On-Line Multiplication in Real and Complex Base

Christiane Frougny

LIAFA, CNRS and Université Paris 8
http://www.liafa.jussieu.fr/~cf/

Athasit Surarerks

Chulalongkorn University, Bangkok
http://www.cp.eng.chula.ac.th/faculty/athasit.html

On-line computability

To pipe-line additions/subtractions, multiplications and divisions, computations are to be done Most Sigificant Digit First, i.e. from left to right.

Additional requirement: deterministic processing and, after a certain delay δ of latency, for one input digit there is one output digit.

To generate the j th digit of the result, it is necessary and sufficient to have the first $(j+\delta)$ digits of the input available.
[Ercegovac and Trivedi, 77]
A and B two finite digit sets, $A^{\mathbb{N}}$ set of infinite sequences of elements of A.

$$
\begin{array}{rll}
\varphi: A^{\mathbb{N}} & \rightarrow B^{\mathbb{N}} \\
\left(a_{j}\right)_{j \geq 1} & \mapsto & \left(b_{j}\right)_{j \geq 1}
\end{array}
$$

φ is on-line computable with delay δ if there exists δ such that, for each $j \geq 1$ there exists

$$
\Phi_{j}: A^{j+\delta} \rightarrow B
$$

such that

$$
b_{j}=\Phi_{j}\left(a_{1} \cdots a_{j+\delta}\right)
$$

$A^{j+\delta}$ is the set of sequences of length $j+\delta$ of elements of A.

Multiplication

D a finite digit set. Multiplication is on-line computable with delay δ in base β on D if there exists a function

$$
\begin{aligned}
\mu: D^{\mathbb{N}} \times D^{\mathbb{N}} & \rightarrow D^{\mathbb{N}} \\
\left(\left(x_{j}\right)_{j \geq 1},\left(y_{j}\right)_{j \geq 1}\right) & \mapsto\left(p_{j}\right)_{j \geq 1}
\end{aligned}
$$

such that

$$
\sum_{j \geq 1} p_{j} \beta^{-j}=\sum_{j \geq 1} x_{j} \beta^{-j} \times \sum_{j \geq 1} y_{j} \beta^{-j}
$$

which is on-line computable with delay δ.
In the following, the operands begin with a run of δ zeroes. This allows to ignore the delay inside the computation.

Beta-Representations

D a finite digit set of real or complex digits.
Base β a real or complex number such that $|\beta|>1$.
β-representation on D of x real or complex is a sequence $\left(x_{j}\right)_{j \geq 1}$ with $x_{j} \in D$ such that

$$
x=\sum_{j \geq 1} x_{j} \beta^{-j}
$$

Signed-digit number system

Base β integer >1
signed-digit set $S=\{-a, \ldots, a\}, \beta / 2 \leq a \leq \beta-1$.
Redundancy
Addition can be performed in constant time in parallel, and is computable by an on-line finite automaton
[Avizienis 1961, Chow and Robertson 1978, Muller 1994]

Negative base numeration system

Base β a negative integer <-1, canonical digit set $A=\{0, \ldots,|\beta|-1\}$.

On a signed-digit set $T=\{-a, \ldots, a\}$, with $|\beta| / 2 \leq a \leq|\beta|-1$ the representation is redundant and addition can be performed in constant time in parallel, and is computable by an on-line finite automaton [Frougny 1999]

Representation in real base

Base β a real number >1.
$x \in[0,1]$ can be represented in base β by a greedy
algorithm [Rényi 1957]:
$r_{0}=x$ and for $j \geq 1$ let $x_{j}=\left\lfloor\beta r_{j-1}\right\rfloor$ and
$r_{j}=\left\{\beta r_{j-1}\right\}$. Thus $x=\sum_{j \geq 1} x_{j} \beta^{-j}$.
x_{j} is in the canonical digit set $A_{\beta}=\{0, \ldots,\lfloor\beta\rfloor\}$
if $\beta \notin \mathbb{N}, A_{\beta}=\{0, \ldots, \beta-1\}$ if $\beta \in \mathbb{N}$.
When $\beta \notin \mathbb{N}, x$ may have several different β-representations on A_{β} : this system is naturally redundant.

