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Signed-digit representations

Base 10 and digit-set {—5,...,0,...,5} Cauchy 1840
Base 10 and digit-set {—6,...,0,...,6} Avizienis 1961

Base 2 and digit-set {—1,0,1} Chow and Robertson 1978
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Redundancy



Algorithm of Avizienis 1961

Base 5 = b, b > 3 integer, parallel addition on alphabet
A={-a,...,0,...,a},b/2<a<b-1

Input: Xn - - - Xm and yp -+ Ym in A’_*, m < n,
x =Y xfandy =3 vy3.
Output: z, 41 - - - Zm in A* such that

n+1 _
z=x+y=)Y zf.

i=m

for each i in parallel do

0. Zi := X tYi
1. if zzzathenqgi:=1,r:=z —b
ifz<—-atheng :=-1,r:=2z+b

if —a+l1<zi<a—1thenqi:=0,r =z
2. Zi:=(0ji—1+T



Avizienis
g = 10, digit-set {—6,...,0,...,6}

X 2 5 2 5 5 6 0 3
y 51 2 2 5 4 0 6 5
z - 53 7 410 9 6 6 8
0 — 1 10

0 — 1 10

0 — 1 10

0 — 1 10

0 — 1 10
0 — 1 10
z - 54 3 3 1 2 3 3 2

Minimal polynomial of 5 is X — 10

1 (10) is a (strong) representation of O



Algorithm of Chow and Robertson 1978

Base f = b = 2a, a > 1, parallel addition on
A={-a,...,0,...,a}.

Input: Xn - - - Xm and yp -+ Ym in A’_*, m < n,
Koy andy = S |
Output: Zyy1---zm in A*suchthatz =x +y = Y"1z 4.

for each i in parallel do

0. z:=X+Yi

1. ifa+1l<zig<bthenqgi:=1,r:=2z—-b
if -b<zi<—-a-1thenqgi:=-1,r:=2z+Db
if —-a+1<zig<a—-1lthenq:=0,r1:=z
ifzi=aandz_, >0thenqg;:=1,r:=-a
ifz=aandz_,<0thengqg:=0,r:=a
if zi=—aandz_,<0thengi:=-1,r:=a
ifzz=—-aandz_,>0thenqgi:=0,r:=-a

2. Zi:=(i_1+T



Chow and Robertson (Cauchy)

g =10, digit-set {-5,...,0,...,5}
X 2 510 3 2 0 3
y = 13 1 25 5 3 5
z — 15 6 15 8 5 5
0 — 1 10
0 — 1 10
0 — 1 10
0 — 1 10
0 — 1 10
z — 14 4 1 4 3 4 4 2



Excursion into symbolic dynamics

A subset S C A% is a symbolic dynamical system if it is closed
and shift-invariant.

S C AZand T C BZ symbolic dynamical systems.

¢ :S — T is ap-local function if 3r,t > 0, and 3¢ : AP — B,
with p = r +t + 1, such that if u = (u;)icz € A% and

vV = (Vj)iez € BZ, then

V=oy(U) < VieZ, vi=®(Ujst - U_r).

The image of u by ¢ is obtained through a sliding window of
length p.

r is the memory and t is the anticipation of .

v is called a sliding block code.
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Excursion into symbolic dynamics

A subset S C A% is a symbolic dynamical system if it is closed
and shift-invariant.

S C AZand T C BZ symbolic dynamical systems.

¢ :S — T is ap-local function if 3r,t > 0, and 3¢ : AP — B,
with p = r +t + 1, such that if u = (u;)icz € A% and

vV = (Vj)iez € BZ, then

V=oy(U) < VieZ, vi=®(Ujst - U_r).

The image of u by ¢ is obtained through a sliding window of
length p.

r is the memory and t is the anticipation of .

v is called a sliding block code.

A function is computable in parallel iff it is a local function.
A local function is computable by a finite sequential transducer.



Differences between the two algorithms

Decision (choice) in step 1:
» Avizienis algorithm is neighbour free.
» Chow and Robertson algorithm is neighbour sensitive.

Locality : Addition on A is a function from (A + A)Z to A%

» Avizienis addition is 2-local.
» Chow and Robertson addition is 3-local.



Strong representation of zero property

Base /3 algebraic number with || > 1.

Definition
[ satisfies the strong representation of zero property (5 is SRZ)
if there exist integers by, bx_1,...,b1,bg,b_1,...,b_} such that

[ is a root of the polynomial
S(X) = b X by X* e by X +bg+b_y X 14+ b X N

and
B=bo>2) [bj]=2M.
i£0
The polynomial S is said to be a strong polynomial for 3.



