Representation of p-adic numbers in rational base numeration systems

Christiane Frougny
LIAFA, CNRS, and Université Paris 8

Numeration
June 14-18, 2010, Leiden

Joint work with Karel Klouda

Introduction to p-adic numbers

Base $p=10$

$$
\frac{1}{3}=10.33333 \ldots
$$

Introduction to p-adic numbers

Base $p=10$

$$
\frac{1}{3}=10.33333 \ldots
$$

What is the meaning of
$\cdots 666667 .={ }_{10} \frac{1}{3}$

Introduction to p-adic numbers

Base $p=10$

$$
\frac{1}{3}=10.33333 \ldots
$$

What is the meaning of
$\cdots 666667 .={ }_{10} \frac{1}{3}$

- $\frac{1}{3}=7+6 \sum_{i \geqslant 1}(10)^{i}$ using the formal sum $\sum_{i \geqslant 0} X^{i}=\frac{1}{1-X}$

Introduction to p-adic numbers

Base $p=10$

$$
\frac{1}{3}=10.33333 \ldots
$$

What is the meaning of

$$
\cdots 666667 .=10 \frac{1}{3}
$$

- $\frac{1}{3}=7+6 \sum_{i \geqslant 1}(10)^{i}$ using the formal sum $\sum_{i \geqslant 0} X^{i}=\frac{1}{1-X}$
- Arithmetic as usual

$$
\begin{array}{ccccccc}
\cdots & 6 & 6 & 6 & 6 & 7 & \\
\cdots & & & & & 3 & \times \\
\hline \cdots & 0 & 0 & 0 & 0 & 1 & =
\end{array}
$$

p-adic numbers

The set of p-adic integers is $\mathbb{Z}_{p}=\sum_{i \geqslant 0} a_{i} p^{i}$ with a_{i} in $\mathcal{A}_{p}=\{0,1, \ldots, p-1\}$. Notation: $\cdots a_{2} a_{1} a_{0} . \in \mathbb{Z}_{p}$.
The set of p-adic numbers is $\mathbb{Q}_{p}=\sum_{i \geqslant-k_{0}} a_{i} p^{i}$ with a_{i} in \mathcal{A}_{p}. Notation: $\cdots a_{2} a_{1} a_{0} \cdot a_{-1} \cdots a_{-k_{0}} \in \mathbb{Q}_{p}$.
\mathbb{Q}_{p} is a commutative ring, and \mathbb{Z}_{p} is a subring of \mathbb{Q}_{p}.
p-adic valuation $v_{p}: \mathbb{Z} \backslash\{0\} \rightarrow \mathbb{Z}$ is given by

$$
n=p^{v_{p}(n)} n^{\prime} \quad \text { with } \quad p \nmid n^{\prime} .
$$

For $x=\frac{a}{b} \in \mathbb{Q}$

$$
x=p^{v_{p}(x)} \frac{a^{\prime}}{b^{\prime}} \text { with } \quad\left(a^{\prime}, b^{\prime}\right)=1 \quad \text { and } \quad\left(b^{\prime}, p\right)=1 .
$$

The p-metric is defined on \mathbb{Q} by $d_{p}(x, y)=p^{-v_{p}(x-y)}$. It is an ultrametric distance.

Example

$p=10$
Take $z_{n}={ }_{10} \overbrace{6 \cdots 6}^{n} 7$.
Then

$$
z_{n}-\frac{1}{3}=\frac{2}{3}(10)^{n+1}
$$

and $v_{10}\left(z_{n}-\frac{1}{3}\right)=n+1$ thus

$$
d_{10}\left(z_{n}, \frac{1}{3}\right)=(10)^{-n-1} \rightarrow 0
$$

Hence the 10 -adic representation of $\frac{1}{3}$ is $\cdots 66667$.

$$
p=10
$$

Take $s=\cdots$ 109376. and $t=\cdots 890625$.

$$
\begin{array}{llllllll}
\cdots & 1 & 0 & 9 & 3 & 7 & 6 & =s \\
\cdots & 8 & 9 & 0 & 6 & 2 & 5 & =t \\
\hline \cdots & 0 & 0 & 0 & 0 & 0 & 1 & =s+t
\end{array}
$$

