. Let y = z(1 � �) = a2 + b2 � 2a + 1. Since a > 0, y belongs to A.But y = d0 + (d1 � d0)� + � � �+ (dk � dk�1)�k � dk�k+1. Thus y is congruentto d0 modulo �, and so y = d0. It follows that d1 � d0 = 0, . . . , dk � dk�1 = 0,dk = 0, so for 0 � j � k, dj = 0. Thus y = 0 and a = 1, b = 0. But � = 1 isnot the base of a numeration system.If a = 0 and b = �1, then � = �i is not a base either. If a = 0 and jbj � 2,the digit set is f0; � � � ; b2 � 1g. If b > 0 then i has no integer representation,since hii� = 10 � (b2 � b). If b < 0, then �i has no integer representation (seeExercise 7.4.2.)Let now a < 0 and b 6= �1. Suppose that a Gaussian integer z has arepresentation dk � � �d0. Then Imz = dk Im�k + � � �+ d1 Im�. Since Im� = b isa divisor of Im�k for all k, b divides Imz. Take z = i. Since b 6= �1, there is acontradiction.Let now � = �n + i, n � 1, and thus A = f0; : : : ; n2g. It remains to provethat any z 2Z[i] has an integer representation in (�;A). Let z = x+ iy, x andy in Z. We have z = c + d�, with d = y and c = x + ny. From the equality�2 + 2n� + n2 + 1 = 0, it is possible to write z as z = d3�3 + d2�2 + d1� + d0with di 2 N.Let z = dk�k + � � �+ d0, with di 2 N, and k � 3, and let d = dk � � �d0 2 N�.Denote by S the sum-of-digits functionS : C �N� �! N(z; d) 7�! S(z; d) = dk + � � �+ d0:In the following we will use the fact that n2 + 1 = �3 + (2n� 1)�2 + (n� 1)2�,that is, hn2 + 1i� is equal to the word 1(2n � 1)(n � 1)20, and that the sumof digits of these two representations is the same and equal to n2 + 1. Bythe Euclidean division by n2 + 1, d0 = r0 + q0(n2 + 1) with 0 � r0 � n2, thusz = r0+(d1+q0(n�1)2)�+(d2+q0(2n�1))�2+(d3+q0)�3+d4�4+� � �+dk�k =d(1)0 + � � �+ d(1)k �k. Clearly S(z; d) = S(z; d(1)), where d(1) = d(1)k � � �d(1)0 .Let z1 = d(1)1 + � � �+ d(1)k �k�1, then S(z1; d(1)) � S(z; d), and the inequalityis strict if and only if r0 6= 0. Repeating this process, we get z = �z1 + r0,z1 = �z2 + r1, . . . , zj�1 = �zj + rj�1, with for 0 � i � j � 1, ri 2 A, andS(z; d) � S(z1; d(1)) � � � � � S(zj�1; d(j�1)).Since the sequence (S(zj ; d(j)))j of natural numbers is decreasing, there ex-ists a p such that, for every m � 0, S(zp; d(p)) = S(zp+m ; d(p+m)), thus �mdivides zp for every m, therefore zp = 0. So we gethzi� = rp�1 � � �r0:Version April 18, 2001



7.4. Representation of complex numbers 27Let now � = �n� i. Using the result for the conjugate �� = �n+ i, we haveh�zi�� = rp�1 � � � r0for every Gaussian integer �z. Hencehzi� = rp�1 � � � r0for every Gaussian integer z.From this result, one can deduce that every complex number is representablein this system.Theorem 7.4.4. If � = �n � i, n � 1, and A = f0; : : : ; n2g, every complexnumber has a representation (not necessarily unique) in the numeration system(�;A).Proof. Let z = x+ iy, x and y in R, be a �xed arbitrary complex number. Fork � 0, let �k = uk + ivk. Thenz = (x + iy)(uk + ivk)�k = pk + iqk�k + rk + isk�kwhere xuk � yvk = pk + rk, xvk + yuk = qk + sk, with pk and qk in Z, andjrkj < 1, jskj < 1. Let zk = pk + iqk�k ; yk = rk + isk�k :Since yk ! 0 when k !1, limk!1 zk = z. Since pk+iqk is a Gaussian integer,by Theorem 7.4.3. hpk + iqki� = d(k)t(k) � � �d(k)0 :Thus zk = d(k)t(k)�t(k)�k + � � �+ d(k)0 ��k:So jd(k)t(k)�t(k)�k + � � �+ d(k)k j � jzkj+ d(k)k�1j�j + � � �+ d(k)0j�jk� jzj+ jykj+ n2( 1j�j + 1j�j2 + � � �)� jzj+ jykj+ n2j�j � 1 � cwhere c is a positive constant not depending on k.Since the representation of a Gaussian integer is unique, and since Z[i] is adiscrete lattice, i.e. is an additive subgroup such that any bounded part containsonly a �nite number of elements, t(k) � k has an upper bound. Let M be aninteger such that t(k) � k �M . Then we can write zk on the formzk = a(k)M �M + � � �+ a(k)0 + a(k)�1��1 + a(k)�2��2 + � � �Version April 18, 2001



28 Numeration systems 7.4
