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Two applications of the spectrum of numbers

Christiane Frougny∗and Edita Pelantová†

Abstract

Let the base β be a complex number, |β| > 1, and let A ⊂ C be a finite
alphabet of digits. The A-spectrum of β is the set SA(β) = {

∑n

k=0
akβ

k | n ∈
N, ak ∈ A}. We show that the spectrum SA(β) has an accumulation point if
and only if 0 has a particular (β,A)-representation, said to be rigid.

The first application is restricted to the case that β > 1 and the alphabet
is A = {−M, . . . ,M}, M ≥ 1 integer. We show that the set Zβ,M of infinite
(β,A)-representations of 0 is recognizable by a finite Büchi automaton if and
only if the spectrum SA(β) has no accumulation point. Using a result of
Akiyama-Komornik and Feng, this implies that Zβ,M is recognizable by a
finite Büchi automaton for any positive integer M ≥ ⌈β⌉ − 1 if and only if β
is a Pisot number. This improves the previous bound M ≥ ⌈β⌉.

For the second application the base and the digits are complex. We con-
sider the on-line algorithm for division of Trivedi and Ercegovac generalized to
a complex numeration system. In on-line arithmetic the operands and results
are processed in a digit serial manner, starting with the most significant digit.
The divisor must be far from 0, which means that no prefix of the (β,A)-
representation of the divisor can be small. The numeration system (β, A) is
said to allow preprocessing if there exists a finite list of transformations on
the divisor which achieve this task. We show that (β, A) allows preprocessing
if and only if the spectrum SA(β) has no accumulation point.

Key words: spectrum, Pisot number, Büchi automaton
Mathematics Subject Classification: 11K16, 68Q45

1 Introduction

The so-called beta-numeration has been introduced by Rényi in [21] and studied
by Parry in [20] in the case that β is a real number, β > 1, and since then there
are been many works in this domain, in connection with number theory, dynamical
systems, and automata theory, see the survey [12] or more recent [22] for instance.

For β > 1 and M ≥ 1 an integer, the following spectrum

XM (β) = {

n∑

k=0

akβ
k | n ∈ N, ak ∈ {0, 1, . . . ,M}}

has been introduced by Erdős, Joó and Komornik [8].
Since XM (β) is discrete its elements can be arranged into an increasing sequence

0 = x0 < x1 < · · ·

Denote ℓM (β) = lim infk→∞(xk+1 − xk). Numerous works have been devoted to
the study of this value, see in particular the introduction and the results of [1].
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More generally, let β be a complex number, |β| > 1, and let A ⊂ C be a finite
alphabet of digits. The A-spectrum of β is the set

SA(β) =
{ n∑

k=0

akβ
k | n ∈ N, ak ∈ A

}

.

Recently Feng answered an open question raised in [8], see also [1], on the density
of the spectrum of β when β is real and the digits are consecutive integers:

Theorem 1.1 ([9]). Let β > 1 and let A = {−M, . . . ,M}, M an integer ≥ 1. Then
the spectrum SA(β) is dense in R if and only if β < M + 1 and β is not a Pisot

number.

Feng has obtained the following corollary: ℓM (β) = 0 if and only if β < M + 1
and β is not a Pisot number.

In this paper we use the concept of spectrum of a number to solve two problems
arising in beta-numeration.

Let β and the digits of A be complex. The topological properties of the spec-
trum are linked with a particular representation of 0. Let z1z2 · · · be a (β,A)-
representation of 0, that is to say,

∑

i≥1 ziβ
−i = 0. It is said to be rigid if

0.z1z2 · · · zj 6= 0.0z′2 · · · z
′
j for all j ≥ 2 and for all z′2 · · · z

′
j in A∗. The term “rigid”

comes from the preprocessing motivation, see Section 5.
We first prove that the spectrum SA(β) has an accumulation point if and only

if 0 has a rigid (β,A)-representation, Theorem 3.5.
Then we obtain some results when the base is a complex Pisot number, which

extend the real case covered by Garsia [13]. Let β be a complex number, and let
A ⊂ Q(β) containing 0. If β is real and if β or −β is a Pisot number, or if β ∈ C\R
is a complex Pisot number then SA(β) has no accumulation point, Theorem 3.6.

The first question we address in this work is the one of the recognizability by a
finite Büchi automaton of the set of infinite β-representations of 0 when β is a real
number and the digits are integer.

The set of infinite β-representations of 0 on the alphabet {−M, . . . ,M}, M ≥ 1
integer, is denoted

Zβ,M = {z1z2 · · · |
∑

i≥1

ziβ
−i = 0, zi ∈ {−M, . . . ,M}}.

The following result has been formulated in [12]:

Theorem 1.2. Let β > 1. The following conditions are equivalent:

1. the set Zβ,M is recognizable by a finite Büchi automaton for every integer M ,

2. the set Zβ,M is recognizable by a finite Büchi automaton for one integer M ≥
⌈β⌉,

3. β is a Pisot number.

