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Summary A new method for representing positive integers and real numbers in a rational
base is considered. It amounts to computing the digits from right to left, least significant first.
Every integer has a unique such expansion. The set of expansions of the integers is not a regular
language but nevertheless addition can be performed by a letter-to-letter finite right transducer.
Every real number has at least one such expansion and a countable infinite set of them have
more than one. We explain how these expansions can be approximated and characterize the
expansions of reals that have two expansions.

These results are not only developped for their own sake but also as they relate to other

problems in combinatorics and number theory. A first example is a new interpretation and

expansion of the constant K(p) from the so-called “Josephus problem”. More important, these

expansions in the base p

q
allow us to make some progress in the problem of the distribution of

the fractional part of the powers of rational numbers.

extended abstract

In this paper1, we introduce and study a new method for representing positive integers
and real numbers in the base p

q
, where p > q > 2 are coprime integers. The idea of non-

standard representation systems of numbers is far from being original and there have
been extensive studies of these, from a theoretical standpoint as well as for improving
computation algorithms. It is worth (briefly) recalling first the main features of these
systems in order to clearly put in perspective and in contrast the results we have obtained
on rational base systems.

Many non-standard numeration systems have been considered, [12, Vol. 2, Chap. 4]
or [13, Chap. 7], for instance, give extensive references. Representation in integer base
with signed digits was popularized in computer arithmetic by Avizienis [2] and can be
found earlier in a work of Cauchy [5]. When the base is a real number β > 1, any non-
negative real number is given an expansion on the canonical alphabet {0, 1, . . . , bβc} by
the greedy algorithm of Rényi [18]; a number may have several β-representations on the
canonical alphabet, but the greedy one is the greatest in the lexicographical order. The
set of greedy β-expansions of numbers of [0, 1[ is shift-invariant, and its closure forms
a symbolic dynamical system called the β-shift. The properties of the β-shift are well
understood, using the so-called “β-expansion of 1”, see [16, 13].

When β is a Pisot number2, the β number system shares many properties with the
integer base case: the set of greedy representations is recognizable by a finite automaton;
the conversion between two alphabet of digits (in particular addition) is realized by a
finite transducer [9].

In this work, we first define the p
q
-expansion of an integer N : it is a way of writing N

in the base p
q

by an algorithm which produces least significant digits first. We prove:
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2An algebraic integer whose Galois conjugates are all less than 1 in modulus

1



Theorem 1 Every non-negative integer N has a p
q
-expansion which is an integer rep-

resentation. It is the unique finite p
q
-representation of N .

The p
q
-expansions are not the p

q
-representations that would be obtained by the classi-

cal “greedy algorithm” in base p
q
. They are written on the alphabet A = {0, 1, . . . , p−1} ,

but not every word of A∗ is admissible. These p
q
-expansions share some properties with

the expansions in an integer base — digit set conversion is realized by a finite automaton
for instance — and are completely different as far as other aspects are concerned. Above
all, the set L p

q

of all p
q
-expansions is not a regular language (not even a context-free one).

To some extend, the study and understanding of this set of words L p

q

is what this paper

is about.
By construction, the set L p

q

is prefix-closed and any element can be extended (to the

right) in L p

q

. Hence, L p

q

is the set of labels of the finite paths in an infinite subtree T p

q

of the infinite full p-ary tree of the free monoid A∗. The tree T p

q

contains a maximal

infinite word t p

q

— maximal in the lexicographic ordering — whose numerical value

is ω p

q

. We consider the set of infinite words W p

q

, subset of AN, that label the infinite

paths of T p

q

as the admissible p
q
-expansions of real numbers and we prove:

Theorem 2 Every real in [0,ω p

q

] has exactly one p
q
-expansion, but for an infinite count-

able number of them which have more than one such expansion.