Figure 7.5. Base �1 + i tile with fractal boundarywhere a(k)j 2 A for M � j. Let bM 2 A be an integer so that a(k)M = bM forin�nitely many k's. Let DM be the subset of those k's such that a(k)M = bM . LetbM�1 2 A be an integer so that a(k)M�1 = bM�1 for in�nitely many k's in DM ,and let DM�1 be the set of those k's. Repeating this process a set sequence(D`)`�M such that DM � DM�1 � � � � and such that for all k 2 D`, a(k)j = bjfor each ` � j � M is constructed. Let k1 < k2 < � � � be an in�nite sequencesuch that kj 2 DM�j+1 for j � 1. Sincezkj = bM�M + � � �+ bM�j+1�M�j+1 + a(kj)M�j�M�j + a(kj)M�j�1�M�j�1 + � � �we get zkj !P`�M b`�` when j !1: Since limk!1 zk = z, we havehzi� = bM � � �b0 � b�1b�2 � � �Example 7.4.5. On Figure 7.5 is shown the set obtained by considering com-plex numbers having a zero integer part and a fractional part of length less thana �xed bound in their �1 + i-expansion. This set actually tiles the plane.Let C be a �nite alphabet of Gaussian integers. The normalization on C� isthe function �C : C� �! A�ck � � �c0 7�! hPkj=0 cj�ji�As for standard representations of integers (see Proposition 7.1.3), normalizationis a right subsequential function, and in particular addition is right subsequen-tial.Proposition 7.4.6. For any �nite alphabet C of Gaussian integers, the nor-malization in base � = �n + i restricted to the set C� n 0C� is a right subse-quential function.Version April 18, 2001



7.4. Representation of complex numbers 29Proof. Let m = maxfjc � aj j c 2 C; a 2 Ag, and let  = m=(j�j � 1). Firstobserve that, if s 2 Z[i] and c 2 C, there exist unique a 2 A and s0 2 Z[i]such that s + c = �s0 + a, because A is a complete residue system mod �.Furthermore, if jsj < , then js0j � (jsj+ jc� aj)=j�j < ( +m)=j�j = .Consider the subsequential �nite transducer (A; !) over C� � A�, whereA = (Q;E; 0) is de�ned as follows. The set of states is Q = fs 2Z[i] j jsj < g.Since Z[i] is a discrete lattice, Q is �nite.E = fs c=a�! s0 j s + c = �s0 + ag:Observe that the edges are \letter-to-letter". The terminal function is de�nedby !(s) = hsi� . The transducer is subsequential because A is a complete residuesystem.Now let ck � � � c0 2 C� and z =Pkj=0 cj�j . Setting s0 = 0, there is a uniquepath s0 c0=a0�! s1 c1=a1�! s2 c2=a2�! � � � ck�1=ak�1�! sk ck=ak�! sk+1:We get z = a0+a1�+ � � �+ak�k + sk+1�k+1, and thus hzi� = !(sk+1)ak � � �a0.7.4.2. Representability of the complex planeIn general, the question of deciding whether, given a base � and a set of digitsA, every complex number is representable, is di�cult. A su�cient condition isgiven by the following result.Theorem 7.4.7. Let � be a complex number of modulus greater than 1, andlet A be a �nite set of complex numbers containing zero. If there exists abounded neighborhood V of zero such that �V � V + A, then every complexnumber z has a representation of the formz = Xj�mdj�jwith m in Zand digits dj in A.Proof. Let z be in C . There exists an integer k � 0 such that ��kz 2 V , thusit is enough to show that every element of V is representable. Let z be in V .A sequence (zj)j�0 of elements of V is constructed as follows. Let z0 = z. As�V � V + A, if zj is in V , there exist dj+1 in A and zj+1 in V such thatzj+1 = �zj � dj+1:Hence the sequence (zj)j�0 is such thatz = d1��1 + � � �+ dj��j + zj��jand since V is bounded, by letting j tend to in�nity,z =Xj�0 dj��j : Version April 18, 2001



