On parallel addition in non-standard numeration systems

Christiane Frougny LIAFA, CNRS, and Université Paris 8

Joint work with Edita Pelantová and Milena Svobodová (CTU Prague)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Signed-digit representations

Base 10 and digit-set $\{-5, \ldots, 0, \ldots, 5\}$ Cauchy 1840 Base 10 and digit-set $\{-6, \ldots, 0, \ldots, 6\}$ Avizienis 1961 Base 2 and digit-set $\{-1, 0, 1\}$ Chow and Robertson 1978

Signed-digit representations

Base 10 and digit-set $\{-5, \ldots, 0, \ldots, 5\}$ Cauchy 1840

Base 10 and digit-set $\{-6, \ldots, 0, \ldots, 6\}$ Avizienis 1961

Base 2 and digit-set {-1,0,1} Chow and Robertson 1978

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Redundancy

Algorithm of Avizienis 1961

Base $\beta = b$, $b \ge 3$ integer, parallel addition on alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, a\}, b/2 < a \le b - 1.$

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in \mathcal{A}^* , $m \leq n$, $x = \sum_{i=m}^n x_i \beta^i$ and $y = \sum_{i=m}^n y_i \beta^i$. *Output*: $z_{n+1} \cdots z_m$ in \mathcal{A}^* such that

$$z = x + y = \sum_{i=m}^{n+1} z_i \beta^i.$$

for each *i* in parallel do 0. $z_i := x_i + y_i$ 1. if $z_i \ge a$ then $q_i := 1, r_i := z_i - b$ if $z_i \le -a$ then $q_i := -1, r_i := z_i + b$ if $-a + 1 \le z_i \le a - 1$ then $q_i := 0, r_i := z_i$ 2. $z_i := q_{i-1} + r_i$

Avizienis $\beta = 10$, digit-set $\{-6, \dots, 0, \dots, 6\}$

x	\mapsto		2	5	2	5	5	6	0	3
У	\mapsto	5	1	2	2	5	4	0	6	5
z	\mapsto	5	3	7	4	10	<u>9</u>	6	6	8
0	\mapsto		1	10						
0	\mapsto				1	10				
0	\mapsto					1	10			
0	\mapsto						1	10		
0	\mapsto							1	10	
0	\mapsto								1	10
z	\mapsto	5	4	3	3	1	2	3	3	2

Minimal polynomial of β is X - 101 (10) is a (strong) representation of 0

Algorithm of Chow and Robertson 1978

Base $\beta = b = 2a$, $a \ge 1$, parallel addition on $\mathcal{A} = \{-a, \dots, 0, \dots, a\}$.

Input:
$$x_n \cdots x_m$$
 and $y_n \cdots y_m$ in \mathcal{A}^* , $m \le n$,
 $x = \sum_{i=m}^n x_i \beta^i$ and $y = \sum_{i=m}^n y_i \beta^i$.
Output: $z_{n+1} \cdots z_m$ in \mathcal{A}^* such that $z = x + y = \sum_{i=m}^{n+1} z_i \beta^i$.
for each *i* in parallel do
0. $z_i := x_i + y_i$
1. if $a + 1 \le z_i \le b$ then $q_i := 1$, $r_i := z_i - b$
if $-b \le z_i \le -a - 1$ then $q_i := -1$, $r_i := z_i + b$
if $-a + 1 \le z_i \le a - 1$ then $q_i := 0$, $r_i := z_i$
if $z_i = a$ and $z_{i-1} > 0$ then $q_i := 1$, $r_i := -a$
if $z_i = -a$ and $z_{i-1} \le 0$ then $q_i := -1$, $r_i := a$
if $z_i = -a$ and $z_{i-1} \ge 0$ then $q_i := -1$, $r_i := -a$
2. $z_i := q_{i-1} + r_i$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● の久(で)

Chow and Robertson (Cauchy) $\beta = 10$, digit-set $\{-5, \dots, 0, \dots, 5\}$

x	\mapsto		2	5	1	0	3	2	0	3
У	\mapsto	1	3	1	2	5	5	3	5	5
Ζ	\mapsto	1	5	<u>6</u>	1	5	8	5	5	8
0	\mapsto		1	10						
0	\mapsto					1	10			
0	\mapsto						1	10		
0	\mapsto							1	10	
0	\mapsto								1	10
z	\mapsto	1	4	4	1	4	3	4	4	2

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.

