On parallel addition in non-standard numeration systems

Christiane Frougny
LIAFA, CNRS, and Université Paris 8

Joint work with Edita Pelantová and Milena Svobodová (CTU Prague)

Signed-digit representations

Base 10 and digit-set $\{-5, \ldots, 0, \ldots, 5\}$ Cauchy 1840
Base 10 and digit-set $\{-6, \ldots, 0, \ldots, 6\}$ Avizienis 1961
Base 2 and digit-set $\{-1,0,1\}$ Chow and Robertson 1978

Signed-digit representations

Base 10 and digit-set $\{-5, \ldots, 0, \ldots, 5\}$ Cauchy 1840
Base 10 and digit-set $\{-6, \ldots, 0, \ldots, 6\}$ Avizienis 1961
Base 2 and digit-set $\{-1,0,1\}$ Chow and Robertson 1978
Redundancy

Algorithm of Avizienis 1961

Base $\beta=b, b \geqslant 3$ integer, parallel addition on alphabet $\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}, b / 2<a \leqslant b-1$.

Input. $x_{n} \cdots x_{m}$ and $y_{n} \cdots y_{m}$ in $\mathcal{A}^{*}, m \leqslant n$, $x=\sum_{i=m}^{n} x_{i} \beta^{i}$ and $y=\sum_{i=m}^{n} y_{i} \beta^{i}$.
Output: $z_{n+1} \cdots z_{m}$ in \mathcal{A}^{*} such that

$$
z=x+y=\sum_{i=m}^{n+1} z_{i} \beta^{i}
$$

for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. if $z_{i} \geqslant a$ then $q_{i}:=1, r_{i}:=z_{i}-b$
if $z_{i} \leqslant-a$ then $q_{i}:=-1, r_{i}:=z_{i}+b$
if $-a+1 \leqslant z_{i} \leqslant a-1$ then $q_{i}:=0, r_{i}:=z_{i}$
2. $z_{i}:=q_{i-1}+r_{i}$

Avizienis
$\beta=10$, digit-set $\{-6, \ldots, 0, \ldots, 6\}$

Minimal polynomial of β is $X-10$
$1 \overline{(10)}$ is a (strong) representation of 0

Algorithm of Chow and Robertson 1978

Base $\beta=b=2 a, a \geqslant 1$, parallel addition on $\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}$.

Input: $x_{n} \cdots x_{m}$ and $y_{n} \cdots y_{m}$ in $\mathcal{A}^{*}, m \leqslant n$,
$x=\sum_{i=m}^{n} x_{i} \beta^{i}$ and $y=\sum_{i=m}^{n} y_{i} \beta^{i}$.
Output: $z_{n+1} \cdots z_{m}$ in \mathcal{A}^{*} such that $z=x+y=\sum_{i=m}^{n+1} z_{i} \beta^{i}$.
for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. if $a+1 \leqslant z_{i} \leqslant b$ then $q_{i}:=1, r_{i}:=z_{i}-b$
if $-b \leqslant z_{i} \leqslant-a-1$ then $q_{i}:=-1, r_{i}:=z_{i}+b$
if $-a+1 \leqslant z_{i} \leqslant a-1$ then $q_{i}:=0, r_{i}:=z_{i}$
if $z_{i}=a$ and $z_{i-1}>0$ then $q_{i}:=1, r_{i}:=-a$
if $z_{i}=a$ and $z_{i-1} \leqslant 0$ then $q_{i}:=0, r_{i}:=a$
if $z_{i}=-a$ and $z_{i-1}<0$ then $q_{i}:=-1, r_{i}:=a$
if $z_{i}=-a$ and $z_{i-1} \geqslant 0$ then $q_{i}:=0, r_{i}:=-a$
2. $z_{i}:=q_{i-1}+r_{i}$

