Univoque numbers

Christiane Frougny

Joint work with
Jean-Paul Allouche and Kevin Hare

Univoque numbers

$\beta>1$ is univoque if there exists a unique sequence of integers $\left(s_{n}\right)_{n \geqslant 1}$, with $0 \leqslant s_{n}<\beta$, such that

$$
1=\sum_{n \geqslant 1} s_{n} \beta^{-n}
$$

2 is univoque, as $1=.111 \cdots$
$\frac{1+\sqrt{5}}{2}$ is not univoque since
$1=.11=\cdot(10)^{n} 11=\cdot(10)^{\infty}$

Greedy expansions
$\beta>1 . x \in[0,1]$.
Greedy algorithm of Rényi
$r_{0}:=x$
$x_{n}:=\left\lfloor\beta r_{n-1}\right\rfloor$
$r_{n}:=\left\{\beta r_{n-1}\right\}$.
Then $x=\sum_{n \geqslant 1} x_{n} \beta^{-n}$.
$x_{n} \in A_{\beta}=\{0,1, \ldots,\lceil\beta\rceil-1\}$
$d_{\beta}(x)=x_{1} x_{2} \cdots$ is the greedy β-expansion of x.
It is the greatest representation in the lexicographic order.
$d_{\beta}(1)=\left(e_{n}\right)_{n \geqslant 1}$ greedy β-expansion of 1
$d_{\beta}^{*}(1):= \begin{cases}d_{\beta}(1) & \text { if } d_{\beta}(1) \text { is infinite } \\ \left(e_{1} \cdots e_{m-1}\left(e_{m}-1\right)\right)^{\infty} & \text { if } d_{\beta}(1)=e_{1} \cdots e_{m-1} e_{m} \text { is finite } .\end{cases}$
Theorem 1. (Parry) $s=\left(s_{n}\right)_{n \geqslant 1}$ in $A_{\beta}^{\mathbb{N}_{+}}$.

- s is the greedy β-expansion of some $x \in[0,1)$ if and only if

$$
\forall k \geqslant 0, \quad \sigma^{k}(s)<_{l e x} d_{\beta}^{*}(1)
$$

- s is the greedy β-expansion of 1 for some $\beta>1$ if and only if

$$
\forall k \geqslant 1, \quad \sigma^{k}(s)<_{\text {lex }} s
$$

Lazy expansions
$B:=\sum_{n \geqslant 1} \frac{(\lceil\beta\rceil-1)}{\beta^{n}}=\frac{(\lceil\beta\rceil-1)}{\beta-1}$.
Lazy algorithm:
$r_{0}:=x$
$x_{n}:=\max \left(0,\left\lceil\beta r_{n-1}-B\right\rceil\right)$
$r_{n}:=\beta r_{n-1}-x_{n}$.
Then $x=\sum_{n \geqslant 1} x_{n} \beta^{-n}$
$\ell_{\beta}(x)=x_{1} x_{2} \cdots$ is the lazy β-expansion of x.
It is the smallest representation of x in the lexicographical order.
$s=\left(s_{n}\right)_{n \geqslant 1}$ in $A_{\beta}^{\mathbb{N}_{+}}$.
$\overline{s_{n}}:=(\lceil\beta\rceil-1)-s_{n}$ the complement of s_{n}, and
$\bar{s}:=\left(\overline{s_{n}}\right)_{n \geqslant 1}$.
Theorem 2. (Erdős, Joó and Komornik; Dajani and Kraaikamp) $s=\left(s_{n}\right)_{n \geqslant 1}$ in $A_{\beta}^{\mathbb{N}+}$.

- s is the lazy β-expansion of some $x \in[0,1)$ if and only if

$$
\forall k \geqslant 0, \quad \sigma^{k}(\bar{s})<_{l e x} d_{\beta}^{*}(1)
$$

- s is the lazy β-expansion of 1 for some $\beta>1$ if and only if

$$
\begin{array}{r}
\forall k \geqslant 1, \quad \sigma^{k}(\bar{s})<_{\text {lex }} s \\
s=\ell_{\beta}(x) \Longleftrightarrow \bar{s}=d_{\beta}(B-x)
\end{array}
$$

Example

$\psi_{1}=\frac{1+\sqrt{5}}{2}$ the golden ratio.