(3) implies (1) is proved in [10], (1) implies (3) is proved in [2] and (2) implies
(1) is proved in [11].

Note that in [7] Bugeaud has shown, using (1) implies (3) of Theorem 1.2, that
if β is not a Pisot number then there exists an integer M such that ℓM (β) = 0.

In this paper we first prove that the set Zβ,M is recognizable by a finite Büchi
automaton if and only if the spectrum SA(β) has no accumulation point, Theo-
rem 4.2.
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By [1] or [9] it is known that, for A = {−M, . . . ,M}, the spectrum SA(β) has
an accumulation point if and only if β < M + 1 and β is not Pisot.

This result together with Theorem 4.2 proves the conjecture stated in [12]:
If the set Zβ,⌈β⌉−1 is recognizable by a finite Büchi automaton then β must be a
Pisot number.

Moreover we obtain a simpler proof of the implication (2) ⇒ (3) of Theorem 1.2.
Note that the value M = ⌈β⌉ − 1 is the best possible as Zβ,M is reduced to {0ω} if
M < ⌈β⌉ − 1.

Normalization in base β is the function which maps any β-representation on the
canonical alphabet Aβ = {0, . . . , ⌈β⌉ − 1} of a number x ∈ [0, 1] onto the greedy
β-expansion of x. Since the set of greedy β-expansions of the elements of [0, 1] is
computable by a finite Büchi automaton when β is a Pisot number, see [4], the
following result holds true:
Normalization in base β > 1 is computable by a finite Büchi automaton on the
alphabet Aβ ×Aβ if and only if β is a Pisot number.

The second utilisation of the notion of spectrum occurs in the on-line algorithm
for division in a complex base.

On-line arithmetic, introduced in [25] for an integer base, is a mode of computa-
tion where operands and results are processed in a digit serial manner, starting with
the most significant digit. To generate the first digit of the result, the first δ digits
of the operands are required. The integer δ is called the delay of the algorithm.
One of the interests of the functions that are on-line computable is that they are
continuous for the usual topology on the set of infinite words on a finite alphabet.

In [5, 6] we have extended the original on-line algorithm of Trivedi-Ercegovac
to a complex base. The algorithm for on-line division in a complex numeration
system (β,A) has two parameters: the delay δ ∈ N and D > 0, the minimal value
(in modulus) of the divisor.

When making division, we need that the divisor stays away from 0. By definition
of the on-line algorithm, this means that the value of all the prefixes of the divisor
d1d2 · · · must be greater in absolute value than D > 0, so the divisor must be
preprocessed before making the division.

We say that a complex numeration system (β,A) allows preprocessing if there
exists a finite list of transformations on the (β,A)-representation of the divisor
which achieve this task, see Definition 5.1.

We show that a complex numeration system (β,A) allows preprocessing if and
only if the spectrum SA(β) has no accumulation point, Theorem 5.4.

2 Preliminaries

2.1 Words and automata

Let A be a finite alphabet. A finite word w on A is a finite concatenation of letters
from A, w = w1 · · ·wn with wi in A. The set of all finite words over A is denoted
by A∗. An infinite word w on A is an infinite concatenation of letters from A,
w = w1w2 · · · with wi in A. The set of all infinite words over A is denoted by AN.
The infinite concatenation uuu · · · is noted uω. If w = uv, u is a prefix of w.

An automaton A = (A,Q, I, T ) over the alphabet A is a directed graph labeled
by letters of A, with a denumerable set Q of vertices called states. I ⊆ Q is the set
of initial states, and T ⊆ Q is the set of terminal states. The automaton is said to
be finite if the set of states Q is finite.

An infinite path of A is said to be successful if it starts in I and goes infinitely
often through T . The set of infinite words recognized by A is the set of labels of
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its successful infinite paths. An automaton used to recognize infinite words in this
sense is called a Büchi automaton.

2.2 Numeration

Let β be a complex number, |β| > 1, and let A ⊂ C be a finite set, the alphabet
of digits. We say that (β,A) is a numeration system. A (β,A)-representation of a
number z is an infinite word z1z2 · · · such that z =

∑+∞
i=1 ziβ

−i with zi in A. It
should be noted that here we do not make any hypothesis on the fact that every
complex number has, or does not have, a (β,A)-representation. This is a difficult
problem, studied by many authors, see the pioneering works of Knuth [17], Kátai
and Kovács [16], Gilbert [14], Thurston [24] for instance.