 $S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems. $\varphi : S \to T$ is a *p-local function* if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \to \mathcal{B}$, with p = r + t + 1, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$\mathbf{v} = \varphi(\mathbf{u}) \iff \forall i \in \mathbb{Z}, \ \mathbf{v}_i = \Phi(\mathbf{u}_{i+t} \cdots \mathbf{u}_{i-r}).$$

The image of *u* by φ is obtained through a sliding window of length *p*.

r is the *memory* and *t* is the *anticipation* of φ .

 φ is called a *sliding block code*.

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.

 $S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems. $\varphi : S \to T$ is a *p-local function* if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \to \mathcal{B}$, with p = r + t + 1, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$\mathbf{v} = \varphi(\mathbf{u}) \iff \forall i \in \mathbb{Z}, \ \mathbf{v}_i = \Phi(\mathbf{u}_{i+t} \cdots \mathbf{u}_{i-r}).$$

The image of *u* by φ is obtained through a sliding window of length *p*.

r is the *memory* and *t* is the *anticipation* of φ .

 φ is called a *sliding block code*.

A function is computable in parallel iff it is a local function.

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.

 $S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems. $\varphi : S \to T$ is a *p*-local function if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \to \mathcal{B}$, with p = r + t + 1, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$\mathbf{v} = \varphi(\mathbf{u}) \iff \forall i \in \mathbb{Z}, \ \mathbf{v}_i = \Phi(\mathbf{u}_{i+t} \cdots \mathbf{u}_{i-r}).$$

The image of *u* by φ is obtained through a sliding window of length *p*.

r is the *memory* and *t* is the *anticipation* of φ .

 φ is called a *sliding block code*.

A function is computable in parallel iff it is a local function. A local function is computable by a finite sequential transducer.

Differences between the two algorithms

Decision (choice) in step 1:

- Avizienis algorithm is neighbour free.
- Chow and Robertson algorithm is neighbour sensitive.

Locality : Addition on $\mathcal A$ is a function from $(\mathcal A+\mathcal A)^{\mathbb Z}$ to $\mathcal A^{\mathbb Z}$

- Avizienis addition is 2-local.
- Chow and Robertson addition is 3-local.

Strong representation of zero property

Base β algebraic number with $|\beta| > 1$.

Definition

 β satisfies the *strong representation of zero property* (β *is SRZ*) if there exist integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h}$ such that β is a root of the polynomial

$$S(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$$

and

$$B = b_0 > 2 \sum_{i \neq 0} |b_i| = 2M.$$

The polynomial S is said to be a *strong polynomial* for β .

Strong representation of zero property

Base β algebraic number with $|\beta| > 1$.

Definition

 β satisfies the *strong representation of zero property* (β *is SRZ*) if there exist integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h}$ such that β is a root of the polynomial

$$S(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$$

and

$$B = b_0 > 2 \sum_{i \neq 0} |b_i| = 2M.$$

The polynomial S is said to be a *strong polynomial* for β .

$$(b_k b_{k-1} \cdots b_1 b_0 \cdot b_{-1} \cdots b_{-h})_{\beta} = 0$$

Suppose that β is SRZ, i.e. B > 2M. Working alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, a\}$ with

$$a = \left\lceil \frac{B-1}{2} \right\rceil + \left\lceil \frac{B-1}{2(B-2M)} \right\rceil M.$$

Let

$$a' = \left\lceil \frac{B-1}{2} \right\rceil$$
 and $c = \left\lceil \frac{B-1}{2(B-2M)} \right\rceil$.

Then a = a' + cM. $\mathcal{A}' = \{-a', \dots, 0, \dots, a'\} \subset \mathcal{A}$ is the inner alphabet.

