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Univoque numbers

(8 > 1 is univoque if there exists a unique sequence
of integers (s, )n>1, with 0 < s,, < 3, such that

1= Z spB "

n=1

2 1s univoque, as 1 = .111---

S

1+2 1s not univoque since

1 =.11 = .(10)"11 = .(10)>




Greedy expansions
g>1. z€]0,1].

Greedy algorithm of Rényi

o - —X
Lp = Lﬂrn—lj
T = {PBrn_1}.

Then x =) 5, x,87".
r, € Ag=10,1,...,[8] — 1}

dg(x) = x129 - - - is the greedy [-expansion of x.
It is the greatest representation in the

lexicographic order.



dg(1l) = (en)n>1 greedy (-expansion of 1

d;(l) - dﬁ(l) lf dﬁ(l) 1S inﬁnite

(e1 - em_1(em —1))> ifdg(l) =e;1---em_16n is finite.

Theorem 1. (Parry) s = (sp)n>1 in AIE+.

e s is the greedy (B-expansion of some x € [0, 1)
of and only if

Vk >0, 0"(s) <jex dj(1)

e s is the greedy (B-expansion of 1 for some
B> 1 if and only if

Vk > 1, ak(s) <lex S



Lazy expansions

—1 —1
Bi=y,,, LB _ (gD

Lazy algorithm:

ro =X

T, = max(0, [ fr,—1 — B])
Tn = BTrp_1 — Tp.

Then z = Zn>1 B "

lg(x) = x129 - - - is the lazy [J-expansion of x.
It is the smallest representation of x in the

lexicographical order.



s = (Sp)n>1 in AIEJ“.

Sn = (|B] —1) — s, the complement of s,,, and

S = (%)n}l-
Theorem 2. (Erdéds, Jo6 and Komornik; Dajani

and Kraaikamp) s = (s, )n>1 in AEJ“.

e s is the lazy B-expansion of some x € [0,1) if

and only if
Vk >0, 0%(5) <teo dj(1)

e s is the lazy B-expansion of 1 for some 3 > 1
of and only if

Vk > 1, O'k(g) <lex S

s =Ug(x) <= 5=dg(B —x)



Example

Wy = 1+2—\/5 the golden ratio.

Greedy (-expansion d, (1) = 11.
dy, (1) = (10)°>°.

A greedy expansion of z € [0,1) does not have the
factor 11.

Lazy expansion £, (1) = 01°°.

A lazy expansion of x € [0,1) does not have the
factor 00.



Univoque numbers

[ is univoque if there exists a unique sequence of

integers (sp)n>1, with 0 < s, < 3, such that

1= Z spB "

n>1

SO
dg(1) = £p(1)



Remark: 0%(5) <jezx 8 <= 5 <lew 07(5).
I'={se{0, 1" |Vk>1, 5§ <pex 0"(5) <tew 5}

I' set of binary self-bracketed sequences.

Dotrict = {5 € {0, 11 | VE > 1, § <jen 0"(5) <iew S}

['strict set of binary strictly self-bracketed
sequences.

If 0%(s) = s or o%(s) = 5 for some k > 1 then the
sequence s is periodic.

Theorem 3. (Erdéds, Jo6 and Komornik) A
sequence in {0, 1IN+ is the unique [(3-expansion

of 1 for a univoque number (3 in (1,2) if and only
of 1t 1s strictly self-bracketed.



U={6¢€(1,2):ds(1) € I'strict}

set of univoque numbers in (1, 2)

There exists a smallest univoque number, the
Komornik-Loreti constant k ~ 1.787231 and
di(1) = (tn)n>1, where (t,)p>1 = 11010011 ... is
the shifted Thue-Morse sequence.

Thue-Morse sequence: 0 — 01; 1 — 10

The Komornik-Loreti constant & i1s transcendental
(Allouche and Cosnard).



U=1{pec(1,2): dg(1) is finite and dj3(1) is periodic self — bracketed }

Y1 = 1+2—\/5 the golden ratio.
Greedy (-expansion dy, (1) =11
43, (1) = (10)

Lazy expansion £, (1) = 01°°.