We now recall some definitions and results on the so-called beta-numeration,
see [12] or [22] for a survey. Let β > 1 be a real number. Any real number
x ∈ [0, 1] can be represented by a greedy algorithm as x =

∑+∞
i=1 xiβ

−i with xi in the
canonical alphabet Aβ = {0, . . . , ⌈β⌉− 1} for all i ≥ 1. The greedy sequence (xi)i≥1

corresponding to a given real number x is the greatest in the lexicographical order,
and is said to be the β-expansion of x, see [21]. It is denoted by dβ(x) = (xi)i≥1.
When the expansion ends in infinitely many 0’s, it is said to be finite, and the 0’s
are omitted.

The greedy β-expansion of 1 is denoted dβ(1) = (ti)i≥1. When it is finite, of
the form dβ(1) = t1 · · · tm, the quasi-greedy β-expansion of 1 is defined as d∗β(1) =
(t1 · · · tm−1(tm − 1))ω. If it is infinite, set d∗β(1) = dβ(1). The sequence d∗β(1)
is the lexicographically greatest infinite representation of 1 in the base β and the
alphabet N. It is known from [20] that a sequence of integers x1x2 · · · is the greedy
β-expansion of some x from [0, 1] if and only if, for all j ≥ 1, xjxj+1 · · · is less than
or equal to d∗β(1) in the lexicographic order.

Notation: The numerical value ym−1β
m−1 + · · · + y0 + y−1β

−1 + y−2β
−2 + · · · is

denoted by ym−1 · · · y0.y−1y−2 · · · .

2.3 Numbers

A number β > 1 such that dβ(1) is eventually periodic is a Parry number. It is a
simple Parry number if dβ(1) is finite.

A Pisot number is an algebraic integer greater than 1 such that all its Galois
conjugates have modulus less than 1. Every Pisot number is a Parry number, see [3]
and [23].

A complex Pisot number is an algebraic integer β such that |β| > 1 and such
that all its Galois conjugates different from its complex conjugate β have modulus
less than 1.

3 Spectrum and rigid representation of 0

Let β be a complex number, |β| > 1, and let A ⊂ C be a finite alphabet. We
introduce the A-spectrum of β as

SA(β) =
{ n∑

k=0

akβ
k | n ∈ N, ak ∈ A

}

.

The topological properties of SA(β) are linked with a particular representation
of 0.
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Definition 3.1. Let z1z2 · · · be a β-representation of 0 on A, that is to say,
∑

i≥1 ziβ
−i = 0. It is said to be rigid if 0.z1z2 · · · zj 6= 0.0z′2 · · · z

′
j for all j ≥ 2

and for all z′2 · · · z
′
j in A∗.

Example 3.2. The signed digit (−1) is denoted 1. In base 2 with alphabet {1, 0, 1},
0 has two representations, namely 0 = 0.11 1 1 1 · · · = 0.1 1 1 1 1 · · · . They are not
rigid, since 0.11 = 0.01 and 0.11 = 0.01.

Definition 3.3. Let z1z2 · · · be a (β,A)-representation of 0. For n in N, its n-th
tail is rn = 0.zn+1zn+2zn+3 · · · .

Lemma 3.4. Let z1z2 · · · be a (β,A)-representation of 0.

1. If the sequence (rn)n∈N is injective, then the spectrum SA(β) has an accumu-

lation point.

2. If the representation of 0 is rigid, then the sequence (rn)n∈N is injective.

Proof. Since 0 = 0.z1z2z3 · · · , the nth tail rn =
+∞∑

k=1

zn+kβ
−k = −

n−1∑

k=0

zn−kβ
k. It

means that −rn belongs to the spectrum SA(β) and moreover

|rn| ≤
α

|β| − 1
, where α = max{|a| : a ∈ A}.

1) If the sequence (rn)n∈N is injective, then the ball centered at 0 with ra-
dius α

|β|−1 contains infinitely many elements (−rn) of the spectrum, and thus the

spectrum has an accumulation point.
2) Suppose that the representation of 0 is rigid. We show by contradiction

the injectivity of (rn)n∈N. Let us assume that ri = rj for some indices i < j.

Then
∑j−1

k=0 zj−kβ
k =

∑i−1
k=0 zi−kβ

k and thus 0.z1z2 · · · zj = 0. 0 · · · 0
︸ ︷︷ ︸

(j−i) times

z1 · · · zi —

a contradiction with the rigidity of the representation of zero.

Theorem 3.5. Let β be a complex number, |β| > 1, and let A ⊂ C be a finite

alphabet. The spectrum SA(β) has an accumulation point if and only if 0 has a

rigid (β,A)-representation.

Proof. (⇒) Let s be an accumulation point of SA(β). There exists an injective
sequence (x(n))n∈N of points from SA(β) such that lim(x(n))n∈N = s. For any
x ∈ SA(β) denote

ρ(x) = min{n ∈ N : x =

n∑

k=0

akβ
k, with ak ∈ A}.