If p > 2q − 1 then no real has more than two p
q
-expansions. It is noteworthy as

well that no p
q
-expansion is eventually periodic and thus in particular — and in contrast

with the expansion of reals in an integer base — no p
q
-expansion ends with 0ω or, which

is the same, is finite. This is a very remarkable feature of the p
q

number system for

reals and we explain how the p
q
-expansion of a real number can be computed (in fact

approximated).
We shall give here two examples of the relations of the p

q
-expansions of reals with

other problems in combinatoric and number theory. The first one is the so-called “Jose-
phus problem” in which a certain constant K(p) is defined (cf. [15, 10, 20]) which is a
special case of our constant ω p

q

(with q = p−1) and this definition yields a new method

for computing K(p).
The connection with the second problem, namely the distribution of the powers of

a rational number modulo 1, is even more striking. It requires to be presented the
framework of this long standing and deeply intriguing problem be set.3

Hardy and Littlewood proved that for almost every real number θ > 1 the sequence
{θn} is uniformely distributed in [0, 1] , but very few results are known for specific
values of θ. One of these is that if θ is a Pisot number, then the above sequence may

have only 0 and 1 as limit points. The distribution of
{

(p
q
)n

}

for coprime positive

integers p > q > 2 remains an unsolved problem. Experimental results shows that
this distribution looks more “chaotic” than the distribution of the fractional part of the
powers of a transcendental number like e or π (cf. [22]). Vijayaraghavan [21] showed
that the sequence has infinitely many limits points.

The next step in attacking this problem has been to fix the rational p
q

and to study

3This presentation is based on the introduction of [4]. The fractional part of a number x is denoted
by {x}.
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the distribution of the sequence

fn(ξ) =

{

ξ

(

p

q

)n}

according to the value of the real number ξ. Once again, the sequence fn(ξ) is uni-
formely distributed for almost all ξ > 0 , but nothing is known for specific value of ξ.

In the search for ξ’s for which the sequence fn(ξ) is not uniformely distributed,
Mahler considered those for which the sequence is eventually contained in [0, 1

2 [. Mahler’s
notation is generalized as follow: let I be a (strict) subset of [0, 1[ — indeed I will be a
finite union of semi-closed intervals — and write:

Z p

q

(I) = {ξ ∈ R
∣

∣

{

ξ

(

p

q

)n}

stays eventually in I } .

Mahler [14] proved that Z 3

2

(

[0, 1
2 [

)

is at most countable but left open the problem to

decide whether it is empty or not. Mahler’s work has been developped in two directions:
the search for subsets I as large as possible such that Z p

q

(I) is empty and conversely

the search for subsets I as small as possible such that Z p

q

(I) is non-empty.

Along the first line, a remarkable progress has been made by Flatto et al. ([7]) who

proved that the set of reals s such that Z p

q

(

[s, s + 1
p
[
)

is empty is dense in [0, 1 − 1
p
],

and recently Bugeaud [4] proved that its complement is of Lebesgue measure 0. Along
the other line, Pollington [17] showed that Z 3

2

(

[ 4
65 , 61

65 [
)

is non-empty. Our contribution

to the problem can be seen as an improvement of this result.

Theorem 3 If p > 2q − 1 , there exists a subset Y p

q

of [0, 1[, of Lebesgue measure q
p
,

such that Z p

q

(

Y p

q

)

is countable infinite.

The elements of Z p

q

(

Y p

q

)

are indeed the reals which have two p
q
-expansions (cf.

Theorem 17) and this is the reason why the consideration of the p
q

number system
allowed to make some progress in Mahler’s problem.

In conclusion, we have introduced and studied here a fascinating object which can be
seen from many sides, which raises still many difficult questions and whose further study
will certainly mix techniques from word combinatorics, automata theory, and number
theory.

Due to space limitations, we do not include in this extended abstract any preliminary
for definition nor notation on (infinite) words and automata but rather follow [13, 6, 11].

1 The p
q number system

Let p > q > 1 be two co-prime integers and let U be the sequence defined by:

U = {ui =
1

q

(

p

q

)i
∣

∣ i ∈ Z}.