The golden ratio is the smallest element of U.



Pisot and Salem numbers

A Pisot number is an algebraic integer > 1 such
that all its algebraic conjugates (other than itself)

have modulus < 1. The set of Pisot numbers is

denoted by S.

S is closed (Salem), and has a smallest element,
which is the root > 1 of the polynomial 23 —z — 1
(approx. 1.3247).

A Salem number is an algebraic integer > 1 such
that all its algebraic conjugates have
modulus < 1, with at least one conjugate on the

unit circle.



Theorem 4. (Bertrand; Schmidt) Let § be a
Pisot number. A number x of [0,1] has a (finite
or infinite) eventually periodic greedy [(-expansion
if and only if it belongs to Q(3).

Corollary 1. Let B be a Pisot number. A
number x of [0, 1] has an eventually periodic lazy

B-expansion if and only if it belongs to Q(5).

If 5 is a Salem number of degree 4, then dg(1) is
eventually periodic (Boyd).

Conjecture: holds true for degree 6.

A Parry number is a number § such that dg(1) is
eventually periodic. If dg(1) is finite, it is a

simple Parry number.



Limit points of Pisot numbers

Theorem 5. (Amara) The limit points of S in
(1,2) are the following:

p1 =11 <2 <P <p3 < X <Pz <y < <Y < gy <-ee <2

Minimal Pisot Greedy Lazy Comment
Polynomial Number expansion expansion

"l 22" -1 o, 170711 1"7101°°  periodic s-b
R T 171 (1m0)°° periodic s-b

ozt — 23 - 222 +1 11(10)°° 11(10)°° univoque




Questions

Is the set of univoque Pisot numbers in (1,2)

closed?

Is there a smallest univoque Pisot number?



Preliminary combinatorial results
I'={sec {0, 1} |Vk > 1, 5 <jer 0"(5) <lex 5} is
a closed set.

Lemma 1. (Allouche)

o Ifb in T begins with uu then b = (uuw)™>.
o Ifb=(20)>* isin ', then
O(b) := (21z0)>

belongs to I', and there is no element of I’
lexicographically between b and ®(b).
Corollary 2. Let b = (20)>°. The sequence

(@™ (b))n>0 is a sequence of elements of I' that
converges to a limit ®(>)(b) in T'. The only

elements of I' lexicographically between b and
®()(b) are the ®HF)(b), k > 0.



Lemma 2. A sequence of I' of the form (w0)>
cannot be a limit from above of a non-eventually

constant sequence of elements of I'.

Take b =dy, (1) = (170)>°. Then
O(b) = (171070)> = d*__ (1).

Pri1

We say that ¢,..1 = ®(,.).

Let 7, defined by dz (1) = ®(>)((170)*°), that is,
T = O (¢y).

Proposition 1. The number m, s univoque.
Between 1, and 7, = ) (¢, the only real

~

numbers belonging to U or U are the numbers

Ori1, Plorit), D3 (p,41), ete. They all belong
to U.



Limit points of univoque numbers

Proposition 2. The limit of a sequence of real

numbers belonging to U belongs to U or U.

The ¢, cannot be limit points of numbers in U,
because d7, (1) = (1"0")*°, and if s = 1"0"w € T
then s = (170")°°.

The 1, (r > 2) are limit points of numbers in U:

for instance numbers with expansion (170)™(10)°.



Proposition 3.

(i) Lett = (t,)n>1 = 11010011 ... be the shifted
Thue-Morse sequence, and let Tor such that
dr (1) =11+ -tor. Then (Tor)g>1 converges
from below to the Komornik-Loreti constant
k. The numbers Tor are simple Parry
numbers belonging to U.

(i) There exists a sequence of univoque Parry
numbers (dor )p>1 defined by

ds,, (1) =ty tor g (1ty -+ ton_1)™

that converges to k from above.



Pisot and Salem of small degree in (1, 2)

The golden ratio ¢ = 1)1 is the smallest
element of U.

There is no univoque Pisot number of degree
2 or 3.