Set ρn = ρ(x(n)), then x(n) =
∑ρn

k=0 x
(n)
k βk. The sequence (ρn)n∈N is unbounded, as

there exists only a finite number of strings of a given length over a finite alphabet.
Without loss of generality assume that (ρn)n∈N is strictly increasing. Clearly,

x(n)

β1+ρn
= 0.x(n)

ρn
· · ·x

(n)
2 x

(n)
1 x

(n)
0 0000 · · · → 0 (3.1)

since the nominators tend to s. The fact that AN endowed with the product topology
is a compact space implies the existence of a string x1x2x3 · · · which is the limit of

a subsequence of (x
(n)
ρn · · ·x

(n)
2 x

(n)
1 x

(n)
0 0ω)n∈N. It means that for any N ∈ N one can

find n ∈ N such that ρn > N and x
(n)
ρn · · ·x

(n)
2 x

(n)
1 x

(n)
0 is a prefix of x1x2x3 · · · . The
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definition of ρn and the fact (3.1) forces 0.x1x2x3 · · · to be a rigid representation of
0.

(⇐) Let 0 = 0.z1z2z3 · · · be a rigid representation of zero. Then by Point 2 of
Lemma 3.4, the sequence of its tails is injective and by Point 1 of the same lemma,
the spectrum has an accumulation point.

We now turn to the Pisot case. The real case is due to Garsia [13], and we follow
his idea.

Theorem 3.6. Let β be a complex number, |β| > 1, and let A ⊂ Q(β) containing

0.

1. If β is real and if β or −β is Pisot

2. or if β ∈ C \ R is complex Pisot

then SA(β) has no accumulation point.

Proof. Let β = β1 be a complex Pisot number of degree r with conjugates β2 =
β1, β3, . . . , βr, i.e. |βk| < 1 for k = 3, 4, . . . , r. We denote σk : Q(β1) → Q(βk)
the isomorphism induced by β1 7→ βk. As A is finite there exists q ∈ N such
that qA belongs to the ring of integers of the field Q(β). In particular, the norm
N(qa) = qr

∏r
k=1 |σk(a)| is an integer for any letter a in A.

Consider x, y ∈ SA(β), x 6= y. Then the difference between x and y can be
expressed as x− y = v =

∑n
j=0 bjβ

j , for some n in N and bj in A−A.
Let us denote Ak = max{|σk(a)| : a ∈ A}. For k = 3, 4, . . . , r, the modulus of

the k-th conjugate of v satisfies

|σk(v)| ≤

n∑

j=0

|bj|.|βk|
j ≤ 2Ak

∞∑

j=0

|βk|
j = 2Ak

|βk|
1−|βk| .

Since β and qbk are algebraic integers, qv is an algebraic integer as well and its
norm is a rational non-zero integer. Compute the norm of qv

1 ≤ |N(qv)| = qr
r∏

k=1

|σk(v)| ≤ qrv v

r∏

k=3

|σk(v)| ≤ (2q)rvv

r∏

k=3

Ak|βk|

1− |βk|
.

It means that the squared distance vv of two different points from the spectrum

SA(β) is bounded from below by the constant (2q)−r
∏r

k=3
1−|βk|
Ak|βk| . Consequently,

the spectrum has no accumulation point.
The case β real is analogous.

If the base β is real and the alphabet is a symmetric set of consecutive integers,
Theorem 3.5 together with the following theorem answers completely the question
of the existence of a rigid representation of zero.

Theorem 3.7 (Akiyama and Komornik [1], Feng [9]). Let β > 1 and let A =
{−M, . . . ,M}. Then SA(β) has an accumulation point if and only if β < M + 1
and β is not Pisot.

If the base β is real but the alphabet is not symmetric we have only the following
partial observation.

Proposition 3.8. Let β > 1 and {−1, 0, 1} ⊂ A = {m, . . . , 0, . . . ,M} ⊂ Z.

1. Zero has a non-trivial (β,A)-representation if and only if β ≤ max{M +
1,−m+ 1} .
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2. If β ≤ max{M + 1,−m+ 1} , and β is not a Parry number, then zero has a

rigid (β,A)-representation.

Proof. Let Let dβ(1) = t1t2t3 · · · be the greedy expansion of 1. Then β−1 ≤ t1 < β,
ti ≤ t1 and

0 = 0.1t1t2t3 · · · = 0.1t1 t2 t3 · · ·

We have two non-trivial representations of 0 over the alphabets {−⌈β⌉+1, . . . , 1, 0, 1}
and {1, 0, 1, . . . , ⌈β⌉ − 1} respectively.

Therefore, if {−1, 0, 1, . . . , t1} ⊂ A or {−t1, . . . ,−1, 0, 1, } ⊂ A, zero has a non-
trivial (β,A)-representation. Let us note that t1 ∈ A means M ≥ t1 ≥ β − 1.
Similarly −t1 ∈ A implies m ≤ −t1 ≤ −β + 1.