We will say that U , together with the alphabet A = {0, . . . , p − 1} , is the p
q

number
system. If q = 1 , it is exactly the classical number system in base p.
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A representation in the system U of a non-negative real number x on a finite alphabet
of digits D is an infinite sequence of digits in D indexed by a section of Z: (di)k>i>−∞,
such that:

x =

i=k
∑

−∞

diui , an equation that is written as 〈x〉 p

q

= dk · · · d0.d−1d−2 · · · ,

most significant digit first. When a representation ends in infinitely many zeroes, it is
said to be finite, and the trailing zeroes are omitted. When all the di with negative
index are zeroes, the representation is said to be an integer representation. Conversely,
the numerical value in the system U of a word on an alphabet of digits D is given by
the evaluation map π:

π : DZ −→ R , d = {di}k>i>−∞ 7−→ π(d) =
i=k
∑

−∞

diui .

It is important to remark that this definition is not the classical one for the numer-
ation system in base p

q
: U is not the sequence of powers of p

q
but rather these powers

divided by q and the digits are not the integers smaller than p
q

but rather the integers

whose quotient by q is smaller than p
q
. These two differences first compensate each other

and second make the developments that follow possible.

2 Representation of the integers

2.1 The p

q
-expansion of an integer

Let N be any positive integer. Write N0 = N and, for i > 0, write

qNi = pNi+1 + ai (1)

where ai is the remainder of the Euclidean division of qNi by p, and thus belongs to A.
This is an algorithm that produces the digits of N , least significant first, that is to say,
from right to left, and stops for some k when Nk+1 = 0. It holds N =

∑k
i=0 aiui and

thus the word ak · · · a0 is a p
q
-representation of N ; it will be called the p

q
-expansion of N

and written 〈N〉 p

q

. By convention the p
q
-expansion of 0 is the empty word. It can be

proved that (under the condition that ak 6= 0) 〈N〉 p

q

is the unique finite p
q
-representation

of N . We have thus established:

Theorem 1 Every non-negative integer N has a p
q
-expansion which is an integer rep-

resentation. It is the unique finite p
q
-representation of N .

Example 1 Let p = 3 and q = 2, then A = {0, 1, 2} — this will be our main running
example. Table 1 gives the 3

2 -expansions of the eleven first integers (cf. Appendix A as
well). �

Remark 1 This representation is not — if q 6= 1 — the representation obtained by the
greedy (left-to-right) algorithm, (see [18] or [13, Chapter 7]), which gives representations
on the alphabet {0, 1, · · · , b p

q
c}. It follows then from Theorem 1 that no integer (but 1)

is given a finite representation by the greedy algorithm.
If q = 1 on the contrary, the above algorithm gives the same representation as the

one given by the classical greedy algorithm.
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2.2 The set of p

q
-expansions

Let us denote by L p

q

the set of p
q
-expansions of the non-negative integers. If q = 1

then L p

q

is the set of all words of A∗ which do not begin with a 0; if we release this last

condition, we then get the whole A∗. If q 6= 1, L p

q

is prefix-closed by construction and

the observation of Table 1 shows that it is not suffix-closed.

For each a in A, we define a partial map τa from N

into itself: for z in N, τa(z) = 1
q (pz+a) if the latter is an

integer, τa(z) is undefined otherwise. The labelled tree
T p

q

is then constructed as follows: the root is labelled

by 0, the children of a node labelled by z are nodes la-
belled by the (defined) τa(z), the edge from z to τa(z)
being labelled by a. See Appendix B for (a part of) T 3

2

.

Let us call word label of a node s, and write w(s),
the label of the path from the root to s. By construction
the label of s is π(w(s)) . Let us denote I p

q

the subtree

of T p

q

made of nodes whose word label does not begin

with a 0.

0
2 1

21 2
210 3
212 4

2101 5
2120 6
2122 7

21011 8
21200 9
21202 10

Table 1.

