Representation of *p*-adic numbers in rational base numeration systems

Christiane Frougny LIAFA, CNRS, and Université Paris 8

Numeration June 14-18, 2010, Leiden

Joint work with Karel Klouda

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction to *p*-adic numbers

Base p = 10

$$\frac{1}{3} =_{10} .33333 \cdots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction to *p*-adic numbers

Base p = 10

$$\frac{1}{3} =_{10} \cdot 33333 \cdots$$

What is the meaning of

$$\cdots$$
 666667. $=_{10} \frac{1}{3}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction to *p*-adic numbers

Base p = 10

$$\frac{1}{3} =_{10} \cdot 33333 \cdots$$

What is the meaning of

$$\cdots$$
 666667. $=_{10} \frac{1}{3}$

• $\frac{1}{3} = 7 + 6 \sum_{i \ge 1} (10)^i$ using the formal sum $\sum_{i \ge 0} X^i = \frac{1}{1-X}$

Introduction to *p*-adic numbers

Base p = 10

$$\frac{1}{3} =_{10} .33333 \cdots$$

What is the meaning of

$$\cdots$$
 666667. $=_{10} \frac{1}{3}$

• $\frac{1}{3} = 7 + 6 \sum_{i \ge 1} (10)^i$ using the formal sum $\sum_{i \ge 0} X^i = \frac{1}{1-X}$

Arithmetic as usual

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

p-adic numbers

The set of *p*-adic integers is $\mathbb{Z}_p = \sum_{i \ge 0} a_i p^i$ with a_i in $\mathcal{A}_p = \{0, 1, \dots, p-1\}$. Notation: $\cdots a_2 a_1 a_0 \cdot \in \mathbb{Z}_p$.

The set of *p*-adic numbers is $\mathbb{Q}_p = \sum_{i \ge -k_0} a_i p^i$ with a_i in \mathcal{A}_p . Notation: $\cdots a_2 a_1 a_0 \cdot a_{-1} \cdots a_{-k_0} \in \mathbb{Q}_p$.

 \mathbb{Q}_p is a commutative ring, and \mathbb{Z}_p is a subring of \mathbb{Q}_p .

p-adic valuation $v_p : \mathbb{Z} \setminus \{0\} \to \mathbb{Z}$ is given by

$$n = p^{v_p(n)}n'$$
 with $p \nmid n'$.

For $x = \frac{a}{b} \in \mathbb{Q}$ $x = p^{\nu_p(x)} \frac{a'}{b'}$ with (a', b') = 1 and (b', p) = 1.

The *p*-metric is defined on \mathbb{Q} by $d_p(x, y) = p^{-\nu_p(x-y)}$. It is an ultrametric distance.

Example

$$p = 10$$

Take $z_n =_{10} \overbrace{6 \cdots 6}^{n} 7$.
Then
 $z_n - \frac{1}{3} = \frac{2}{3} (10)^{n+1}$
and $v_{10}(z_n - \frac{1}{3}) = n + 1$ thus

$$d_{10}(z_n,\frac{1}{3})=(10)^{-n-1}\to 0$$

Hence the 10-adic representation of $\frac{1}{3}$ is \cdots 66667.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

p = 10

Take $s = \cdots 109376$. and $t = \cdots 890625$.

Hence $s + t =_{10} 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Hence $st =_{10} 0$ thus \mathbb{Z}_{10} is not a domain.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Hence $st =_{10} 0$ thus \mathbb{Z}_{10} is not a domain.

One has also $s^2 = s$, $t^2 = t$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hence $st =_{10} 0$ thus \mathbb{Z}_{10} is not a domain.

One has also $s^2 = s$, $t^2 = t$.

One can prove that

- s =₂ 0 and s =₅ 1
- *t* =₂ 1 and *t* =₅ 0.