On the other hand, let M < β − 1 and m > −β + 1. Then for z =
∑

k≥1 ziβ
−i

with zi ∈ A and z1 ≥ 1, we have z ≥ 1
β
+

∑

i≥2
m
β

= β−1+m
β(β−1) > 0. Analogously, if

z1 ≤ −1, then z < 0. Consequently, 0 has only the trivial representation.

Now assume that β is not a Parry number. Then the sequence of the nth tails
of the β-expansion of 1, rn = 0.tn+1tn+2 · · · , is injective. By Lemma 3.4 and
Theorem 3.5, zero has a rigid (β,A)-representation.

Remark 3.9. A numeration system with negative base −β < −1 and an alphabet
A−β = {0, . . . , ⌊β⌋} was introduced by Ito and Sadahiro in [15]. Liao and Steiner
in [19] defined an Yrrap number as an analogy of a Parry number for numeration
systems with negative base. This definition implies that if β is not Yrrap, then there
exists a rigid (−β,A)-representation of 0 over the alphabet A = {1, . . . , ⌊β⌋+ 1}.

4 A problem in automata theory

4.1 Representations of 0

Let β be a real number > 1 We consider infinite β-representations of 0 on an
alphabet of the form {−M, . . . ,M}, M ≥ 1 integer. Let

Zβ,M = {z1z2 · · · |
∑

i≥1

ziβ
−i = 0, zi ∈ {−M, . . . ,M}}

be the set of infinite words having value 0 in base β on the alphabet {−M, . . . ,M}.
Proposition 3.8 says that 0 has a non-trivial representation only if M ≥ ⌈β⌉− 1.

Therefore, we consider only M satisfying this inequality.
Note that, if Zβ,M is recognizable by a finite Büchi automaton, then, for every

c < M , Zβ,c = Zβ,M ∩ {−c, . . . , c}N is recognizable by a finite Büchi automaton as
well.

We briefly recall the construction of the (not necessarily finite) Büchi automaton
recognizing Zβ,M , see [10] and [12]:

• the set of states is QM ⊂ {
∑n

k=0 akβ
k | n ∈ N, ak ∈ {−M, . . . ,M}} ∩

[− M
β−1 ,

M
β−1 ]

• for s, t ∈ QM , a ∈ {−M, . . . ,M} there is an edge

s
a

−→ t ⇐⇒ t = βs+ a

• the initial state is 0

• all states are terminal.

7



0 1

ϕ−ϕ

ϕ− 1−1−ϕ+ 1
1

00

1̄1̄1

0

1 1̄

00

1̄1

Figure 1: Finite Büchi automaton recognizing Zϕ,1 for ϕ = 1+
√
5

2 .

Example 4.1. Take β = ϕ = 1+
√
5

2 the Golden Ratio. It is a Pisot number, with
dϕ(1) = 11. A finite Büchi automaton recognizing Zϕ,1 is designed in Figure 1. The
initial state is 0, and all the states are terminal.

Theorem 4.2. Let β > 1 and A = {−M, . . . ,M} with M a fixed integer ≥ 1. The

set Zβ,M is recognizable by a finite Büchi automaton if and only if the spectrum

SA(β) has no accumulation point.

Proof. To any string z = z1z2 · · · ∈ Zβ,M we assigne the sequence of polynomials

P
(z)
n (X) = z1X

n−1+ z2X
n−2+ · · ·+ zn−1X+ zn. Denote R

(z)
n the remainder of the

Euclidean division of the polynomial P
(z)
n (X) by the polynomial (X−β). It means

that there exists a polynomial Q
(z)
n (X) such that P

(z)
n (X) = (X−β)Q

(z)
n (X)+R

(z)
n .

Clearly P
(z)
n (β) = R

(z)
n . Denote R = {R

(z)
n : z ∈ Zβ,M and n ∈ N} .

As z = z1z2 · · · is a (β,A)-representation of 0, the value P
(z)
n (β) = −0.zn+1zn+2 · · ·

belongs to the spectrum SA(β) and −P
(z)
n (β) is the nth tail rn of the (β,A)-

representation of 0. Consequently,

R ⊂ SA(β) and R is bounded. (4.1)

To prove the theorem, we apply Proposition 3.1 from [10]. It says that Zβ,M is
recognizable by a finite Büchi automaton if and only if the set R is finite.

(⇐) If Zβ,M is not recognizable by finite automaton, then R is infinite and by
(4.1) the spectrum has an accumulation point.

(⇒) If SA(β) has an accumulation point, then by Theorem 3.5, zero has a
rigid representation z1z2 · · · ∈ Zβ,M . By Point 2 of Lemma 3.4, the sequence of its

tails (rn) is injective. Since −rn = P
(z)
n (β) = R

(z)
n ∈ R, the set R is not finite and

therefore Zβ,M is not recognizable by finite automaton.

Combining Theorems 3.7 and 4.2, we answer a conjecture raised in [12] and
obtain the following result.