Among the digits that label the edges that start from a node with label N , there is a
minimum one, minDigit(N), which belongs to {0, . . . , q−1} — and this is characteristic
of a minimum digit — and there is a maximal one, MaxDigit(N), which belongs to
{p− q, . . . , p− 1} — and this is characteristic of a maximal digit. If D = MaxDigit(N)
and d = minDigit(N + 1) , then D = d + (p − q) and τd(N + 1) = τD(N) + 1 .

It follows that for every integer k, there exists an integer Mk such that the nodes
of depth k in T p

q

are labelled by the integers from 0 to Mk (see Section 3.2 for the

computation of the Mk’s). And the labelling of nodes (in N) gives the ordering in
the radix order on I p

q

. Closer investigations give the following (under the hypothesis

that q 6= 1):

Proposition 4 No two subtrees of I p

q

are isomorphic.

Corollary 5 L p

q

is not a regular language.

Proposition 6 Every w in Ak is the suffix of the p
q
-expansion of a unique integer n,

0 6 n < pk.

Proposition 7 L p

q

is not a context-free language.

2.3 Conversion between alphabets

Let D be a finite alphabet of (positive or negative) digits that contains A. The digit-set
conversion is a map χD : D∗ → A∗ which commutes to the evaluation map π, that is a
map which preserves the numerical value:

∀w ∈ D∗ π(χD(w)) = π(w) .

Proposition 8 For any alphabet D the conversion χD is realizable by a finite letter-
to-letter sequential right transducer CD.
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The states of CD are integers, the state 0 is initial, and the final function of a state h
(with h positive) is the p

q
-expansion of h. A transition labelled by (d, a), with d in D

and a in A, goes from h to k if and only if

q h + d = pk + a . (2)

One then verifies that the set of accessible states is finite and this establishes Proposi-
tion 8.

The integer addition may be seen — af-
ter digit-wise addition — as a particular
case of a digit-set conversion χD with D =
{0, 1, . . . , 2(p−1)} and Figure 1 shows the con-
verter that realizes addition in the 3

2 -system.
2 1 0

21 2

(0, 1)
(1, 2)

(4, 0)

(0, 2)

(3, 0)
(4, 1)

(2, 0)
(3, 1)
(4, 2)

(1, 0)
(2, 1)
(3, 2)

(0, 0)
(1, 1)
(2, 2)

Figure 1: A converter for addition in
the 3

2 number system

Remark 2 Let us stress that χD is defined on the whole set D∗ even for word v such
that π(v) is not an integer, and also that, if π(v) is in N, then χD(v) is the unique
p
q
-expansion of π(v).

Remark 3 As p
q

is not a Pisot number (when q 6= 1), the conversion from any repre-
sentation onto the expansion computed by the greedy algorithm is not realized by a finite
transducer (see [13, Ch. 7]).

3 Representation of the reals

The tree T p

q

that contains all p
q
-expansions of the integers will now be used to define

representations of real numbers. In the previous sections, digits in a p
q
-representation

where indexed from left to right by decreasing nonnegative integers for the “integer”
part and by decreasing negative integers for the “decimal” part; as we shall now deal
mainly with the “decimal” part of the representations, we find it much more convenient
to change the convention of indexing and use the positive indices after the decimal point,
in the increasing order.

3.1 The p

q
-expansions of reals

Definition 9 Let W p

q

be the set of labels of infinite paths starting from the root 0 in T p

q

.

Let a = {ai}i>1 be in W p

q

. The infinite word a is a p
q
-expansion of the real number x:

x = π(.a) =
1

q

∑

i>1

ai

(

q

p

)i

.

The set W p

q

contains a maximal element with respect to the lexicographical order,

an infinite word denoted by t p

q

. For p
q

= 3
2 it comes:

t 3

2

= 212211122121122121211221 · · ·
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Let X p

q

= π(W p

q

) and ω p

q

= π(.t p

q

) the numerical value of the maximal infinite word.

The elements of X p

q

are non-negative real numbers less than or equal to ω p

q

. Note that

ω p

q

6
p−1
p−q

. The fact that the p
q

number system may be used for representing the reals

is expressed by the following statement.