Chow and Robertson (Cauchy)
$\beta=10$, digit-set $\{-5, \ldots, 0, \ldots, 5\}$

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.
$S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems.
$\varphi: S \rightarrow T$ is a p-local function if $\exists r, t>0$, and $\exists \Phi: \mathcal{A}^{p} \rightarrow \mathcal{B}$, with $p=r+t+1$, such that if $u=\left(u_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v=\left(v_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$
v=\varphi(u) \Longleftrightarrow \forall i \in \mathbb{Z}, \quad v_{i}=\Phi\left(u_{i+t} \cdots u_{i-r}\right)
$$

The image of u by φ is obtained through a sliding window of length p.
r is the memory and t is the anticipation of φ.
φ is called a sliding block code.

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.
$S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems.
$\varphi: S \rightarrow T$ is a p-local function if $\exists r, t>0$, and $\exists \Phi: \mathcal{A}^{p} \rightarrow \mathcal{B}$, with $p=r+t+1$, such that if $u=\left(u_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v=\left(v_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$
v=\varphi(u) \Longleftrightarrow \forall i \in \mathbb{Z}, \quad v_{i}=\Phi\left(u_{i+t} \cdots u_{i-r}\right)
$$

The image of u by φ is obtained through a sliding window of length p.
r is the memory and t is the anticipation of φ.
φ is called a sliding block code.
A function is computable in parallel iff it is a local function.

Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^{\mathbb{Z}}$ is a symbolic dynamical system if it is closed and shift-invariant.
$S \subseteq \mathcal{A}^{\mathbb{Z}}$ and $T \subseteq \mathcal{B}^{\mathbb{Z}}$ symbolic dynamical systems.
$\varphi: S \rightarrow T$ is a p-local function if $\exists r, t>0$, and $\exists \Phi: \mathcal{A}^{p} \rightarrow \mathcal{B}$, with $p=r+t+1$, such that if $u=\left(u_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ and $v=\left(v_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$, then

$$
v=\varphi(u) \Longleftrightarrow \forall i \in \mathbb{Z}, \quad v_{i}=\Phi\left(u_{i+t} \cdots u_{i-r}\right)
$$

The image of u by φ is obtained through a sliding window of length p.
r is the memory and t is the anticipation of φ.
φ is called a sliding block code.
A function is computable in parallel iff it is a local function.
A local function is computable by a finite sequential transducer.

Differences between the two algorithms

Decision (choice) in step 1:

- Avizienis algorithm is neighbour free.
- Chow and Robertson algorithm is neighbour sensitive.

Locality : Addition on \mathcal{A} is a function from $(\mathcal{A}+\mathcal{A})^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$

- Avizienis addition is 2-local.
- Chow and Robertson addition is 3-local.

Strong representation of zero property

Base β algebraic number with $|\beta|>1$.

Definition

β satisfies the strong representation of zero property (β is SRZ) if there exist integers $b_{k}, b_{k-1}, \ldots, b_{1}, b_{0}, b_{-1}, \ldots, b_{-h}$ such that β is a root of the polynomial
$S(X)=b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ and

$$
B=b_{0}>2 \sum_{i \neq 0}\left|b_{i}\right|=2 M
$$

The polynomial S is said to be a strong polynomial for β.

Strong representation of zero property

Base β algebraic number with $|\beta|>1$.

Definition

β satisfies the strong representation of zero property (β is SRZ) if there exist integers $b_{k}, b_{k-1}, \ldots, b_{1}, b_{0}, b_{-1}, \ldots, b_{-h}$ such that β is a root of the polynomial
$S(X)=b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ and

$$
B=b_{0}>2 \sum_{i \neq 0}\left|b_{i}\right|=2 M
$$

The polynomial \boldsymbol{S} is said to be a strong polynomial for β.

$$
\left(b_{k} b_{k-1} \cdots b_{1} b_{0} \cdot b_{-1} \cdots b_{-h}\right)_{\beta}=0
$$

Suppose that β is SRZ, i.e. $B>2 M$.
Working alphabet $\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}$
with

$$
a=\left\lceil\frac{B-1}{2}\right\rceil+\left\lceil\frac{B-1}{2(B-2 M)}\right\rceil M .
$$

Let

$$
a^{\prime}=\left\lceil\frac{B-1}{2}\right\rceil \quad \text { and } \quad c=\left\lceil\frac{B-1}{2(B-2 M)}\right\rceil .
$$

Then $a=a^{\prime}+c M$.
$\mathcal{A}^{\prime}=\left\{-a^{\prime}, \ldots, 0, \ldots, a^{\prime}\right\} \subset \mathcal{A}$ is the inner alphabet.