Computer arithmetic

2's complement

In base 2, on *n* positions. n = 8:

- 011111111 = 12700000001 = 1
- 00000000 = 0
- 11111111 = -1
- 10000000 = -128

Troncation of 2-adic numbers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

p prime

\mathbb{Q}_p is a field if and only if *p* is prime. \mathbb{Q}_p is the completion of \mathbb{Q} with respect to d_p .

p-adic absolute value on \mathbb{Q} :

$$|x|_{p} = egin{cases} 0 & ext{if } x = 0, \ p^{-v_{p}(x)} & ext{otherwise}. \end{cases}$$

 \mathbb{Q}_p is the quotient field of the ring of *p*-adic integers $\mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid |x|_p \leq 1 \}.$

p-expansion of p-adic numbers

p prime

Algorithm

Let $x = \frac{s}{t}$, s an integer and t a positive integer.

(i) If s = 0, return the empty word $a = \varepsilon$.

(ii) If t is co-prime to p, put $s_0 = s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_i \in \mathcal{A}_p$ by

$$\frac{s_i}{t}=\frac{\rho s_{i+1}}{t}+a_i.$$

Return $\mathbf{a} = \cdots a_2 a_1 a_0$.

(iii) If t is not co-prime to p, multiply $\frac{s}{t}$ by p until xp^{ℓ} is of the form $\frac{s'}{t'}$, where t' is co-prime to p. Then apply (ii) returning $\mathbf{a}' = \cdots \mathbf{a}'_2 \mathbf{a}'_1 \mathbf{a}'_0$. Return $\mathbf{a} = \cdots \mathbf{a}_1 \mathbf{a}_0 \cdot \mathbf{a}_{-1} \mathbf{a}_{-2} \cdots \mathbf{a}_{-\ell} = \cdots \mathbf{a}'_{\ell} \cdot \mathbf{a}'_{\ell-1} \cdots \mathbf{a}'_1 \mathbf{a}'_0$.

a is said to be the *p*-expansion of *x* and denoted by $\langle x \rangle_p$. $\ell = v_p(x)$

Theorem

Let $x \in \mathbb{Q}_p$. Then the *p*-representation of *x* is

- 1. uniquely given,
- 2. finite if, and only if, $x \in \mathbb{N}$,
- 3. eventually periodic if, and only if, $x \in \mathbb{Q}$.

Rational base numeration system

(Akiyama, Frougny, Sakarovitch 2008) $p > q \ge 1$ co-prime integers.

Rational base numeration system

(Akiyama, Frougny, Sakarovitch 2008) $p > q \ge 1$ co-prime integers.

Representation of the natural integers:

Algorithm (MD algorithm)

Let s be a positive integer. Put $s_0 = s$ and for all $i \in \mathbb{N}$:

$$qs_i = ps_{i+1} + a_i$$
 with $a_i \in A_p$

Return $\frac{1}{q}\frac{p}{q}$ -expansion of s: $\langle s \rangle_{\frac{1}{q}\frac{p}{q}} = a_n \cdots a_1 a_0$.

$$s = \sum_{i=0}^{n} \frac{a_i}{q} \left(\frac{p}{q}\right)^i$$

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\frac{1}{q}\frac{p}{q}$$
-expansions – properties

$$L_{rac{1}{q}rac{p}{q}}=\{w\in\mathcal{A}_{p}^{*}\mid w ext{ is }rac{1}{q}rac{p}{q} ext{-expansion of some }s\in\mathbb{N}\}$$

•
$$L_{\frac{1}{q}\frac{p}{q}}$$
 is prefix-closed,

- any $u \in \mathcal{A}_{\rho}^+$ is a suffix of some $w \in L_{\frac{1}{q}\frac{\rho}{q}}$,
- $L_{\frac{1}{q}\frac{p}{q}}$ is not context-free (if $q \neq 1$),
- $\pi:\mathcal{A}^+_{p}\mapsto \mathbb{Q}$ the evaluation map. If $v,w\in L_{rac{1}{q}rac{p}{q}}$, then

$$v \preceq w \quad \Leftrightarrow \quad \pi(v) \leqslant \pi(w).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

$T_{\frac{1}{q}\frac{p}{q}}$ – tree of nonnegative integers p = 3, q = 2

Children of the vertex *n* are given by $\frac{1}{q}(pn + a) \in \mathbb{N}, a \in \mathcal{A}_p$.

$$G_0 = 1, \quad G_{i+1} = \left\lceil \frac{p}{q} G_i \right\rceil$$

▲口▶▲圖▶▲≣▶▲≣▶ = ● のQで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

In AFS 2008, the right infinite words that label the infinite paths of $T_{\frac{1}{q}\frac{p}{q}}$ are defined as the admissible $\frac{1}{q}\frac{p}{q}$ -expansions of positive real numbers, of the form $.a_{-1}a_{-2}\cdots$, and it is proved that every positive real in [0, 1] has exactly one $\frac{1}{q}\frac{p}{q}$ -expansion, but for an infinite countable subset of reals which have more than one such expansion.