Parallel addition for base β SRZ on $\mathcal{A} = \{-a, \dots, 0, \dots, a\}, a = \underbrace{\left[\frac{B-1}{2}\right]}_{a'} + \underbrace{\left[\frac{B-1}{2(B-2M)}\right]}_{c} M$

Algorithm (S)

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in \mathcal{A}^* , with $m \leq n$, $x = \sum_{i=m}^n x_i \beta^i$ and $y = \sum_{i=m}^n y_i \beta^i$. Output: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^* such that $z = x + y = \sum_{i=m-h}^{n+k} z_i \beta^i$. for each *i* in parallel do 0. $z_i := x_i + y_i$ 1. find $q_i \in \{-c, \dots, 0, \dots, c\}$ such that $z_i - q_i B \in \mathcal{A}'$ 2. $z_i := z_i - \sum_{j=-h}^k q_{i-j} b_j$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Parallel addition for base β SRZ on $\mathcal{A} = \{-a, \dots, 0, \dots, a\}, a = \underbrace{\left[\frac{B-1}{2}\right]}_{a'} + \underbrace{\left[\frac{B-1}{2(B-2M)}\right]}_{c} M$

Algorithm (S)

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in \mathcal{A}^* , with $m \leq n$, $x = \sum_{i=m}^n x_i \beta^i$ and $y = \sum_{i=m}^n y_i \beta^i$. Output: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^* such that $z = x + y = \sum_{i=m-h}^{n+k} z_i \beta^i$. for each *i* in parallel do 0. $z_i := x_i + y_i$ 1. find $q_i \in \{-c, \dots, 0, \dots, c\}$ such that $z_i - q_i B \in \mathcal{A}'$ 2. $z_i := z_i - \sum_{j=-h}^k q_{i-j} b_j$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Algorithm (S) is neighbour free.

Integer base

 $\beta = b$ integer ≥ 3 is SRZ for the polynomial -X + b, and Algorithm (S) works with c = 1, $a' = \lfloor \frac{b-1}{2} \rfloor$, and $a = \lfloor \frac{b+1}{2} \rfloor$.

for each i in parallel do 0. $z_i := x_i + y_i$ 1. find $q_i \in \{-1, 0, 1\}$ such that $z_i - q_i b \in \mathcal{A}'$ 2. $z_i := z_i - q_i b + q_{i-1}$

Algorithm (S) is the algorithm of Avizienis with $a = \left\lceil \frac{b+1}{2} \right\rceil$.

For $\beta = 2, -X + 2$ is not a strong polynomial. But β satisfies the strong polynomial

$$-X^{2}+4.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So Algorithm (S) works for base 2 on $\{-3, \ldots, 0, \ldots, 3\}$.

For $\beta = 2, -X + 2$ is not a strong polynomial. But β satisfies the strong polynomial

$$-X^{2}+4$$
.

So Algorithm (S) works for base 2 on $\{-3, \ldots, 0, \ldots, 3\}$.

Remind that the Chow and Robertson algorithm works with smaller alphabet $\{-1, 0, 1\}$, but need to examine the right neighbour of current position.

The Golden Mean

 $\beta = \frac{1+\sqrt{5}}{2}$, the Golden Mean. Every real number ≥ 0 has an expansion on alphabet $\{0, 1\}$.

 β is one root of $X^2 - X - 1$, the second root is $\beta' = \frac{1 - \sqrt{5}}{2} = -\frac{1}{\beta}$. Since $\beta^4 + (\beta')^4 = 7$, β is a root of the strong polynomial

$$\mathsf{S}(X) = -X^4 + 7 - \tfrac{1}{X^4}$$

with B = 7 and M = 2. Thus c = 1, a' = 3, and a = 5. The working alphabet of Algorithm (S) is $\mathcal{A} = \{-5, \dots, 0, \dots, 5\}$.

100070001 is a strong β -representation of 0.

Х	\mapsto						2	5	2	5	5	0	0	3				
у	\mapsto					5	1	2	2	5	4	0	0	5				
z	\mapsto					5	3	7	4	10	9	0	0	8				
0	\mapsto	1	0	0	0	7	0	0	0	1							-	
0	\mapsto			1	0	0	0	7	0	0	0	1						
0	\mapsto				1	0	0	0	7	0	0	0	1					
0	\mapsto					1	0	0	0	7	0	0	0	1				
0	\mapsto						1	0	0	0	7	0	0	0	1			
0	\mapsto									1	0	0	0	7	0	0	0	1
z	\mapsto	1	0	1	1	1	2	0	3	5	2	1	1	2	1	0	0	1

Locality

Corollary If β is SRZ with strong polynomial $S(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$ then addition realized by Algorithm (S) is a (h + k + 1)-local function from $\{-2a, \dots, 0, \dots, 2a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Reduction of the alphabet

Definition

 β satisfies the *weak representation of zero property* (β *is WRZ*) if there exist integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h}$ such that β is a root of the polynomial

$$W(X) = b_k X^k + b_{k-1} X^{k-1} + \ldots + b_1 X + b_0 + b_{-1} X^{-1} + \ldots + b_{-h} X^{-h}$$

and

$$B=b_0>\sum_{i\neq 0}|b_i|=M.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <lp>・

 ・

 ・

 ・

 ・

 ・

 ・

The polynomial *W* is said to be a *weak polynomial* for β .