Parallel addition for base β SRZ on

$$
\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}, a=\underbrace{\left[\frac{B-1}{2}\right]}_{a^{\prime}}+\underbrace{\left[\frac{B-1}{2(B-2 M)}\right]}_{c} M
$$

Algorithm (S)
Input: $x_{n} \cdots x_{m}$ and $y_{n} \cdots y_{m}$ in \mathcal{A}^{*}, with $m \leqslant n$, $x=\sum_{i=m}^{n} x_{i} \beta^{i}$ and $y=\sum_{i=m}^{n} y_{i} \beta^{i}$.
Output: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^{*} such that $z=x+y=\sum_{i=m-h}^{n+k} z_{i} \beta^{i}$.
for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. find $q_{i} \in\{-c, \ldots, 0, \ldots, c\}$ such that $z_{i}-q_{i} B \in \mathcal{A}^{\prime}$
2. $z_{i}:=z_{i}-\sum_{j=-h}^{k} q_{i-j} b_{j}$

Parallel addition for base β SRZ on

$$
\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}, a=\underbrace{\left[\frac{B-1}{2}\right]}_{a^{\prime}}+\underbrace{\left[\frac{B-1}{2(B-2 M)}\right]}_{c} M
$$

Algorithm (S)
Input: $x_{n} \cdots x_{m}$ and $y_{n} \cdots y_{m}$ in \mathcal{A}^{*}, with $m \leqslant n$,
$x=\sum_{i=m}^{n} x_{i} \beta^{i}$ and $y=\sum_{i=m}^{n} y_{i} \beta^{i}$.
Output: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^{*} such that $z=x+y=\sum_{i=m-h}^{n+k} z_{i} \beta^{i}$.
for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. find $q_{i} \in\{-c, \ldots, 0, \ldots, c\}$ such that $z_{i}-q_{i} B \in \mathcal{A}^{\prime}$
2. $z_{i}:=z_{i}-\sum_{j=-h}^{k} q_{i-j} b_{j}$

Algorithm (S) is neighbour free.

Integer base

$\beta=b$ integer $\geqslant 3$ is SRZ for the polynomial $-X+b$, and
Algorithm (S) works with $c=1, a^{\prime}=\left\lceil\frac{b-1}{2}\right\rceil$, and $a=\left\lceil\frac{b+1}{2}\right\rceil$.
for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. find $q_{i} \in\{-1,0,1\}$ such that $z_{i}-q_{i} b \in \mathcal{A}^{\prime}$
2. $z_{i}:=z_{i}-q_{i} b+q_{i-1}$

Algorithm (S) is the algorithm of Avizienis with $a=\left\lceil\frac{b+1}{2}\right\rceil$.

For $\beta=2,-X+2$ is not a strong polynomial. But β satisfies the strong polynomial

$$
-X^{2}+4
$$

So Algorithm (S) works for base 2 on $\{-3, \ldots, 0, \ldots, 3\}$.

For $\beta=2,-X+2$ is not a strong polynomial. But β satisfies the strong polynomial

$$
-X^{2}+4
$$

So Algorithm (S) works for base 2 on $\{-3, \ldots, 0, \ldots, 3\}$.
Remind that the Chow and Robertson algorithm works with smaller alphabet $\{-1,0,1\}$, but need to examine the right neighbour of current position.