No periodic expansion.

Connection with the problem of the distribution of the powers of a rational number modulo 1 (Mahler 1968).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

MD algorithm – the negative case

Let *s* be a negative integer. The $\frac{1}{q}\frac{p}{q}$ -expansion of *s* is $< s >_{\frac{1}{q}\frac{p}{q}} = \cdots a_2 a_1 a_0$. from the MD algorithm:

$$s_0 = s$$
, $qs_i = ps_{i+1} + a_i$.

MD algorithm – the negative case

Let *s* be a negative integer. The $\frac{1}{q}\frac{p}{q}$ -expansion of *s* is $< s >_{\frac{1}{q}\frac{p}{q}} = \cdots a_2 a_1 a_0$. from the MD algorithm:

$$s_0 = s$$
, $qs_i = ps_{i+1} + a_i$.

Properties of $(s_i)_{i \ge 0}$:

(i)
$$(s_i)_{i \ge 1}$$
 is negative,
(ii) if $s_i < -\frac{p-1}{p-q}$, then $s_i < s_{i+1}$,
(iii) if $-\frac{p-1}{p-q} \le s_i < 0$, then $-\frac{p-1}{p-q} \le s_{i+1} < 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

In which fields does it work?

$$s = s_n \left(\frac{p}{q}\right)^n + \sum_{i=0}^{n-1} \frac{a_i}{q} \left(\frac{p}{q}\right)^n$$

We want:

$$\left|s - \sum_{i=0}^{n-1} \frac{a_i}{q} \left(\frac{p}{q}\right)^n\right|_r = |s_n|_r \left|\left(\frac{p}{q}\right)^n\right|_r \to 0 \quad \text{as } n \to \infty$$

Hence, if $p = r_1^{j_1} r_2^{j_2} \cdots r_k^{j_k}$, the $\frac{1}{q} \frac{p}{q}$ -expansion of *s* "works" only in $\mathbb{Q}_{r_\ell}, \ell = 1, \dots, k$. The speed of convergence is then $\approx r^{-j_\ell n}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

$\frac{1}{q}\frac{p}{q}$ -expansions of negative integers

Proposition Let *k* be a positive integer, and denote $B = \lfloor \frac{p-1}{p-q} \rfloor$. Then: (i) if $k \leq B$, then $\langle -k \rangle_{\frac{1}{q}\frac{p}{q}} = {}^{\omega}b$ with b = k(p-q), (ii) otherwise, $\langle -k \rangle_{\frac{1}{q}\frac{p}{q}} = {}^{\omega}bw$ with $w \in \mathcal{A}_p^+$ and b = B(p-q).

$\overline{T}_{\frac{1}{q}\frac{p}{q}}$ – tree of negative integers p = 3, q = 2

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

-3

-2

-1

< 🗆 2>

< 3≣ →

< 17 ▶

э

▶ 4

SAC

Other rational base numeration systems

▲口>▲□>▲目>▲目> 目 ろんの

Trees
$$\overline{T}_{\frac{1}{q}\frac{p}{q}}$$
 and $T_{\frac{1}{q}\frac{p}{q}}$

Trees
$$\overline{T}_{\frac{1}{q}\frac{p}{q}}$$
 and $T_{\frac{1}{q}\frac{p}{q}}$

The trees $\overline{T}_{\frac{1}{q}\frac{p}{q}}$ and $T_{\frac{1}{q}\frac{p}{q}}$ are isomorphic if and only if

$$\frac{p-1}{p-q}\in\mathbb{Z}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

 $\frac{1}{q}\frac{p}{q}$ -expansions of negative integers – properties

• for *q* = 1 and *p* prime we get the standard *p*-adic representation,

$$\overline{L}_{\frac{1}{q}\frac{p}{q}} = \{ w \in \mathcal{A}_{p}^{*} \mid {}^{\omega}bw \text{ is } \frac{1}{q}\frac{p}{q} \text{-expansion of } s \leqslant -B, b \notin Pref(w) \}$$