Example $\beta=\frac{1+\sqrt{5}}{2}, A_{\beta}=\{0,1\}$.

$$
\begin{array}{rlrl}
3-\sqrt{5} & ={ }_{\beta} 10010^{\omega} \\
& ={ }_{\beta} & 01110^{\omega} \\
& ={ }_{\beta} & 100(01)^{\omega}
\end{array}
$$

Addition in real base is on-line computable.
A Pisot number is an algebraic integer >1 such that all its algebraic conjugates are less than 1 in modulus.

The natural integers and the golden ratio are Pisot numbers.

If β is a Pisot number addition is computable by an on-line finite state automaton [Frougny 2001]

Knuth number system

Base β a complex number of the form $\beta=i \sqrt{r}$, r an integer ≥ 2.

Canonical digit set $A=\{0, \ldots, r-1\}$.
Since $\beta^{2}=-r$

$$
\begin{gathered}
z=\sum_{j \geq 1} a_{j} \beta^{-j}=\sum_{k \geq 1} a_{2 k}(-r)^{-k}+i \sqrt{r} \sum_{k \geq 0} a_{2 k+1}(-r)^{-k-1} \\
\Re(z)=x=\sum_{k \geq 1} a_{2 k}(-r)^{-k} \\
\Im(z)=y=\sqrt{r} \sum_{k \geq 0} a_{2 k+1}(-r)^{-k-1}
\end{gathered}
$$

The β-representation of z can be obtained by intertwinning the $(-r)$-representation of x and the $(-r)$-representation of y / \sqrt{r}.

Signed-digit set $R=\{-a, \ldots, a\}, r / 2 \leq a \leq r-1$: redundancy, addition is computable in constant time in parallel [Nielsen and Muller 1996, McIlhenny and Ercegovac 1998, McIlhenny 2002]

Addition is computable by an on-line finite state automaton [Frougny 1999]

Classical on-line multiplication algorithm

[Trivedi and Ercegovac 1977]
Multiplication of two numbers represented in integer base $\beta>1$ with digits in $S=\{-a, \ldots, a\}$, $\beta / 2 \leq a \leq \beta-1$, is computable by an on-line algorithm with delay δ, where δ is the smallest positive integer such that

$$
\frac{\beta}{2}+\frac{2 a^{2}}{\beta^{\delta}(\beta-1)} \leq a+\frac{1}{2}
$$

If $\beta=2$ and $a=1, \delta=2$.
If $\beta=3$ and $a=2, \delta=2$.
If $\beta=2 a \geq 4$ then $\delta=2$.
If $\beta \geq 4$ and if $a \geq\lfloor\beta / 2\rfloor+1, \delta=1$.

Classical on-line multiplication algorithm

Input: $x=\left(x_{j}\right)_{j \geq 1}$ and $y=\left(y_{j}\right)_{j \geq 1}$ in $S^{\mathbb{N}}$ such that $x_{1}=\cdots=x_{\delta}=0$ and $y_{1}=\cdots=y_{\delta}=0$.
Output: $p=\left(p_{j}\right)_{j \geq 1}$ in $S^{\mathbb{N}}$ such that
$\sum_{j \geq 1} p_{j} \beta^{-j}=\sum_{j \geq 1} x_{j} \beta^{-j} \times \sum_{j \geq 1} y_{j} \beta^{-j}$.
begin
1.

$$
p_{1} \leftarrow 0, \ldots, p_{\delta} \leftarrow 0
$$

2.

$$
W_{\delta} \leftarrow 0
$$

3.

$$
j \leftarrow \delta+1
$$

4.

$$
\text { while } j \geq \delta+1 \text { do }
$$

5.

$$
\left\{W_{j} \leftarrow \beta\left(W_{j-1}-p_{j-1}\right)+y_{j} X_{j}+x_{j} Y_{j-1}\right.
$$

6.

$$
p_{j} \leftarrow \operatorname{round}\left(W_{j}\right)
$$

7.

$$
j \leftarrow j+1\}
$$

end
$X_{j}=\sum_{1 \leq i \leq j} x_{i} \beta^{-i}$.