Theorem 2 Every real in [0,ω p

q

] has exactly one p
q
-expansion, but for an infinite count-

able number of them which have more than one such expansion.

The proof of the first part of Theorem 2, that is to say the proof that X p

q

= [0,ω p

q

] ,

relies on three facts. First, W p

q

is closed in the compact set AN, hence is compact.

Second, the map π : W p

q

→ X p

q

is continuous and order-preserving. Hence X p

q

is a

closed subset of the interval [0,ω p

q

]. And finally, properties of the tree T p

q

imply that

[0,ω p

q

]\X p

q

cannot contain any non-empty open interval. From the same properties we

deduce that real numbers having more than one expansion correspond to the branching
nodes of T p

q

, hence the second part of Theorem 2.

Remark 4 In contrast with the classical representations of reals, the finite prefixes of a
p
q
-expansion of a real number, completed by zeroes, are not p

q
-expansions of real numbers

(though they can be given a value by the function π of course), that is to say, if a finite
word w is in L p

q

\ 0∗, then the word w0ω does not belong to W p

q

.

Proposition 10 If q > 1 then no element of W p

q

is eventually periodic, but 0ω.

Corollary 11 If p > 2q − 1 then no real number can have three different expansions.

3.2 Limit words

It follows from the construction of T p

q

by the partial functions {τa

∣

∣ a ∈ A} that two

nodes with the same label are the root of the same subtree and from Proposition 4 that
these subtrees are characteristic of the label (in fact, any infinite path from a node is
characteristic of the label of the node).

We denote by MaxWord(N) (resp. minWord(N) ) the label of the infinite path that
starts from a node with label N and that follows always the edges with the maximal
(resp. minimal) digit label.

With this notation we have t p

q

= MaxWord(0) ∈ {p − q, . . . , p − 1}N and it holds:

Proposition 12 For every N , the digit-wise difference between minWord(N + 1) and
MaxWord(N) is (p − q)ω .

Let us note g p

q

= minWord(1) = (gi)i>1 ∈ {0, . . . , q − 1}N. The infinite word qg p

q

is

the minimal word of I p

q

in the lexicographic ordering.

Example 2 For p
q

= 3
2 , g p

q

= 101100011010011010100110 · · · . Remark that when

q = 1, MaxWord(N) = (p − 1)ω, and minWord(N) = 0ω for every N . �

For n > 1 let Gn = π(qg1 · · · gn−1) (if n = 1, G1 = π(q) = 1), and Mn = π(t1 · · · tn).
Of course Mn = Gn+1 − 1. Let γ p

q

= π(.qg p

q

) = π(.0t p

q

) =
q
p ω p

q

. (Note that the

constant γ p

q

has two p
q
-expansions.) We then have the following results.
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Proposition 13 The sequence (Gn)n>1 satisfies the recurrence Gn = d
p

q
Gn−1e with

G1 = 1, and for n > 1 there exists an integer en, 0 6 en < (q − 1)/(p − q), such that

Gn = bγ p

q

(p

q

)n
c − en .

Corollary 14 If p > 2q − 1 then, for n > 1, Gn = bγ p

q

(

p
q

)n
c.

Remark 5 If p > 2q − 1 then for each n > 1, the digit gn of the p
q
-expansion of γ p

q

is

obtained as follows:
(i) compute Gn+1 = dp

q
Gne (ii) gn = qGn+1 mod p .

The definition of the sequence Gn and the computation of γ p

q

have been developped

not only because they are important for the description of T p

q

but also as they relate to

a classical problem in combinatorics.
Inspired by the so-called “Josephus problem”, Odlyzko and Wilf consider, for a real

α > 1, the iterates of the function f(x) = dαxe : f0 = 1 and fn+1 = dαfne for n > 0.
They show (in [15]) that if α > 2 , or α = 2 − 1/q for some integer q > 2, then there
exists a constant H(α) such that fn = bH(α)αnc for all n > 0.