Hence $s+t={ }_{10} 1$.

$$
\begin{array}{lcccccll}
\cdots & 1 & 0 & 9 & 3 & 7 & 6 & =s \\
\cdots & 8 & 9 & 0 & 6 & 2 & 5 & =t \\
\hline \cdots & 5 & 4 & 6 & 8 & 8 & 0 & \\
\cdots & 1 & 8 & 7 & 5 & 2 & . & \\
\cdots & 6 & 2 & 5 & 6 & . & . & \\
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\hline \cdots & 0 & 0 & 0 & 0 & 0 & 0 & =s \times t
\end{array}
$$

Hence $s t={ }_{10} 0$ thus \mathbb{Z}_{10} is not a domain.

$$
\begin{array}{lccccccl}
\cdots & 1 & 0 & 9 & 3 & 7 & 6=s \\
\cdots & 8 & 9 & 0 & 6 & 2 & 5 & =t \\
\hline \cdots & 5 & 4 & 6 & 8 & 8 & 0 & \\
\cdots & 1 & 8 & 7 & 5 & 2 & . & \\
\cdots & 6 & 2 & 5 & 6 & . & . & \\
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\hline \cdots & 0 & 0 & 0 & 0 & 0 & 0 & =s \times t
\end{array}
$$

Hence $s t={ }_{10} 0$ thus \mathbb{Z}_{10} is not a domain.
One has also $s^{2}=s, t^{2}=t$.

$$
\begin{array}{lccccccl}
\cdots & 1 & 0 & 9 & 3 & 7 & 6 & =s \\
\cdots & 8 & 9 & 0 & 6 & 2 & 5 & =t \\
\hline \cdots & 5 & 4 & 6 & 8 & 8 & 0 & \\
\cdots & 1 & 8 & 7 & 5 & 2 & . & \\
\cdots & 6 & 2 & 5 & 6 & . & . & \\
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\hline \cdots & 0 & 0 & 0 & 0 & 0 & 0 & =s \times t
\end{array}
$$

Hence $s t={ }_{10} 0$ thus \mathbb{Z}_{10} is not a domain.
One has also $s^{2}=s, t^{2}=t$.
One can prove that

- $s={ }_{2} 0$ and $s={ }_{5} 1$
- $t=21$ and $t=50$.

Computer arithmetic

2's complement
In base 2 , on n positions. $n=8$:

$$
\begin{aligned}
01111111 & =127 \\
00000001 & =1 \\
00000000 & =0 \\
11111111 & =-1 \\
10000000 & =-128
\end{aligned}
$$

Troncation of 2-adic numbers.

p prime

\mathbb{Q}_{p} is a field if and only if p is prime.
\mathbb{Q}_{p} is the completion of \mathbb{Q} with respect to d_{p}.
p-adic absolute value on \mathbb{Q} :

$$
|x|_{p}= \begin{cases}0 & \text { if } x=0, \\ p^{-v_{p}(x)} & \text { otherwise } .\end{cases}
$$

\mathbb{Q}_{p} is the quotient field of the ring of p-adic integers $\mathbb{Z}_{p}=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leqslant 1\right\}$.

p-expansion of p-adic numbers

p prime

Algorithm

Let $x=\frac{s}{t}$, s an integer and t a positive integer.
(i) If $s=0$, return the empty word $\mathbf{a}=\varepsilon$.
(ii) If t is co-prime to p, put $s_{0}=s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_{i} \in \mathcal{A}_{p}$ by

$$
\frac{s_{i}}{t}=\frac{p s_{i+1}}{t}+a_{i} .
$$

Return $\mathbf{a}=\cdots a_{2} a_{1} a_{0}$.
(iii) If t is not co-prime to p, multiply $\frac{s}{t}$ by p until $x p^{\ell}$ is of the form $\frac{s^{\prime}}{t}$, where t^{\prime} is co-prime to p. Then apply (ii) returning $\mathbf{a}^{\prime}=\cdots a_{2}^{\prime} a_{1}^{\prime} a_{0}^{\prime}$. Return

$$
\mathbf{a}=\cdots a_{1} a_{0} \cdot a_{-1} a_{-2} \cdots a_{-\ell}=\cdots a_{\ell}^{\prime} \cdot a_{\ell-1}^{\prime} \cdots a_{1}^{\prime} a_{0}^{\prime} .
$$

a is said to be the p-expansion of x and denoted by $\langle x\rangle_{p}$. $\ell=v_{p}(x)$

