Univoque numbers

Christiane Frougny

Joint work with Jean-Paul Allouche and Kevin Hare

Univoque numbers

 $\beta > 1$ is univoque if there exists a unique sequence of integers $(s_n)_{n \ge 1}$, with $0 \le s_n < \beta$, such that

$$1 = \sum_{n \ge 1} s_n \beta^{-n}$$

2 is univoque, as $1 = .111 \cdots$

$$\frac{1+\sqrt{5}}{2}$$
 is not univoque since
$$1 = \cdot 11 = \cdot (10)^n 11 = \cdot (10)^\infty$$

Greedy expansions

 $\beta > 1. \ x \in [0, 1].$

Greedy algorithm of Rényi

$$r_{0} := x$$

$$x_{n} := \lfloor \beta r_{n-1} \rfloor$$

$$r_{n} := \{\beta r_{n-1}\}.$$
Then $x = \sum_{n \ge 1} x_{n} \beta^{-n}.$

$$x_{n} \in A_{\beta} = \{0, 1, \dots, \lceil \beta \rceil - 1\}$$

 $d_{\beta}(x) = x_1 x_2 \cdots$ is the greedy β -expansion of x. It is the greatest representation in the lexicographic order. $d_{\beta}(1) = (e_n)_{n \ge 1}$ greedy β -expansion of 1

$$d_{\beta}^{*}(1) := \begin{cases} d_{\beta}(1) & \text{if } d_{\beta}(1) \text{ is infinite} \\ (e_{1} \cdots e_{m-1}(e_{m}-1))^{\infty} & \text{if } d_{\beta}(1) = e_{1} \cdots e_{m-1}e_{m} \text{ is finite.} \end{cases}$$

Theorem 1. (Parry) $s = (s_n)_{n \ge 1}$ in $A_{\beta}^{\mathbb{N}_+}$.

• s is the greedy β -expansion of some $x \in [0, 1)$ if and only if

$$\forall k \ge 0, \quad \sigma^k(s) <_{lex} d^*_\beta(1)$$

• s is the greedy β -expansion of 1 for some $\beta > 1$ if and only if

$$\forall k \ge 1, \quad \sigma^k(s) <_{lex} s$$

Lazy expansions

$$B := \sum_{n \ge 1} \frac{(\lceil \beta \rceil - 1)}{\beta^n} = \frac{(\lceil \beta \rceil - 1)}{\beta - 1}.$$

Lazy algorithm:

 $r_0 := x$ $x_n := \max(0, \lceil \beta r_{n-1} - B \rceil)$ $r_n := \beta r_{n-1} - x_n.$ Then $x = \sum_{n \ge 1} x_n \beta^{-n}$

 $\ell_{\beta}(x) = x_1 x_2 \cdots$ is the lazy β -expansion of x. It is the smallest representation of x in the lexicographical order.

$$s = (s_n)_{n \ge 1}$$
 in $A_{\beta}^{\mathbb{N}_+}$.

 $\overline{s_n} := (\lceil \beta \rceil - 1) - s_n$ the complement of s_n , and $\overline{s} := (\overline{s_n})_{n \ge 1}$.

Theorem 2. (Erdős, Joó and Komornik; Dajani and Kraaikamp) $s = (s_n)_{n \ge 1}$ in $A_{\beta}^{\mathbb{N}_+}$.

• s is the lazy β -expansion of some $x \in [0, 1)$ if and only if

$$\forall k \ge 0, \quad \sigma^k(\bar{s}) <_{lex} d^*_\beta(1)$$

 s is the lazy β-expansion of 1 for some β > 1 if and only if

$$\forall k \ge 1, \quad \sigma^k(\bar{s}) <_{lex} s$$

$$s = \ell_{\beta}(x) \iff \bar{s} = d_{\beta}(B - x)$$

Example

 $\psi_1 = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Greedy β -expansion $d_{\psi_1}(1) = 11$. $d_{\psi_1}^*(1) = (10)^{\infty}$.

A greedy expansion of $x \in [0, 1)$ does not have the factor 11.

Lazy expansion $\ell_{\psi_1}(1) = 01^{\infty}$.

A lazy expansion of $x \in [0, 1)$ does not have the factor 00.

