Number representation and symbolic dynamics

Christiane Frougny
LIAFA, CNRS, and Université Paris 8

Workshop on Symbolic Dynamics and Coding
Marne-la-Vallée July 2-4, 2007

PART I

Signed 2－expansions

Expansions in base 2

Every integer $N \geqslant 0$ has an expansion in base 2

$$
N=\sum_{j=0}^{K} d_{j} 2^{j}=d_{K} \cdots d_{1} d_{0}
$$

with $d_{j} \in\{0,1\}$, which is unique up to leading zeros.
Using negative digits, there is redundancy and the number of non-zero digits can often be reduced:

$$
7=4+2+1=111 .=100 \overline{1} .=8-1 \quad(\overline{1}=-1)
$$

Redundancy automaton base 2

Expansions of minimal weight in base 2

Problem: Find an expansion of N of minimal weight $\sum_{j=0}^{K}\left|d_{j}\right|$. (cf. Hamming weight: number of non-zero digits d_{j}, equal to this weight if $\left.d_{j} \in\{-1,0,1\}\right)$.

Heuberger (2004): $d_{K} \cdots d_{1} d_{0} \in\{\overline{1}, 0,1\}^{*}$ is a signed 2-expansion of minimal weight if and only if it contains none of the factors

$$
11(01)^{*} 1,1(0 \overline{1})^{*} \overline{1}, \overline{1} \overline{1}(0 \overline{1})^{*} \overline{1}, \overline{1}(01)^{*} 1
$$

and the opposites.

Signed 2－expansions of minimal weight

Canonical expansions of minimal weight in base 2

Booth (1951), Reitwiesner (1960), . .
Non-Adjacent Form (NAF)
Every integer N has a unique expansion $N=\sum_{j=0}^{K} d_{j} 2^{j}$ with $d_{j} \in\{-1,0,1\}$ such that $d_{j-1}=d_{j+1}=0$ if $d_{j} \neq 0$. The weight of this expansion is minimal among all expansions of N in base 2 .

Right-to-left recoding: every factor of form 01^{n}, with $n \geqslant 2$, is transformed into $10^{n-1} \overline{1}$.
The Booth recoding is a right subsequential function

Applications of the NAF

- multiplication
- internal representation for dividers: base 4 with digits in $\{\overline{2}, \ldots, 2\}$
- computations on elliptic curves and cryptography

Transformation for the NAF

Ergodic properties of the dynamical system associated with the NAF [Dajani, Kraaikamp, Liardet 2006]
Transformation giving the NAF

$$
\begin{aligned}
T:[-2 / 3,2 / 3) & \rightarrow[-2 / 3,2 / 3) \\
x & \mapsto 2 x-\lfloor(3 x+1) / 2\rfloor
\end{aligned}
$$

The digit x_{j} is $x_{j}=\left\lfloor\left(3 T^{j-1}(x)+1\right) / 2\right\rfloor$.
The expected number of non-zero digits in a NAF of length n is $n / 3$, Arno and Wheeler (1993).

PART II
Beta－shift

Beta-numeration (Rényi, Parry)

Base $\beta>1, x \in[0,1]$
β-expansion of x : greedy algorithm
$r_{0}:=x$
$x_{n}:=\left\lfloor\beta r_{n-1}\right\rfloor ; r_{n}:=\beta r_{n-1}-x_{n}$.
Then $x=\sum_{n \geqslant 1} x_{n} \beta^{-n}$, with $x_{n} \in A_{\beta}=\{0,1, \ldots,\lceil\beta\rceil-1\}$
$d_{\beta}(x)=x_{1} x_{2} \cdots$ is the greedy β-expansion of x.
It is the greatest representation in the lexicographic order.
If β is an integer, it is the standard β-ary numeration.
If the sequence $\left(x_{n}\right)$ ends in 0^{ω}, it is said finite.
Redondancy A number may have several β-representations.
Example $\varphi=(1+\sqrt{5}) / 2, A_{\varphi}=\{0,1\}, d_{\varphi}(1)=11$.
$x=3-\sqrt{5}, d_{\varphi}(x)=10010^{\omega}$.
The factor 11 is forbidden in $d_{\varphi}(x)$.
Other φ-representations of x :
$01110^{\omega}, 100(01)^{\omega}, 011(01)^{\omega}, \ldots$