The Golden Mean

$\beta=\frac{1+\sqrt{5}}{2}$, the Golden Mean.
Every real number $\geqslant 0$ has an expansion on alphabet $\{0,1\}$.
β is one root of $X^{2}-X-1$, the second root is $\beta^{\prime}=\frac{1-\sqrt{5}}{2}=-\frac{1}{\beta}$.
Since $\beta^{4}+\left(\beta^{\prime}\right)^{4}=7, \beta$ is a root of the strong polynomial

$$
S(X)=-X^{4}+7-\frac{1}{X^{4}}
$$

with $B=7$ and $M=2$. Thus $c=1, a^{\prime}=3$, and $a=5$. The working alphabet of Algorithm (S) is $\mathcal{A}=\{-5, \ldots, 0, \ldots, 5\}$.
$\overline{1} 0007000 \overline{1}$ is a strong β-representation of 0 .

$$
a^{\prime}=3, a=5
$$

| x | \mapsto | | | | | | | 2 | 5 | $\overline{2}$ | 5 | $\overline{5}$ | 0 | 0 | 3 | | | | |
| :--- |
| y | \mapsto | | | | | | 5 | 1 | 2 | $\overline{2}$ | 5 | $\overline{4}$ | 0 | 0 | 5 | | | | |
| z | \mapsto | | | | | | 5 | 3 | 7 | $\overline{4}$ | 10 | $\overline{9}$ | 0 | 0 | 8 | | | | |
| 0 | \mapsto | | 1 | 0 | 0 | 0 | $\overline{7}$ | 0 | 0 | 0 | 1 | | | | | | | | |
| 0 | \mapsto | | | | 1 | 0 | 0 | 0 | $\overline{7}$ | 0 | 0 | 0 | 1 | | | | | | |
| 0 | \mapsto | | | | $\overline{1}$ | 0 | 0 | 0 | 7 | 0 | 0 | 0 | $\overline{1}$ | | | | | | |
| 0 | \mapsto | | | | | 1 | 0 | 0 | 0 | $\overline{7}$ | 0 | 0 | 0 | 1 | | | | | |
| 0 | \mapsto | | | | | | $\overline{1}$ | 0 | 0 | 0 | 7 | 0 | 0 | 0 | $\overline{1}$ | | | | |
| 0 | \mapsto | | | | | | | | | | 1 | 0 | 0 | 0 | $\overline{7}$ | 0 | 0 | 0 | 1 |
| z | \mapsto | 1 | 0 | 1 | $\overline{1}$ | $\overline{1}$ | 2 | 0 | 3 | 5 | $\overline{2}$ | 1 | $\overline{1}$ | 2 | $\overline{1}$ | 0 | 0 | 1 | |

Locality

Corollary

If β is $S R Z$ with strong polynomial
$S(X)=b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ then addition realized by Algorithm (S) is a $(h+k+1)$-local function from $\{-2 a, \ldots, 0, \ldots, 2 a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

Reduction of the alphabet

Definition

β satisfies the weak representation of zero property (β is WRZ) if there exist integers $b_{k}, b_{k-1}, \ldots, b_{1}, b_{0}, b_{-1}, \ldots, b_{-n}$ such that β is a root of the polynomial

$$
W(X)=b_{k} X^{k}+b_{k-1} X^{k-1}+\ldots+b_{1} X+b_{0}+b_{-1} X^{-1}+\ldots+b_{-h} X^{-h}
$$ and

$$
B=b_{0}>\sum_{i \neq 0}\left|b_{i}\right|=M .
$$

The polynomial W is said to be a weak polynomial for β.
β is WRZ, i.e. $B>M$. Working alphabet

$$
\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}, \text { where } a=\left\lceil\frac{B-1}{2}\right\rceil+M .
$$

Inner alphabet is $\mathcal{A}^{\prime}=\left\{-a^{\prime}, \ldots, 0, \ldots, a^{\prime}\right\}$ with $a^{\prime}=\left\lceil\frac{B-1}{2}\right\rceil$.
Algorithm (W) works with $\left\lceil\frac{a}{B-M}\right\rceil$ iterations.