Strong representation of zero property

Base /3 algebraic number with || > 1.

Definition
[ satisfies the strong representation of zero property (5 is SRZ)
if there exist integers by, bx_1,...,b1,bg,b_1,...,b_} such that

[ is a root of the polynomial
S(X) = b X by X* e by X +bg+b_y X 14+ b X N

and
B=bo>2) [bj]=2M.
i£0
The polynomial S is said to be a strong polynomial for 3.

(bxbk—1---bibg:b_1---b_p)g=0



Suppose that g is SRZ, i.e. B > 2M.
Working alphabet A = {-a,...,0,...,a}

with
a =[5+ |y | M.
Let
a'=[85t] and c= [%w

Thena =a’ + cM.
A'={-a,...,0,...,a'} C Aistheinner alphabet.



Parallel addition for base 5 SRZ on

A={-a...,0,. . aha= 32+ | 25| M

—_——

/
a c

Algorithm (S)

Input: Xn - - - Xm and yp -+ Ym in A’f‘, with m < n,
x =Y xfandy =3 vyg. _
OUtpUt: Znsk - Zm_p iN A* suchthatz = x +y = MK 7,80,

i=m—h
for each i in parallel do
0. zi:=X+Y,;
1. findq € {-c,...,0,...,c} suchthatz —qB € A’
k

2. 7,:=2 — . thi_jbj
J:_



Parallel addition for base 5 SRZ on

A={-a...,0,. . aha= 32+ | 25| M

—_——

/
a c

Algorithm (S)

Input: Xn - - - Xm and yp -+ Ym in A’f‘, with m < n,
x =Y xfandy =3 vyg. _
OUtpUt: Znsk - Zm_p iN A* suchthatz = x +y = MK 7,80,

i=m—h
for each i in parallel do
0. zi:=X+Y,;
1. findq € {-c,...,0,...,c} suchthatz —qB € A’
k

2. 7,:=2 — . thi_jbj
J:_

Algorithm (S) is neighbour free.



Integer base

8 = b integer > 3 is SRZ for the polynomial —X + b, and
Algorithm (S) works with ¢ = 1, &’ = [251], and a = [2F1].

for each i in parallel do

0. z:=X% +i

1. find g; € {—1,0,1} such that z; — gib € A’
2. 7,:=2 — q.b +di-1

Algorithm (S) is the algorithm of Avizienis with a = [231].



For g = 2, —X + 2 is not a strong polynomial. But 3 satisfies
the strong polynomial
—X%+a4.

So Algorithm (S) works for base 2 on {-3,...,0,...,3}.



For g = 2, —X + 2 is not a strong polynomial. But 3 satisfies
the strong polynomial
—X%+a4.

So Algorithm (S) works for base 2 on {-3,...,0,...,3}.
Remind that the Chow and Robertson algorithm works with

smaller alphabet {—1,0, 1}, but need to examine the right
neighbour of current position.



The Golden Mean

3 = 12/5 the Golden Mean.
Every real number > 0 has an expansion on alphabet {0,1}.

8 is one root of X2 — X — 1, the second root is 3’ = 1‘7‘/5 = —%.
Since g% + (8')* = 7, B is a root of the strong polynomial

S(X)=-X*+7-4

withB=7andM =2. Thusc =1,a’ = 3,anda=>5. The
working alphabet of Algorithm (S)is A = {-5,...,0,...,5}.

100070001 is a strong S-representation of 0.
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Locality

Corollary

If 5 is SRZ with strong polynomial

S(X) = b XX +by_ XK 14 by X +bo+b_1 X 14 4b_pX N
then addition realized by Algorithm (S) is a (h + k + 1)-local
function from {—-2a,...,0,...,2a}” to AZ.



Reduction of the alphabet

Definition

0 satisfies the weak representation of zero property (6 is WRZ)
if there exist integers by, bx_1,...,b1,bg,b_1,...,b_} such that
[ is a root of the polynomial

W (X) = beX Kby X* 14 by X +bo+b_1 X 1+, +b_pX "

and
B:b0>2|bi‘:|\/|.
i#0
The polynomial W is said to be a weak polynomial for 3.



Bis WRZ, i.e. B > M. Working alphabet

A:{_a7---707"'7a}7 Where a= [%-‘ +

<

Inner alphabetis A’ = {-a’,...,0,...,a} witha’ = [E51].

Algorithm (W) works with {B 'V'W iterations.



Parallel addition for base g WRZ on
A={-a,...,0,...,a},a=[B2]+M
N——
a/
Algorithm (W)

Input: Xn - - - Xm and yp -+ -Ym in Af, withm < n
X = Zin:m xip'andy = Zin:m yiB'.