Greedy β-expansion $d_{\psi_{1}}(1)=11$.
$d_{\psi_{1}}^{*}(1)=(10)^{\infty}$.
A greedy expansion of $x \in[0,1)$ does not have the factor 11.

Lazy expansion $\ell_{\psi_{1}}(1)=01^{\infty}$.
A lazy expansion of $x \in[0,1)$ does not have the factor 00 .

Univoque numbers

β is univoque if there exists a unique sequence of integers $\left(s_{n}\right)_{n \geqslant 1}$, with $0 \leqslant s_{n}<\beta$, such that

$$
1=\sum_{n \geqslant 1} s_{n} \beta^{-n}
$$

So

$$
d_{\beta}(1)=\ell_{\beta}(1)
$$

Remark: $\sigma^{k}(\bar{s}) \leqslant_{l e x} s \Longleftrightarrow \bar{s} \leqslant_{l e x} \sigma^{k}(s)$.

$$
\Gamma=\left\{s \in\{0,1\}^{\mathbb{N}_{+}} \mid \forall k \geqslant 1, \bar{s} \leqslant l e x \sigma^{k}(s) \leqslant l e x ~ s\right\}
$$

Γ set of binary self-bracketed sequences.

$$
\Gamma_{\text {strict }}=\left\{s \in\{0,1\}^{\mathbb{N}_{+}} \mid \forall k \geqslant 1, \bar{s}<_{l e x} \sigma^{k}(s)<_{l e x} s\right\}
$$

$\Gamma_{\text {strict }}$ set of binary strictly self-bracketed sequences.

If $\sigma^{k}(s)=s$ or $\sigma^{k}(s)=\bar{s}$ for some $k \geqslant 1$ then the sequence s is periodic.
Theorem 3. (Erdős, Joó and Komornik) A sequence in $\{0,1\}^{\mathbb{N}_{+}}$is the unique β-expansion of 1 for a univoque number β in $(1,2)$ if and only
if it is strictly self-bracketed.

$$
\mathcal{U}=\left\{\beta \in(1,2): d_{\beta}(1) \in \Gamma_{\text {strict }}\right\}
$$

set of univoque numbers in $(1,2)$

There exists a smallest univoque number, the Komornik-Loreti constant $\kappa \approx 1.787231$ and $d_{\kappa}(1)=\left(t_{n}\right)_{n \geqslant 1}$, where $\left(t_{n}\right)_{n \geqslant 1}=11010011 \ldots$ is the shifted Thue-Morse sequence.

Thue-Morse sequence: $0 \rightarrow 01 ; 1 \rightarrow 10$

The Komornik-Loreti constant κ is transcendental (Allouche and Cosnard).
$\widetilde{\mathcal{U}}=\left\{\beta \in(1,2): d_{\beta}(1)\right.$ is finite and $d_{\beta}^{*}(1)$ is periodic self - bracketed $\}$
$\psi_{1}=\frac{1+\sqrt{5}}{2}$ the golden ratio.
Greedy β-expansion $d_{\psi_{1}}(1)=11$
$d_{\psi_{1}}^{*}(1)=(10)^{\infty}$
Lazy expansion $\ell_{\psi_{1}}(1)=01^{\infty}$.
The golden ratio is the smallest element of $\widetilde{\mathcal{U}}$.

Pisot and Salem numbers
A Pisot number is an algebraic integer >1 such that all its algebraic conjugates (other than itself) have modulus <1. The set of Pisot numbers is denoted by S.
S is closed (Salem), and has a smallest element, which is the root >1 of the polynomial $x^{3}-x-1$ (approx. 1.3247).

A Salem number is an algebraic integer >1 such that all its algebraic conjugates have modulus $\leqslant 1$, with at least one conjugate on the unit circle.