Parallel addition for base β WRZ on

$$
\mathcal{A}=\{-a, \ldots, 0, \ldots, a\}, a=\underbrace{\left[\frac{B-1}{2}\right]}_{a^{\prime}}+M
$$

Algorithm (W)
Input: $x_{n} \cdots x_{m}$ and $y_{n} \cdots y_{m}$ in \mathcal{A}^{*}, with $m \leqslant n$,
$x=\sum_{i=m}^{n} x_{i} \beta^{i}$ and $y=\sum_{i=m}^{n} y_{i} \beta^{i}$.
Output: $z_{n+k} \cdots z_{m-h}$ in \mathcal{A}^{*} such that

$$
z=x+y=\sum_{i=m-h}^{n+k} z_{i} \beta^{i}
$$

for each i in parallel do
0. $z_{i}:=x_{i}+y_{i}$

1. for $\ell:=1$ to $\left\lceil\frac{a}{B-M}\right\rceil$ do

$$
\begin{aligned}
& \text { if } z_{i} \in \mathcal{A}^{\prime} \text { then } q_{i}:=0 \text { else } q_{i}:=\operatorname{sgn} z_{i} \\
& z_{i}:=z_{i}-\sum_{j=-h}^{k} q_{i-j} b_{j}
\end{aligned}
$$

Example

$\beta=\frac{1+\sqrt{5}}{2}$, the Golden Mean.
Since $-\beta^{2}+3-\frac{1}{\beta^{2}}=0, \beta$ is a root of the weak polynomial

$$
W(X)=-x^{2}+3-\frac{1}{x^{2}}
$$

with $B=3$ and $M=2$. Thus $a^{\prime}=1$, and $a=3$.
Algorithm (W) works on $\mathcal{A}=\{-3, \ldots, 0, \ldots, 3\}$, with 3 iterations.
$\overline{1} 030 \overline{1}$ is a weak β-representation of 0 .

Corollary

If β is WRZ with weak polynomial $W(X)=$ $b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a
$\left(h\left\lceil\frac{a}{B-M}\right\rceil+k\left\lceil\frac{a}{B-M}\right\rceil+1\right)$-local function from
$\{-2 a, \ldots, 0, \ldots, 2 a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.

Corollary

If β is WRZ with weak polynomial $W(X)=$ $b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a
$\left(h\left\lceil\frac{a}{B-M}\right\rceil+k\left\lceil\frac{a}{B-M}\right\rceil+1\right)$-local function from
$\{-2 a, \ldots, 0, \ldots, 2 a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.
Algorithm (W) is neighbour free.

Corollary

If β is WRZ with weak polynomial $W(X)=$ $b_{k} X^{k}+b_{k-1} X^{k-1}+\cdots+b_{1} X+b_{0}+b_{-1} X^{-1}+\cdots+b_{-h} X^{-h}$ then addition realized by Algorithm (W) is a
$\left(h\left\lceil\frac{a}{B-M}\right\rceil+k\left\lceil\frac{a}{B-M}\right\rceil+1\right)$-local function from
$\{-2 a, \ldots, 0, \ldots, 2 a\}^{\mathbb{Z}}$ to $\mathcal{A}^{\mathbb{Z}}$.
Algorithm (W) is neighbour free.
Remark
Algorithm (S) and Algorithm (W) coincide if, and only if,
$B \geqslant 4 M-1$.

Example

- If b integer $\geqslant 3,-X+b$ is a strong polynomial for b. Algorithm (S) and Algorithm (W) coincide with $\mathcal{A}=\{-a, \ldots, a\}, a=\left\lceil\frac{b+1}{2}\right\rceil$.
- For $b=2,-X+2$ is a weak polynomial. Algorithm (W) works with $\mathcal{A}=\{-2,-1,0,1,2\}$ with 2 iterations.