We have thus obtain the same result as in [15] for rational α = p
q
, with p > 2q − 1,

and we find H( p
q
) = p

q
γ p

q

= ω p

q

. Our method does not yield an “independent” way of

computing this constant, as was called for in [15], but the p
q
-expansion of ω p

q

gives at

least an easy algorithm.
In the case where q = p − 1 (the Josephus case), the constant ω p

q

is the constant

K(p) in [15]. In this case the integer en of Proposition 13 is less than p − 2, and this is
the same bound as in [15].

Example 3 For p
q

= 3
2 , the constant ω p

q

is the constant K(3) already discussed in [15,

10, 20]. Its decimal expansion 1.622270502884767315956950982 · · · is recorded as Se-
quence A083286 in [19]. Observe that, in the same case, the sequence (Gn)n>1 is Se-
quence A061419 in [19]. �

3.3 The companion p

q
-representation and the co-converter

A feature of the p
q
-expansion of the integers is that it is computed least significant digit

first, or from right to left. This is quite an accepted process for integers, that becomes
problematic when it comes to the reals and that you have to compute from right to left
a representation which is infinite to the right 4. This difficulty is somewhat overcome
with the definition of another p

q
-representation for the reals; it can be computed with

any prescribed precision (provided we can compute in Q with the same precision) and
somehow from left to right. The price we have to pay for this is that we use a larger
alphabet of digits, containing negative digits, exactly as the Avizienis representation of
reals allows to perform sequentially addition from left to right [2].

Let h : R+ → Z be the function defined by

h(z) = q b(
p

q
)zc − pbzc .

4As W. Allen said: “The infinite is pretty far, especially towards the end”.
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The function h is periodic of period q and for all z in R+, h(z) belongs to the digit
alphabet

C = {−(q − 1), . . . , 0, 1, . . . , (p − 1)} .

(If q = 1 , then C = A ; C = A ∪ {−(q − 1), . . . ,−1} otherwise.)

Let us write now, for every n in N, cn = h
(

(p
q
)n−1z

)

which, in turn, defines a map

ϕ(z) : R+ → CN by ϕ(z) = c = .c1c2 · · · cn · · · . If q = 1 , cn is precisely the n-th digit
after the decimal point in the expansion of z in base p.

We call the sequence ϕ(z) the companion representation of z, and we have:

Property 15 For all z in R+, ϕ(z) is a p
q
-representation of {z} = z − bzc , the frac-

tional part of z.

Let x be in [0,ω p

q

]. Let 〈x〉 p

q

= a = .a1a2 · · · be a p
q
-expansion of x and let

ϕ(x) = c = .c1c2 · · · its companion representation. Let us denote by ρn(x) the integer
part bπ(.an+1an+2 · · · )c; easy calculation then shows:

cn + pρn−1(x) = an + q ρn(x) . (3)

There are a finite number of possible values for ρn(x) since 0 ≤ ρn(x) < p−1
p−q

, and (3)
can be seen as the definition of a (left) transducer A p

q

: a transition labelled by (cn, an)

goes from the state ρn−1(x) to the state ρn(x). We recognize, by comparison with (2),
that A p

q

is the transposed automaton of the converter CC that we have described at

Section 2.3. The transducer A p

q

is co-sequential (that is input co-deterministic) and in

substance we have proved:

Proposition 16 Let x be a real in [0,ω p

q

], c its companion representation and a a p
q
-

expansion of x. Then (c,a) is the label of an infinite path that begins in the state ρ0(x)
in the transducer A p

q

.

If p > 2q−1 , the interesting case which we have
already considered, A p

q

has then only two states.

The transducer A 3

2

is drawn at Figure 2.

The computation of the companion representa-
tion is the first step of the “algorithm” for the com-
putation of p

q
-expansions of the real numbers.