Theorem
Let $x \in \mathbb{Q}_{p}$. Then the p-representation of x is

1. uniquely given,
2. finite if, and only if, $x \in \mathbb{N}$,
3. eventually periodic if, and only if, $x \in \mathbb{Q}$.

Rational base numeration system

(Akiyama, Frougny, Sakarovitch 2008) $p>q \geqslant 1$ co-prime integers.

Rational base numeration system

(Akiyama, Frougny, Sakarovitch 2008)
$p>q \geqslant 1$ co-prime integers.
Representation of the natural integers:
Algorithm (MD algorithm)
Let s be a positive integer. Put $s_{0}=s$ and for all $i \in \mathbb{N}$:

$$
q s_{i}=p s_{i+1}+a_{i} \quad \text { with } \quad a_{i} \in \mathcal{A}_{p}
$$

Return $\frac{1}{q} \frac{p}{q}$-expansion of $s:\langle s\rangle_{\frac{1}{q} \frac{p}{q}}=a_{n} \cdots a_{1} a_{0}$.

$$
s=\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}
$$

$\frac{1}{q} \frac{p}{q}$-expansions - properties
$L_{\frac{1}{q} \frac{p}{q}}=\left\{w \in \mathcal{A}_{p}^{*} \mid w\right.$ is $\frac{1}{q} \frac{p}{q}$-expansion of some $\left.s \in \mathbb{N}\right\}$

- $L_{\frac{1}{q} \frac{p}{q}}$ is prefix-closed,
- any $u \in \mathcal{A}_{p}^{+}$is a suffix of some $w \in L_{\frac{1}{q} \frac{p}{q}}$,
- $L_{\frac{1}{q} \frac{p}{q}}$ is not context-free (if $q \neq 1$),
- π : $\mathcal{A}_{p}^{+} \mapsto \mathbb{Q}$ the evaluation map. If $v, w \in L_{\frac{1}{q} \frac{p}{q}}$, then

$$
v \preceq w \quad \Leftrightarrow \quad \pi(v) \leqslant \pi(w) .
$$

$T_{\frac{1}{q} \frac{p}{q}}$ - tree of nonnegative integers
 $p=3, q=2$

Children of the vertex n are given by $\frac{1}{q}(p n+a) \in \mathbb{N}, a \in \mathcal{A}_{p}$.

$$
G_{0}=1, \quad G_{i+1}=\left\lceil\frac{p}{q} G_{i}\right\rceil
$$

In AFS 2008, the right infinite words that label the infinite paths of $T_{\frac{1}{q} \frac{p}{q}}$ are defined as the admissible $\frac{1}{q} \frac{p}{q}$-expansions of positive real numbers, of the form.$a_{-1} a_{-2} \cdots$, and it is proved that every positive real in $[0,1]$ has exactly one $\frac{1}{q} \frac{p}{q}$-expansion, but for an infinite countable subset of reals which have more than one such expansion.
No periodic expansion.
Connection with the problem of the distribution of the powers of a rational number modulo 1 (Mahler 1968).

MD algorithm - the negative case

Let s be a negative integer. The $\frac{1}{q} \frac{p}{q}$-expansion of s is $<s>_{\frac{1}{q} \frac{p}{a}}=\cdots a_{2} a_{1} a_{0}$. from the MD algorithm:

$$
s_{0}=s, \quad q s_{i}=p s_{i+1}+a_{i}
$$

MD algorithm - the negative case

Let s be a negative integer. The $\frac{1}{q} \frac{p}{q}$-expansion of s is $<s>_{\frac{1}{q} \frac{p}{a}}=\cdots a_{2} a_{1} a_{0}$. from the MD algorithm:

$$
s_{0}=s, \quad q s_{i}=p s_{i+1}+a_{i}
$$

Properties of $\left(s_{i}\right)_{i \geqslant 0}$:
(i) $\left(s_{i}\right)_{i \geqslant 1}$ is negative,
(ii) if $s_{i}<-\frac{p-1}{p-q}$, then $s_{i}<s_{i+1}$,
(iii) if $-\frac{p-1}{p-q} \leqslant s_{i}<0$, then $-\frac{p-1}{p-q} \leqslant s_{i+1}<0$.