β-transformation

$$
\begin{aligned}
& T_{\beta}:[0,1] \rightarrow[0,1) \\
& x \mapsto \beta x(\bmod 1) \\
& d_{\beta}(x)=x_{1} x_{2} \cdots \text { with } x_{n}=\left\lfloor\beta T_{\beta}^{n-1}(x)\right\rfloor .
\end{aligned}
$$

T_{β} has a unique invariant measure μ_{β} which is absolutely continuous with respect to the Lebesgue measure on $[0,1]$. μ_{β} is ergodic and is the unique measure of maximal entropy (Rényi 1957).

β-shift

σ shift on $A_{\beta}^{\mathbb{N}}: \sigma\left(\left(x_{i}\right)_{i \geqslant 1}\right)=\left(x_{i+1}\right)_{i \geqslant 1}$.
$D_{\beta}=\left\{d_{\beta}(x) \mid x \in\left[0,1[\}\right.\right.$ is a shift-invariant subset of $A_{\beta}^{\mathbb{N}}$.
β-shift $S_{\beta}=$ topological closure of D_{β}.

Example

- $\beta=2$ and $A_{\beta}=\{0,1\}$ then S_{β} is the full 2-shift $=\{0,1\}^{\mathbb{N}}$
- $\varphi=(1+\sqrt{5}) / 2$ and $A_{\varphi}=\{0,1\}$ then S_{φ} is the golden mean shift $=\left\{s \in\{0,1\}^{\mathbb{N}}\right.$ with no factor 11$\}$.
$d_{\beta}(1)=\left(t_{n}\right)_{n \geqslant 1}$ greedy β-expansion of 1
$d_{\beta}^{*}(1):= \begin{cases}d_{\beta}(1) & \text { if } d_{\beta}(1) \text { is infinite } \\ \left(t_{1} \cdots t_{m-1}\left(t_{m}-1\right)\right)^{\infty} & \text { if } d_{\beta}(1)=t_{1} \cdots t_{m-1} t_{m} \text { is finite } .\end{cases}$

Theorem (Parry 1960)
$s=\left(s_{n}\right)_{n \geqslant 1}$ with $s_{n} \in \mathbb{N}$.

- s is the greedy β-expansion of some $x \in[0,1)$ if and only if

$$
\forall k \geqslant 0, \quad \sigma^{k}(s)<_{\text {lex }} d_{\beta}^{*}(1)
$$

- s is the greedy β-expansion of 1 for some $\beta>1$ if and only if

$$
\forall k \geqslant 1, \quad \sigma^{k}(s)<_{\text {lex }} s
$$

Remark The nature of the β-shift is entirely determined by $d_{\beta}(1)$ the greedy β-expansion of 1 .

Entropy of the β-shift

Topological entropy of S_{β}

$$
h\left(S_{\beta}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log B(n)=\log \beta
$$

where $B(n)=$ number of words of S_{β} of length n.

Symbolic dynamical systems

$S \subseteq A^{\mathbb{N}}$ symbolic dynamical system $=$ closed shift-invariant subset
$F(S) \subseteq A^{*}=$ set of finite factors (admissible blocks) of S.
$X(S) \subseteq A^{*}$ set of minimal forbidden words.
The symbolic dynamical system S is completely defined by the set of its factors $F(S)$.

- S is of finite type if $X(S)$ is finite. Equivalent to $F(S)$ recognizable by a local finite automaton.
- S is sofic if $X(S)$ is recognizable by a finite automaton. Equivalent to $F(S)$ recognizable by a finite automaton.
- S is coded if there exists a prefix code $Y \subset A^{*}$ such that $F(S)=F\left(Y^{*}\right)$. Equivalent to $S=\overline{Y^{\omega}}$.
- S is specified if $\exists k: \forall u, v \in F(S), \exists w \in F(S),|w|=k$, such that $u w v \in F(S)$
- S is synchronizing if $\exists w \in F(S)$ such that if $u w \in F(S)$ and $w v \in F(S)$, then $u w v \in F(S)$.