- $\overline{L}_{\frac{1}{q}\frac{p}{q}}$ is prefix-closed,
- any $u \in \mathcal{A}_{\rho}^+$ is a suffix of some $w \in \overline{L}_{\frac{1}{2}\frac{\rho}{\sigma}}$,
- $\overline{L}_{\frac{1}{q}\frac{p}{q}}$ is not context-free (if $q \neq 1$).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

MD algorithm for rationals

Algorithm (MD algorithm)

Let $x = \frac{s}{t}$, $s, t \in \mathbb{Z}$ co-prime, $s \neq 0$, and t > 0 co-prime to p. Put $s_0 = s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_i \in \mathcal{A}_p$ by

$$q\frac{s_i}{t} = p\frac{s_{i+1}}{t} + a_i$$

Return the $\frac{1}{q} \frac{p}{q}$ -expansion of $x : \langle x \rangle_{\frac{1}{q} \frac{p}{q}} = \cdots a_2 a_1 a_0$.

$$s = \sum_{i=0}^{\infty} \frac{a_i}{q} \left(\frac{p}{q}\right)^i$$

Examples

X	$< X >_{rac{1}{q}rac{p}{q}}$	$(s_i)_{i \geqslant 0})$	abs. values
p = 3, q = 2			
5	2101	5, 3, 2, 1, 0, 0,	all
-5	^ω 2012	-5,-3,-2,-2,-2,	3
11/4	201	11,6,4,0,0,	all
11/8	^ω 1222	11,2,-4,-8,-8,-8,	3
11/5	^ω (02)2112	11,4,1,-1,-4,-6,-4,-6,	3
p = 30, q = 11			
5	11 25	5, 1, 0, 0,	all
-5	^ω 19 8 5	-5,-2,-1,-1,	2, 3, 5
11/7	$^{\omega}(12\ 21\ 5)\ 23\ 13$	11, 1, -5, -3, -6, -5,	2, 3, 5

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

MD algorithm - properties

For the sequence $(s_i)_{i \ge 1}$ from the MD algorithm we have:

- (i) if s > 0 and t = 1, $(s_i)_{i \ge 1}$ is eventually zero,
- (ii) if s > 0 and t > 1, $(s_i)_{i \ge 1}$ is either eventually zero or eventually negative,

(iii) if
$$s < 0$$
, $(s_i)_{i \ge 1}$ is negative,
(iv) if $s_i < -\frac{p-1}{p-q}t$, then $s_i < s_{i+1}$,
(v) if $-\frac{p-1}{p-q}t \le s_i < 0$, then $-\frac{p-1}{p-q}t \le s_{i+1} < 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

MD algorithm - properties

For the sequence $(s_i)_{i \ge 1}$ from the MD algorithm we have:

- (i) if s > 0 and t = 1, $(s_i)_{i \ge 1}$ is eventually zero,
- (ii) if s > 0 and t > 1, $(s_i)_{i \ge 1}$ is either eventually zero or eventually negative,

(iii) if
$$s < 0$$
, $(s_i)_{i \ge 1}$ is negative,
(iv) if $s_i < -\frac{p-1}{p-q}t$, then $s_i < s_{i+1}$,
(v) if $-\frac{p-1}{p-q}t \le s_i < 0$, then $-\frac{p-1}{p-q}t \le s_{i+1} < 0$.

Proposition

Let $x = \frac{s}{t} \in \mathbb{Q}$. Then $\langle x \rangle_{\frac{1}{q}\frac{p}{q}}$ is eventually periodic with period less than $\frac{p-1}{p-q}t$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <

$\frac{1}{q}\frac{p}{q}$ -representation of *r*-adic numbers

 r, r_1, r_2, \ldots prime numbers. *p* an integer > 1.

Definition

A left infinite word $\cdots a_{-k_0+1}a_{-k_0}, k_0 \in \mathbb{N}$, over \mathcal{A}_p is a $\frac{1}{q}\frac{p}{q}$ -representation of $x \in \mathbb{Q}_r$ if $a_{-k_0} > 0$ or $k_0 = 0$ and

$$x = \sum_{i=-k_0}^{\infty} \frac{a_i}{q} \left(\frac{p}{q}\right)^i$$

with respect to $||_r$.