In which fields does it work?

$$
s=s_{n}\left(\frac{p}{q}\right)^{n}+\sum_{i=0}^{n-1} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{n}
$$

We want:

$$
\left|s-\sum_{i=0}^{n-1} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{n}\right|_{r}=\left|s_{n}\right|_{r}\left|\left(\frac{p}{q}\right)^{n}\right|_{r} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence, if $p=r_{1}^{j_{1}} r_{2}^{j_{2}} \cdots r_{k}^{j_{k}}$, the $\frac{1}{q} \frac{p}{q}$-expansion of s "works" only in $\mathbb{Q}_{r_{\ell}}, \ell=1, \ldots, k$. The speed of convergence is then $\approx r^{-j_{\ell} n}$.

$\frac{1}{q} \frac{p}{q}$-expansions of negative integers

Proposition

Let k be a positive integer, and denote $B=\left\lfloor\frac{p-1}{p-q}\right\rfloor$. Then:
(i) if $k \leqslant B$, then $<-k>_{\frac{1}{q} \frac{p}{q}}={ }^{\omega} b$ with $b=k(p-q)$,
(ii) otherwise, $<-k>_{\frac{1}{q} \frac{p}{q}}={ }^{\omega}$ bw with $w \in \mathcal{A}_{p}^{+}$and $b=B(p-q)$.

$\bar{T}_{\frac{1}{q} \frac{p}{q}}$ - tree of negative integers
 $$
p=3, q=2
$$

$\xrightarrow{{ }^{\omega} 1}-(-1$

$\bar{T}_{\frac{1}{q} \frac{p}{q}}$ - tree of negative integers
 $$
p=3, q=2
$$

$$
F_{0}=-B=-\left\lfloor\frac{p-1}{p-q}\right\rfloor, \quad F_{i+1}=\left\lceil\frac{p}{q} F_{i}\right\rceil
$$

$$
p=8, q=5
$$

Trees $\bar{T}_{\frac{1}{q} \frac{p}{q}}$ and $T_{\frac{1}{q} \frac{p}{q}}$

$$
p=8, q=5
$$

Trees $\bar{T}_{\frac{1}{q} \frac{p}{q}}$ and $T_{\frac{1}{q} \frac{p}{q}}$

The trees $\bar{T}_{\frac{1}{q} \frac{p}{q}}$ and $T_{\frac{1}{q} \frac{p}{q}}$ are isomorphic if and only if

$$
\frac{p-1}{p-q} \in \mathbb{Z}
$$

$\frac{1}{q} \frac{p}{q}$-expansions of negative integers - properties

- for $q=1$ and p prime we get the standard p-adic representation,

$$
\bar{L}_{\frac{1}{q} \frac{p}{q}}=\left\{\left.w \in \mathcal{A}_{p}^{*}\right|^{\omega} b w \text { is } \frac{1}{q} \frac{p}{q} \text {-expansion of } s \leqslant-B, b \notin \operatorname{Pref}(w)\right\}
$$

- $\bar{L}_{\frac{1}{q} \frac{p}{q}}$ is prefix-closed,
- any $u \in \mathcal{A}_{p}^{+}$is a suffix of some $w \in \bar{L}_{\frac{1}{q} \frac{p}{q}}$,
- $\bar{L}_{\frac{1}{q} \frac{p}{q}}$ is not context-free (if $q \neq 1$).