30 ProblemsProblemsSection 7.17.1.1 Prove that addition in the standard �-ary system is not left subsequen-tial.7.1.2 Give a right subsequential transducer realizing the multiplication by a�xed integer, and a left subsequential transducer realizing the divisionby a �xed integer in the standard �-ary system.7.1.3 Prove the well-known fact that a number is rational if and only if its�-expansion in the standard �-ary system is eventually periodic.7.1.4 Show that any real number can be represented without a sign usinga negative base �, where � is an integer � �2, and digit alphabetf0; : : : ; j�j�1g. Integers have a unique integer representation. Additionof integers is a right subsequential function.7.1.5 Show that one can represent any real number without a sign usingbase 3, and digit alphabet f�1; 0; 1g. Integers have a unique integerrepresentation. Addition of integers is a right subsequential function.Generalize this result to integral bases greater than 3.Section 7.27.2.1 Show that the code Y de�ned in the proof of Proposition 7.2.11 is �niteif and only if d�(1) is �nite, resp. is recognizable by a �nite automatonif and only if d�(1) is eventually periodic.7.2.2 If every rational number of [0; 1] has an eventually periodic �-expansion,then � must be a Pisot or a Salem number. (See Schmidt 1980).7.2.3 Normalization in base �. (See Frougny 1992, Berend and Frougny1994).1. Let s = (si)i�1 and denote by ��(s) the real number Pi�1 si��i.Let C be a �nite alphabet of integers. The canonical alphabet is A =f0; : : : ; b�cg. The normalization function on C�C : CN�! ANis the partial function which maps an in�nite word s over C, such that0 � ��(s) � 1, onto the �-expansion of ��(s).A transducer is said to be letter-to-letter if the edges are labelled bycouples of letters.Let C = f0; : : : ; cg, where c is an integer � 1. Show that normalization�C is a function computable by a �nite letter-to-letter transducer if andonly if the setZ(�; c) = fs = (si)i�0 j si 2Z; jsij � c; Xi�0 si��i = 0gVersion April 18, 2001



Problems 31is recognizable by a �nite automaton.2. Prove that the following conditions are equivalent:(i) normalization �C : CN�! ANis a function computable by a �niteletter-to-letter transducer on any alphabet C of nonnegative integers(ii) �A0 : A0N�! AN, where A0 = f0; : : : ; b�c + 1g, is a function com-putable by a �nite letter-to-letter transducer(iii) � is a Pisot number.Section 7.3��7.3.1 (See Hollander 1998) Let U be a linear recurrent sequence of integerssuch that limn!1(un+1=un) = � for real � > 1.1. Prove that if d�(1) is not �nite nor eventually periodic then L(U ) isnot recognizable by a �nite automaton.2. If d�(1) is eventually periodic, d�(1) = t1 � � � tN (tN+1 � � � tN+p)!, setB(X) = XN+p � N+pXi=1 tiXN+p�i �XN + NXi=1 tiXN�i:Similarly, if d�(1) is �nite, d�(1) = t1 � � � tm, setB(X) = Xm � mXi=1 tiXm�i:Note that B(X) is dependent on the choice of N and p (or m). Anysuch polynomial is called an extended beta polynomial for �. Prove that(i) If d�(1) is eventually periodic, then L(U ) is recognizable by a �niteautomaton if and only if U satis�es an extended beta polynomial for �.(ii) If d�(1) is �nite, then� if U satis�es an extended beta polynomial for � then L(U ) is rec-ognizable by a �nite automaton� if L(U ) is recognizable by a �nite automaton then U satis�es apolynomial of the form (Xm�1)B(X) where B(X) is an extendedpolynomial for � and m is the length of d�(1).Section 7.47.4.1 1. Show that every Gaussian integer can be uniquely represented usingbase 3 and digit set A = f�1; 0; 1g+ if�1; 0; 1g = f0; 1;�1; i;�i; 1+ i; 1�i;�1 + i;�1� ig. If each digit is written in the form0 = 00; 1 = 10; �1 = �10; i = 01; �i = 0�11 + i = 11; 1� i = 1�1; �1 + i = �11; �1� i = �1�1Version April 18, 2001



