On-Line Multiplication in Real and Complex Base

Christiane Frougny

LIAFA, CNRS and Université Paris 8

http://www.liafa.jussieu.fr/~cf/

Athasit Surarerks

Chulalongkorn University, Bangkok

http://www.cp.eng.chula.ac.th/faculty/athasit.html

On-line computability

To pipe-line additions/subtractions, multiplications and divisions, computations are to be done Most Sigificant Digit First, *i.e.* from left to right.

Additional requirement: deterministic processing and, after a certain delay δ of latency, for one input digit there is one output digit.

To generate the jth digit of the result, it is necessary and sufficient to have the first $(j + \delta)$ digits of the input available.

[Ercegovac and Trivedi, 77]

A and B two finite digit sets, $A^{\mathbb{N}}$ set of infinite sequences of elements of A.

$$\varphi: A^{\mathbb{N}} \to B^{\mathbb{N}}$$

$$(a_j)_{j\geq 1} \mapsto (b_j)_{j\geq 1}$$

 φ is on-line computable with delay δ if there exists δ such that, for each $j \geq 1$ there exists

$$\Phi_i: A^{j+\delta} \to B$$

such that

$$b_j = \Phi_j(a_1 \cdots a_{j+\delta})$$

 $A^{j+\delta}$ is the set of sequences of length $j+\delta$ of elements of A.

Multiplication

D a finite digit set. Multiplication is on-line computable with delay δ in base β on D if there exists a function

$$\mu: D^{\mathbb{N}} \times D^{\mathbb{N}} \to D^{\mathbb{N}}$$

$$((x_j)_{j \ge 1}, (y_j)_{j \ge 1}) \mapsto (p_j)_{j \ge 1}$$

such that

$$\sum_{j\geq 1} p_j \beta^{-j} = \sum_{j\geq 1} x_j \beta^{-j} \times \sum_{j\geq 1} y_j \beta^{-j}$$

which is on-line computable with delay δ .

In the following, the operands begin with a run of δ zeroes. This allows to ignore the delay inside the computation.

Beta-Representations

D a finite digit set of real or complex digits.

Base β a real or complex number such that $|\beta| > 1$.

 β -representation on D of x real or complex is a sequence $(x_j)_{j\geq 1}$ with $x_j\in D$ such that

$$x = \sum_{j \ge 1} x_j \beta^{-j}$$

Signed-digit number system

Base β integer > 1 signed-digit set $S = \{-a, \dots, a\}, \beta/2 \le a \le \beta - 1$.

Redundancy

Addition can be performed in constant time in parallel, and is computable by an on-line finite automaton

[Avizienis 1961, Chow and Robertson 1978, Muller 1994]

Negative base numeration system

Base β a negative integer <-1, canonical digit set $A=\{0,\ldots,|\beta|-1\}$. On a signed-digit set $T=\{-a,\ldots,a\}$, with $|\beta|/2 \le a \le |\beta|-1$ the representation is redundant and addition can be performed in constant time in parallel, and is computable by an on-line finite automaton [Frougny 1999]

Representation in real base

Base β a real number > 1.

 $x \in [0, 1]$ can be represented in base β by a greedy algorithm [Rényi 1957]:

 $r_0 = x$ and for $j \ge 1$ let $x_j = \lfloor \beta r_{j-1} \rfloor$ and $r_j = \{\beta r_{j-1}\}$. Thus $x = \sum_{j>1} x_j \beta^{-j}$.

 x_j is in the canonical digit set $A_{\beta} = \{0, \dots, \lfloor \beta \rfloor\}$ if $\beta \notin \mathbb{N}$, $A_{\beta} = \{0, \dots, \beta - 1\}$ if $\beta \in \mathbb{N}$.

When $\beta \notin \mathbb{N}$, x may have several different β -representations on A_{β} : this system is naturally redundant.

Example
$$\beta = \frac{1+\sqrt{5}}{2}, A_{\beta} = \{0,1\}.$$

$$3 - \sqrt{5} =_{\beta} 10010^{\omega}$$

$$=_{\beta} 01110^{\omega}$$

$$=_{\beta} 100(01)^{\omega}$$

Addition in real base is on-line computable.

A Pisot number is an algebraic integer > 1 such that all its algebraic conjugates are less than 1 in modulus.

The natural integers and the golden ratio are Pisot numbers.

If β is a Pisot number addition is computable by an on-line finite state automaton [Froughy 2001]

Knuth number system

Base β a complex number of the form $\beta = i\sqrt{r}$, r an integer ≥ 2 .