・ロト・日本・日本・日本・日本

Let $p = r_1^{j_1} r_2^{j_2} \cdots r_k^{j_k}$.

Theorem Let $\mathbf{x} \in \mathbb{Q}_{r_i}$ for some $i \in \{1, \dots, k\}$.

- (i) If k = 1 (i.e. p is a power of a prime), there exists a unique $\frac{1}{q}\frac{p}{q}$ -representation of x in \mathbb{Q}_{r_1} .
- (ii) If k > 1, there exist uncountably many ¹/_q ^p/_q -representations of x in Q_{r_i}.

Let $p = r_1^{j_1} r_2^{j_2} \cdots r_k^{j_k}$.

Theorem

Let $\mathbf{x} \in \mathbb{Q}_{r_i}$ for some $i \in \{1, \ldots, k\}$.

- (i) If k = 1 (i.e. p is a power of a prime), there exists a unique $\frac{1}{q}\frac{p}{q}$ -representation of x in \mathbb{Q}_{r_1} .
- (ii) If k > 1, there exist uncountably many ¹/_q ^p/_q -representations of x in Q_{r_i}.
- Let $\mathbf{x} \in \mathbb{Q}$ and let $i_1, \ldots, i_\ell \in \{1, \ldots, k\}, \ell < k$, be distinct.
 - (i) There exist uncountably many ¹/_q ^p/_q-representations which work in all fields Q_{r_{i1}},..., Q_{r_{ie}}.
 - (ii) There exists a unique ¹/_q ^p/_q-representation which works in all fields Q_{r1},..., Q_{rk}; namely, the ¹/_q ^p/_q-expansion < x > ¹/₁ ^p/_q.
- (iii) The $\frac{1}{q}\frac{p}{q}$ -expansion $\langle x \rangle_{\frac{1}{q}\frac{p}{q}}$ is the only $\frac{1}{q}\frac{p}{q}$ -representation which is eventually periodic.

p = 30, q = 11

The following are aperiodic $\frac{1}{q}\frac{p}{q}$ -representations of 1 in both fields \mathbb{Q}_2 and \mathbb{Q}_3 :

··· 27 24 24 29 26 29 27 25 25 24 28 24 28 27 29 ··· 20 22 21 22 22 22 19 18 18 19 23 18 22 22 23

p-odometer

p-odometer

 $\frac{1}{q}\frac{p}{q}$ -odometer

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Conversion from *p*-expansions to $\frac{1}{q}\frac{p}{q}$ -expansions

Right on-line denumerable transducer: $z_0 = 0, i = 0$ and, for $i \ge 0$

$$(z_i,i) \xrightarrow{a|b} (z_{i+1},i+1),$$

with $a, b \in \mathcal{A}_{\rho}$ such that

$$aq^i+z_i=\frac{b}{q}+\frac{p}{q}z_{i+1}.$$

Input: $\cdots a_1 a_0 \in {}^{\mathbb{N}}\mathcal{A}_p$ such that $x = \sum_{i=0}^{\infty} a_i p^i \in \mathbb{Z}_r$ with *r* prime factor of *p*

Output: $\cdots b_1 b_0 \in \mathbb{N}_{A_p}$ such that $x = \sum_{i=0}^{\infty} \frac{b_i}{q} \left(\frac{p}{q}\right)^i$. The converter cannot be finite.

Base 3 to $\frac{1}{2}\frac{3}{2}$ -system convertor

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

On ${}^{\mathbb{N}}\mathcal{A}_{p}$ define a distance δ : for $\mathbf{a}, \mathbf{b} \in {}^{\mathbb{N}}\mathcal{A}_{p}$, $\delta(\mathbf{a}, \mathbf{b}) = 2^{-i}$ with $i = \min\{j \in \mathbb{N} \mid a_{j} \neq b_{j}\}$.