Theorem 4. (Bertrand; Schmidt) Let β be a Pisot number. A number x of $[0,1]$ has a (finite or infinite) eventually periodic greedy β-expansion if and only if it belongs to $\mathbb{Q}(\beta)$.
Corollary 1. Let β be a Pisot number. A number x of $[0,1]$ has an eventually periodic lazy β-expansion if and only if it belongs to $\mathbb{Q}(\beta)$.

If β is a Salem number of degree 4 , then $d_{\beta}(1)$ is eventually periodic (Boyd).

Conjecture: holds true for degree 6.

A Parry number is a number β such that $d_{\beta}(1)$ is eventually periodic. If $d_{\beta}(1)$ is finite, it is a simple Parry number.

Limit points of Pisot numbers
Theorem 5. (Amara) The limit points of S in
$(1,2)$ are the following:
$\varphi_{1}=\psi_{1}<\varphi_{2}<\psi_{2}<\varphi_{3}<\chi<\psi_{3}<\varphi_{4}<\cdots<\psi_{r}<\varphi_{r+1}<\cdots<2$

Minimal	Pisot	Greedy	Lazy	Comment
Polynomial	Number	expansion	expansion	
$x^{r+1}-2 x^{r}+x-1$	φ_{r}	$1^{r} 0^{r-1} 1$	$1^{r-1} 01^{\infty}$	periodic s-b
$x^{r+1}-x^{r}-\cdots-1$	ψ_{r}	1^{r+1}	$\left(1^{r} 0\right)^{\infty}$	periodic s-b
$x^{4}-x^{3}-2 x^{2}+1$	χ	$11(10)^{\infty}$	$11(10)^{\infty}$	univoque

Questions

Is the set of univoque Pisot numbers in $(1,2)$ closed?

Is there a smallest univoque Pisot number?

Preliminary combinatorial results
$\Gamma=\left\{s \in\{0,1\}^{\mathbb{N}_{+}} \mid \forall k \geqslant 1, \bar{s} \leqslant l_{\text {lex }} \sigma^{k}(s) \leqslant_{l e x} s\right\}$ is a closed set.

Lemma 1. (Allouche)

- If b in Γ begins with $u \bar{u}$ then $b=(u \bar{u})^{\infty}$.
- If $b=(z 0)^{\infty}$ is in Γ, then

$$
\Phi(b):=(z 1 \bar{z} 0)^{\infty}
$$

belongs to Γ, and there is no element of Γ lexicographically between b and $\Phi(b)$.
Corollary 2. Let $b=(z 0)^{\infty}$. The sequence $\left(\Phi^{(n)}(b)\right)_{n \geqslant 0}$ is a sequence of elements of Γ that converges to a limit $\Phi^{(\infty)}(b)$ in Γ. The only elements of Γ lexicographically between b and $\Phi^{(\infty)}(b)$ are the $\Phi^{(k)}(b), k \geqslant 0$.

Lemma 2. A sequence of Γ of the form $(w 0)^{\infty}$ cannot be a limit from above of a non-eventually constant sequence of elements of Γ.

Take $b=d_{\psi_{r}}^{*}(1)=\left(1^{r} 0\right)^{\infty}$. Then
$\Phi(b)=\left(1^{r} 10^{r} 0\right)^{\infty}=d_{\varphi_{r+1}}^{*}(1)$.
We say that $\varphi_{r+1}=\Phi\left(\psi_{r}\right)$.
Let π_{r} defined by $d_{\pi_{r}}^{*}(1)=\Phi^{(\infty)}\left(\left(1^{r} 0\right)^{\infty}\right)$, that is, $\pi_{r}=\Phi^{\infty}\left(\psi_{r}\right)$.
Proposition 1. The number π_{r} is univoque. Between ψ_{r} and $\pi_{r}=\Phi^{(\infty)}\left(\psi_{r}\right)$ the only real numbers belonging to \mathcal{U} or $\tilde{\mathcal{U}}$ are the numbers $\varphi_{r+1}, \Phi\left(\varphi_{r+1}\right), \Phi^{(2)}\left(\varphi_{r+1}\right)$, etc. They all belong to $\tilde{\mathcal{U}}$.