First properties of the β-shift

S_{β} is coded [Blanchard and Hansel 1986]
If $d_{\beta}(1)=\left(t_{i}\right)_{i \geqslant 1}$ is infinite, set
$Y=\left\{t_{1} \cdots t_{n-1} a \mid 0 \leqslant a<t_{n}, n \geqslant 1\right\}$
If $d_{\beta}(1)=t_{1} \cdots t_{m}$, set
$Y=\left\{t_{1} \cdots t_{n-1} a \mid 0 \leqslant a<t_{n}, 1 \leqslant n \leqslant m\right\}$.
S_{β} is coded by Y.
S_{β} is of finite type iff $d_{\beta}(1)$ is finite [Ito and Takahashi 1974]
Example $\varphi=(1+\sqrt{5}) / 2, d_{\varphi}(1)=11$.
$\{11\}=$ minimal forbidden words.

Local automaton for $F\left(S_{\varphi}\right)$
S_{β} is sofic iff $d_{\beta}(1)$ is eventually periodic [Bertrand 1977]
Example $\gamma=(3+\sqrt{5}) / 2$, then $d_{\gamma}(1)=21^{\omega}$. Minimal forbidden words $=21^{*} 2$.

Automaton for $F\left(S_{\gamma}\right)$
This automaton is not local.

The β-shift and the Chomsky hierarchy

Languages recognizable by finite state automaton \subsetneq
Context-free languages \subsetneq
Context-sensitive languages \subsetneq
Recursive languages \subsetneq
Recursively enumerable languages.
Context-sensitive languages are recognizable by a linear bounded automaton. A linear bounded automaton is a Turing machine which uses only a finite portion of the tape, whose length is a linear function of the length of the initial input.

Recursive languages are recognizable by a Turing machine which halts on every input.

Recursively enumerable languages are recognizable by a Turing machine.

Results of K. Johnson 1999

- $F\left(S_{\beta}\right)$ is context-free iff it is recognizable by a finite automaton
- $F\left(S_{\beta}\right)$ is context-sensitive iff $d_{\beta}(1)$ is generated by a linear bounded automaton
- $F\left(S_{\beta}\right)$ is recursive iff $d_{\beta}(1)$ is generated by a TM which halts on every input iff $d_{\beta}(1)$ is generated by a TM
- There exist non-recursive S_{β} : $d_{2}(\beta)$ is generated by a TM $\Longleftrightarrow d_{\beta}(1)$ is generated by a TM
Generated by a TM: on input 0^{n} the machine computes the first n digits of $d_{\beta}(1)$.

Context-sensitive β-shift

Proposition (K. Johson)
Every β-shift generated by a constant length morphism is context-sensitive.

The Thue-Morse morphism

$$
0 \rightarrow 01 \quad 1 \rightarrow 10
$$

has a fixed point $\left(k_{n}\right)_{n \geqslant 0}=01101001 \cdots$ which is 2 -automatic in the sense of Mendès France.

2-automaton generating the Thue-Morse sequence
k_{n} is the output corresponding to the path with input $\langle n\rangle_{2}$.
Let κ such that $d_{\kappa}(1)=1101001 \cdots$ the shifted Thue-Morse sequence. Then S_{κ} is a context-sensitive shift.
κ is the Komornik-Loreti constant; it is the smallest univoque number (1 has only one writing in base κ).

Algebraic integers

Pisot number algebraic integer such that every conjugate is <1 in modulus.
Salem number algebraic integer such that every conjugate is $\leqslant 1$ in modulus, and the equality is attained.
Perron number algebraic integer β such that every conjugate is $<\beta$ in modulus.
Example Integers, the golden ratio, $(3+\sqrt{5}) / 2$ are Pisot numbers.
If $d_{\beta}(1)$ is eventually periodic, β is called a Parry number.
If $d_{\beta}(1)$ is finite, β is called a simple Parry number.
If β is Pisot then $d_{\beta}(1)$ is eventually periodic and thus S_{β} is sofic
[A. Bertrand 1986].
If S_{β} is sofic then β is Perron [Lind 1984].
If β is Salem of degree 4 then $d_{\beta}(1)$ is eventually periodic [Boyd 1989].
Open problem for Salem of degree $\geqslant 6$.