Univoque numbers

 β is univolue if there exists a unique sequence of integers $(s_n)_{n \ge 1}$, with $0 \le s_n < \beta$, such that

$$1 = \sum_{n \ge 1} s_n \beta^{-n}$$

So

 $d_{\beta}(1) = \ell_{\beta}(1)$

Remark:
$$\sigma^k(\bar{s}) \leq_{lex} s \iff \bar{s} \leq_{lex} \sigma^k(s).$$

 $\Gamma = \{s \in \{0,1\}^{\mathbb{N}_+} \mid \forall k \ge 1, \ \bar{s} \leq_{lex} \sigma^k(s) \leq_{lex} s\}$

 Γ set of binary self-bracketed sequences.

$$\Gamma_{strict} = \{ s \in \{0,1\}^{\mathbb{N}_+} \mid \forall k \ge 1, \ \bar{s} <_{lex} \sigma^k(s) <_{lex} s \}$$

 Γ_{strict} set of binary strictly self-bracketed sequences.

If $\sigma^k(s) = s$ or $\sigma^k(s) = \overline{s}$ for some $k \ge 1$ then the sequence s is periodic.

Theorem 3. (Erdős, Joó and Komornik) Asequence in $\{0,1\}^{\mathbb{N}_+}$ is the unique β -expansion of 1 for a univoque number β in (1,2) if and only if it is strictly self-bracketed. $\mathcal{U} = \{\beta \in (1,2) : d_{\beta}(1) \in \Gamma_{strict}\}$

set of univoque numbers in (1, 2)

There exists a smallest univoque number, the Komornik-Loreti constant $\kappa \approx 1.787231$ and $d_{\kappa}(1) = (t_n)_{n \ge 1}$, where $(t_n)_{n \ge 1} = 11010011...$ is the shifted Thue-Morse sequence.

Thue-Morse sequence: $0 \rightarrow 01$; $1 \rightarrow 10$

The Komornik-Loreti constant κ is transcendental (Allouche and Cosnard).

 $\widetilde{\mathcal{U}} = \{\beta \in (1,2) : d_{\beta}(1) \text{ is finite and } d_{\beta}^{*}(1) \text{ is periodic self} - \text{bracketed} \}$ $\psi_{1} = \frac{1+\sqrt{5}}{2} \text{ the golden ratio.}$ Greedy β -expansion $d_{\psi_{1}}(1) = 11$ $d_{\psi_{1}}^{*}(1) = (10)^{\infty}$ Lazy expansion $\ell_{\psi_{1}}(1) = 01^{\infty}.$

The golden ratio is the smallest element of \mathcal{U} .

Pisot and Salem numbers

A Pisot number is an algebraic integer > 1 such that all its algebraic conjugates (other than itself) have modulus < 1. The set of Pisot numbers is denoted by S.

S is closed (Salem), and has a smallest element, which is the root > 1 of the polynomial $x^3 - x - 1$ (approx. 1.3247).

A Salem number is an algebraic integer > 1 such that all its algebraic conjugates have modulus ≤ 1 , with at least one conjugate on the unit circle. **Theorem 4.** (Bertrand; Schmidt) Let β be a Pisot number. A number x of [0, 1] has a (finite or infinite) eventually periodic greedy β -expansion if and only if it belongs to $\mathbb{Q}(\beta)$.

Corollary 1. Let β be a Pisot number. A number x of [0, 1] has an eventually periodic lazy β -expansion if and only if it belongs to $\mathbb{Q}(\beta)$.

If β is a Salem number of degree 4, then $d_{\beta}(1)$ is eventually periodic (Boyd).

Conjecture: holds true for degree 6.

A Parry number is a number β such that $d_{\beta}(1)$ is eventually periodic. If $d_{\beta}(1)$ is finite, it is a simple Parry number.

Limit points of Pisot numbers

Theorem 5. (Amara) The limit points of S in (1, 2) are the following:

 $\varphi_1 = \psi_1 < \varphi_2 < \psi_2 < \varphi_3 < \chi < \psi_3 < \varphi_4 < \dots < \psi_r < \varphi_{r+1} < \dots < 2$

Minimal	Pisot	Greedy	Lazy	Comment
Polynomial	Number	expansion	expansion	
$x^{r+1} - 2x^r + x - 1$	$arphi_r$	$1^r 0^{r-1} 1$	$1^{r-1}01^{\infty}$	periodic s-b
$x^{r+1} - x^r - \dots - 1$	ψ_r	1^{r+1}	$(1^r 0)^\infty$	periodic s-b
$x^4 - x^3 - 2x^2 + 1$	χ	$11(10)^{\infty}$	$11(10)^{\infty}$	univoque

Questions

Is the set of univoque Pisot numbers in (1, 2) closed?

Is there a smallest univoque Pisot number?

Preliminary combinatorial results

 $\Gamma = \{s \in \{0,1\}^{\mathbb{N}_+} \mid \forall k \ge 1, \ \overline{s} \leqslant_{lex} \sigma^k(s) \leqslant_{lex} s\} \text{ is a closed set.}$

Lemma 1. (Allouche)

• If b in Γ begins with $u\overline{u}$ then $b = (u\overline{u})^{\infty}$.