What numbers are SRZ (or WRZ)?

Theorem
Let β with $|\beta|>1$ be an algebraic number.
β is SRZ (or WRZ) \Longleftrightarrow all its algebraic conjugates have modulus $\neq 1$.

The proof gives a constructive method to obtain a strong (or weak) polynomial from the minimal polynomial of β.

What numbers are SRZ (or WRZ)?

Theorem
Let β with $|\beta|>1$ be an algebraic number. β is SRZ (or WRZ) \Longleftrightarrow all its algebraic conjugates have modulus $\neq 1$.

The proof gives a constructive method to obtain a strong (or weak) polynomial from the minimal polynomial of β.

Remark

Let β with $|\beta|>1$ be an algebraic number of degree d.

- If d is odd or
- if $d=2$ or
- if d is even $\geqslant 4$ and the minimal polynomial of β is not reciprocal,
then β has no conjugate of modulus 1 .

The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0,1, \ldots, 12\}$.

The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0,1, \ldots, 12\}$.

It is known that it is not possible to perform parallel addition in base the Golden Mean on $\{0,1\}$.

The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base the Golden Mean on $\{0,1, \ldots, 12\}$.

It is known that it is not possible to perform parallel addition in base the Golden Mean on $\{0,1\}$.

We give Algorithm (G) for parallel addition in base the Golden Mean on $\{-1,0,1\}$. This algorithm is neighbour sensitive.

We use the weak representation of zero $-\beta^{2}+3-\frac{1}{\beta^{2}}=0$.

Algorithm A: Base $\beta=\frac{1+\sqrt{5}}{2}$, reduction from $\{-2,-1,0,1,2\}$ to $\{-1,0,1,2\}$.

Input: a finite sequence of digits $\left(z_{i}\right)$ of $\{-2,-1,0,1,2\}$, with $z=\sum z_{i} \beta^{i}$.
Output. a finite sequence of digits $\left(z_{i}\right)$ of $\{-1,0,1,2\}$, with $z=\sum z_{i} \beta^{i}$.
for each i in parallel do

1. case $\left\{\begin{array}{l}z_{i}=-2 \\ z_{i}=-1 \\ z_{i}=0 \text { and } z_{i+2}<0 \text { and } z_{i-2}<0\end{array}\right\}$ then
$q_{i}:=-1$
else $q_{i}:=0$
2. $z_{i}:=z_{i}-3 q_{i}+q_{i+2}+q_{i-2}$

Algorithm B: Base $\beta=\frac{1+\sqrt{5}}{2}$, reduction from $\{-1,0,1,2\}$ to $\{-1,0,1\}$.

Input: a finite sequence of digits $\left(z_{i}\right)$ of $\{-1,0,1,2\}$, with $z=\sum z_{i} \beta^{i}$.
Output. a finite sequence of digits $\left(z_{i}\right)$ of $\{-1,0,1\}$, with $z=\sum z_{i} \beta^{i}$.
for each i in parallel do

1. case

$$
\left\{\begin{array}{l}
z_{i}=2 \\
z_{i}=1 \text { and }\left(z_{i+2} \geqslant 1 \text { or } z_{i-2} \geqslant 1\right) \\
z_{i}=0 \text { and } z_{i+2}=z_{i-2}=2 \\
z_{i}=0 \text { and } z_{i+2}=z_{i-2}=1 \text { and } z_{i+4} \geqslant 1 \text { and } z_{i-4} \geqslant 1 \\
z_{i}=0 \text { and } z_{i+2}=2 \text { and } z_{i-2}=1 \text { and } z_{i-4} \geqslant 1 \\
z_{i}=0 \text { and } z_{i-2}=2 \text { and } z_{i+2}=1 \text { and } z_{i+4} \geqslant 1
\end{array}\right\}
$$

then $q_{i}:=1$

$$
\text { else } q_{i}:=0
$$

2. $z_{i}:=z_{i}-3 q_{i}+q_{i+2}+q_{i-2}$

Algorithm G: Base $\beta=\frac{1+\sqrt{5}}{2}$, parallel addition on $\mathcal{A}=\{-1,0,1\}$.