 β is WRZ, i.e. B > M. Working alphabet

$$\mathcal{A} = \{-a, \dots, 0, \dots, a\}, \text{ where } a = \left\lceil \frac{B-1}{2} \right\rceil + M$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <lp>・

 ・

 ・

 ・

 ・

 ・

 ・

Inner alphabet is $\mathcal{A}' = \{-a', \dots, 0, \dots, a'\}$ with $a' = \lceil \frac{B-1}{2} \rceil$.

Algorithm (W) works with $\begin{bmatrix} a \\ B-M \end{bmatrix}$ iterations.

Parallel addition for base β WRZ on $\mathcal{A} = \{-a, \dots, 0, \dots, a\}, a = \underbrace{\left[\frac{B-1}{2}\right]}_{a'} + M$

Algorithm (W)

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in \mathcal{A}^* , with $m \leq n$, $x = \sum_{i=m}^n x_i \beta^i$ and $y = \sum_{i=m}^n y_i \beta^i$. *Output*: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^* such that

$$z = x + y = \sum_{i=m-h}^{n+k} z_i \beta^i.$$

for each *i* in parallel do 0. $z_i := x_i + y_i$ 1. for $\ell := 1$ to $\left\lceil \frac{a}{B-M} \right\rceil$ do if $z_i \in \mathcal{A}'$ then $q_i := 0$ else $q_i := \operatorname{sgn} z_i$ $z_i := z_i - \sum_{j=-h}^k q_{i-j} b_j$

・ロト・日本・日本・日本・日本・日本

Example $\beta = \frac{1+\sqrt{5}}{2}$, the Golden Mean. Since $-\beta^2 + 3 - \frac{1}{\beta^2} = 0$, β is a root of the weak polynomial

$$W(X) = -X^2 + 3 - \frac{1}{X^2}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with B = 3 and M = 2. Thus a' = 1, and a = 3.

Algorithm (W) works on $\mathcal{A} = \{-3, \dots, 0, \dots, 3\}$, with 3 iterations.

10301 is a weak β -representation of 0.

	Ζ	\mapsto	1	0	1	1	3	1	2	0	4	.1≣	•0	0	1	৩৫৫
	0	\mapsto									1	0	3	0	1	
	0	\mapsto							1	0	3	0	1			
	0	\mapsto					1	0	3	0	1					
Step 3.	0	\mapsto	1	0	3	0	1									
	z	\mapsto			2	1	1	1	4	0	2	1	2			
	0	\mapsto							1	0	3	0	1			
	0	\mapsto					1	0	3	0	1					
	0	\mapsto				1	0	3	0	1						
Step 2.	0	\mapsto			1	0	3	0	1							
	Ζ	\mapsto			1	0	3	2	5	1	4	1	1			
	0	\mapsto	 						1	0	3	0	1			
	0	\mapsto						1	0	3	0	1				
	0	\mapsto					1	0	3	0	1					
Step 1.	0	\mapsto			1	0	3	0	1							
	Ζ	\mapsto					5	1	6	2	6					
	y	\mapsto					2	0	3	2	3					
Step 0.	X	\mapsto					3	1	3	0	3					

Corollary

If β is WRZ with weak polynomial $W(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a $\left(h \left[\frac{a}{B-M}\right] + k \left[\frac{a}{B-M}\right] + 1\right)$ -local function from $\{-2a, \dots, 0, \dots, 2a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Corollary

If β is WRZ with weak polynomial $W(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a $\left(h \left[\frac{a}{B-M}\right] + k \left[\frac{a}{B-M}\right] + 1\right)$ -local function from $\{-2a, \dots, 0, \dots, 2a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Algorithm (W) is neighbour free.