For $n \geq \delta, X_{n} Y_{n}-P_{n}=\beta^{-n}\left(W_{n}-p_{n}\right)$

$$
\left|W_{n}-p_{n}\right| \leq \frac{1}{2}
$$

$$
\left|X_{n} Y_{n}-P_{n}\right| \leq \frac{\beta^{-n}}{2}
$$

and the algorithm is convergent.
The sequence $p_{1} \cdots p_{n}$ is a β-representation of the most significant half of the product $X_{n} Y_{n}$.

Digits p_{j} 's are in digit set S if $\left|W_{j}\right| \leq a+\frac{1}{2}$.
Line 5 and $\left|X_{j}\right|<\frac{a}{\beta^{\delta}(\beta-1)}$ and $\left|Y_{j-1}\right|<\frac{a}{\beta^{\delta}(\beta-1)}$ imply that

$$
\left|W_{j}\right|<\frac{\beta}{2}+\frac{2 a^{2}}{\beta^{\delta}(\beta-1)} \leq a+\frac{1}{2}
$$

by hypothesis on delay δ.

On-line multiplication algorithm in negative base

Multiplication of two numbers represented in negative base $\beta<-1$ and digit set
$T=\{-a, \ldots, a\},|\beta| / 2 \leq a \leq|\beta|-1$, is computable by the classical on-line algorithm with delay δ, where δ is the smallest positive integer such that

$$
\frac{|\beta|}{2}+\frac{2 a^{2}}{|\beta|^{\delta}(|\beta|-1)} \leq a+\frac{1}{2}
$$

On-line multiplication algorithm in real base

$D=\{0, \ldots, d\}$ with $d \geq\lfloor\beta\rfloor$.
Multiplication of two numbers represented in base β with digits in D is computable by an on-line algorithm with delay δ, where δ is the smallest positive integer such that

$$
\beta+\frac{2 d^{2}}{\beta^{\delta}(\beta-1)} \leq d+1
$$

Real base on-line multiplication algorithm
Input: $x=\left(x_{j}\right)_{j \geq 1}$ and $y=\left(y_{j}\right)_{j \geq 1}$ in $D^{\mathbb{N}}$ such that $x_{1}=\cdots=x_{\delta}=0$ and $y_{1}=\cdots=y_{\delta}=0$.
Output: $p=\left(p_{j}\right)_{j \geq 1}$ in $D^{\mathbb{N}}$ such that
$\sum_{j \geq 1} p_{j} \beta^{-j}=\sum_{j \geq 1} x_{j} \beta^{-j} \times \sum_{j \geq 1} y_{j} \beta^{-j}$.
begin
1.

$$
p_{1} \leftarrow 0, \ldots, p_{\delta} \leftarrow 0
$$

2.

$W_{\delta} \leftarrow 0$
3.

$$
j \leftarrow \delta+1
$$

4.

$$
\text { while } j \geq \delta+1 \text { do }
$$

5.

$$
\left\{W_{j} \leftarrow \beta\left(W_{j-1}-p_{j-1}\right)+y_{j} X_{j}+x_{j} Y_{j-1}\right.
$$

6.

$$
p_{j} \leftarrow\left\lfloor W_{j}\right\rfloor
$$

7.

$$
j \leftarrow j+1\}
$$

end

Example $\beta=\frac{1+\sqrt{5}}{2}$. Multiplication on $\{0,1\}$ is on-line computable with delay $\delta=5$.
$x=y=.0^{5} 10101, x \times y=p=.0^{10} 101000100001$

j	$\left(W_{j}\right)_{\frac{1+\sqrt{5}}{}}^{2}$	p_{j}
6	.000001	0
7	.00001	0
8	.0010001001	0
9	.010001001	0
10	.101000100001	0
11	1.01000100001	1
12	.1000100001	0
13	1.000100001	1
14	.00100001	0
15	.0100001	0
16	.100001	0
17	1.00001	1
18	.0001	0
19	.001	0
20	.01	0
21	.1	0
22	1.0	1

Application to carry-save representation

Carry-save representation : β an integer >1, and digit set $D=\{0, \ldots, \beta\}$. Redundancy.

