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Univoque numbers

β > 1 is univoque if there exists a unique sequence

of integers (sn)n>1, with 0 6 sn < β, such that

1 =
∑

n>1

snβ
−n

2 is univoque, as 1 = .111 · · ·

1+
√

5
2 is not univoque since

1 = .11 = .(10)n11 = .(10)∞



Greedy expansions

β > 1. x ∈ [0, 1].

Greedy algorithm of Rényi

r0 := x

xn := ⌊βrn−1⌋

rn := {βrn−1}.

Then x =
∑
n>1 xnβ

−n.

xn ∈ Aβ = {0, 1, . . . , ⌈β⌉ − 1}

dβ(x) = x1x2 · · · is the greedy β-expansion of x.

It is the greatest representation in the

lexicographic order.



dβ(1) = (en)n>1 greedy β-expansion of 1

d∗β(1) :=





dβ(1) if dβ(1) is infinite

(e1 · · · em−1(em − 1))∞ if dβ(1) = e1 · · · em−1em is finite.

Theorem 1. (Parry) s = (sn)n>1 in A
N+

β .

• s is the greedy β-expansion of some x ∈ [0, 1)

if and only if

∀k > 0, σk(s) <lex d
∗
β(1)

• s is the greedy β-expansion of 1 for some

β > 1 if and only if

∀k > 1, σk(s) <lex s



Lazy expansions

B :=
∑
n>1

(⌈β⌉−1)
βn = (⌈β⌉−1)

β−1 .

Lazy algorithm:

r0 := x

xn := max(0, ⌈βrn−1 −B⌉)

rn := βrn−1 − xn.

Then x =
∑
n>1 xnβ

−n

ℓβ(x) = x1x2 · · · is the lazy β-expansion of x.

It is the smallest representation of x in the

lexicographical order.



s = (sn)n>1 in A
N+

β .

sn := (⌈β⌉ − 1) − sn the complement of sn, and

s̄ := (sn)n>1.

Theorem 2. (Erdős, Joó and Komornik; Dajani

and Kraaikamp) s = (sn)n>1 in A
N+

β .

• s is the lazy β-expansion of some x ∈ [0, 1) if

and only if

∀k > 0, σk(s̄) <lex d
∗
β(1)

• s is the lazy β-expansion of 1 for some β > 1

if and only if

∀k > 1, σk(s̄) <lex s

s = ℓβ(x) ⇐⇒ s̄ = dβ(B − x)



Example

ψ1 = 1+
√

5
2 the golden ratio.

Greedy β-expansion dψ1
(1) = 11.

d∗ψ1
(1) = (10)∞.

A greedy expansion of x ∈ [0, 1) does not have the

factor 11.

Lazy expansion ℓψ1
(1) = 01∞.

A lazy expansion of x ∈ [0, 1) does not have the

factor 00.



Univoque numbers

β is univoque if there exists a unique sequence of

integers (sn)n>1, with 0 6 sn < β, such that

1 =
∑

n>1

snβ
−n

So

dβ(1) = ℓβ(1)



Remark: σk(s̄) 6lex s ⇐⇒ s̄ 6lex σ
k(s).

Γ = {s ∈ {0, 1}N+ | ∀k > 1, s̄ 6lex σ
k(s) 6lex s}

Γ set of binary self-bracketed sequences.

Γstrict = {s ∈ {0, 1}N+ | ∀k > 1, s̄ <lex σ
k(s) <lex s}

Γstrict set of binary strictly self-bracketed

sequences.

If σk(s) = s or σk(s) = s̄ for some k > 1 then the

sequence s is periodic.

Theorem 3. (Erdős, Joó and Komornik) A

sequence in {0, 1}N+ is the unique β-expansion

of 1 for a univoque number β in (1, 2) if and only

if it is strictly self-bracketed.



U = {β ∈ (1, 2) : dβ(1) ∈ Γstrict}

set of univoque numbers in (1, 2)

There exists a smallest univoque number, the

Komornik-Loreti constant κ ≈ 1.787231 and

dκ(1) = (tn)n>1, where (tn)n>1 = 11010011 . . . is

the shifted Thue-Morse sequence.

Thue-Morse sequence: 0 → 01; 1 → 10

The Komornik-Loreti constant κ is transcendental

(Allouche and Cosnard).



Ũ = {β ∈ (1, 2) : dβ(1) is finite and d∗β(1) is periodic self − bracketed}

ψ1 = 1+
√

5
2 the golden ratio.

Greedy β-expansion dψ1
(1) = 11

d∗ψ1
(1) = (10)∞

Lazy expansion ℓψ1
(1) = 01∞.