0 1

(2, 0)

(1, 2)

(1, 0)
(0, 1)
(1, 2)

(0, 0)
(1, 1)
(2, 2)

Figure 2: The transducer A 3

2

Let x be in [0,ω p

q

], and let c be its companion representation. Let n be a fixed

large) positive integer and w be the prefix of length n of c. When w is read from right
to left by the converter CC — which is the transposed of A p

q

— and taking a state s as

initial state, the output is a word f (s) of length n on the alphabet A and which depends
upon s. The maximal common prefix of all these words f (s) is the beginning of all the
p
q
-expansions of x.

To get longer prefixes one has to make again the computation with an n′ larger than
n, but it is not possible to know in advance how large has to be this n′ in order to get
a better approximation.
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4 On the fractional part of the powers of rational numbers

Due to space limitation, there is not much that can be said, in addition to what has
already been presented in the introduction. In what follows, we suppose, once again,
that p > 2q − 1 .

For a fixed rational p
q we define the subset Y p

q

of [0, 1[ to be the union of q intervals

of length 1
p by

Y p

q

=
⋃

06c6q−1

[
1

p
kc,

1

p
(kc + 1)[

where the kc are such that kc ∈ {0, . . . , p − 1} and q kc = c mod p. For instance:

Y 3

2

= [0,
1

3
[∪[

2

3
, 1[ .

Theorem 3 is then a direct consequence of the following:

Theorem 17 A positive real ξ belongs to Z p

q

(

Y p

q

)

if and only if ξ has two p
q
-expansions.

As one can consider arbitrarily large rationals
p
q , it then comes:

Corollary 18 For any ε > 0 , there exists a rational p
q

and a subset Y p

q

⊆ [0, 1[ of

Lebesgue measure smaller than ε such that Z p

q

(

Y p

q

)

is infinite countable.

The proof of Theorem 17 is sketched in the Appendix. It relies on the characteriza-
tion of double p

q
-expansions (Theorem 19).
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http://citeseer.nj.nec.com/23586.html.

10



[11] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Compu-
tation, Addison-Wesley (1979).

[12] D. Knuth, The Art of Computer Programming, Addison Wesley (1969).

[13] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press (2002).

[14] K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968)
313–321.

[15] A. Odlyzko and H. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J.
33 (1991) 235–240.

[16] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11 401–416.

[17] A.D. Pollington, Progressions arithmétiques généralisées et le problème des (3/2)n. C.R.
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appendix

A The first words in L 3

2

0
2 1

21 2
210 3
212 4

2101 5
2120 6
2122 7

21011 8
21200 9
21202 10
21221 11

210110 12
210112 13
212001 14
212020 15
212022 16
212211 17

2101100 18
2101102 19
2101121 20
2120010 21
2120012 22
2120201 23
2120220 24
2120222 25
2122111 26

21011000 27
21011002 28
21011021 29
21011210 30
21011212 31
21200101 32
21200120 33
21200122 34
21202011 35
21202200 36
21202202 37
21202221 38
21221110 39
21221112 40

3/2-expansions of the 41 first integers
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B A view on T 3

2

0 0
0

1

2

0
0

1

2

2

1

0
0

1

2

2

1

3
0

4

2

0
0

1

2

2

1

3
0

4

2

5

1

6
0

7

2

0
0

1

2

2

1

3
0

4

2

5

1

6
0

7

2

8

1

9
0

10

2

11

1

0
0

1

2

2

1

3
0

4

2

5

1

6
0

7

2

8

1

9
0

10

2

11

1

12
0

13

2

14

1

15
0

16

2

17

1

0
0

1

2

2

1

3
0

4

2

5

1

6
0

7

2

8

1

9
0

10

2

11

1

12
0

13

2

14

1

15
0

16

2

17

1

18
0

19

2

20

1

21
0

22

2

23

1

24
0

25

2

26

1

0

0

1

2

2

1

3

0

4

2

5

1

6

0

7

2

8

1

9

0

10

2

11

1

12

0

13

2

14

1

15

0

16

2

17

1

18

0

19

2

20

1

21

0

22

2

23

1

24

0

25

2

26

1

27

0

28

2

29

1

30

0

31

2

32

1

33

0

34

2

35

1

36

0

37

2

38

1

39

0

40

2
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C Proof sketch for Theorem 17

The first step is the characterization of the reals that have multiple p
q
-expansions in

terms of the infinite words which are their p
q
-expansions.