Theorem 4.3. Let β > 1. The following conditions are equivalent:

1. the set Zβ,M is recognizable by a finite Büchi automaton for every positive

integer M ,

2. the set Zβ,M is recognizable by a finite Büchi automaton for one M ≥ ⌈β⌉−1,

3. β is a Pisot number.

Remark 4.4. The fact that, if β is not a Pisot number, then the set Zβ,M is not
recognizable by a finite Büchi automaton for any M ≥ ⌈β⌉ was already settled in
Theorem 1.2, but the proof given above is more direct than the original one.
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4.2 Normalization

Normalization in base β is the function which maps a β-representation on the canon-
ical alphabet Aβ = {0, . . . , ⌈β⌉ − 1} of a number x ∈ [0, 1] onto the greedy β-
expansion of x. From the Büchi automaton Z recognizing the set of representations
of 0 on the alphabet {−⌈β⌉+1, . . . , ⌈β⌉− 1}, one constructs a Büchi automaton (a
converter) C on the alphabet Aβ ×Aβ that recognizes the set of couples on Aβ that
have the same value in base β, as follows:

s
(a,b)
−→ t in C ⇐⇒ s

a−b
−→ t in Z,

see [12] for details. Obviously C is finite if and only if Z is finite.
Then we take the intersection of the set of second components with the set of

greedy β-expansions of the elements of [0, 1], which is recognizable by a finite Büchi
automaton when β is a Pisot number, see [4]. Thus the following result holds true.

Corollary 4.5. Normalization in base β > 1 is computable by a finite Büchi au-

tomaton on the alphabet Aβ ×Aβ if and only if β is a Pisot number.

5 On-line division in complex base

5.1 Trivedi-Ercegovac algorithm

On-line arithmetic, introduced in [25], is a mode of computation where operands
and results are processed in a digit serial manner, starting with the most significant
digit. To generate the first digit of the result, the first δ digits of the operands are
required. The integer δ is called the delay of the algorithm.

In [5, 6] we have extended the original on-line algorithm of Trivedi-Ercegovac to
the complex case.

The algorithm for on-line division in a complex numeration system (β,A) has
two parameters: the delay δ ∈ N and D > 0, the minimal value (in modulus) of the
divisor.

The (β,A)-representation of the nominator is n =
∑∞

i=1 niβ
−i, of the divisor is

d =
∑∞

i=1 diβ
−i, and of their quotient q =

∑∞
i=1 qiβ

−i. Partial sums are denoted

by Nk =
∑k

i=1 niβ
−i, Dk =

∑k
i=1 diβ

−i, and Qk =
∑k

i=1 qiβ
−i.

The inputs of the algorithm are two infinite strings 0.n1n2 · · ·nδnδ+1nδ+2 · · ·
with ni ∈ A and n1 = n2 = · · · = nδ = 0 and 0.d1d2 · · · with di ∈ A satisfying
|Dj | ≥ D for all j ∈ N, j ≥ 1.

The output is a string q1q2q3 · · · corresponding to a (β,A)-representation of the
quotient q = n/d = 0.q1q2q3 · · · . The settings of the algorithm ensure that the
representation of q starts behind the fractional point.

Set W0 = q0 = Q0 = 0. Then, for k ≥ 1 compute

Wk = β(Wk−1 − qk−1Dk−1+δ) + (nk+δ −Qk−1dk+δ)β
−δ.

The k-th digit qk of the representation of the quotient is evaluated by a func-
tion Select, function of the values of the auxiliary variable Wk and the interim
representation Dk+δ, so that

qk = Select(Wk, Dk+δ) ∈ A .

It can be shown that for any k ≥ 1:

Wk = βk(Nk+δ −Qk−1Dk+δ) .

Moreover, if the sequence (Wk) is bounded, then q = limk→∞ Qk = n
d
.

Conditions on the system (β,A) so that the definition of the function Select
ensures the correctness of the on-line division algorithm are given in [5, 6].
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5.2 Preprocessing of divisors

When making division, we need that the divisor stays away from 0. By definition
of the on-line algorithm, this means that the value of all the prefixes of the divisor
d1d2 · · · must be greater in absolute value than a parameter D > 0.

Definition 5.1. We say that a complex numeration system (β,A) allows prepro-

cessing if there exists D > 0 and a finite list L of identities of the type 0.wk · · ·w0 =
0.0uk−1 · · ·u0 with digits in A such that any string d1d2 · · · on A without prefix
wk · · ·w0 from L satisfies |0.d1d2 · · · dj | > D for all j ∈ N.

We must have at least d1 6= 0 after preprocessing, so the preprocessing consists
first of all in shifting the fractional point to the most significant non-zero digit of
the (β,A)-representation of the divisor. Of course, after preprocessing the value of
the original divisor w has been changed into a new one d which is just a shift of the
original one, that is to say d = wβk for some k in Z. This will have to be taken
into account to give the result of the division.