The golden ratio is the smallest element of Ũ .



Pisot and Salem numbers

A Pisot number is an algebraic integer > 1 such

that all its algebraic conjugates (other than itself)

have modulus < 1. The set of Pisot numbers is

denoted by S.

S is closed (Salem), and has a smallest element,

which is the root > 1 of the polynomial x3 − x− 1

(approx. 1.3247).

A Salem number is an algebraic integer > 1 such

that all its algebraic conjugates have

modulus 6 1, with at least one conjugate on the

unit circle.



Theorem 4. (Bertrand; Schmidt) Let β be a

Pisot number. A number x of [0, 1] has a (finite

or infinite) eventually periodic greedy β-expansion

if and only if it belongs to Q(β).

Corollary 1. Let β be a Pisot number. A

number x of [0, 1] has an eventually periodic lazy

β-expansion if and only if it belongs to Q(β).

If β is a Salem number of degree 4, then dβ(1) is

eventually periodic (Boyd).

Conjecture: holds true for degree 6.

A Parry number is a number β such that dβ(1) is

eventually periodic. If dβ(1) is finite, it is a

simple Parry number.



Limit points of Pisot numbers

Theorem 5. (Amara) The limit points of S in

(1, 2) are the following:

ϕ1 = ψ1 < ϕ2 < ψ2 < ϕ3 < χ < ψ3 < ϕ4 < · · · < ψr < ϕr+1 < · · · < 2

Minimal Pisot Greedy Lazy Comment

Polynomial Number expansion expansion

xr+1 − 2xr + x− 1 ϕr 1r0r−11 1r−101∞ periodic s-b

xr+1 − xr − · · · − 1 ψr 1r+1 (1r0)∞ periodic s-b

x4 − x3 − 2x2 + 1 χ 11(10)∞ 11(10)∞ univoque



Questions

Is the set of univoque Pisot numbers in (1, 2)

closed?

Is there a smallest univoque Pisot number?



Preliminary combinatorial results

Γ = {s ∈ {0, 1}N+ | ∀k > 1, s 6lex σ
k(s) 6lex s} is

a closed set.

Lemma 1. (Allouche)

• If b in Γ begins with uu then b = (uu)∞.

• If b = (z0)∞ is in Γ, then

Φ(b) := (z1z0)∞

belongs to Γ, and there is no element of Γ

lexicographically between b and Φ(b).

Corollary 2. Let b = (z0)∞. The sequence

(Φ(n)(b))n>0 is a sequence of elements of Γ that

converges to a limit Φ(∞)(b) in Γ. The only

elements of Γ lexicographically between b and

Φ(∞)(b) are the Φ(k)(b), k > 0.



Lemma 2. A sequence of Γ of the form (w0)∞

cannot be a limit from above of a non-eventually

constant sequence of elements of Γ.

Take b = d∗ψr
(1) = (1r0)∞. Then

Φ(b) = (1r10r0)∞ = d∗ϕr+1
(1).

We say that ϕr+1 = Φ(ψr).

Let πr defined by d∗πr
(1) = Φ(∞)((1r0)∞), that is,

πr = Φ∞(ψr).

Proposition 1. The number πr is univoque.

Between ψr and πr = Φ(∞)(ψr) the only real

numbers belonging to U or Ũ are the numbers

ϕr+1, Φ(ϕr+1), Φ(2)(ϕr+1), etc. They all belong

to Ũ .



Limit points of univoque numbers

Proposition 2. The limit of a sequence of real

numbers belonging to U belongs to U or Ũ .

The ϕr cannot be limit points of numbers in U ,

because d∗ϕr
(1) = (1r0r)∞, and if s = 1r0rw ∈ Γ

then s = (1r0r)∞.

The ψr (r > 2) are limit points of numbers in U :

for instance numbers with expansion (1r0)n(10)∞.



Proposition 3.

(i) Let t = (tn)n>1 = 11010011 . . . be the shifted

Thue-Morse sequence, and let τ2k such that

dτ
2k

(1) = t1 · · · t2k . Then (τ2k)k>1 converges

from below to the Komornik-Loreti constant

κ. The numbers τ2k are simple Parry

numbers belonging to Ũ .

(ii) There exists a sequence of univoque Parry

numbers (δ2k)k>1 defined by

dδ
2k

(1) = t1 · · · t2k−1(1t1 · · · t2k−1)
∞

that converges to κ from above.



Pisot and Salem of small degree in (1, 2)

• The golden ratio ϕ1 = ψ1 is the smallest

element of Ũ .

• There is no univoque Pisot number of degree

2 or 3.