• If
$$b = (z0)^{\infty}$$
 is in Γ , then

 $\Phi(b) := (z1\overline{z}0)^{\infty}$

belongs to Γ , and there is no element of Γ lexicographically between b and $\Phi(b)$. **Corollary 2.** Let $b = (z0)^{\infty}$. The sequence $(\Phi^{(n)}(b))_{n \ge 0}$ is a sequence of elements of Γ that converges to a limit $\Phi^{(\infty)}(b)$ in Γ . The only elements of Γ lexicographically between b and $\Phi^{(\infty)}(b)$ are the $\Phi^{(k)}(b), k \ge 0$. **Lemma 2.** A sequence of Γ of the form $(w0)^{\infty}$ cannot be a limit from above of a non-eventually constant sequence of elements of Γ .

Take
$$b = d^*_{\psi_r}(1) = (1^r 0)^{\infty}$$
. Then
 $\Phi(b) = (1^r 10^r 0)^{\infty} = d^*_{\varphi_{r+1}}(1)$.

We say that $\varphi_{r+1} = \Phi(\psi_r)$.

Let π_r defined by $d^*_{\pi_r}(1) = \Phi^{(\infty)}((1^r 0)^\infty)$, that is, $\pi_r = \Phi^{\infty}(\psi_r)$.

Proposition 1. The number π_r is univoque. Between ψ_r and $\pi_r = \Phi^{(\infty)}(\psi_r)$ the only real numbers belonging to \mathcal{U} or $\widetilde{\mathcal{U}}$ are the numbers $\varphi_{r+1}, \Phi(\varphi_{r+1}), \Phi^{(2)}(\varphi_{r+1}),$ etc. They all belong to $\widetilde{\mathcal{U}}$.

Limit points of univoque numbers **Proposition 2.** The limit of a sequence of real numbers belonging to \mathcal{U} belongs to \mathcal{U} or $\widetilde{\mathcal{U}}$.

The φ_r cannot be limit points of numbers in \mathcal{U} , because $d^*_{\varphi_r}(1) = (1^r 0^r)^\infty$, and if $s = 1^r 0^r w \in \Gamma$ then $s = (1^r 0^r)^\infty$.

The ψ_r $(r \ge 2)$ are limit points of numbers in \mathcal{U} : for instance numbers with expansion $(1^r 0)^n (10)^\infty$.

Proposition 3.

- (i) Let $t = (t_n)_{n \ge 1} = 11010011...$ be the shifted Thue-Morse sequence, and let τ_{2^k} such that $d_{\tau_{2^k}}(1) = t_1 \cdots t_{2^k}$. Then $(\tau_{2^k})_{k \ge 1}$ converges from below to the Komornik-Loreti constant κ . The numbers τ_{2^k} are simple Parry numbers belonging to $\widetilde{\mathcal{U}}$.
- (ii) There exists a sequence of univoque Parry numbers $(\delta_{2^k})_{k \ge 1}$ defined by

$$d_{\delta_{2^k}}(1) = t_1 \cdots t_{2^k - 1} (1\overline{t_1} \cdots \overline{t_{2^k - 1}})^{\infty}$$

that converges to κ from above.

Pisot and Salem of small degree in (1, 2)

- The golden ratio $\varphi_1 = \psi_1$ is the smallest element of $\widetilde{\mathcal{U}}$.
- There is no univoque Pisot number of degree 2 or 3.
- The number χ is the unique Pisot number of degree 4 which is univoque.
- There exists a unique Salem number of degree 4 which is univoque.
- Salem numbers of degrees 4 and 6 that are greater than the Komornik-Loreti constant κ are univoque.

First result

Theorem 6. There exists a smallest Pisot number in the set \mathcal{U} .

Proof. $\theta := \inf(S \cap \mathcal{U})$. $\theta \in S$, since S is closed. θ is in \mathcal{U} or in $\widetilde{\mathcal{U}}$. Suppose θ is in $\widetilde{\mathcal{U}}$. Then $d_{\theta}^*(1) = (w0)^{\infty}$.

Then θ would be a limit point of elements of $(S \cap \mathcal{U})$.

But $(w0)^{\infty}$ cannot be limit from above of elements of Γ .

Regular and irregular Pisot numbers

The Pisot numbers approaching φ_r, ψ_r or χ are called *regular Pisot numbers*, and are described by Talmoudi.

Further, Talmoudi showed that, for all $\varepsilon > 0$, there are only a finite number of Pisot numbers in $(1, 2 - \varepsilon)$, that are not regular. These are called the *irregular Pisot numbers*.