If zero has only the trivial (β,A)-representation the situation is simple. This
fact can be equivalently rewritten as

infR > 0, where R =
{∣
∣
∑

i≥1

ziβ
−i
∣
∣ : z1 6= 0, zi ∈ A

}

.

In this case the numeration system (β,A) allows preprocessing, since we can take
D = infR and the list of rewriting rules is empty.

Example 5.2. If β = 4 and A = {2, 1, 0, 1, 2}, then zero has only the trivial
representation and for D one can take 1

12 = minR.

Example 5.3. If β = 2 and A = {1, 0, 1}, zero has two non-trivial representations
0 = 0.11 1 1 1 · · · = 0.1 1 1 1 1 · · · . Therefore, preprocessing is a little bit more
sophisticated. Consider the list

0.11 = 0.01 and 0.11 = 0.01

If a string d1d2 · · · has no prefix 11 neither 11, then

|0.d1d2 · · · dj | ≥ 0.101 1 1 · · · = 1
4

and thus one can take D = 1
4 .

Theorem 5.4. A complex numeration system (β,A) allows preprocessing if and

only if the spectrum SA(β) has no accumulation point.

The result is proved by the following three lemmas, in which we use the notation

H = max{|
∑

i≥1

diβ
−i| : di ∈ A for all i ∈ N}.

Lemma 5.5. If 0 has a rigid (β,A)-representation then the numeration system

(β,A) does not allow preprocessing.

Proof. Let 0 = 0.z1z2z3 · · · be a rigid representation of 0. Assume that pre-
processing is possible with D > 0. Find j such that H

|β|j < D. Consider the

number 0.z1z2z3 · · · zj000 · · · . Since the representation of zero is rigid, no pre-
fix of the string z1z2z3 · · · zj is contained in the list of the rewriting rules. But
|0.z1z2z3 · · · zj | = |0. 00 · · · 0

︸ ︷︷ ︸

j−times

zj+1zj+2 · · · | <
H
|β|j < D — a contradiction.
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Lemma 5.6. Let us assume that SA(β) has no accumulation point and fix K > 0.
Then there exists m ∈ N such that any string xm−1xm−2 · · ·x1x0 of length m over

A satisfies either

|xm−1β
m−1 + xm−2β

m−2 + · · ·+ x1β + x0| ≥ K

or there exists a string yk−1xk−2 · · · y1y0 of length k < m over A such that

xm−1β
m−1 + xm−2β

m−2 + · · ·+ x1β+ x0 = yk−1β
k−1 + yk−2β

k−2 + · · ·+ y1β+ y0 .

Proof. Since SA(β) has no accumulation point, the set P = {z ∈ SA(β) : |z| < K}
is finite. Denote m = 1 + max{ρ(z) : z ∈ P}. Let x = xm−1β

m−1 + xm−2β
m−2 +

· · · + x1β + x0. Obviously, x ∈ SA(β). Then either |x| ≥ K or x ∈ P and thus
x = ykβ

k−1+yk−2β
k−2+ · · ·+y1β+y0, where k ≤ max{ρ(z) : z ∈ P} ≤ m−1.

Lemma 5.7. If SA(β) has no accumulation point, then there exists D > 0 and

m ∈ N such that for all infinite strings d1d2 · · · over A one has

1. either |0.d1d2 · · · dj | ≥ D for all j ∈ N,

2. or 0.d1d2 · · · dm = 0.0d′2d
′
3 · · · d

′
m for some string d′2d

′
3 · · · d

′
m ∈ A∗.

Proof. Let us take µ > 0 and apply Lemma 5.6 with K = H + µ to get m ∈ N.
Denote D = {|0.d1d2 · · · dj | : j < m and 0.d1d2 · · · dj 6= 0.0d′2 · · · d

′
j}. The set D is

finite and does not contain zero. Therefore, D′ = minD > 0.
To prove the lemma, consider an infinite string d1d2 · · · and assume that 0.d1d2 · · · dm 6=

0.0d′2d
′
3 · · · d

′
m for all strings d′2d

′
3 · · · d

′
m ∈ A∗. We distinguish two cases

• j < m, j ∈ N. Then 0.d1d2 · · · dj 6= 0.0d′2 · · · d
′
j , otherwise 0.d1d2 · · · dm =

0.0d′2d
′
3 · · · d

′
jdj+1 · · · dm — a contradiction. Therefore, |0.d1d2 · · · dj | ≥ D′.

• j ≥ m, j ∈ N. Then

|0.d1d2 · · · dj | ≥ |0.d1d2 · · · dm|− 1
|β|m |0.dm+1dm+2 · · · dj | ≥

1
|β|mK− 1

|β|mH =
µ

|β|m

Thus we can set D = min
{

D′, µ
|β|m

}

.