Canonical digit set $A = \{0, \dots, r-1\}.$

Since $\beta^2 = -r$

$$z = \sum_{j \ge 1} a_j \beta^{-j} = \sum_{k \ge 1} a_{2k} (-r)^{-k} + i \sqrt{r} \sum_{k \ge 0} a_{2k+1} (-r)^{-k-1}$$

$$\Re(z) = x = \sum_{k>1} a_{2k} (-r)^{-k}$$

$$\Im(z) = y = \sqrt{r} \sum_{k>0} a_{2k+1} (-r)^{-k-1}$$

The β -representation of z can be obtained by intertwinning the (-r)-representation of x and the (-r)-representation of y/\sqrt{r} .

Signed-digit set $R = \{-a, ..., a\}$, $r/2 \le a \le r - 1$: redundancy, addition is computable in constant time in parallel [Nielsen and Muller 1996, McIlhenny and Ercegovac 1998, McIlhenny 2002] Addition is computable by an on-line finite state automaton [Frougny 1999]

Classical on-line multiplication algorithm

[Trivedi and Ercegovac 1977]

Multiplication of two numbers represented in integer base $\beta > 1$ with digits in $S = \{-a, \ldots, a\}$, $\beta/2 \le a \le \beta - 1$, is computable by an on-line algorithm with delay δ , where δ is the smallest positive integer such that

$$\frac{\beta}{2} + \frac{2a^2}{\beta^{\delta}(\beta - 1)} \le a + \frac{1}{2}.$$

If
$$\beta = 2$$
 and $a = 1$, $\delta = 2$.

If
$$\beta = 3$$
 and $a = 2$, $\delta = 2$.

If
$$\beta = 2a \geq 4$$
 then $\delta = 2$.

If
$$\beta \geq 4$$
 and if $a \geq |\beta/2| + 1$, $\delta = 1$.

Classical on-line multiplication algorithm

Input: $x = (x_j)_{j \ge 1}$ and $y = (y_j)_{j \ge 1}$ in $S^{\mathbb{N}}$ such that $x_1 = \dots = x_{\delta} = 0$ and $y_1 = \dots = y_{\delta} = 0$.

Output: $p = (p_j)_{j \ge 1}$ in $S^{\mathbb{N}}$ such that $\sum_{j \ge 1} p_j \beta^{-j} = \sum_{j \ge 1} x_j \beta^{-j} \times \sum_{j \ge 1} y_j \beta^{-j}.$

begin

1.
$$p_1 \leftarrow 0, \ldots, p_{\delta} \leftarrow 0$$

2.
$$W_{\delta} \leftarrow 0$$

$$j \leftarrow \delta + 1$$

4. while
$$j \geq \delta + 1$$
 do

5.
$$\{W_j \leftarrow \beta(W_{j-1} - p_{j-1}) + y_j X_j + x_j Y_{j-1}\}$$

6.
$$p_j \leftarrow \text{round}(W_j)$$

7.
$$j \leftarrow j + 1$$

end

$$X_j = \sum_{1 \le i \le j} x_i \beta^{-i}.$$

For
$$n \ge \delta$$
, $X_n Y_n - P_n = \beta^{-n} (W_n - p_n)$

$$|W_n - p_n| \le \frac{1}{2},$$

$$|X_n Y_n - P_n| \le \frac{\beta^{-n}}{2}$$

and the algorithm is convergent.

The sequence $p_1 \cdots p_n$ is a β -representation of the most significant half of the product $X_n Y_n$.

Digits p_j 's are in digit set S if $|W_j| \le a + \frac{1}{2}$. Line 5 and $|X_j| < \frac{a}{\beta^{\delta}(\beta - 1)}$ and $|Y_{j-1}| < \frac{a}{\beta^{\delta}(\beta - 1)}$ imply that

$$|W_j| < \frac{\beta}{2} + \frac{2a^2}{\beta^{\delta}(\beta - 1)} \le a + \frac{1}{2}$$

by hypothesis on delay δ .

On-line multiplication algorithm in negative base

Multiplication of two numbers represented in negative base $\beta < -1$ and digit set $T = \{-a, \ldots, a\}, |\beta|/2 \le a \le |\beta| - 1$, is computable by the classical on-line algorithm with delay δ , where δ is the smallest positive integer such that

$$\frac{|\beta|}{2} + \frac{2a^2}{|\beta|^{\delta}(|\beta| - 1)} \le a + \frac{1}{2}.$$

On-line multiplication algorithm in real base

$$D = \{0, \dots, d\}$$
 with $d \ge \lfloor \beta \rfloor$.