Output: Zn 4k - - - Zm—p in A* such that

n—+k

z=x+y= > zf.

i=m—h
for each i in parallel do
0. zi:=X+Y,;
1. for/:=1to {ﬁw do
ifz eA’then Qi .—OeI se gj ;= sgnz;
Zi . =Zj — ZJ——h gi—jb



Example
5 = /5, the Golden Mean.

Since —3% +3 — % = 0, g is a root of the weak polynomial

W(X)=-X*+3- %

withB=3and M =2. Thusa' =1, and a = 3.
Algorithm (W) workson A = {-3,...,0,...,3}, with 3
iterations.

10301 is a weak S3-representation of 0.
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Corollary

If 5 is WRZ with weak polynomial W (X) =

biXK + b1 XK1+ ... 4+ bX +bg+b_1 X1+ 4+b X"
then addition realized by Algorithm (W) is a

(h [ﬁw +k {ﬁw + 1)-local function from
{-2a,...,0,...,2a}” to AZ.
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Algorithm (W) is neighbour free.



Corollary

If 5 is WRZ with weak polynomial W (X) =

biXK + b1 XK1+ ... 4+ bX +bg+b_1 X1+ 4+b X"
then addition realized by Algorithm (W) is a

(h [ﬁw +k {ﬁw + 1)-local function from
{-2a,...,0,...,2a}” to AZ.

Algorithm (W) is neighbour free.

Remark
Algorithm (S) and Algorithm (W) coincide if, and only if,
B>4M — 1.

Example
» If b integer > 3, —X + b is a strong polynomial for b.
Algorithm (S) and Algorithm (W) coincide with
A={-a,...,a},a=[2H].

» Forb =2, —X + 2 is a weak polynomial. Algorithm (W)
works with A = {—2,—1,0, 1,2} with 2 iterations.



What numbers are SRZ (or WRZ)?

Theorem

Let 5 with |3| > 1 be an algebraic number.

£is SRZ (or WRZ) < all its algebraic conjugates have
modulus # 1.

The proof gives a constructive method to obtain a strong (or
weak) polynomial from the minimal polynomial of 3.



What numbers are SRZ (or WRZ)?

Theorem

Let 5 with |3| > 1 be an algebraic number.

£is SRZ (or WRZ) < all its algebraic conjugates have
modulus # 1.

The proof gives a constructive method to obtain a strong (or
weak) polynomial from the minimal polynomial of 3.

Remark
Let 8 with |3| > 1 be an algebraic number of degree d.

» If d is odd or
» ifd =2or

» if d is even > 4 and the minimal polynomial of g is not
reciprocal,

then 5 has no conjugate of modulus 1.



The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base
the Golden Mean on {0,1,...,12}.
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The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base
the Golden Mean on {0,1,...,12}.

It is known that it is not possible to perform parallel addition in
base the Golden Mean on {0, 1}.

We give Algorithm (G) for parallel addition in base the Golden
Mean on {—1,0, 1}. This algorithm is neighbour sensitive.

We use the weak representation of zero —/32 + 3 — % =0.



Algorithm A: Base g = 1+T\/§ reduction from {—2,—-1,0,1,2} to
{-1,0,1,2}.

Input: a finite sequence of digits (z;) of {—2,-1,0, 1,2}, with
z=>zp"

Output: a finite sequence of digits (z;) of {—1,0,1, 2}, with
z=>zp"

for each i in parallel do

Zi= -2
1. case( z;=-1 t hen
zi=0 andzj,, <0 andz_,<0

Qi = -1

elseq :=0
2. 2i:=2 —30i +Uiy2 +0i2



Algorithm B: Base g = 1+T‘£ reduction from {—1,0,1,2} to
{-1,0,1}.

Input: a finite sequence of digits (z;) of {—1,0,1, 2}, with
z =Y z4.
Output: a finite sequence of digits (z;) of {—1,0, 1}, with
z =Y z4.

for each i in parallel do

1. case

zi=2

zi=1 and (zi4z2 =21 or zj_, > 1)

zi =0 and Ziyo =12Zj_p= 2
zz=0andz,,=2z_,=1andzj4>1 andzi4>1
zi=0andz,,=2andz_,=1andz_4>1
zz=0andz_,=2 andz,,=1 andz,4>1
thengi:=1

elseq :=0
2. 2i:=2 —30i +Uiy2 +0i2



Algorithm G: Base 5 = ‘[, parallel addition on
A={-1,0,1}.