Corollary

If β is WRZ with weak polynomial $W(X) = b_k X^k + b_{k-1} X^{k-1} + \dots + b_1 X + b_0 + b_{-1} X^{-1} + \dots + b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a $\left(h \left[\frac{a}{B-M}\right] + k \left[\frac{a}{B-M}\right] + 1\right)$ -local function from $\{-2a, \dots, 0, \dots, 2a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

Algorithm (W) is neighbour free.

Remark

Algorithm (S) and Algorithm (W) coincide if, and only if, $B \ge 4M - 1$.

Example

- ▶ If *b* integer ≥ 3, -X + b is a strong polynomial for *b*. Algorithm (S) and Algorithm (W) coincide with $\mathcal{A} = \{-a, ..., a\}, a = \lceil \frac{b+1}{2} \rceil$.
- ► For b = 2, -X + 2 is a weak polynomial. Algorithm (W) works with $A = \{-2, -1, 0, 1, 2\}$ with 2 iterations.

What numbers are SRZ (or WRZ)?

Theorem Let β with $|\beta| > 1$ be an algebraic number. β is SRZ (or WRZ) \iff all its algebraic conjugates have modulus $\neq 1$.

The proof gives a constructive method to obtain a strong (or weak) polynomial from the minimal polynomial of β .

What numbers are SRZ (or WRZ)?

Theorem Let β with $|\beta| > 1$ be an algebraic number. β is SRZ (or WRZ) \iff all its algebraic conjugates have modulus $\neq 1$.

The proof gives a constructive method to obtain a strong (or weak) polynomial from the minimal polynomial of β .

Remark

Let β with $|\beta| > 1$ be an algebraic number of degree d.

- If d is odd or
- If d = 2 or
- if d is even ≥ 4 and the minimal polynomial of β is not reciprocal,

then β has no conjugate of modulus 1.

The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0, 1, \dots, 12\}$.

The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0, 1, \dots, 12\}$.

It is known that it is not possible to perform parallel addition in base the Golden Mean on $\{0, 1\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0, 1, \dots, 12\}$.

It is known that it is not possible to perform parallel addition in base the Golden Mean on $\{0, 1\}$.

We give Algorithm (G) for parallel addition in base the Golden Mean on $\{-1, 0, 1\}$. This algorithm is neighbour sensitive.

We use the weak representation of zero $-\beta^2 + 3 - \frac{1}{\beta^2} = 0$.

Algorithm A: Base $\beta = \frac{1+\sqrt{5}}{2}$, reduction from $\{-2, -1, 0, 1, 2\}$ to $\{-1, 0, 1, 2\}$.

Input: a finite sequence of digits (z_i) of $\{-2, -1, 0, 1, 2\}$, with $z = \sum z_i \beta^i$. *Output*: a finite sequence of digits (z_i) of $\{-1, 0, 1, 2\}$, with $z = \sum z_i \beta^i$.

$$\begin{array}{l} \text{for each i in parallel do} \\ 1. \ \ \text{case} \left\{ \begin{array}{l} z_i = -2 \\ z_i = -1 \\ z_i = 0 \ \ \text{and} \ z_{i+2} < 0 \ \ \text{and} \ z_{i-2} < 0 \end{array} \right\} \text{then} \\ q_i := -1 \end{array} \right.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

else
$$q_i := 0$$

2. $z_i := z_i - 3q_i + q_{i+2} + q_{i-2}$

Algorithm B: Base $\beta = \frac{1+\sqrt{5}}{2}$, reduction from $\{-1, 0, 1, 2\}$ to $\{-1, 0, 1\}$.

Input: a finite sequence of digits (z_i) of $\{-1, 0, 1, 2\}$, with $z = \sum z_i \beta^i$. *Output*: a finite sequence of digits (z_i) of $\{-1, 0, 1\}$, with $z = \sum z_i \beta^i$.

for each *i* in parallel do 1. case $\begin{cases}
z_i = 2 \\
z_i = 1 \text{ and } (z_{i+2} \ge 1 \text{ or } z_{i-2} \ge 1) \\
z_i = 0 \text{ and } z_{i+2} = z_{i-2} = 2 \\
z_i = 0 \text{ and } z_{i+2} = z_{i-2} = 1 \text{ and } z_{i+4} \ge 1 \text{ and } z_{i-4} \ge 1 \\
z_i = 0 \text{ and } z_{i+2} = 2 \text{ and } z_{i-2} = 1 \text{ and } z_{i-4} \ge 1 \\
z_i = 0 \text{ and } z_{i-2} = 2 \text{ and } z_{i+2} = 1 \text{ and } z_{i+4} \ge 1
\end{cases}$ then $q_i := 1$

else
$$q_i := 0$$

2. $z_i := z_i - 3q_i + q_{i+2} + q_{i-2}$

Algorithm G: Base $\beta = \frac{1+\sqrt{5}}{2}$, parallel addition on $\mathcal{A} = \{-1, 0, 1\}$.