Limit points of univoque numbers
Proposition 2. The limit of a sequence of real numbers belonging to \mathcal{U} belongs to \mathcal{U} or $\widetilde{\mathcal{U}}$.

The φ_{r} cannot be limit points of numbers in \mathcal{U}, because $d_{\varphi_{r}}^{*}(1)=\left(1^{r} 0^{r}\right)^{\infty}$, and if $s=1^{r} 0^{r} w \in \Gamma$ then $s=\left(1^{r} 0^{r}\right)^{\infty}$.

The $\psi_{r}(r \geqslant 2)$ are limit points of numbers in \mathcal{U} : for instance numbers with expansion $\left(1^{r} 0\right)^{n}(10)^{\infty}$.

Proposition 3.

(i) Let $t=\left(t_{n}\right)_{n \geqslant 1}=11010011 \ldots$ be the shifted Thue-Morse sequence, and let $\tau_{2^{k}}$ such that $d_{\tau_{2^{k}}}(1)=t_{1} \cdots t_{2^{k}}$. Then $\left(\tau_{2^{k}}\right)_{k \geqslant 1}$ converges from below to the Komornik-Loreti constant κ. The numbers $\tau_{2^{k}}$ are simple Parry numbers belonging to $\widetilde{\mathcal{U}}$.
(ii) There exists a sequence of univoque Parry numbers $\left(\delta_{2^{k}}\right)_{k \geqslant 1}$ defined by

$$
d_{\delta_{2^{k}}}(1)=t_{1} \cdots t_{2^{k}-1}\left(1 \overline{t_{1}} \cdots \overline{t_{2^{k}-1}}\right)^{\infty}
$$

that converges to κ from above.

Pisot and Salem of small degree in $(1,2)$

- The golden ratio $\varphi_{1}=\psi_{1}$ is the smallest element of $\tilde{\mathcal{U}}$.
- There is no univoque Pisot number of degree 2 or 3 .
- The number χ is the unique Pisot number of degree 4 which is univoque.
- There exists a unique Salem number of degree 4 which is univoque.
- Salem numbers of degrees 4 and 6 that are greater than the Komornik-Loreti constant κ are univoque.

First result
Theorem 6. There exists a smallest Pisot number in the set \mathcal{U}.

Proof. $\theta:=\inf (S \cap \mathcal{U}) . \theta \in S$, since S is closed.
θ is in \mathcal{U} or in $\tilde{\mathcal{U}}$.
Suppose θ is in $\widetilde{\mathcal{U}}$. Then $d_{\theta}^{*}(1)=(w 0)^{\infty}$.
Then θ would be a limit point of elements of $(S \cap \mathcal{U})$.

But $(w 0)^{\infty}$ cannot be limit from above of elements of Γ.

Regular and irregular Pisot numbers
The Pisot numbers approaching φ_{r}, ψ_{r} or χ are called regular Pisot numbers, and are described by Talmoudi.

Further, Talmoudi showed that, for all $\varepsilon>0$, there are only a finite number of Pisot numbers in $(1,2-\varepsilon)$, that are not regular. These are called the irregular Pisot numbers.

For any interval $[a, b]$, with $b<2$, an algorithm of Boyd finds all Pisot numbers in the interval. If $[a, b]$ contains a limit point θ, then there exists an $\varepsilon>0$ such that all Pisot numbers in $[\theta-\varepsilon, \theta+\varepsilon]$ are regular Pisot numbers of a known form. Boyd's algorithm detects these regular Pisot numbers.