Multiplication of two numbers represented in base β with digits in D is computable by an on-line algorithm with delay δ , where δ is the smallest positive integer such that

$$\beta + \frac{2d^2}{\beta^{\delta}(\beta - 1)} \le d + 1.$$

Real base on-line multiplication algorithm

Input: $x = (x_j)_{j \ge 1}$ and $y = (y_j)_{j \ge 1}$ in $D^{\mathbb{N}}$ such that $x_1 = \cdots = x_{\delta} = 0$ and $y_1 = \cdots = y_{\delta} = 0$.

Output: $p = (p_j)_{j \ge 1}$ in $D^{\mathbb{N}}$ such that $\sum_{j \ge 1} p_j \beta^{-j} = \sum_{j \ge 1} x_j \beta^{-j} \times \sum_{j \ge 1} y_j \beta^{-j}$.

begin

1.
$$p_1 \leftarrow 0, \ldots, p_{\delta} \leftarrow 0$$

2.
$$W_{\delta} \leftarrow 0$$

3.
$$j \leftarrow \delta + 1$$

4. while
$$j \geq \delta + 1$$
 do

5.
$$\{W_j \leftarrow \beta(W_{j-1} - p_{j-1}) + y_j X_j + x_j Y_{j-1}\}$$

6.
$$p_j \leftarrow \lfloor W_j \rfloor$$

7.
$$j \leftarrow j + 1$$

end

Example $\beta = \frac{1+\sqrt{5}}{2}$. Multiplication on $\{0,1\}$ is on-line computable with delay $\delta = 5$. $x = y = .0^5 10101$, $x \times y = p = .0^{10} 101000100001$

j	$(W_j)_{\substack{1+\sqrt{5}\\2}}$	p_j
6	.000001	0
7	•00001	0
8	.0010001001	0
9	.010001001	0
10	.101000100001	0
11	1.01000100001	1
12	.1000100001	0
13	1.000100001	1
14	.00100001	0
15	.0100001	0
16	. 100001	0
17	1.00001	1
18	.0001	0
19	•001	0
20	.01	0
21	•1	0
22	1.0	1

Application to carry-save representation

Carry-save representation : β an integer > 1, and digit set $D = \{0, \dots, \beta\}$.

Redundancy.

Real base on-line multiplication algorithm:

$$\beta = 2 \text{ on } \{0, 1, 2\}, \text{ delay } \delta = 3.$$

$$\beta \geq 3$$
, on $D = \{0, \dots, \beta\}$, delay $\delta = 2$.

Internal additions and multiplications by a digit can be performed in parallel.

On-line multiplication algorithm in the Knuth number system

Multiplication of two complex numbers represented in base $\beta = i\sqrt{r}$, with r an integer ≥ 2 , and digit set $R = \{-a, \ldots, a\}$, $r/2 \leq a \leq r-1$, is computable by an on-line algorithm with delay δ , where δ is the smallest odd integer such that

$$\frac{r}{2} + \frac{4a^2}{r^{\frac{\delta-1}{2}}(r-1)} \le a + \frac{1}{2}.\tag{1}$$

If r=2 and a=1, $\delta=7$.

If r = 8 or r = 9 and a = r - 1, $\delta = 3$.

If r = 10 and $a \ge 7$, $\delta = 3$.

In the other cases, for $r \leq 10$ the delay is $\delta = 5$.

Complex base on-line multiplication algorithm

Input: $x = (x_j)_{j \ge 1}$ and $y = (y_j)_{j \ge 1}$ in $R^{\mathbb{N}}$ such that $x_1 = \dots = x_{\delta} = 0$ and $y_1 = \dots = y_{\delta} = 0$.

Output: $p = (p_j)_{j \ge 1}$ in $R^{\mathbb{N}}$ such that $\sum_{j \ge 1} p_j \beta^{-j} = \sum_{j \ge 1} x_j \beta^{-j} \times \sum_{j \ge 1} y_j \beta^{-j}.$

begin

1.
$$p_1 \leftarrow 0, \ldots, p_{\delta} \leftarrow 0$$

2.
$$W_{\delta} \leftarrow 0$$

$$3. \qquad j \leftarrow \delta + 1$$

4. while
$$j \geq \delta + 1$$
 do

5.
$$\{W_j \leftarrow \beta(W_{j-1} - p_{j-1}) + y_j X_j + x_j Y_{j-1}\}$$

6.
$$p_j \leftarrow \operatorname{sign}(\Re(W_j)) \lfloor |\Re(W_j)| + \frac{1}{2} \rfloor$$

7.
$$j \leftarrow j + 1$$

end

Digit p_j is in R if $|\Re(W_j)| < a + \frac{1}{2}$.