The previous lemma gives a hint for creating the list of rewriting rules. We
take the index m found by the lemma and inspect all strings d1d2 · · · dm over A. If
0.d1d2 · · · dm = 0.0d′2d

′
3 · · · d

′
m for some string d′2d

′
3 · · · d

′
m we put it into the list.

Example 5.8. Let β = ϕ = 1+
√
5

2 and A = {1, 0, 1}. The minimal polynomial of ϕ
isX2−X−1. In this numeration system, 0 has countably many finite representations
and uncountably many infinite representations. As the alphabet is symmetric, the
rewriting rules appear in pairs. For example, as 101 can be rewritten to 010, also
101 can be rewritten to 010. To shorten our list, we put into it only one rule of
each pair, namely the rule, where the first digit is 1. First we consider the list

L0 : 101 −→ 010 , 110 −→ 001 , 111 −→ 000.

Claim: If no rule from L0 can be applied to the string d1d2 · · · , then |d| ≥ D = 1
ϕ5 ,

where d = 0.d1d2 · · · .

Proof. WLOG d1 = 1.
If d2 = 0, then ≥ 0 and thus |d| ≥ 1

ϕ
−
∑∞

k≥4 ϕ
−k = 1

ϕ
− 1

ϕ2 = 1
ϕ3 ≥ D .

If d2 = 1, then |d| ≥ 1
ϕ
+ 1

ϕ2 −
∑∞

k≥3 ϕ
−k = 1− 1

ϕ
− = 1

ϕ2 ≥ D .

If d2 = 1, then d3 = 1. Therefore, |d| ≥ 1
ϕ
− 1

ϕ2 +
1
ϕ3 −

∑∞
k≥4 ϕ

−k = 1
ϕ5 ≥ D .
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We can extend the list of rewriting rules to increase the lower bound D. Let us
consider the whole families of rules L :

(11)k0 −→ 00(10)k−11 for k ≥ 1.
(11)k1 −→ 00(10)k−10 for k ≥ 1.
(11)k101 −→ 01(00)k0 for k ≥ 0.
(11)k100 −→ 01(00)k1 for k ≥ 0.
(11)k11 −→ 01(00)k−110 for k ≥ 1.

101
k
0 −→ 0k+111 for k ≥ 0.

101
k
1 −→ 0k101 for k ≥ 1.

Claim: If no rule from L can be applied to the string d1d2 · · · , then |d| ≥ D = 1
ϕ2 ,

where d = 0.d1d2 · · · .

Proof. WLOG d1 = 1. Our string has a prefix 11 or a prefix (11)k101 for k ≥ 0.
Therefore either

|d| ≥ 0.11(1)ω = 1
ϕ2 or |d| ≥ 0.(11)k101(1)ω = 1

ϕ2 + 1
ϕ2k+3 .

Some examples where the base is a complex number can be found in [6].

6 Comments and open questions

6.1 F-number

In [18] Lau defined for 1 < β < 2 the following notion, that we extend to any β > 1.

Definition 6.1. Let β > 1 and Bβ = {−⌈β⌉+ 1, . . . , ⌈β⌉ − 1} be the symmetrized
alphabet of the canonical alphabet Aβ . Then β is said to be a F-number if the set

L(⌈β⌉−1)(β) = SBβ
(β) ∩

[

−
⌈β⌉ − 1

β − 1
,
⌈β⌉ − 1

β − 1

]

is finite.

Feng proved in [9] that 1 < β < 2 is a F-number if and only if it is a Pisot
number. This property extends readily to any β > 1. Another way of proving it
consists in realizing that the set of states Q(⌈β⌉−1) of the automaton for Zβ,⌈β⌉−1 is
included into L(⌈β⌉−1)(β).

6.2 Open questions

• Amotivation for introducing the notion of “rigid representation of zero” comes
from on-line division in a numeration system (β,A). A more elementary
question is “Has zero a non-trivial (β,A)-representation”? The answer is
easy for real bases and alphabets of the form A = {m, . . . , 0, . . . ,M}, see
Proposition 3.8. The same question for complex bases is an open problem.

• In the case that the base is real and the alphabet is A = {−M, . . . ,M},
Theorem 4.2 says that recognizability by a finite automaton is equivalent to
the fact that the spectrum SA(β) has no accumulation point.

An analogous result can be proved for complex bases as well. But for complex
bases the question about the existence of accumulation points in the spectrum
SA(β) is not yet investigated. Nevertheless, it is often easy to check that a
(β,A)-representation of 0 is not rigid.
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• If β > 1 is a non-Pisot base then A = {−⌈β⌉+ 1, . . . , ⌈β⌉ − 1} is the smallest
symmetric alphabet of consecutive integers for which the spectrum SA(β)
has an accumulation point. What is the minimal size of an alphabet A =
{−M, . . . ,M} ⊂ Z for which the spectrum of a non-Pisot complex number β
has an accumulation point?
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