Input: two finite sequences of digits (x;) and (y;) of {-1,0,1},
withx = > x5 andy = > yij'.
Output: a finite sequence of digits (z;) of {—1,0,1} such that

z=x+y=)Y zf.

for each i in parallel do

0. Vvi=X +Y,;

1. use Algorithm A with input (v;) and output (w;)
2. use Algorithm B with input (w;) and output (z;)



Addition in base the Golden Mean on {—1,0,1} realized by
Algorithm G is a 21-local function.



Addition in base the Golden Mean on {—1,0,1} realized by
Algorithm G is a 21-local function.

Algorithm S on {-5,...,5}: 9-local

Algorithm W on {-3,...,3}: 13-local



Minimal alphabets for parallel addition

A alphabet of contiguous integer digits containing O.
g algebraic number, |5 > 1.

» J =Db > 2 integer, any alphabet of cardinality b + 1 is
minimal.
Example: A={-1,0,...,b—1}or{0,...,b—1,b}
Addition is a 3-local function.

» [ is the Golden Mean: A = {—1,0,1} is minimal.



Lower bounds

A finite alphabet of contiguous integers containing 0 with at
least two elements.
g algebraic number, |5| > 1

Theorem

1. 5 areal algebraic number > 1. If addition on A is
computable in parallel then

#A > 5]

2. [ an algebraic integer with minimal polynomial f(X).
If addition on A is computable in parallel then

#A > [f(1)]
If 3 is a real algebraic integer then

#A>f(1)|+2



In the previous theorem
1. “#A > [F]" can be replaced by

“#A = max{[y]|~yor ~~!is a positive conjugate of B}".

2. “fis an algebraic integer" can be replaced by “5 or % is an
algebraic integer”
“# is an algebraic integer > 1" can be replaced by “3 is an
algebraic integer and one of its algebraic conjugates is
> 1"



Addition versus conversion
A={m,...,0... M}
1. m = 0: Addition on A is parallelizable <
greatest digit elimination: AU{M +1} - A

is parallelizable.
2. {—1,0,1} c A: Addition on A is parallelizable <

greatest digit elimination: AU{M + 1} — A
and
smallest digit elimination: {m -1} U A — A

are parallelizable.



How to pass from one alphabet allowing parallel
addition to another one of same size

Proposition
ForK,d € Z, where 0 <d < K — 1, denote

Ag=1{d,....0,....K -1-d}.

Let ¢ be a p-local function realizing conversion in base g from
Ao U{K} to Ap. If
» o(“d ed¥) =vd ed“ and
» p(“(K—-1—-d)e(K—-1—-d)¥) =
YK—-1-d)e(K—-1-d)¥
then addition is performable in parallel on A_4 as well.



Positive integer base

B =Db, b > 2 integer. Minimal polynomial f(X) = X — b.
Lower bound [f(1)| +2 = b + 1 is attained.

Parallel addition is feasible on any alphabet of cardinality b + 1
containing O, in particular on alphabets A = {0,1,...,b} and
A={-1,0,1,...,b — 1} (folklore).

If b is even, b = 2a, parallel addition is realizable on the
alphabet A = {—a,...,a} of cardinality b + 1 by the algorithm
of Chow and Robertson (see Cauchy).



Negative integer base

8 =—b,b > 2integer.
Every integer has a unique finite representation with digits in
{0,1,...,b — 1} (Grinwald 1885).

Minimal polynomial f(X) = X + b. Lower bound [f(1)] =b +1
is attained.

Theorem

Let 5= —b € Z, b > 2. Any alphabet A of contiguous integers
containing O with cardinality #.4 = b + 1 allows parallel
addition in base 5 = —b and this alphabet is minimal in size.



Parallel addition on {0, ...,b}: It is enough to show that
greatest digit elimination between {0,...,b+ 1} to {0,...,b}is
performable in parallel.

Algorithm N: Base g = —b, greatest digit elimination from
{0,...,b+1}t0{0,...,b}.

Input: a finite sequence of digits (z;) of {0,...,b + 1}, with
z=>zp"

Output: a finite sequence of digits (z;) of {0,...,b}, with
z=>zp"

for each i in parallel do

Zi=b+1 L
1. Case{zi:bandzi_lzo }thenq,._l
ifz=0and zi_y>bthenqg :=-1
el seq :=0;

2. Zi:=Z—bgi—qg_1




Base v/b, b integer, |b| > 2

Proposition

Let 3= vb,binZ, |b| > 2and k > 1 integer. Any alphabet A
of contiguous integers containing 0 with cardinality #4=b + 1
allows parallel addition.

Use thaty = g = b.

Proposition
If b is in N the polynomial XX — b is minimal for 3, thus the
cardinality b + 1 is minimal.