Real base on-line multiplication algorithm :
$\beta=2$ on $\{0,1,2\}$, delay $\delta=3$.
$\beta \geq 3$, on $D=\{0, \ldots, \beta\}$, delay $\delta=2$.
Internal additions and multiplications by a digit
can be performed in parallel.

On-line multiplication algorithm in the Knuth

number system

Multiplication of two complex numbers represented in base $\beta=i \sqrt{r}$, with r an integer ≥ 2, and digit set $R=\{-a, \ldots, a\}$, $r / 2 \leq a \leq r-1$, is computable by an on-line algorithm with delay δ, where δ is the smallest odd integer such that

$$
\begin{equation*}
\frac{r}{2}+\frac{4 a^{2}}{r^{\frac{\delta-1}{2}}(r-1)} \leq a+\frac{1}{2} \tag{1}
\end{equation*}
$$

If $r=2$ and $a=1, \delta=7$.
If $r=8$ or $r=9$ and $a=r-1, \delta=3$.
If $r=10$ and $a \geq 7, \delta=3$.
In the other cases, for $r \leq 10$ the delay is $\delta=5$.

Complex base on-line multiplication algorithm

Input: $x=\left(x_{j}\right)_{j \geq 1}$ and $y=\left(y_{j}\right)_{j \geq 1}$ in $R^{\mathbb{N}}$ such that $x_{1}=\cdots=x_{\delta}=0$ and $y_{1}=\cdots=y_{\delta}=0$.
Output: $p=\left(p_{j}\right)_{j \geq 1}$ in $R^{\mathbb{N}}$ such that
$\sum_{j \geq 1} p_{j} \beta^{-j}=\sum_{j \geq 1} x_{j} \beta^{-j} \times \sum_{j \geq 1} y_{j} \beta^{-j}$.
begin
1.

$$
p_{1} \leftarrow 0, \ldots, p_{\delta} \leftarrow 0
$$

2.

$$
W_{\delta} \leftarrow 0
$$

3.

$$
j \leftarrow \delta+1
$$

4.

while $j \geq \delta+1$ do
5.

$$
\left\{W_{j} \leftarrow \beta\left(W_{j-1}-p_{j-1}\right)+y_{j} X_{j}+x_{j} Y_{j-1}\right.
$$

6.

$$
p_{j} \leftarrow \operatorname{sign}\left(\Re\left(W_{j}\right)\right)\left\lfloor\left|\Re\left(W_{j}\right)\right|+\frac{1}{2}\right\rfloor
$$

7.

$$
j \leftarrow j+1\}
$$

end

Digit p_{j} is in R if $\left|\Re\left(W_{j}\right)\right|<a+\frac{1}{2}$.
By Line 6

$$
\Re\left(\left|W_{j}-p_{j}\right|\right) \leq \frac{1}{2} \text { and } \Im\left(W_{j}-p_{j}\right)=\Im\left(W_{j}\right) .
$$

By Line 5

$$
\left|\Re\left(W_{j}\right)\right| \leq \sqrt{r}\left|\Im\left(W_{j-1}\right)\right|+a\left(\left|\Re\left(X_{j}\right)+\Re\left(Y_{j-1}\right)\right|\right)
$$

and

$$
\left|\Im\left(W_{j}\right)\right| \leq \frac{\sqrt{r}}{2}+a\left(\left|\Im\left(X_{j}\right)+\Im\left(Y_{j-1}\right)\right|\right) .
$$

Suppose that δ is odd. Then

$$
\left|\Re\left(X_{j}\right)\right|<\frac{a}{r^{\frac{\delta-1}{2}}(r-1)} \text { and }\left|\Im\left(X_{j}\right)\right|<\sqrt{r} \frac{a}{r^{\frac{\delta+1}{2}}(r-1)}
$$

and the same holds true for Y_{j-1}.