32 Problemsthen for any representation the top row represents the real part andthe bottom row is the imaginary part. Every complex number is repre-sentable.2. Show that every complex number can be represented using base 2and the same digit set A, but that the representation of a Gaussianinteger is not unique.7.4.2 Prove that every Gaussian integer has a unique representation of theform dk � � �d0 � d�1 in base � = �bi, where b is an integer � 2, and thedigits dj are elements of A = f0; : : : ; b2� 1g. Every complex number isrepresentable. (See Knuth 1988).7.4.3 Show that every complex number can be represented using base 2 anddigit set A = f0; 1; �; �2; �3g, where � = exp(2i�=4). These representa-tions are called polygonal representations. (See Duprat, Herreros, andKla 1993).7.4.4 Let � be a complex number of modulus > 1, and let A be a �nitedigit set containing 0. Let W be the set of fractional parts of complexnumbers, W = fPj�1 dj��j j dj 2 Ag.1. Show thatW is the only compact subset of C such that �W = W+A.2. Show that if the set W is a neighborhood of zero, then every complexnumber has a representation with digits in A.7.4.5 Let � be a complex number of modulus > 1, and let A be a �nitedigit set containing 0. An in�nite sequence (dj)j�1 of ANis a strictlyproper representation of a number z =Pj�1 dj��j if it is the greatestin the lexicographic order of all the representations of z with digits inA. It is weakly proper if each �nite truncation is strictly proper. LetW = fPj�1 dj��j j dj 2 Ag. Show that, if � is a complex Pisotnumber, the set of weakly proper representations of elements of W isrecognizable by a �nite automaton. (See Thurston 1989, Kenyon 1992,Petronio 1994).�7.4.6 Representation of algebraic number �elds. (See Gilbert 1981, 1994,K�atai and Kovacs 1981).Let � be an algebraic integer of modulus > 1, and let A be a �nite setof elements of Z[�] containing zero. We say that (�;A) is an integralnumeration system for the �eld Q(�) if every element of Z[�] has aunique integer representation of the form dk � � �d0 with dj in A.1. Let P (X) = Xm + pm�1Xm�1 + � � �+ p0 be the minimal polynomialof �. The norm of � is N (�) = jp0j. Show that a complete residuesystem of elements of Z[�] modulo � is the set f0; : : : ; N (�)� 1g.2. Suppose that every element of Z[�] has a representation in (�;A).Prove that this representation is unique if and only if A is a completeresidue system for Z[�] modulo �, that contains zero.3. Suppose that (�;A) is an integral numeration system. Show thatevery element of the �eld Q(�) has a representation in (�;A).4. Show that (�;A) is an integral numeration system if and only if � andall its conjugates have moduli greater than 1 and there is no positiveVersion April 18, 2001



Notes 33integer q for whichdq�1�q�1 + � � �+ d0 � 0 (mod �q � 1)with dj in A for 0 � j � q.5. Now suppose that � is a quadratic algebraic integer, and let A =f0; : : : ; jp0j�1g. Prove that (�;A) is an integral numeration system forQ(�) if and only if p0 � 2 and �1 � p1 � p0.NotesConcerning the representation of numbers in classical or less classical numera-tion systems, there is always something to learn in Knuth 1988. Representationin integral base with signed digits was popularized in computer arithmetic byAvizienis (1961) and can be found earlier in a work of Cauchy (1840).We have not presented here p-adic numeration, nor the representation ofreal numbers by their continued fraction expansions (see Chapter 2 for this lasttopic).The notion of beta-expansion is due to R�enyi (1957). Its properties wereessentially set up by Parry (1960), in particular Theorem 7.2.9. Coded systemswere introduced by Blanchard and Hansel (1986). The result on the entropyof the �-shift is due to Ito and Takahashi (1974). The links between the �-expansion of 1 and the nature of the �-shift are exposed in Ito and Takahashi1974 and in Bertrand-Mathis 1986. Connections with Pisot numbers are to befound in Bertrand 1977 and Schmidt 1980. It is also known that normalizationin base � is computable by a �nite transducer on any alphabet if and only if� is a Pisot number, see Problem 7.2.3. If � is a Salem number of degree 4then d�(1) is eventually periodic, see Boyd 1989. It is an open problem fordegree � 6. Perron numbers are introduced in Lind 1984. There is a surveyon the relations between beta-expansions and symbolic dynamics by Blanchard(1989). In Solomyak 