Input: two finite sequences of digits $\left(x_{i}\right)$ and $\left(y_{i}\right)$ of $\{-1,0,1\}$, with $x=\sum x_{i} \beta^{i}$ and $y=\sum y_{i} \beta^{i}$.
Output: a finite sequence of digits $\left(z_{i}\right)$ of $\{-1,0,1\}$ such that

$$
z=x+y=\sum z_{i} \beta^{i}
$$

for each i in parallel do
0. $v_{i}:=x_{i}+y_{i}$

1. use Algorithm A with input $\left(v_{i}\right)$ and output $\left(w_{i}\right)$
2. use Algorithm B with input $\left(w_{i}\right)$ and output $\left(z_{i}\right)$

Addition in base the Golden Mean on $\{-1,0,1\}$ realized by Algorithm G is a 21-local function.

Addition in base the Golden Mean on $\{-1,0,1\}$ realized by Algorithm G is a 21 -local function.

Algorithm S on $\{-5, \ldots, 5\}$: 9-local
Algorithm W on $\{-3, \ldots, 3\}$: 13-local

Minimal alphabets for parallel addition

\mathcal{A} alphabet of contiguous integer digits containing 0 .
β algebraic number, $|\beta|>1$.

- $\beta=b \geqslant 2$ integer, any alphabet of cardinality $b+1$ is minimal.
Example: $\mathcal{A}=\{-1,0, \ldots, b-1\}$ or $\{0, \ldots, b-1, b\}$
Addition is a 3 -local function.
- β is the Golden Mean: $\mathcal{A}=\{-1,0,1\}$ is minimal.

Lower bounds

\mathcal{A} finite alphabet of contiguous integers containing 0 with at least two elements.
β algebraic number, $|\beta|>1$
Theorem

1. β a real algebraic number >1. If addition on \mathcal{A} is computable in parallel then

$$
\# \mathcal{A} \geqslant\lceil\beta\rceil
$$

2. β an algebraic integer with minimal polynomial $f(X)$. If addition on \mathcal{A} is computable in parallel then

$$
\# \mathcal{A} \geqslant|f(1)|
$$

If β is a real algebraic integer then

$$
\# \mathcal{A} \geqslant|f(1)|+2
$$

In the previous theorem

1. " $\# \mathcal{A} \geqslant\lceil\beta\rceil$ " can be replaced by
" $\# \mathcal{A} \geqslant \max \left\{\lceil\gamma\rceil \mid \gamma\right.$ or γ^{-1} is a positive conjugate of $\left.\beta\right\}$ ".
2. " β is an algebraic integer" can be replaced by " β or $\frac{1}{\beta}$ is an algebraic integer"
" β is an algebraic integer >1 " can be replaced by " β is an algebraic integer and one of its algebraic conjugates is >1 ".

Addition versus conversion

$$
\mathcal{A}=\{m, \ldots, 0 \ldots, M\} .
$$

1. $m=0$: Addition on \mathcal{A} is parallelizable \qquad greatest digit elimination : $\mathcal{A} \cup\{M+1\} \rightarrow \mathcal{A}$ is parallelizable.
2. $\{-1,0,1\} \subset \mathcal{A}$: Addition on \mathcal{A} is parallelizable \Longleftrightarrow greatest digit elimination : $\mathcal{A} \cup\{M+1\} \rightarrow \mathcal{A}$ and smallest digit elimination : $\{m-1\} \cup \mathcal{A} \rightarrow \mathcal{A}$ are parallelizable.