MD algorithm for rationals

Algorithm (MD algorithm)
Let $x=\frac{s}{t}, s, t \in \mathbb{Z}$ co-prime, $s \neq 0$, and $t>0$ co-prime to p.
Put $s_{0}=s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_{i} \in \mathcal{A}_{p}$ by

$$
q \frac{s_{i}}{t}=p \frac{s_{i+1}}{t}+a_{i} .
$$

Return the $\frac{1}{q} \frac{p}{q}$-expansion of $x:\left\langle x>_{\frac{1}{q} \frac{p}{q}}=\cdots a_{2} a_{1} a_{0}\right.$.

$$
s=\sum_{i=0}^{\infty} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}
$$

Examples

x	$\langle x\rangle{ }_{\frac{1}{2} \underline{e} \text { e }}$	($\left.s_{i}\right)$	abs. values
$p=3, q=2$			
5	2101	5, 3, 2, 1, 0, 0, \ldots	all
-5	${ }^{\text {w } 2012 ~}$	-5,-3,-2,-2,-2, \ldots	$1]_{3}$
11/4	201	11,6,4,0,0,	all
11/8	${ }^{\omega} 1222$	11,2,-4,-8,-8,-8, \ldots	13
11/5	${ }^{\omega}(02) 2112$	11,4, , , -1,-4,-6,-4,-6,	13
$p=30, q=11$			
5	1125	5, 1, 0, 0 ,	all
-5	${ }^{1} 1985$	-5,-2,-1,-1, ..	
11/7	${ }^{\omega}(12215) 2313$	11, 1, -5, -3, -6, -5,	$\|2,\|_{3}$,

MD algorithm - properties

For the sequence $\left(s_{i}\right)_{i \geqslant 1}$ from the MD algorithm we have:
(i) if $s>0$ and $t=1,\left(s_{i}\right)_{i \geqslant 1}$ is eventually zero,
(ii) if $s>0$ and $t>1,\left(s_{i}\right)_{i \geqslant 1}$ is either eventually zero or eventually negative,
(iii) if $s<0,\left(s_{i}\right)_{i \geqslant 1}$ is negative,
(iv) if $s_{i}<-\frac{p-1}{p-q} t$, then $s_{i}<s_{i+1}$,
(v) if $-\frac{p-1}{p-q} t \leqslant s_{i}<0$, then $-\frac{p-1}{p-q} t \leqslant s_{i+1}<0$.

MD algorithm - properties

For the sequence $\left(s_{i}\right)_{i \geqslant 1}$ from the MD algorithm we have:
(i) if $s>0$ and $t=1,\left(s_{i}\right)_{i \geqslant 1}$ is eventually zero,
(ii) if $s>0$ and $t>1,\left(s_{i}\right)_{i \geqslant 1}$ is either eventually zero or eventually negative,
(iii) if $s<0,\left(s_{i}\right)_{i \geqslant 1}$ is negative,
(iv) if $s_{i}<-\frac{p-1}{p-q} t$, then $s_{i}<s_{i+1}$,
(v) if $-\frac{p-1}{p-q} t \leqslant s_{i}<0$, then $-\frac{p-1}{p-q} t \leqslant s_{i+1}<0$.

Proposition
Let $x=\frac{s}{t} \in \mathbb{Q}$. Then $\langle x\rangle_{\frac{1}{q} \frac{p}{q}}$ is eventually periodic with period less than $\frac{p-1}{p-q}$ t.

$\frac{1}{q} \frac{p}{q}$-representation of r-adic numbers

r, r_{1}, r_{2}, \ldots prime numbers. p an integer >1.
Definition
A left infinite word $\cdots a_{-k_{0}+1} a_{-k_{0}}, k_{0} \in \mathbb{N}$, over \mathcal{A}_{p} is a $\frac{1}{q} \frac{p}{q}$-representation of $x \in \mathbb{Q}_{r}$ if $a_{-k_{0}}>0$ or $k_{0}=0$ and

$$
x=\sum_{i=-k_{0}}^{\infty} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}
$$

with respect to $\left|\left.\right|_{r}\right.$.

Let $p=r_{1}^{j_{1}} r_{2}^{j_{2}} \cdots r_{k}^{j_{k}}$.
Theorem
Let $x \in \mathbb{Q}_{r_{i}}$ for some $i \in\{1, \ldots, k\}$.
(i) If $k=1$ (i.e. p is a power of a prime), there exists a unique $\frac{1}{q} \frac{p}{q}$-representation of x in $\mathbb{Q}_{r_{1}}$.
(ii) If $k>1$, there exist uncountably many $\frac{1}{q} \frac{p}{q}$-representations of x in $\mathbb{Q}_{r_{i}}$.