Theorem 19 Let x be in [0,ω p

q

]. The following are equivalent:

(i) x has more than one expansion;
(ii) x has an expansion which is an eventually minimal word;
(iii) x has an expansion which is eventually written on the alphabet {0, . . . , q − 1};
(iv) x has an expansion which is an eventually maximal word;
(v) x has an expansion which is eventually written on the alphabet {p − q, . . . , p − 1}.

Let us now suppose for the rest of the appendix that p > 2q − 1 . The next step
in the proof of Theorem 17 is a characterization of the companion representation of
the reals that have multiple p

q
-expansions (and thus two p

q
-expansions because of the

assumption on p and q).
Let us write the digit alphabet C = {−(q − 1), . . . , 0, 1, . . . , (p − 1)} , the image

of the function h, as the union C = C1 ∪ C2 ∪ C3 with C1 = {−(q − 1), . . . ,−1} ,
C2 = {0, . . . , q − 1} and C3 = {q, . . . , p − 1} .

Proposition 20 A real x has two p
q
-expansions if and only if its companion represen-

tation is eventually in C2
N.

Proof. The condition is necessary for if x has two p
q
-expansions a′ and a′′, then (c, (a′,a′′))

must be the label of an infinite path in the square of the transducer A p

q

that goes outside

of the diagonal ; this implies, as A p

q

has only two states under the current hypothesis,

that c is eventually in C2 — this can be easily seen on Figure 3 for the case p
q

= 3
2 .

Let c and a be the companion representation and a p
q
-representation respectively of

a real x. By Proposition 16, (c,a) is the label of an infinite path starting in s in A p

q

.

Suppose that cn is the last digit of c not in C2 and, by way of example, that it belongs
to C3. Then (cn, an) is the label of a transition that leaves state 0. If an = cn, then
the infinite word a′ defined by a′i = ai for 0 6 i < n, a′n = an − q, and a′i = ai + p − q
for n < i, is such that (c,a′) is the label of an infinite path in A p

q

with s as initial

state — which implies that a′ is a p
q
-representation of x — and it can be verified that a′

belongs to W p

q

, which shows that it is a second p
q
-expansion of x.

The final step consists in the description of the inverse of the function h. For every
c in C2 = {0, . . . , q − 1} let us define the integer kc in A, i.e. 0 6 kc 6 p− 1, by q kc = c
mod p .

Lemma 21 For every c in C2, h(x) = c if and only if
{

x
q

}

∈ [1
p
kc,

1
p
(kc + 1)[ .

From Proposition 20 follows that a real x has two p
q
-expansions if and only if there

exists M > 0 such that for any n > M ,

{

(

p

q

)n x

q
} ∈ Y p

q

=
⋃

06c6q−1

[
1

p
kc,

1

p
(kc + 1)[

and this concludes the proof of Theorem 17.
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0 1

(2, 0)

(1, 2)

(1, 0)
(0, 1)
(1, 2)

(0, 0)
(1, 1)
(2, 2)

0

1

(2, 0)

(1, 2)

(0, 0)
(1, 1)
(2, 2)

(1, 0)
(0, 1)
(1, 2)

0, 0 0, 1

1, 0 1, 1

(2, (2, 0))

(1, (2, 0))(2, (0, 2))

(1, (0, 2))

(0, (0, 1))
(1, (1, 2))

(0, (1, 0))
(1, (2, 1))

Figure 3: The square of A 3

2

(outside of the diagonal)

Comment on Figure 3: If A is an automaton over an alphabet C, two distinct
paths in A with the same label give a path in the square of A that goes outside of the
“diagonal”. If T is a transducer, the square T 2 is obtained by constructing the square
of the underlying automaton of T and by giving as output label of each transition of T 2

the pairs of corresponding output labels in T , see [3].

15