- $\varphi_{1}=\psi_{1}=\frac{1+\sqrt{5}}{2}$ smallest element of $\tilde{\mathcal{U}}$
- $\varphi_{2} \approx 1.754877$
- $\kappa \approx 1.787231$ smallest element of \mathcal{U}
- $\psi_{2} \approx 1.839286$ "Tribonacci" number
- $\varphi_{3} \approx 1.866760$
- $\chi \approx 1.905166$ univoque
- $\psi_{3} \approx 1.927562$ "Quadrinacci" number

Since

$$
\Phi^{2}\left(\psi_{2}\right)=\Phi\left(\varphi_{3}\right) \approx 1.870556
$$

there are no univoque numbers between ψ_{2} and 1.8705. (Note that $1.8705>\varphi_{3}$.)
$P_{\psi_{r}}(x)=x^{r+1}-x^{r}-\cdots-1$ minimal polynomial of ψ_{r}.
$A_{\psi_{r}}(x)=x^{r+1}-1$ and $B_{\psi_{r}}(x)=\frac{x^{r}-1}{x-1}$ two
polynomials associated with $P_{\psi_{r}}(x)$.
For sufficiently large $n, P_{\psi_{r}}(x) x^{n} \pm A_{\psi_{r}}(x)$ and $P_{\psi_{r}}(x) x^{n} \pm B_{\psi_{r}}(x)$ admit a unique root between 1 and 2 , which is a Pisot number.
$P_{\psi_{r}}(x) x^{n}-A_{\psi_{r}}(x)$ and $P_{\psi_{r}}(x) x^{n}-B_{\psi_{r}}(x)$ approach ψ_{r} from above.
$P_{\psi_{r}}(x) x^{n}+A_{\psi_{r}}(x)$ and $P_{\psi_{r}}(x) x^{n}+B_{\psi_{r}}(x)$ approach ψ_{r} from below.

By computation of the expansions we obtain
Proposition 4. There exists a neighborhood $\left[\psi_{2}-\varepsilon, \psi_{2}+\varepsilon\right]$ that contains no univoque Pisot numbers.

Approaching χ

$P_{\chi}(x)=x^{4}-x^{3}-2 x^{2}+1$ minimal polynomial of χ.
$A_{\chi}(x)=x^{3}+x^{2}-x-1$ and $B_{\chi}(x)=x^{4}-x^{2}+1$.
$P_{\chi}(x) x^{n}-A_{\chi}(x)$ and $P_{\chi}(x) x^{n}-B_{\chi}(x)$ approach χ from above.
$P_{\chi}(x) x^{n}+A_{\chi}(x)$ and $P_{\chi}(x) x^{n}+B_{\chi}(x)$ approach χ from below.
Theorem 7. There are only a finite number of univoque Pisot numbers less than χ.
Theorem 8. The univoque Pisot number χ is the smallest limit point of univoque Pisot numbers. It is a limit point from above of regular univoque
Pisot numbers.

Univoque Pisot numbers less than χ

All univoque Pisot numbers less than χ are either in $\left[\kappa, \psi_{2}\right]$, or in $\left[\pi_{2}, \chi\right]$.

Boyd's algorithm:
227 (irregular) Pisot numbers in
$[1.78,1.85] \supset\left[\kappa, \psi_{2}\right]$
303 in $[1.87,1.91] \supset\left[\pi_{2}, \chi\right]$
Theorem 9. There are exactly two univoque
Pisot numbers less than χ. They are

- $1.880000 \cdots$ the root in $(1,2)$ of
$x^{14}-2 x^{13}+x^{11}-x^{10}-x^{7}+x^{6}-x^{4}+x^{3}-x+1$
with univoque expansion $111001011(1001010)^{\infty}$.
- $1.886681 \cdots$ the root in $(1,2)$ of $x^{12}-2 x^{11}+x^{10}-2 x^{9}+x^{8}-x^{3}+x^{2}-x+1$ with univoque expansion $111001101(1100)^{\infty}$

For each r, there are regular Pisot numbers
between ψ_{r} and 2 with expansion
$1^{r+1}\left(0^{n-r-1} 1^{r} 0\right)^{\infty}$ that are univoque for
$r+1 \leqslant n<2(r+1)$.

The ψ_{r} are limit points of the set of regular Pisot numbers. Moreover $\psi_{r} \rightarrow 2$ as $r \rightarrow \infty$.

Theorem 10. 2 is a limit point of $S \cap \mathcal{U}$.