Let $p=r_{1}^{j_{1}} r_{2}^{j_{2}} \cdots r_{k}^{j_{k}}$.
Theorem
Let $x \in \mathbb{Q}_{r_{i}}$ for some $i \in\{1, \ldots, k\}$.
(i) If $k=1$ (i.e. p is a power of a prime), there exists a unique $\frac{1}{q} \frac{p}{q}$-representation of x in $\mathbb{Q}_{r_{1}}$.
(ii) If $k>1$, there exist uncountably many $\frac{1}{q} \frac{p}{q}$-representations of x in $\mathbb{Q}_{r_{i}}$.
Let $x \in \mathbb{Q}$ and let $i_{1}, \ldots, i_{\ell} \in\{1, \ldots, k\}, \ell<k$, be distinct.
(i) There exist uncountably many $\frac{1}{q} \frac{p}{q}$-representations which work in all fields $\mathbb{Q}_{r_{i}}, \ldots, \mathbb{Q}_{r_{i}}$.
(ii) There exists a unique $\frac{1}{q} \frac{p}{q}$-representation which works in all fields $\mathbb{Q}_{r_{1}}, \ldots, \mathbb{Q}_{r_{k}} ;$ namely, the $\frac{1}{q} \frac{p}{q}$-expansion $<x>_{\frac{1}{q} \frac{p}{q}}$.
(iii) The $\frac{1}{q} \frac{p}{q}$-expansion $<x>_{\frac{1}{q} \frac{p}{q}}$ is the only $\frac{1}{q} \frac{p}{q}$-representation which is eventually periodic.
$p=30, q=11$
The following are aperiodic $\frac{1}{q} \frac{p}{q}$-representations of 1 in both fields \mathbb{Q}_{2} and \mathbb{Q}_{3} :

$$
\begin{aligned}
& \text {. } 272424292629272525242824282729 \\
& \cdots 202221222222191818192318222223
\end{aligned}
$$

p-odometer

p-odometer

$\frac{1}{q} \frac{p}{q}$-odometer

Conversion from p-expansions to $\frac{1}{q} \frac{p}{q}$-expansions

Right on-line denumerable transducer:
$z_{0}=0, i=0$ and, for $i \geqslant 0$

$$
\left(z_{i}, i\right) \xrightarrow{a \mid b}\left(z_{i+1}, i+1\right),
$$

with $a, b \in \mathcal{A}_{p}$ such that

$$
a q^{i}+z_{i}=\frac{b}{q}+\frac{p}{q} z_{i+1} .
$$

Input: $\cdots a_{1} a_{0} \in{ }^{\mathbb{N}} \mathcal{A}_{p}$ such that $x=\sum_{i=0}^{\infty} a_{i} p^{i} \in \mathbb{Z}_{r}$ with r prime factor of p
Output: $\cdots b_{1} b_{0} \in{ }^{\mathbb{N}} \mathcal{A}_{p}$ such that $x=\sum_{i=0}^{\infty} \frac{b_{i}}{q}\left(\frac{p}{q}\right)^{i}$.
The converter cannot be finite.

Base 3 to $\frac{1}{2} \frac{3}{2}$-system convertor

On ${ }^{\mathbb{N}} \mathcal{A}_{p}$ define a distance δ : for $\mathbf{a}, \mathbf{b} \in{ }^{\mathbb{N}} \mathcal{A}_{p}, \delta(\mathbf{a}, \mathbf{b})=2^{-i}$ with $i=\min \left\{j \in \mathbb{N} \mid a_{j} \neq b_{j}\right\}$.