By Line 6

$$\Re(|W_j - p_j|) \le \frac{1}{2} \text{ and } \Im(W_j - p_j) = \Im(W_j).$$

By Line 5

$$|\Re(W_j)| \le \sqrt{r} |\Im(W_{j-1})| + a(|\Re(X_j) + \Re(Y_{j-1})|)$$

and

$$|\Im(W_j)| \le \frac{\sqrt{r}}{2} + a(|\Im(X_j) + \Im(Y_{j-1})|).$$

Suppose that δ is odd. Then

$$|\Re(X_j)| < \frac{a}{r^{\frac{\delta-1}{2}}(r-1)} \text{ and } |\Im(X_j)| < \sqrt{r} \frac{a}{r^{\frac{\delta+1}{2}}(r-1)}$$

and the same holds true for Y_{j-1} .

Thus

$$|\Re(W_j)| \le \frac{r}{2} + \frac{4a^2}{r^{\frac{\delta-1}{2}}(r-1)} < a + \frac{1}{2}.$$

Suppose now that a better even delay δ' could be achieved. Then

$$|\Re(X_j)| < \frac{a}{r^{\frac{\delta'}{2}}(r-1)} \text{ and } |\Im(X_j)| < \sqrt{r} \frac{a}{r^{\frac{\delta'}{2}}(r-1)}$$

thus

$$|\Re(W_j)| < \frac{r}{2} + \frac{2a^2(r+1)}{r^{\frac{\delta'}{2}}(r-1)}.$$

This delay will work if

$$\frac{r}{2} + \frac{2a^2(r+1)}{r^{\frac{\delta'}{2}}(r-1)} \le a + \frac{1}{2}.$$
 (2)

Suppose that the delay in (1) is of the form $\delta = 2k + 1$ and the delay in (2) is of the form $\delta' = 2k'$, and set

$$C = \frac{(r-1)(2a+1-r)}{4a^2}.$$

Then k is the smallest positive integer such that

$$k > \frac{\log(2/C)}{\log(r)}$$

and k' is the smallest positive integer such that

$$k' > \frac{\log((r+1)/C)}{\log(r)}$$

and obviously k < k'.

For
$$n \ge \delta$$
, $X_n Y_n - P_n = \beta^{-n} (W_n - p_n)$
$$|\Re(W_n - p_n)| \le 1/2$$

and

$$|\Im(W_n - p_n)| = |\Im(W_n)| \le \frac{\sqrt{r}}{2} + \sqrt{r} \frac{2a^2}{r^{\frac{\delta+1}{2}}(r-1)}$$

thus the algorithm is convergent, and $p_1 \cdots p_n$ is a β -representation of the most significant half of $X_n Y_n$.

Example $\beta = 2i$ and $R = \{\bar{2}, \bar{1}, 0, 1, 2\}$. $\delta = 5$. $x = .0^5 1\bar{2}0\bar{1}201$ and $y = .0^5 1\bar{1}00121$. $x \times y = p = .0^{10}1111\bar{1}1\bar{1}2\bar{1}\bar{1}...$

j	$(W_j)_{2i}$	p_{j}
6	.000001	0
7	.0001112	0
8	.001112	0
9	$.01112\overline{1}1$	0
10	$oldsymbol{.}11110000\overline{1}2$	0
11	$1.1110120\bar{2}$	1
12	$1.11\overline{1}1\overline{1}2\overline{1}\overline{1}\overline{1}\overline{1}21$	1
13	$1.1\overline{1}1\overline{1}2\overline{1}\overline{1}\overline{1}\overline{1}21$	1
14	$1.\overline{1}1\overline{1}2\overline{1}\overline{1}\overline{1}\overline{1}21$	1
15	$\overline{1}$, $1\overline{1}2\overline{1}\overline{1}\overline{1}\overline{1}21$	$\bar{1}$
16	$1.\overline{1}2\overline{1}\overline{1}\overline{1}\overline{1}21$	1
17	$\overline{1}$, $2\overline{1}\overline{1}\overline{1}\overline{1}21$	$\bar{1}$
18	$2.\overline{1}\overline{1}\overline{1}\overline{1}21$	2
19	$\bar{1}.\bar{1}\bar{1}\bar{1}21$	$\bar{1}$
20	7 7701	<u>-</u>