Proposition

The conversion from p-expansions to $\frac{1}{q}\frac{p}{q}$ -expansions

$$egin{array}{rcl} \chi: {}^{\mathbb{N}}\!\mathcal{A}_{oldsymbol{
ho}} & o & {}^{\mathbb{N}}\!\mathcal{A}_{oldsymbol{
ho}} \ \mathbf{a} & \mapsto & \mathbf{b} \end{array}$$

such that $\mathbf{x} = \sum_{i=0}^{\infty} \mathbf{a}_i \mathbf{p}^i = \sum_{i=0}^{\infty} \frac{\mathbf{b}_i}{\mathbf{q}} \left(\frac{\mathbf{p}}{\mathbf{q}}\right)^i \in \mathbb{Z}_r$ realized by the converter is Lipchitz, and thus uniformly continuous for the δ -topology.

Remark: the inverse conversion is also realizable by a right on-line transducer.

Corollary

The digits in a $\frac{1}{q}\frac{p}{q}$ -expansion are uniformly distributed.

$\frac{p}{q}$ -representations

Algorithm (MDbis algorithm)

Let $x = \frac{s}{t}$, $s, t \in \mathbb{Z}$ co-prime, $s \neq 0$, and t > 0 co-prime to p. Put $s_0 = s$ and for all $i \in \mathbb{N}$ define s_{i+1} and $a_i \in \mathcal{A}_p$ by

$$q\frac{s_i}{t} = p\frac{s_{i+1}}{t} + qa_i$$

Return the $\frac{p}{q}$ -expansion of $x: \langle x \rangle_{\frac{p}{q}} = \cdots a_2 a_1 a_0$.

$$s = \sum_{i=0}^{\infty} a_i \left(\frac{p}{q}\right)^i$$

All the results on finiteness and periodicity for $\frac{1}{q}\frac{p}{q}$ -representations are similar for $\frac{p}{q}$ -representations.

The main difference is on the tree of representations of the integers.

All the results on finiteness and periodicity for $\frac{1}{q}\frac{p}{q}$ -representations are similar for $\frac{p}{q}$ -representations.

The main difference is on the tree of representations of the integers.

Theorem

There exists a finite right sequential transducer C converting the $\frac{p}{q}$ -representation of any $x \in \mathbb{Z}_r$, r prime factor of p, to its $\frac{1}{q}\frac{p}{q}$ -representation; the inverse of C is also a finite right sequential transducer.

There is a one-to-one mapping between the sets of all $\frac{p}{a}$ - and

 $\frac{1}{q}\frac{p}{q}$ -representations of elements of \mathbb{Z}_r which preserves eventual periodicity.

One can say that the $\frac{p}{q}$ - and $\frac{1}{q}\frac{p}{q}$ - numeration systems are isomorphic.

Right sequential transducer from $\frac{p}{q}$ to $\frac{1}{q}\frac{p}{q}$

p = 3, *q* = 2

▲ロト▲聞ト▲国ト▲国ト 国 のQで

Negative rational base

One can also define representations of the form

$$\sum \frac{a_i}{q} \left(-\frac{p}{q}\right)^i$$
, and $\sum a_i \left(-\frac{p}{q}\right)^i$

with $a_i \in \mathcal{A}_p$, by modifying the MD and MDbis algorithms by

$$q\frac{s_i}{t} = -p\frac{s_{i+1}}{t} + a_i$$

and

$$q\frac{\mathsf{s}_i}{t} = -p\frac{\mathsf{s}_{i+1}}{t} + q\mathsf{a}_i$$

(日) (日) (日) (日) (日) (日) (日) (日)

Negative rational base

Definition (Kátai and Szabó 1975)

A Canonical Number System is a positional numeration system in which every integer (positive or negative) has a unique finite expansion of the form $a_n \cdots a_0$.

Proposition

The $\frac{1}{q}(-\frac{p}{q})$ - and the $(-\frac{p}{q})$ - numeration systems are CNS.

The $\left(-\frac{p}{q}\right)$ - numeration system has been previously considered by Gilbert (1991).

Conversions

Theorem

The conversion from the $\frac{1}{q}\frac{p}{q}$ (resp. the $\frac{p}{q}$) -representation of any $x \in \mathbb{Z}_r$, r prime factor of p, to its $\frac{1}{q}(-\frac{p}{q})$ (resp. its $(-\frac{p}{q})$) representation is realizable by a finite right sequential transducer ; the inverse conversion as well.