Blanchard classification 1989

Class 1: $d_{\beta}(1)$ is finite $\Longleftrightarrow S_{\beta}$ is finite
Class 2: $d_{\beta}(1)$ is infinite eventually periodic $\Longleftrightarrow S_{\beta}$ is sofic Class 3: $d_{\beta}(1)$ does not contain arbitrarily large strings of 0 's and $d_{\beta}(1)$ is not eventually periodic $\Longleftrightarrow S_{\beta}$ is specified [A. Bertrand 1986]
Class 4: $d_{\beta}(1)$ does not contain some admissible words but contains arbitrarily large strings of 0 's $\Longleftrightarrow S_{\beta}$ is synchronizing [A. Bertrand 1986]
Class 5: $d_{\beta}(1)$ contains all the admissible words

Transcendental numbers in Class 3

The Komornik-Loreti constant κ, such that

$$
d_{\kappa}(1)=1101001 \cdots
$$

is the shifted Thue-Morse sequence,

- is transcendental [Allouche and Cosnard 2000]
- is $(2, \kappa)$-automatic
- belongs to Class 3.
β is self-Sturmian if $d_{\beta}(1)$ is Sturmian, i.e. the number of factors of length n in $d_{\beta}(1)$ is equal to $n+1$.
Theorem (Chi and Kwon 2004)
Every self-Sturmian number is transcendental and in Class 3.
Example The Fibonacci word $f=01001010010010 \cdots$ is the fixed point of the morphism

$$
0 \rightarrow 01 \quad 1 \rightarrow 0
$$

The word $1 f=101001010010010 \cdots$ is the fixed point of the morphism

$$
1 \rightarrow 10 \quad 0 \rightarrow 100
$$

It is Sturmian, but not automatic.
β such that $d_{\beta}(1)=101001010010010 \cdots$ is transcendental.

Transcendental numbers in Class 4

β is self-lacunary if exist $\delta>0$ and a sequence $u=\left(u_{n}\right)_{n \geqslant 1}$ of positive integers with

$$
u_{1}=1 \text { and } \frac{u_{n+1}}{u_{n}} \geqslant 1+\delta \text { for } n \geqslant 1
$$

such that

$$
1=\sum_{n \geqslant 1} \frac{1}{\beta^{u_{n}}}
$$

Theorem (Adamczewski and Bugeaud 2007)
Every self-lacunary number is transcendental and in Class 4. Define $\left(a_{k}\right)_{k \geqslant 1}$ as $a_{k}=1$ if $k \in u$ and 0 otherwise, and let $d_{\beta}(1)=a_{1} a_{2} \cdots$ Then β is transcendental and in Class 4.

Gaps in $d_{\beta}(1), \beta$ algebraic

β is not a simple Parry number. $d_{\beta}(1)=t_{1} t_{2} \cdots$ Assume there exists a sequence of positive integers $\left(r_{n}\right)_{n \geqslant 1}$ and an increasing sequence of positive integers $\left(s_{n}\right)_{n \geqslant 1}$ such that

$$
t_{s_{n}+1}=t_{s_{n}+2}=\cdots=t_{s_{n}+r_{n}}=0
$$

Problem Estimation of the gaps in $d_{\beta}(1), \beta$ algebraic number, i.e. asymptotic behaviour of r_{n} / s_{n}.
If b is leading coefficient of the minimal polynomial of β, and $\beta_{1}=\beta, \beta_{2}, \ldots, \beta_{d}$ are the roots, the Mahler measure of β is

$$
M(\beta)=|b| \prod_{i=1}^{i=d} \max \left\{\left|\beta_{i}\right|, 1\right\}
$$

Theorem (Verger-Gaugry 2006)

Let $\beta>1$ be an algebraic number. Then

$$
\limsup _{n \rightarrow \infty} \frac{r_{n}}{s_{n}} \leqslant \frac{M(\beta)}{\log \beta}-1
$$

PART III

Signed beta-expansions

(with Wolfgang Steiner 2007)