Input: two finite sequences of digits (x_i) and (y_i) of $\{-1, 0, 1\}$, with $x = \sum x_i \beta^i$ and $y = \sum y_i \beta^i$. *Output*: a finite sequence of digits (z_i) of $\{-1, 0, 1\}$ such that

$$z=x+y=\sum z_i\beta^i.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for each i in parallel do

 $0. \quad v_i := x_i + y_i$

- 1. use Algorithm A with input (v_i) and output (w_i)
- 2. use Algorithm B with input (w_i) and output (z_i)

Addition in base the Golden Mean on $\{-1, 0, 1\}$ realized by Algorithm G is a 21-local function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Addition in base the Golden Mean on $\{-1, 0, 1\}$ realized by Algorithm G is a 21-local function.

Algorithm S on $\{-5, \ldots, 5\}$: 9-local

Algorithm W on $\{-3, \ldots, 3\}$: 13-local

Minimal alphabets for parallel addition

 \mathcal{A} alphabet of contiguous integer digits containing 0. β algebraic number, $|\beta| > 1$.

β = b ≥ 2 integer, any alphabet of cardinality b + 1 is minimal.
 Example: A = {-1, 0, ..., b - 1} or {0, ..., b - 1, b} Addition is a 3-local function.

• β is the Golden Mean: $\mathcal{A} = \{-1, 0, 1\}$ is minimal.

Lower bounds

 $\ensuremath{\mathcal{A}}$ finite alphabet of contiguous integers containing 0 with at least two elements.

 β algebraic number, $|\beta| > 1$

Theorem

1. β a real algebraic number > 1. If addition on A is computable in parallel then

$$\#\mathcal{A} \ge \lceil \beta \rceil$$

2. β an algebraic integer with minimal polynomial f(X). If addition on A is computable in parallel then

$$\#\mathcal{A} \geqslant |f(1)|$$

If β is a real algebraic integer then

 $\#\mathcal{A} \ge |f(1)| + 2$

In the previous theorem

1. "# $\mathcal{A} \ge \lceil \beta \rceil$ " can be replaced by

"# $\mathcal{A} \ge \max\{ \lceil \gamma \rceil \mid \gamma \text{ or } \gamma^{-1} \text{ is a positive conjugate of } \beta \}$ ".

2. " β is an algebraic integer" can be replaced by " β or $\frac{1}{\beta}$ is an algebraic integer"

" β is an algebraic integer > 1" can be replaced by " β is an algebraic integer and one of its algebraic conjugates is > 1".

(日) (日) (日) (日) (日) (日) (日) (日)

Addition versus conversion

 $\mathcal{A} = \{m, \ldots, 0 \ldots, M\}.$

1. m = 0: Addition on \mathcal{A} is parallelizable \iff

greatest digit elimination : $\mathcal{A} \cup \{M+1\} \rightarrow \mathcal{A}$

is parallelizable.

2. $\{-1, 0, 1\} \subset \mathcal{A}$: Addition on \mathcal{A} is parallelizable \iff greatest digit elimination : $\mathcal{A} \cup \{M+1\} \rightarrow \mathcal{A}$

and

smallest digit elimination : $\{m - 1\} \cup A \rightarrow A$

are parallelizable.

How to pass from one alphabet allowing parallel addition to another one of same size

Proposition

For $K, d \in \mathbb{Z}$, where $0 \leq d \leq K - 1$, denote

$$\mathcal{A}_{-d} = \{-d, \ldots, 0, \ldots, K-1-d\}.$$

Let φ be a p-local function realizing conversion in base β from $A_0 \cup \{K\}$ to A_0 . If

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

•
$$\varphi(^{\omega} \mathbf{d} \bullet \mathbf{d}^{\omega}) = {}^{\omega} \mathbf{d} \bullet \mathbf{d}^{\omega}$$
 and

$$\varphi(^{\omega}(K-1-d) \bullet (K-1-d)^{\omega}) = \\ ^{\omega}(K-1-d) \bullet (K-1-d)^{\omega}$$

then addition is performable in parallel on A_{-d} as well.