The number x is the unique Pisot number of
degree 4 which is univoque.

There exists a unique Salem number of degree

4 which is univoque.

Salem numbers of degrees 4 and 6 that are
greater than the Komornik-Loreti constant «

are univoque.



First result

Theorem 6. There exists a smallest Pisot

number in the set U.

Proof. 0 :=inf(SNU). § € S, since S is closed.
f is in U or in U.
Suppose 6 is in Y. Then dy(1) = (w0).

Then 6 would be a limit point of elements of

(S NU).

But (w0)*> cannot be limit from above of

elements of I'.



Regular and irregular Pisot numbers

The Pisot numbers approaching ¢,., 1, or y are
called reqular Pisot numbers, and are described by

Talmoudi.

Further, Talmoudi showed that, for all € > 0,
there are only a finite number of Pisot numbers in
(1,2 — ¢), that are not regular. These are called

the irreqular Pisot numbers.

For any interval |a, b], with b < 2, an algorithm of
Boyd finds all Pisot numbers in the interval. If
la, b] contains a limit point 6, then there exists an
e > 0 such that all Pisot numbers in [# — ¢,0 + €]
are reqular Pisot numbers of a known form.
Boyd’s algorithm detects these regular Pisot

numbers.



o v =Y = % smallest element of U
o vy~ 1.754877

o x~ 1.787231 smallest element of U

o Yy ~ 1.839286 “Iribonacci” number

e 3 ~ 1.866760

e Y\ ~ 1.905166 univoque

o Y3~ 1.927562 “Quadrinacci” number

Since
2 (1p9) = ®(p3) ~ 1.870556

there are no univoque numbers between 1o and
1.8705. (Note that 1.8705 > ¢3.)



Approaching 9 from below

Py () = 2"t — 2" — -+~ — 1 minimal polynomial
of ...
Ay () =2" —1 and By, (z) = 5”;__11 two

polynomials associated with P, (x).

For sufficiently large n, Py, (x)x™ & Ay, () and
Py (x)x™ £ By, () admit a unique root between

1 and 2, which is a Pisot number.

Py, (x)x™ — Ay, (x) and Py, (2)2" — By, (2)
approach 1, from above.

Py, (x)x" + Ay, (x) and Py, (2)2" + By, (2)
approach 1, from below.

By computation of the expansions we obtain

Proposition 4. There exists a netghborhood
(Yo — €,19 + €] that contains no univoque Pisot

numbers.



Approaching x

P, (z) = z* — 2 — 22? + 1 minimal polynomial of
X-

Ay(z) =23+ 2> —2—1and By(z) = 2* — 2% + 1.
P (x)z™ — Ay (x) and P, (z)z" — B, (x) approach
x from above.

P (x)z"™ + Ay (x) and P, (z)z" + B, (x) approach
x from below.

Theorem 7. There are only a finite number of

univoque Pisot numbers less than .

Theorem 8. The univoque Pisot number x is the
smallest limit point of univoque Pisot numbers. It
18 a limit point from above of reqular univoque

Pisot numbers.



Univoque Pisot numbers less than y

All univoque Pisot numbers less than x are either
in |k, ], or in [ma, X].
Boyd’s algorithm:

227 (irregular) Pisot numbers in
1.78,1.85] O [k, o]

303 in [1.87,1.91] D [ma, ]

Theorem 9. There are exactly two univoque

Pisot numbers less than x. They are

e 1.880000--- the root in (1,2) of
pl4 918 4 11 10 07 4 06 g4 4 03 0
with unitvoque expansion
111001011(1001010)°°.

e 1.886681--- the root in (1,2) of
pl? — 2 + 210 — 229 4 2® — S 22 — 2+ 1
with univoque expansion 111001101(1100)>°



For each r, there are regular Pisot numbers
between 1, and 2 with expansion
17T1(0"~"=1170)*° that are univoque for

r+1<n<2(r+1).

The ), are limit points of the set of regular Pisot

numbers. Moreover 1), — 2 as r — o0.
Theorem 10. 2 is a limit point of SNU.