Redundancy automaton base β

Let $\beta>1$ be a real number, $c \geqslant\lfloor\beta\rfloor$ a fixed integer, and

$$
Z_{\beta}(c)=\left\{z_{1} \cdots z_{n}\left|n \geqslant 1,\left|z_{j}\right| \leqslant c, \sum_{j=1}^{n} z_{j} \beta^{-j}=0\right\}\right.
$$

If β is a Pisot number, then for every $c \geqslant\lfloor\beta\rfloor$ the set $Z_{\beta}(c)$ is recognized by a finite automaton. [Frougny 1992]

Proposition

If β is a Pisot number, then the set

$$
\left\{\left(x_{1} \cdots x_{n}, y_{1} \cdots y_{n}\right) \in A_{\beta}^{*} \times A_{\beta}^{*} \mid n \geqslant 1, \sum_{j=1}^{n} x_{j} \beta^{-j}=\sum_{j=1}^{n} y_{j} \beta^{-j}\right\}
$$

is recognizable by a finite automaton.

β-expansions of minimal weight

Weight of $x=x_{1} \cdots x_{n}$ is $\sum_{j=1}^{n}\left|x_{j}\right|$.
$x=x_{1} \cdots x_{n} \in A_{\beta}^{*}$ is β-heavy if it is not minimal in weight, i.e., if there exists $y=y_{\ell} \cdots y_{r} \in A_{\beta}^{*}$ with

$$
\sum_{j=\ell}^{r} y_{j} \beta^{-j}=\sum_{j=1}^{n} x_{j} \beta^{-j} \quad \text { and } \quad \sum_{j=\ell}^{r}\left|y_{j}\right|<\sum_{j=1}^{n}\left|x_{j}\right| .
$$

If $x_{1} \cdots x_{n-1}$ and $x_{2} \cdots x_{n}$ are not β-heavy, x is strictly β-heavy.

Condition (D)

(D): $\begin{aligned} & \beta>1 \text { and } P(\beta)=0 \text { for some polynomial } \\ & P(X)=X^{d}-b_{1} X^{d-1}-\cdots-b_{d} \in \mathbb{Z}[X] \text { with } b_{1}>\sum_{j=2}^{d}\left|b_{j}\right|\end{aligned}$

Proposition

If β satisfies (D), then β is a Pisot number.
Proposition (Akiyama, Rao, Steiner 2004)
Let β satisfy (D), and $x_{1} \cdots x_{n} \in \mathbb{Z}^{*}$ such that $\left|\cdot x_{1} \cdots x_{n}\right|<1$.
Then there exists a word $y_{0} \cdots y_{m} \in\{-\lfloor\beta\rfloor, \ldots,\lfloor\beta\rfloor\}^{*}$ such that $y_{0} \cdot y_{1} \cdots y_{m}=. x_{1} \cdots x_{n}$ and $\sum_{j=0}^{m}\left|y_{j}\right| \leqslant \sum_{j=1}^{n}\left|x_{j}\right|$.

Theorem
If β satisfies (D), then the set of signed β-expansions of minimal weight is recognized by a finite automaton, which is computable.
$\beta=\frac{1+\sqrt{5}}{2}$

Greedy β-expansions are not minimal in weight

$$
0101001 .=10 \overline{1} 1001 .=1000 \overline{1} 01 .=10000 \overline{1} 0 .
$$

Theorem
If $\beta=\frac{1+\sqrt{5}}{2}$, then the set of strictly β-heavy words is

$$
\begin{aligned}
& 1(0100)^{*} 1 \cup 1(0100)^{*} 0101 \cup 1(00 \overline{1} 0)^{*} \overline{1} \cup 1(00 \overline{1} 0)^{*} 0 \overline{1} \cup \\
& \quad \overline{1}(0 \overline{1} 00)^{*} \cup \overline{1} \cup \overline{1}(0 \overline{1} 00)^{*} 0 \overline{1} 0 \overline{1} \cup \overline{1}(0010)^{*} 1 \cup \overline{1}(0010)^{*} 01 .
\end{aligned}
$$

If $\cdots \epsilon_{-1} \epsilon_{0} \epsilon_{1} \cdots$ does not contain any of these factors, then
$\cdots \epsilon_{-1} \epsilon_{0} \cdot \epsilon_{1} \cdots$ is a signed β-expansion of minimal weight.

