
Numbers as streams of digits

Christiane Frougny
LIAFA, Paris

Representing streams
Lorentz Center

Leiden
10–14 December 2012



We do not bathe twice in the same stream. Heraclitus

Il n’y a que les mots qui comptent, le reste n’est que bavardage.
Only words matter, the rest is just a stream of idle chatter.
Eugène Ionesco



Representation of numbers

Elements of a subset of C represented by streams of digits

◮ Positional numeration systems
◮ base β in C, |β| > 1
◮ basis U = (un)n>0

◮ Continued fractions
◮ Residue number system
◮ Logarithmic number system
◮ Abstract numeration systems
◮ . . .

Representations can be finite, or right infinite, or left infinite
strings (words) of digits.



Positional numeration systems

Basis U = (un)n>0, un ∈ C

A U-representation of x ∈ C on a set D of complex digits can
be

◮ a finite word dk · · · d0, with di ∈ D, such that x =
∑k

i=0 diui

◮ or a right infinite word d1d2 · · · , with di ∈ D, such that
x =

∑∞
i=1 diui

◮ or a left infinite word · · · d1d0, with di ∈ D, x =
∑∞

i=0 diui

Most significant digit on the left side.



Representability

Given a base or a basis, an algorithm A and a set S ⊂ C:
◮ Does any element of S has an expansion by algorithm A?
◮ What is the canonical digit set produced by algorithm A?
◮ What is the set A(S) of expansions by A of the elements

of S?



Representability

Given a base or a basis, an algorithm A and a set S ⊂ C:
◮ Does any element of S has an expansion by algorithm A?
◮ What is the canonical digit set produced by algorithm A?
◮ What is the set A(S) of expansions by A of the elements

of S?

Algorithm A :
◮ greedy algorithm G, produces most significant digit first
◮ modified Euclidean Division algorithm D, produces least

significant digit first.



U = (un)n>0 with un = βn.

Integer base β > 1 in N

◮ By algorithms G and D, every element of N has a unique
finite expansion dk · · · d0, with dk 6= 0, di in the canonical
digit set A = {0,1, . . . , β − 1}, 0 6 i 6 k .
G(N) = D(N) = (A \ {0})A∗.

◮ By algorithm G every element of [0,1] has a right infinite
expansion (di)i>1, di ∈ A (and thus every element of R+).
G([0,1]) = AN \ A∗(β − 1)ω.

◮ Every element of Q+ has an eventually periodic right
infinite greedy expansion on A.

◮ By algorithm D every element of Q has an eventually
periodic left infinite expansion on A (p-adic expansion).



Real base β > 1
◮ By algorithm G every element of [0,1] has a right infinite

expansion (di)i>1, di in the canonical digit set
A = {0,1, . . . , ⌈β⌉ − 1} (and thus every element of R+).

◮ Not every infinite word on A is admissible: G([0,1]) ( AN.
When β is a Pisot number, G([0,1]) with the shift forms a
sofic dynamical system, i.e., the set of finite factors of
G([0,1]) is recognizable by a finite automaton (Bertrand).

◮ When β is a Pisot number, every element of Q(β)∩R+ has
an eventually periodic expansion (Boyd).

◮ For some Pisot numbers, for instance the golden mean,
every element of Z(β) ∩ R+ has a finite expansion.



Example The golden mean shift: system of finite type. Local
automaton.

0 1
1

0

0

Example The β-shift for β = 3+
√

5
2 : sofic system not of finite

type. Non-local automaton.

0 1
2

0

0,1 1



Basis U = (un)n>0 with u0 = 1, un ∈ N, strictly increasing: every
positive integer has a finite U-expansion by a greedy algorithm
(Fraenkel).
Example U is the sequence of Fibonacci numbers with digit set
{0,1}.



Basis U = (un)n>0 with u0 = 1, un ∈ N, strictly increasing: every
positive integer has a finite U-expansion by a greedy algorithm
(Fraenkel).
Example U is the sequence of Fibonacci numbers with digit set
{0,1}.
Example Factorial numeration system: un = n!, digit set = N.