For any interval [a, b], with b < 2, an algorithm of Boyd finds all Pisot numbers in the interval. If [a, b] contains a limit point θ , then there exists an $\varepsilon > 0$ such that all Pisot numbers in $[\theta - \varepsilon, \theta + \varepsilon]$ are *regular* Pisot numbers of a known form. Boyd's algorithm detects these regular Pisot numbers.

- $\varphi_1 = \psi_1 = \frac{1+\sqrt{5}}{2}$ smallest element of $\widetilde{\mathcal{U}}$
- $\varphi_2 \approx 1.754877$
- $\kappa \approx 1.787231$ smallest element of \mathcal{U}
- $\psi_2 \approx 1.839286$ "Tribonacci" number
- $\varphi_3 \approx 1.866760$
- $\chi \approx 1.905166$ univoque
- $\psi_3 \approx 1.927562$ "Quadrinacci" number

Since

$$\Phi^2(\psi_2) = \Phi(\varphi_3) \approx 1.870556$$

there are no univoque numbers between ψ_2 and 1.8705. (Note that $1.8705 > \varphi_3$.)

Approaching ψ_2 from below

 $P_{\psi_r}(x) = x^{r+1} - x^r - \dots - 1$ minimal polynomial of ψ_r .

 $A_{\psi_r}(x) = x^{r+1} - 1$ and $B_{\psi_r}(x) = \frac{x^r - 1}{x - 1}$ two polynomials associated with $P_{\psi_r}(x)$.

For sufficiently large n, $P_{\psi_r}(x)x^n \pm A_{\psi_r}(x)$ and $P_{\psi_r}(x)x^n \pm B_{\psi_r}(x)$ admit a unique root between 1 and 2, which is a Pisot number.

 $P_{\psi_r}(x)x^n - A_{\psi_r}(x)$ and $P_{\psi_r}(x)x^n - B_{\psi_r}(x)$ approach ψ_r from above.

 $P_{\psi_r}(x)x^n + A_{\psi_r}(x)$ and $P_{\psi_r}(x)x^n + B_{\psi_r}(x)$ approach ψ_r from below.

By computation of the expansions we obtain **Proposition 4.** There exists a neighborhood $[\psi_2 - \varepsilon, \psi_2 + \varepsilon]$ that contains no univoque Pisot numbers.

Approaching χ

 $P_{\chi}(x) = x^4 - x^3 - 2x^2 + 1$ minimal polynomial of χ .

 $A_{\chi}(x) = x^3 + x^2 - x - 1$ and $B_{\chi}(x) = x^4 - x^2 + 1$. $P_{\chi}(x)x^n - A_{\chi}(x)$ and $P_{\chi}(x)x^n - B_{\chi}(x)$ approach χ from above.

 $P_{\chi}(x)x^n + A_{\chi}(x)$ and $P_{\chi}(x)x^n + B_{\chi}(x)$ approach χ from below.

Theorem 7. There are only a finite number of univoque Pisot numbers less than χ .

Theorem 8. The univoque Pisot number χ is the smallest limit point of univoque Pisot numbers. It is a limit point from above of regular univoque Pisot numbers.

Univoque Pisot numbers less than χ

All univoque Pisot numbers less than χ are either in $[\kappa, \psi_2]$, or in $[\pi_2, \chi]$.

Boyd's algorithm:

227 (irregular) Pisot numbers in $[1.78, 1.85] \supset [\kappa, \psi_2]$

 $202 \cdot [107 101] - [$

303 in $[1.87, 1.91] \supset [\pi_2, \chi]$

Theorem 9. There are exactly two univoque Pisot numbers less than χ . They are

- $1.880000 \cdots$ the root in (1, 2) of $x^{14} - 2x^{13} + x^{11} - x^{10} - x^7 + x^6 - x^4 + x^3 - x + 1$ with univoque expansion $111001011(1001010)^{\infty}$.
- $1.886681 \cdots$ the root in (1, 2) of $x^{12} - 2x^{11} + x^{10} - 2x^9 + x^8 - x^3 + x^2 - x + 1$ with univoque expansion $111001101(1100)^{\infty}$

For each r, there are regular Pisot numbers between ψ_r and 2 with expansion $1^{r+1}(0^{n-r-1}1^r0)^{\infty}$ that are univoque for $r+1 \leq n < 2(r+1)$.

The ψ_r are limit points of the set of regular Pisot numbers. Moreover $\psi_r \to 2$ as $r \to \infty$. **Theorem 10.** 2 is a limit point of $S \cap \mathcal{U}$.