Redundancy automaton $\beta=\frac{1+\sqrt{5}}{2}$

If $s_{0}=0, s_{j-1} \xrightarrow{x_{j} \mid y_{j}} s_{j}, 1 \leqslant j \leqslant n$, then $s_{j}=x_{1} \cdots x_{j} .-y_{1} \cdots y_{j}$, and $\cdot x_{1} \cdots x_{n}=\cdot y_{1} \cdots y_{n}$ if and only if $s_{n}=0$.

The strictly β-heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from $(0,0)$ to $(0,-1))$.

$$
(s, \delta) \xrightarrow{a \mid b}\left(s^{\prime}, \delta^{\prime}\right): s^{\prime}=\beta s+a-b, \delta^{\prime}=\delta+|b|-|a|
$$

The strictly β-heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from $(0,0)$ to $(0,-1))$.

$$
(s, \delta) \xrightarrow{a \mid b}\left(s^{\prime}, \delta^{\prime}\right): s^{\prime}=\beta s+a-b, \delta^{\prime}=\delta+|b|-|a|
$$

The strictly β-heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from $(0,0)$ to $(0,-1))$.

$$
(s, \delta) \xrightarrow{a \mid b}\left(s^{\prime}, \delta^{\prime}\right): s^{\prime}=\beta s+a-b, \delta^{\prime}=\delta+|b|-|a|
$$

Theorem

For $\beta=\frac{1+\sqrt{5}}{2}$, the signed β-expansions of minimal weight are given by the following automaton, where all states are terminal.

Transformation providing some signed β-expansion of

 minimal weight, $\beta=\frac{1+\sqrt{5}}{2}$$$
T:[-\beta / 2, \beta / 2) \rightarrow[-\beta / 2, \beta / 2), T(x)=\beta x-\lfloor x+1 / 2\rfloor
$$

Proposition
If $x \in[\beta / 2, \beta / 2)$ and $x_{j}=\left\lfloor T^{j-1}(x)+1 / 2\right\rfloor$, then $x=. x_{1} x_{2} \cdots$ is a signed β-expansion of minimal weight avoiding the factors 11 , $101,1 \overline{1}, 10 \overline{1}, 100 \overline{1}$ and their opposites.

Remark. Heuberger (2004) excluded (for the Fibonacci numeration system) the factor 1001 instead of $100 \overline{1}$. This can be achieved by $T(x)=\beta x-\left\lfloor\frac{\beta^{2}+1}{2 \beta} x+\frac{1}{2}\right\rfloor$ on $\left[\frac{-\beta^{2}}{\beta^{2}+1}, \frac{\beta^{2}}{\beta^{2}+1}\right), \frac{\beta^{2}}{\beta^{2}+1}=.(1000)^{\omega}$.

Markov chain of digits

Let $T(x)=\beta x-\lfloor x+1 / 2\rfloor$, and $I_{000}, I_{001}, I_{01}, I_{1}$ as follows

The sequence of random variables $\left(X_{k}\right)_{k \geqslant 0}$ defined by

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{0}=j_{0}, \ldots, X_{k}=j_{k}\right] \\
& \begin{aligned}
=\lambda(\{x \in[-\beta / 2, \beta / 2): & \left.\left.x \in I_{j_{0}}, T(x) \in I_{j_{1}}, \ldots, T^{k}(x) \in I_{j_{k}}\right\}\right) / \beta \\
& =\lambda\left(I_{j_{0}} \cap T^{-1}\left(I_{j_{1}}\right) \cap \cdots \cap T^{-k}\left(I_{j_{k}}\right)\right) / \beta
\end{aligned}
\end{aligned}
$$

(where λ denotes the Lebesgue measure) is a Markov chain since

$$
T\left(I_{000}\right)=I_{000} \cup I_{001}=T\left(I_{1}\right), \quad T\left(I_{001}\right)=I_{01}, \quad T\left(I_{01}\right)=I_{1}
$$

and $T(x)$ is linear on each l_{j}.