Thus

$$
\left|\Re\left(W_{j}\right)\right| \leq \frac{r}{2}+\frac{4 a^{2}}{r^{\frac{\delta-1}{2}}(r-1)}<a+\frac{1}{2} .
$$

Suppose now that a better even delay δ^{\prime} could be achieved. Then

$$
\left|\Re\left(X_{j}\right)\right|<\frac{a}{r^{\frac{\delta^{\prime}}{2}}(r-1)} \text { and }\left|\Im\left(X_{j}\right)\right|<\sqrt{r} \frac{a}{r^{\frac{\delta^{\prime}}{2}}(r-1)}
$$

thus

$$
\left|\Re\left(W_{j}\right)\right|<\frac{r}{2}+\frac{2 a^{2}(r+1)}{r^{\frac{\delta^{\prime}}{2}}(r-1)} .
$$

This delay will work if

$$
\begin{equation*}
\frac{r}{2}+\frac{2 a^{2}(r+1)}{r^{\frac{\delta^{\prime}}{2}}(r-1)} \leq a+\frac{1}{2} . \tag{2}
\end{equation*}
$$

Suppose that the delay in (1) is of the form
$\delta=2 k+1$ and the delay in (2) is of the form
$\delta^{\prime}=2 k^{\prime}$, and set

$$
C=\frac{(r-1)(2 a+1-r)}{4 a^{2}} .
$$

Then k is the smallest positive integer such that

$$
k>\frac{\log (2 / C)}{\log (r)}
$$

and k^{\prime} is the smallest positive integer such that

$$
k^{\prime}>\frac{\log ((r+1) / C)}{\log (r)}
$$

and obviously $k<k^{\prime}$.

For $n \geq \delta, X_{n} Y_{n}-P_{n}=\beta^{-n}\left(W_{n}-p_{n}\right)$

$$
\left|\Re\left(W_{n}-p_{n}\right)\right| \leq 1 / 2
$$

and

$$
\left|\Im\left(W_{n}-p_{n}\right)\right|=\left|\Im\left(W_{n}\right)\right| \leq \frac{\sqrt{r}}{2}+\sqrt{r} \frac{2 a^{2}}{r^{\frac{\delta+1}{2}}(r-1)}
$$

thus the algorithm is convergent, and $p_{1} \cdots p_{n}$ is a β-representation of the most significant half of $X_{n} Y_{n}$.

Example $\beta=2 i$ and $R=\{\overline{2}, \overline{1}, 0,1,2\} . \delta=5$.
$x=.0^{5} 1 \overline{2} 0 \overline{1} 201$ and $y=.0^{5} 1 \overline{1} 00121$.
$x \times y=p=.0^{10} 1111 \overline{1} 1 \overline{1} 2 \overline{1} \overline{1} \ldots$

j	$\left(W_{j}\right)_{2 i}$	p_{j}
6	. 000001	0
7	. 0001112	0
8	. 001112	0
9	. $01112 \overline{1} 1$	0
10	. $11110000 \overline{1} 2$	0
11	$1.1110120 \overline{2}$	1
12		1
13	$1.1 \overline{1} 1 \overline{1} 2 \overline{1} 1011121$	1
14	1. $111 \overline{1} 2 \overline{1} 1 \overline{1} 1{ }^{\text {a }} 21$	1
15	$\overline{1} .1 \overline{1} 2 \overline{1} 1 \overline{1} \overline{1} 21$	$\overline{1}$
16	1. $12 \overline{1} 1 \overline{1} 1{ }^{1} 21$	1
17	$\overline{1} .2 \overline{1} 111 \overline{1} 21$	$\overline{1}$
18	2.15111121	2
19	1.1込 21	$\overline{1}$