Basis U = (un)n>0 with u0 = 1, un ∈ N, strictly increasing: every
positive integer has a finite U-expansion by a greedy algorithm
(Fraenkel).
Example U is the sequence of Fibonacci numbers with digit set
{0,1}.
Example Factorial numeration system: un = n!, digit set = N.

Basis U = (un)n>0 with un ∈ R+, summable and strictly
decreasing (Muller), by a greedy algorithm.
Example un = log(1 + 2−n), A = {0,1}: representation of
positive reals by an infinite word on A.



Basis U = (un)n>0 with u0 = 1, un ∈ N, strictly increasing: every
positive integer has a finite U-expansion by a greedy algorithm
(Fraenkel).
Example U is the sequence of Fibonacci numbers with digit set
{0,1}.
Example Factorial numeration system: un = n!, digit set = N.

Basis U = (un)n>0 with un ∈ R+, summable and strictly
decreasing (Muller), by a greedy algorithm.
Example un = log(1 + 2−n), A = {0,1}: representation of
positive reals by an infinite word on A.

Negative base, complex base...



Rational base p
q > 1

◮ By G every positive real has an aperiodic expansion on
{0,1, . . . , ⌈p

q ⌉ − 1}.
◮ By D every positive integer has a unique finite expansion

on {0,1, . . . ,p − 1} (Akiyama, Frougny, Sakarovitch).
The set of expansions of elements of N is not context-free.

◮ By D every element of Q has an eventually periodic left
infinite expansion.



Distance on the set of infinite words

Prefix distance on AN:

ρ(v ,w) =

{
2−r where r = min{i | vi 6= wi}
0 if v = w

AN is metric compact.



Distance on the set of infinite words

Prefix distance on AN:

ρ(v ,w) =

{
2−r where r = min{i | vi 6= wi}
0 if v = w

AN is metric compact.

Addition on R is continuous, but, addition of expansions base 2
and digit set {0,1} is not continuous for the prefix distance.

0(1)k0ω + 0ω = 0(1)k0ω

0(1)k0ω + (0)k10ω = 10ω



On-line functions
A function ϕ : AN → BN is on-line computable with delay δ if
∃δ ∈ N such that (bn)n>1 = ϕ((an)n>1) iff ∀n > 1 there exists
Φn : An+δ → B with bn = Φn(a1 · · · an+δ).

The digit at instant n depends only on the past, and not on the
future. On-line arithmetic allows the pipelining of different
operations such as addition, multiplication and division,
because the processing is Most Significant Digit First. Well
adapted to real numbers.

On-line denumerable transducer:
q0

a1|ε−→ q1
a2|ε−→ q2 · · ·

aδ|ε−→ qδ
︸ ︷︷ ︸

transient part

aδ+1|b1−→ qδ+1
aδ+2|b2−→ qδ+2 · · ·

︸ ︷︷ ︸

synchronous part

Proposition
A function on-line computable with delay δ is 2δ-Lipschitz, and
thus uniformly continuous.



Numerical value in base β > 1:
πβ : AN → R with πβ((an)n>1) =

∑

n>1 anβ
−n.

If the following diagram commutes, ϕR is the real realization of
ϕ in base β

AN ϕ−−−−→ BN



yπβ



yπβ

πβ(AN)
ϕR−−−−→ πβ(BN)

Proposition (Eilenberg)
If ϕ is continuous than ϕR is continuous.



Finite transducers

A function ϕ : AN → BN is computable by a transducer
T = (Q,A∗ × B∗,E , I,F ) if the graph of ϕ is the set of labels of
infinite paths starting in I and going infinitely often in F .
T is finite if E and Q are finite.

Example Addition of reals base 2 and digit set {0,1} =
conversion from {0,1,2} to {0,1}

0 1

0 |1

2 |0

0 |0,1 |1 1 |0,2 |1



Sequentiality
T = (Q,A∗ × B∗,E , I,F ) is sequential if |I| = 1, F = Q, and it is
input deterministic.
Processing from left to right: left sequential.

Example Division by 3 in base 2 and digit set {0,1}.