• The number χ is the unique Pisot number of

degree 4 which is univoque.

• There exists a unique Salem number of degree

4 which is univoque.

• Salem numbers of degrees 4 and 6 that are

greater than the Komornik-Loreti constant κ

are univoque.



First result

Theorem 6. There exists a smallest Pisot

number in the set U .

Proof. θ := inf(S ∩ U). θ ∈ S, since S is closed.

θ is in U or in Ũ .

Suppose θ is in Ũ . Then d∗θ(1) = (w0)∞.

Then θ would be a limit point of elements of

(S ∩ U).

But (w0)∞ cannot be limit from above of

elements of Γ.



Regular and irregular Pisot numbers

The Pisot numbers approaching ϕr, ψr or χ are

called regular Pisot numbers, and are described by

Talmoudi.

Further, Talmoudi showed that, for all ε > 0,

there are only a finite number of Pisot numbers in

(1, 2 − ε), that are not regular. These are called

the irregular Pisot numbers.

For any interval [a, b], with b < 2, an algorithm of

Boyd finds all Pisot numbers in the interval. If

[a, b] contains a limit point θ, then there exists an

ε > 0 such that all Pisot numbers in [θ − ε, θ + ε]

are regular Pisot numbers of a known form.

Boyd’s algorithm detects these regular Pisot

numbers.



• ϕ1 = ψ1 = 1+
√

5
2 smallest element of Ũ

• ϕ2 ≈ 1.754877

• κ ≈ 1.787231 smallest element of U

• ψ2 ≈ 1.839286 “Tribonacci” number

• ϕ3 ≈ 1.866760

• χ ≈ 1.905166 univoque

• ψ3 ≈ 1.927562 “Quadrinacci” number

Since

Φ2(ψ2) = Φ(ϕ3) ≈ 1.870556

there are no univoque numbers between ψ2 and

1.8705. (Note that 1.8705 > ϕ3.)



Approaching ψ2 from below

Pψr
(x) = xr+1 − xr − · · · − 1 minimal polynomial

of ψr.

Aψr
(x) = xr+1 − 1 and Bψr

(x) = xr−1
x−1 two

polynomials associated with Pψr
(x).

For sufficiently large n, Pψr
(x)xn ±Aψr

(x) and

Pψr
(x)xn ±Bψr

(x) admit a unique root between

1 and 2, which is a Pisot number.

Pψr
(x)xn − Aψr

(x) and Pψr
(x)xn −Bψr

(x)

approach ψr from above.

Pψr
(x)xn + Aψr

(x) and Pψr
(x)xn +Bψr

(x)

approach ψr from below.

By computation of the expansions we obtain

Proposition 4. There exists a neighborhood

[ψ2 − ε, ψ2 + ε] that contains no univoque Pisot

numbers.



Approaching χ

Pχ(x) = x4 − x3 − 2x2 + 1 minimal polynomial of

χ.

Aχ(x) = x3 + x2 − x− 1 and Bχ(x) = x4 − x2 + 1.

Pχ(x)x
n −Aχ(x) and Pχ(x)xn −Bχ(x) approach

χ from above.

Pχ(x)x
n +Aχ(x) and Pχ(x)xn +Bχ(x) approach

χ from below.

Theorem 7. There are only a finite number of

univoque Pisot numbers less than χ.

Theorem 8. The univoque Pisot number χ is the

smallest limit point of univoque Pisot numbers. It

is a limit point from above of regular univoque

Pisot numbers.



Univoque Pisot numbers less than χ

All univoque Pisot numbers less than χ are either

in [κ, ψ2], or in [π2, χ].

Boyd’s algorithm:

227 (irregular) Pisot numbers in

[1.78, 1.85] ⊃ [κ, ψ2]

303 in [1.87, 1.91] ⊃ [π2, χ]

Theorem 9. There are exactly two univoque

Pisot numbers less than χ. They are

• 1.880000 · · · the root in (1, 2) of

x14−2x13 +x11−x10−x7 +x6−x4 +x3−x+1

with univoque expansion

111001011(1001010)∞.

• 1.886681 · · · the root in (1, 2) of

x12 − 2x11 + x10 − 2x9 + x8 − x3 + x2 − x+ 1

with univoque expansion 111001101(1100)∞



For each r, there are regular Pisot numbers

between ψr and 2 with expansion

1r+1(0n−r−11r0)∞ that are univoque for

r + 1 6 n < 2(r + 1).

The ψr are limit points of the set of regular Pisot

numbers. Moreover ψr → 2 as r → ∞.

Theorem 10. 2 is a limit point of S ∩ U .