Complex bases
Penney numeration system (1964): every integer has a unique
finite expansion in base g = —1 + ¢ with digits in {0, 1}.

: 3=1101.
Minimal polynomial f(X) = X2 4 2X + 2, and lower bound
=[f(1)| = 5.

(% = —4. Parallel addition is possible on any alphabet of
minimal cardinality 5.
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Minimal polynomial f(X) = X2 4 2X + 2, and lower bound
=[f(1)| = 5.

(% = —4. Parallel addition is possible on any alphabet of
minimal cardinality 5.

Knuth numeration system (1955): 5 = 2: with digits in
{0,...,3}.

Minimal polynomial f(X) = X? + 4, and lower bound
=|f(1)| = 5. Parallel addition is possible on any alphabet of
minimal cardinality 5.



Complex bases
Penney numeration system (1964): every integer has a unique
finite expansion in base g = —1 + ¢ with digits in {0, 1}.

: 3=1101.
Minimal polynomial f(X) = X2 4 2X + 2, and lower bound
=[f(1)| = 5.

(% = —4. Parallel addition is possible on any alphabet of
minimal cardinality 5.

Knuth numeration system (1955): 5 = 2: with digits in
{0,...,3}.

Minimal polynomial f(X) = X? + 4, and lower bound
=|f(1)| = 5. Parallel addition is possible on any alphabet of
minimal cardinality 5.

B = 1v/2 with digits in {0, 1}.

Minimal polynomial f(X) = X? + 2, and lower bound
=[f(1)| = 3. Parallel addition is possible on any alphabet of
minimal cardinality 3.



frootof X2 =aX —1,a>3

B is a quadratic Pisot unit.

By the greedy algorithm of Rényi 1957, every positive real has
an expansion on the canonical alphabetC = {0,...,a — 1}.
Uniqueness iff avoids any string of the form
(a—1)(a—2)%@-1).

If no admissibility condition, then redundancy, which is
sufficient.

Minimal polynomial f(X) = X? — aX + 1 and lower bound =
f(1)|+2=a
Theorem

Srootof X2 =aX —1,a> 3. Every alphabet of size a
containing O allows parallel addition.



prootof X2=aX +1,a>1

[ is a quadratic Pisot unit.

Every positive real has an expansion on the canonical alphabet
Cc=A{0,...,a}.

Uniqueness iff avoids any string of the form al.

If no admissibility condition, then redundancy, but it's not
sufficient.

a = 1. Golden Mean. Minimal alphabet has size 3.
Minimal polynomial f(X) = X? —aX — 1 and lower bound =

f(1)|+2=a+2

Theorem
B root of X2 = aX + 1, a > 1. Every alphabet of size a + 2
containing O allows parallel addition.



Rational base § =a/b

By a modification of the Euclidean division algorithm any
natural integer has a unique and finite expansion on the
alphabet {0,...,a— 1} in base g = a/b (Akiyama, Frougny and
Sakarovitch 2008; Frougny and Klouda 2011).

: 8 =3/2,then4 =21

If b > 2, a/b is an algebraic number which is not an algebraic
integer, so our lower bound is [a/b], which is not attained.

Theorem

In base 8 = a/b, with a and b co-prime such thata > b > 1,
the only alphabets of minimal cardinality a + b allowing parallel
addition are:

» {0,...,a+b—-1}and{-a—b+1,...,0}
» every alphabet of cardinality a + b containing
{=b,...,0,...,b}.



Negative rational base 5 = —a/b

By a modification of the Euclidean division algorithm any
integer has a unique and finite expansion on the alphabet
{0,...,a—1}in base g = —a/b (F. and Klouda 2011).

If b > 2, —a/b is a negative algebraic number which is not an
algebraic integer, so we have no lower bound

Theorem

In base g = —a/b, with a and b co-prime such thata > b > 1,
every alphabet of minimal cardinality a 4+ b containing O allows
parallel addition.



Base Canonical al- | Minimal alphabet for parallel
phabet addition

b>2inN {0,...,b—1} | All alphabets of size b + 1

—b,b>2inN | {0,...,b—1} | All alphabets of size b + 1

vb,b>2inN All alphabets of size b + 1

-1+ {0,1} All alphabets of size 5

21 {0,...,3} All alphabets of size 5

W2 {0,1} All alphabets of size 3

fZ=af—-1 {0,...,a—1} | All alphabets of size a

f=af+1 {0,...,a} All alphabets of size a + 2

a/b {0,...,a—1} [{0,...,a+b — 1}, {—-a —
b+1,...,0}, and all alpha-
bets of size a + b containing
{-=b,...,0,...,b}

—a/b {0,...,a—1} | All alphabets of size a+ b