0 1 2

1 |0

1 |1

0 |0 1 |1

0 |0

0 |1

Proposition
A function computable by a finite sequential transducer is
uniformly continuous.



Right sequentiality

Processing from right to left

Example Addition in base 2 and digit set {0,1}.

1 0

0 |1

2 |0

1 |0,2 |1 0 |0,1 |1



Theorem
Any function computable by a finite transducer can be obtained
by the composition of a finite right sequential transducer and a
finite left sequential transducer.

Finite words: Elgot and Mezei
Infinite words: Carton



On-line finite transducer
Particular left sequential finite transducer.
Example Tent function in base 2 and digit set {0,1}.

f (x) =
{

2x if 0 6 x 6 1/2
−2x + 2 if 1/2 6 x 6 1

1 |ε

0 |1,1 |0 0 |0,1 |1

0 |ε

3
4
= .110ω 7→ 1

2
= .01ω

3
4
= .101ω 7→ 1

2
= .10ω



In positive integer base, addition, multiplication by a fixed
integer, division by a fixed integer are computable by an on-line
finite transducer.

Theorem (Muller)
The real realization of a function computable by an on-line finite
transducer (in integer positive base) is a piecewise affine
function whose coefficients are rational numbers.



Conversion base 4 → base 2 is

1. left sequential and right sequential

0

0 |00,1 |01,2 |10,3 |11



Conversion base 4 → base 2 is

1. left sequential and right sequential

0

0 |00,1 |01,2 |10,3 |11

2. on-line computable with delay 0
an ∈ {0, . . . ,3}, an = a(1)

n a(2)
n , a(1)

n ,a(2)
n ,bn ∈ {0,1},

ϕ((an)) = bn with b2n−1 = a(1)
n and b2n = a(2)

n

Uses a queue: ε
2|1−→ 0

3|0−→ 11
0|1−→ 100

1|1−→ 0001 · · ·



Conversion base 4 → base 2 is

1. left sequential and right sequential

0

0 |00,1 |01,2 |10,3 |11

2. on-line computable with delay 0
an ∈ {0, . . . ,3}, an = a(1)

n a(2)
n , a(1)

n ,a(2)
n ,bn ∈ {0,1},

ϕ((an)) = bn with b2n−1 = a(1)
n and b2n = a(2)

n

Uses a queue: ε
2|1−→ 0

3|0−→ 11
0|1−→ 100

1|1−→ 0001 · · ·
3. not computable by a finite on-line transducer



Local functions

ϕ : AZ → BZ is a p-local function if ∃r , t > 0, and ∃Φ : Ap → B,
with p = r + t + 1, such that

(bn)n∈Z = ϕ((an)n∈Z)) ⇐⇒ ∀n ∈ Z, bn = Φ(an+t · · · an−r ).

The image of (an)n∈Z) by ϕ is obtained through a sliding
window of length p.
r is the memory and t is the anticipation of ϕ.
ϕ is called a sliding block code.



Local functions

ϕ : AZ → BZ is a p-local function if ∃r , t > 0, and ∃Φ : Ap → B,
with p = r + t + 1, such that

(bn)n∈Z = ϕ((an)n∈Z)) ⇐⇒ ∀n ∈ Z, bn = Φ(an+t · · · an−r ).

The image of (an)n∈Z) by ϕ is obtained through a sliding
window of length p.
r is the memory and t is the anticipation of ϕ.
ϕ is called a sliding block code.
Locality ensures robustness: no propagation of errors.

A local function on finite words is computable by a parallel
algorithm.

Proposition
A p-local function is computable by a finite on-line transducer
with delay p − 1. The input automaton is local.



Signed-digit representations

Base 10 and digit-set {−5, . . . ,0, . . . ,5} Cauchy 1840

Base 10 and digit-set {−6, . . . ,0, . . . ,6} Avizienis 1961

Base 2 and digit-set {−1,0,1} Chow and Robertson 1978

In integer base b, b > 3, parallel addition on alphabet
{−a, . . . ,0, . . . ,a}, b/2 < a 6 b − 1 is possible by Avizienis
algorithm. It is a 2-local function.