Positive integer base

 $\beta = b, b \ge 2$ integer. Minimal polynomial f(X) = X - b. Lower bound |f(1)| + 2 = b + 1 is attained.

Parallel addition is feasible on any alphabet of cardinality b + 1 containing 0, in particular on alphabets $\mathcal{A} = \{0, 1, ..., b\}$ and $\mathcal{A} = \{-1, 0, 1, ..., b - 1\}$ (folklore).

If *b* is even, b = 2a, parallel addition is realizable on the alphabet $\mathcal{A} = \{-a, \dots, a\}$ of cardinality b + 1 by the algorithm of Chow and Robertson (see Cauchy).

Negative integer base

 $\beta = -b$, $b \ge 2$ integer.

Every integer has a unique finite representation with digits in $\{0, 1, \dots, b-1\}$ (Grünwald 1885).

Minimal polynomial f(X) = X + b. Lower bound |f(1)| = b + 1 is attained.

Theorem

Let $\beta = -b \in \mathbb{Z}$, $b \ge 2$. Any alphabet \mathcal{A} of contiguous integers containing 0 with cardinality $\#\mathcal{A} = b + 1$ allows parallel addition in base $\beta = -b$ and this alphabet is minimal in size.

(日) (日) (日) (日) (日) (日) (日) (日)

Parallel addition on $\{0, ..., b\}$: It is enough to show that greatest digit elimination between $\{0, ..., b + 1\}$ to $\{0, ..., b\}$ is performable in parallel.

Algorithm N: Base $\beta = -b$, greatest digit elimination from $\{0, \dots, b+1\}$ to $\{0, \dots, b\}$.

Input: a finite sequence of digits (z_i) of $\{0, ..., b+1\}$, with $z = \sum z_i \beta^i$. *Output*: a finite sequence of digits (z_i) of $\{0, ..., b\}$, with $z = \sum z_i \beta^i$.

for each *i* in parallel do
1.
$$\operatorname{case} \left\{ \begin{array}{l} z_i = b + 1 \\ z_i = b \text{ and } z_{i-1} = 0 \end{array} \right\}$$
 then $q_i := 1$
if $z_i = 0$ and $z_{i-1} \ge b$ then $q_i := -1$
else $q_i := 0$;
2. $z_i := z_i - bq_i - q_{i-1}$

Base $\sqrt[k]{b}$, *b* integer, $|b| \ge 2$

Proposition

Let $\beta = \sqrt[k]{b}$, b in \mathbb{Z} , $|b| \ge 2$ and $k \ge 1$ integer. Any alphabet \mathcal{A} of contiguous integers containing 0 with cardinality $\#\mathcal{A} = b + 1$ allows parallel addition.

Use that $\gamma = \beta^k = b$.

Proposition

If b is in \mathbb{N} the polynomial $X^k - b$ is minimal for β , thus the cardinality b + 1 is minimal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta = -1 + i$ with digits in $\{0, 1\}$. Example: 3 = 1101. Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound =|f(1)| = 5. $\beta^4 = -4$. Parallel addition is possible on any alphabet of

minimal cardinality 5.

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta = -1 + i$ with digits in $\{0, 1\}$. Example: 3 = 1101. Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound =|f(1)| = 5. $\beta^4 = -4$. Parallel addition is possible on any alphabet of minimal polynomial for $f(X) = X^2 + 2X + 2$.

minimal cardinality 5.

Knuth numeration system (1955): $\beta = 2i$ with digits in $\{0, \dots, 3\}$. Minimal polynomial $f(X) = X^2 + 4$, and lower bound =|f(1)| = 5. Parallel addition is possible on any alphabet of minimal cardinality 5.

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta = -1 + i$ with digits in $\{0, 1\}$. Example: 3 = 1101. Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound =|f(1)| = 5. $\beta^4 = -4$. Parallel addition is possible on any alphabet of minimal pardia ality 5.

minimal cardinality 5.

Knuth numeration system (1955): $\beta = 2i$ with digits in $\{0, \dots, 3\}$. Minimal polynomial $f(X) = X^2 + 4$, and lower bound =|f(1)| = 5. Parallel addition is possible on any alphabet of minimal cardinality 5.