Proposition

The conversion from p-expansions to $\frac{1}{q} \frac{p}{q}$-expansions

$$
\begin{aligned}
\chi:{ }^{\mathbb{N} \mathcal{A}_{p}} & \rightarrow{ }^{\mathbb{N}} \mathcal{A}_{p} \\
\mathbf{a} & \mapsto
\end{aligned}
$$

such that $x=\sum_{i=0}^{\infty} a_{i} p^{i}=\sum_{i=0}^{\infty} \frac{b_{j}}{q}\left(\frac{p}{q}\right)^{i} \in \mathbb{Z}_{r}$ realized by the converter is Lipchitz, and thus uniformly continuous for the δ-topology.
Remark: the inverse conversion is also realizable by a right on-line transducer.

Corollary

The digits in a $\frac{1}{q} \frac{p}{q}$-expansion are uniformly distributed.

$\frac{p}{q}$-representations

Algorithm (MDbis algorithm)
Let $x=\frac{s}{t}, s, t \in \mathbb{Z}$ co-prime, $s \neq 0$, and $t>0$ co-prime to p.
Put $s_{0}=s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_{i} \in \mathcal{A}_{p}$ by

$$
q \frac{s_{i}}{t}=p \frac{s_{i+1}}{t}+q a_{i} .
$$

Return the $\frac{p}{q}$-expansion of $\left.x:<x\right\rangle_{\frac{p}{q}}=\cdots a_{2} a_{1} a_{0}$.

$$
s=\sum_{i=0}^{\infty} a_{i}\left(\frac{p}{q}\right)^{i}
$$

All the results on finiteness and periodicity for $\frac{1}{q} \frac{p}{q}$-representations are similar for $\frac{p}{q}$-representations.

The main difference is on the tree of representations of the integers.

All the results on finiteness and periodicity for $\frac{1}{q} \frac{p}{q}$-representations are similar for $\frac{p}{q}$-representations.

The main difference is on the tree of representations of the integers.

Theorem

There exists a finite right sequential transducer \mathcal{C} converting the $\frac{p}{q}$-representation of any $x \in \mathbb{Z}_{r}$, r prime factor of p, to its $\frac{1}{q} \frac{p}{q}$-representation; the inverse of \mathcal{C} is also a finite right sequential transducer.
There is a one-to-one mapping between the sets of all $\frac{p}{q}$ - and $\frac{1}{q} \frac{p}{q}$-representations of elements of \mathbb{Z}_{r} which preserves eventual periodicity.
One can say that the $\frac{p}{q}$ - and $\frac{1}{q} \frac{p}{q}$ - numeration systems are isomorphic.

Right sequential transducer from $\frac{p}{q}$ to $\frac{1}{q} \frac{p}{q}$

$$
p=3, q=2
$$

Negative rational base

One can also define representations of the form

$$
\sum \frac{a_{i}}{q}\left(-\frac{p}{q}\right)^{i}, \quad \text { and } \quad \sum a_{i}\left(-\frac{p}{q}\right)^{i}
$$

with $a_{i} \in \mathcal{A}_{p}$, by modifying the MD and MDbis algorithms by

$$
q \frac{s_{i}}{t}=-p \frac{s_{i+1}}{t}+a_{i}
$$

and

$$
q \frac{s_{i}}{t}=-p \frac{s_{i+1}}{t}+q a_{i}
$$

Negative rational base

Definition (Kátai and Szabó 1975)
A Canonical Number System is a positional numeration system in which every integer (positive or negative) has a unique finite expansion of the form $a_{n} \cdots a_{0}$.

Proposition

The $\frac{1}{q}\left(-\frac{p}{q}\right)$ - and the $\left(-\frac{p}{q}\right)$ - numeration systems are CNS.
The ($-\frac{p}{q}$)- numeration system has been previously considered by Gilbert (1991).

Conversions

Theorem

The conversion from the $\frac{1}{q} \frac{p}{q}$ (resp. the $\frac{p}{q}$) -representation of any $x \in \mathbb{Z}_{r}$, r prime factor of p, to its $\frac{1}{q}\left(-\frac{p}{q}\right)$ (resp. its $\left(-\frac{p}{q}\right)$) representation is realizable by a finite right sequential transducer ; the inverse conversion as well.
rational base

\longleftrightarrow finite conversion by finite sequential transducer
$\triangleleft----\rightarrow$ infinite conversion by on-line algorithm