1994 and in Flatto, Lagarias, and Poonen 1994 is proved thefollowing property: if d�(1) is eventually periodic, then the algebraic conjugatesof � have modulus strictly less than the golden ratio. Beta-expansions alsoappear in the mathematical description of quasicrystals, see Gazeau 1995.The representation of integers with respect to a sequence U is introducedin Fraenkel 1985. The fact that, if L(U ) is recognizable by a �nite automaton,then the sequence U is linearly recurrent is due to Shallit (1994). We follow theproof of Loraud (1995). The converse problem is treated by Hollander 1998,see Problem 7.3.3. Canonical numeration systems associated with a number �come fromBertrand-Mathis (1989). Normalization in linear numeration systemslinked with Pisot numbers is studied in Frougny 1992, Frougny and Solomyak1996, and with the use of congruential techniques, in Bruy�ere and Hansel 1997.Moreover, if the sequence U has a characteristic polynomialwhich is the minimalpolynomial of a Perron number which is not Pisot, then normalization cannotbe computed by a �nite transducer on every alphabet (Frougny and Solomyak1996). Version April 18, 2001



34 NotesA famous result on sets of natural numbers recognized by �nite automata isthe theorem of Cobham (1969). Let k be an integer � 2. A set X of positiveintegers is said to be k-recognizable if the set of k-representations of numbers ofX is recognizable by a �nite automaton. Two numbers k and l are said to bemultiplicatively independent if there exist no positive integers p and q such thatkp = lq. Cobham's Theorem then states: If X is a set of integers which is bothk-recognizable and l-recognizable in two multiplicatively independent bases kand l, then X is eventually periodic. There is a multidimensional version ofCobham's Theorem due to Semenov (1977). Original proofs of these two resultsare di�cult, and several other proofs have been given, some of them using logic(see Michaux and Villemaire 1996). There are many works on generalizationsof Cobham and Semenov theorems (see Fabre 1994, Bruy�ere and Hansel 1997,Point and Bruy�ere 1997, Fagnot 1997, Hansel 1998). In Durand 1998 there isa version of the Cobham theorem in terms of substitutions. We give now oneresult related to the concepts exposed in Section 7.3. Let U be an increasingsequence of integers. A set X of positive integers is U -recognizable if the set ofnormal U -representations of numbers ofX is recognizable by a �nite automaton.Let � and �0 be two multiplicatively independent Pisot numbers, and let U andU 0 be two linear numeration systems whose characteristic polynomial is theminimal polynomial of � and �0 respectively. For every n � 1, if X � Nn is U -and U 0-recognizable then X is de�nable in hN;+i (B�es 2000). When n = 1, theresult says that X is eventually periodic.Theorem 7.4.3 on bases of the form �n � i, n integer � 1 is due to K�ataiand Szab�o (1975). There is a more algorithmic proof, as well as results on thesum-of-digits function for base � = �1+i, in Grabner et al. 1998 Normalizationin complex base is studied in Safer 1998. Theorem 7.4.7 appeared in Thurston1989, as well as the result on complex Pisot bases presented in Problem 7.4.5.Representation of complex numbers in imaginary quadratic �elds is studied inK�atai 1994. We have not discussed here beta-automatic sequences. Resultson these topics can be found in Allouche et al. 1997, particularly for the case� = �1 + i.The numeration in complex base is strongly related to fractals and tilings.Self-similar tilings of the plane in relation with complex Pisot bases are discussedin Thurston 1989, Kenyon 1992 and Petronio 1994. In Gilbert 1986, the fractaldimension of tiles obtained in some bases such as �n+ i is computed. A generalsurvey has been written by Bandt (1991).
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