 $\beta = i\sqrt{2}$ with digits in $\{0, 1\}$. Minimal polynomial $f(X) = X^2 + 2$, and lower bound =|f(1)| = 3. Parallel addition is possible on any alphabet of minimal cardinality 3.

β root of $X^2 = aX - 1$, $a \ge 3$

 β is a quadratic Pisot unit.

By the greedy algorithm of Rényi 1957, every positive real has an expansion on the canonical alphabet $C = \{0, ..., a - 1\}$. Uniqueness iff avoids any string of the form $(a - 1)(a - 2)^k(a - 1)$. If no admissibility condition, then redundancy, which is sufficient.

Minimal polynomial $f(X) = X^2 - aX + 1$ and lower bound = |f(1)| + 2 = a

Theorem

 β root of $X^2 = aX - 1$, $a \ge 3$. Every alphabet of size a containing 0 allows parallel addition.

β root of $X^2 = aX + 1$, $a \ge 1$

 β is a quadratic Pisot unit.

Every positive real has an expansion on the canonical alphabet $C = \{0, ..., a\}.$

Uniqueness iff avoids any string of the form a1.

If no admissibility condition, then redundancy, but it's not sufficient.

a = 1: Golden Mean. Minimal alphabet has size 3.

Minimal polynomial $f(X) = X^2 - aX - 1$ and lower bound = |f(1)| + 2 = a + 2

Theorem

 β root of $X^2 = aX + 1$, $a \ge 1$. Every alphabet of size a + 2 containing 0 allows parallel addition.

Rational base $\beta = a/b$

By a modification of the Euclidean division algorithm any natural integer has a unique and finite expansion on the alphabet $\{0, ..., a - 1\}$ in base $\beta = a/b$ (Akiyama, Frougny and Sakarovitch 2008; Frougny and Klouda 2011).

Example: $\beta = 3/2$, then 4 = 21

If $b \ge 2$, a/b is an algebraic number which is not an algebraic integer, so our lower bound is $\lceil a/b \rceil$, which is not attained.

Theorem

In base $\beta = a/b$, with a and b co-prime such that $a > b \ge 1$, the only alphabets of minimal cardinality a + b allowing parallel addition are:

- $\{0, \ldots, a+b-1\}$ and $\{-a-b+1, \ldots, 0\}$
- every alphabet of cardinality a + b containing {-b,...,0,...,b}.

Negative rational base $\beta = -a/b$

By a modification of the Euclidean division algorithm any integer has a unique and finite expansion on the alphabet $\{0, \ldots, a-1\}$ in base $\beta = -a/b$ (F. and Klouda 2011).

If $b \ge 2$, -a/b is a negative algebraic number which is not an algebraic integer, so we have no lower bound

Theorem

In base $\beta = -a/b$, with a and b co-prime such that $a > b \ge 1$, every alphabet of minimal cardinality a + b containing 0 allows parallel addition.

Base	Canonical al-	Minimal alphabet for parallel
	phabet	addition
<i>b</i> ≥ 2 in ℕ	$\{0,\ldots,b-1\}$	All alphabets of size $b + 1$
$-b, b \geqslant 2$ in \mathbb{N}	$\{0,\ldots,b-1\}$	All alphabets of size $b + 1$
$\sqrt[k]{b}$, $b \ge 2$ in \mathbb{N}		All alphabets of size $b + 1$
-1+i	{ 0 , 1 }	All alphabets of size 5
21	$\{0,\ldots,3\}$	All alphabets of size 5
$i\sqrt{2}$	{0,1}	All alphabets of size 3
$\beta^2 = a\beta - 1$	$\{0,\ldots,a-1\}$	All alphabets of size a
$\beta^2 = a\beta + 1$	$\{0,\ldots, oldsymbol{a}\}$	All alphabets of size $a + 2$
a/b	$\{0,\ldots,\mathbf{a}-1\}$	$\{0,\ldots,a+b-1\}, \{-a-1\}$
		$b + 1, \ldots, 0$, and all alpha-
		bets of size $a + b$ containing
		$\{-b,\ldots,0,\ldots,b\}$
-a/b	$\{0,\ldots, \mathbf{a}-1\}$	All alphabets of size $a + b$