In integer base b = 2a, b > 2, parallel addition on alphabet
{−a, . . . ,0, . . . ,a} is possible by Chow and Robertson
algorithm. It is a 3-local function.

Redundancy
No propagation of the carry.



On-line finite transducer with delay 1 realizing addition in base

3 on {2̄, . . . ,2}: p
x|y−→ q ⇔ 3p + x = 3y + q

ε 0 1

1̄

0 |ε

0 |0,3 |1, 3̄ | 1̄ 4 |2,1 |1, 2̄ |0

4̄ | 2̄,2 |0, 1̄ | 1̄

4 |1,1 |0, 2̄ | 1̄

3 |2,0 |1, 3̄ |0

1̄ |1,2 |2, 4̄ |0

2̄ | 2̄,4 |0,1 | 1̄

3̄ | 2̄,0 | 1̄,3 |0
2 |1, 1̄ |0, 4̄ | 1̄



Parallel addition

Theorem (Frougny, Pelantová, Svobodová)
Let β ∈ C with |β| > 1 be an algebraic number. If all its
algebraic conjugates have modulus 6= 1 one can find an
alphabet of contiguous integer digits on which addition can be
done in parallel.

Redundancy is necessary.
We have some lower bounds on the minimality of the cardinality
of the digit set.
The result is not necessarily admissible.

Example Addition in base the golden mean:
◮ on the minimal alphabet {−1,0,1} is a 21-local function
◮ on {−3, . . . ,3} is 13-local
◮ on {−5, . . . ,5} is 9-local.



On-line addition

Suitable for real numbers.

◮ In real base ±β, β > 1, addition is on-line computable on
{0, . . . , ⌊β⌋} (the result is not admissible).

◮ If β is a Pisot number, the on-line transducer is finite.
◮ To get an admissible result, normalization is necessary:

If β is a Pisot number, normalization is computable by a
finite transducer, which is neither left nor right sequential.



Successor function = addition of 1
In integer base the successor function 〈n〉 7→ 〈n + 1〉 is
realizable by a right sequential letter-to letter finite transducer.
Successor function base 2:

0 1 ε
1 |0

0 |1

0 |1

1 |0

0 |0,1 |1



Successor function = addition of 1
In integer base the successor function 〈n〉 7→ 〈n + 1〉 is
realizable by a right sequential letter-to letter finite transducer.
Successor function base 2:

0 1 ε
1 |0

0 |1

0 |1

1 |0

0 |0,1 |1

Theorem (Angrand and Sakarovitch)
Let L be a language ordered by the radix order and
recognizable by a finite automaton. The successor function on
L is realizable by a finite union of right sequential finite
transducers with disjoints domains.
Application: L is the set of expansions of N in a given
numeration system.



Multiplication

◮ Multiplication is not computable by a finite transducer
◮ Multiplication is on-line computable

◮ in positive integer base b > 2 on {−a, . . . , 0, . . . , a},
b/2 6 a 6 b − 1 (Ercegovac and Trivedi)

◮ in negative integer base (−b) on {−a, . . . , 0, . . . , a},
b/2 6 a 6 b − 1

◮ in real base β > 1 on {0, . . . , ⌊β⌋}. (The result is not
admissible)

◮ in the Knuth number system of base i
√

b, b > 2 integer, on
{−a, . . . , 0, . . . , a}, b/2 6 a 6 b − 1

◮ in the Penney numeration system of base −1 + i on
{−1, 0, 1} (Surarerks)

Redundancy is necessary



Concluding remarks
Numbers can be seen as streams or flows of digits, either one
by one most significant digit first, or looked at through a sliding
window.
For application to algorithms, sequentiality and synchronicity
are important, as well as finite memory when it is possible.

◮ On-line functions: most significant digit first, well adapted
to real numbers with infinite expansions. Pipelining with
addition, multiplication and division...

◮ Local functions: sliding window, parallel algorithms,
adapted to arithmetical circuits. Internal additions in on-line
algorithm.

Both need redundancy.
Some questions:

◮ Find a “good" model for multiplication
◮ What are the functions computable by an on-line

transducer with queue memory?
◮ Compromise between the size of the digit set and the size

of the window for local functions?