The matrix of transition probabilities is

$$
\left(\operatorname{Pr}\left[X_{k}=j \mid X_{k-1}=i\right]\right)_{i, j \in\{000,001,01,1\}}=\left(\begin{array}{cccc}
1 / \beta & 1 / \beta^{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 / \beta^{2} & 1 / \beta^{3} & 0 & 0
\end{array}\right)
$$

the stationary distribution vector is $(2 / 5,1 / 5,1 / 5,1 / 5)$. Therefore

$$
\operatorname{Pr}\left[X_{k}=1\right]=\lambda\left(\left\{x \in[-\beta / 2, \beta / 2): T^{k}(x) \in I_{1}\right\}\right) \rightarrow 1 / 5
$$

i.e., the expected number of non-zero digits in a signed β-expansion of minimal weight of length n is $n / 5+\mathcal{O}(1)$.
(cf. greedy β-expansions $n /\left(\beta^{2}+1\right)$, base 2 minimal expansions $n / 3$)

Branching transformation providing all signed β-expansions of minimal weight, $\beta=\frac{1+\sqrt{5}}{2}$

$$
T:\left[-\frac{2 \beta}{\beta^{2}+1}, \frac{2 \beta}{\beta^{2}+1}\right) \rightarrow\left[-\frac{2 \beta}{\beta^{2}+1}, \frac{2 \beta}{\beta^{2}+1}\right), T^{j}(x)=\beta x-x_{j} \text { with }
$$

$$
x_{j}=\left\{\begin{array}{cl}
1 & \text { if } \frac{2}{\beta^{2}+1}<T^{j-1}(x)<\frac{2 \beta}{\beta^{2}+1} \\
0 \text { or } 1 & \text { if } \frac{\beta}{\beta^{\beta^{2}+1}}<T^{j-1}(x)<\frac{2}{\beta^{2}+1} \\
0 & \text { if } \frac{-\beta}{\beta^{2}+1}<T^{j-1}(x)<\frac{\beta}{\beta^{2}+1} \\
-1 \text { or } 0 & \text { if } \frac{-2}{\beta^{2}+1}<T^{j-1}(x)<\frac{-\beta}{\beta^{2}+1} \\
-1 & \text { if } \frac{2 \beta}{\beta^{2}+1}<T^{j-1}(x)<\frac{-2}{\beta^{2}+1}
\end{array}\right.
$$

Tribonacci number $\beta^{3}=\beta^{2}+\beta+1$

The strictly β-heavy words are the inputs of this automaton.

The signed β-expansions of minimal weight are given by the following automaton where all states are terminal.

Particular signed β-expansions of minimal weight,

 $\beta^{3}=\beta^{2}+\beta+1$$$
\begin{aligned}
T:\left[\frac{-\beta^{2}}{\beta^{2}+1}, \frac{\beta^{2}}{\beta^{2}+1}\right) & \rightarrow\left[\frac{-\beta^{2}}{\beta^{2}+1}, \frac{\beta^{2}}{\beta^{2}+1}\right) \\
x & \mapsto \beta x-\left\lfloor\frac{\beta^{2}+1}{2 \beta} x+\frac{1}{2}\right\rfloor
\end{aligned}
$$

Proposition

If $x \in\left[\frac{-\beta^{2}}{\beta^{2}+1}, \frac{\beta^{2}}{\beta^{2}+1}\right)$ and $x_{j}=\left\lfloor\frac{\beta^{2}+1}{2 \beta} T^{j-1}(x)+1 / 2\right\rfloor$, then
$x=. x_{1} x_{2} \cdots$ is a signed β-expansion of minimal weight avoiding the factors $11,1 \overline{1}, 10 \overline{1}$ and their opposites.
One can show that the expected number of non-zero digits in a signed β-expansion of minimal weight of length n is asymptotically $n \beta^{3} /\left(\beta^{5}+1\right)\left(\right.$ with $\left.\beta^{3} /\left(\beta^{5}+1\right)=.(0011010100)^{\omega} \approx 0.28219\right)$.