How to pass from one alphabet allowing parallel addition to another one of same size

Proposition
For $K, d \in \mathbb{Z}$, where $0 \leqslant d \leqslant K-1$, denote

$$
\mathcal{A}_{-d}=\{-d, \ldots, 0, \ldots, K-1-d\} .
$$

Let φ be a p-local function realizing conversion in base β from $\mathcal{A}_{0} \cup\{K\}$ to \mathcal{A}_{0}. If

- $\varphi\left({ }^{\omega} d \bullet d^{\omega}\right)={ }^{\omega} d \bullet d^{\omega}$ and
- $\varphi\left({ }^{\omega}(K-1-d) \cdot(K-1-d)^{\omega}\right)=$ ${ }^{\omega}(K-1-d) \bullet(K-1-d)^{\omega}$
then addition is performable in parallel on \mathcal{A}_{-d} as well.

Positive integer base

$\beta=b, b \geqslant 2$ integer. Minimal polynomial $f(X)=X-b$.
Lower bound $|f(1)|+2=b+1$ is attained.
Parallel addition is feasible on any alphabet of cardinality $b+1$ containing 0 , in particular on alphabets $\mathcal{A}=\{0,1, \ldots, b\}$ and $\mathcal{A}=\{-1,0,1, \ldots, b-1\}$ (folklore).

If b is even, $b=2 a$, parallel addition is realizable on the alphabet $\mathcal{A}=\{-a, \ldots, a\}$ of cardinality $b+1$ by the algorithm of Chow and Robertson (see Cauchy).

Negative integer base

$\beta=-b, b \geqslant 2$ integer.
Every integer has a unique finite representation with digits in $\{0,1, \ldots, b-1\}$ (Grünwald 1885).

Minimal polynomial $f(X)=X+b$. Lower bound $|f(1)|=b+1$ is attained.

Theorem

Let $\beta=-b \in \mathbb{Z}, b \geqslant 2$. Any alphabet \mathcal{A} of contiguous integers containing 0 with cardinality $\# \mathcal{A}=b+1$ allows parallel addition in base $\beta=-b$ and this alphabet is minimal in size.

Parallel addition on $\{0, \ldots, b\}$: It is enough to show that greatest digit elimination between $\{0, \ldots, b+1\}$ to $\{0, \ldots, b\}$ is performable in parallel.

Algorithm \mathbf{N} : Base $\beta=-b$, greatest digit elimination from $\{0, \ldots, b+1\}$ to $\{0, \ldots, b\}$.
Input: a finite sequence of digits $\left(z_{i}\right)$ of $\{0, \ldots, b+1\}$, with $z=\sum z_{i} \beta^{i}$.
Output: a finite sequence of digits $\left(z_{i}\right)$ of $\{0, \ldots, b\}$, with $z=\sum z_{i} \beta^{i}$.
for each i in parallel do

1. case $\left\{\begin{array}{l}z_{i}=b+1 \\ z_{i}=b \text { and } z_{i-1}=0\end{array}\right\}$ then $q_{i}:=1$
if $z_{i}=0$ and $z_{i-1} \geqslant b$ then $q_{i}:=-1$
el se $q_{i}:=0$;
2. $z_{i}:=z_{i}-b q_{i}-q_{i-1}$

Base $\sqrt[k]{b}, b$ integer, $|b| \geqslant 2$

Proposition

Let $\beta=\sqrt[k]{b}, b$ in $\mathbb{Z},|b| \geqslant 2$ and $k \geqslant 1$ integer. Any alphabet \mathcal{A} of contiguous integers containing 0 with cardinality $\# \mathcal{A}=b+1$ allows parallel addition.
Use that $\gamma=\beta^{k}=b$.
Proposition
If b is in \mathbb{N} the polynomial $X^{k}-b$ is minimal for β, thus the cardinality $b+1$ is minimal.

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta=-1+\imath$ with digits in $\{0,1\}$.
Example: $3=1101$.
Minimal polynomial $f(X)=X^{2}+2 X+2$, and lower bound $=|f(1)|=5$.
$\beta^{4}=-4$. Parallel addition is possible on any alphabet of minimal cardinality 5.

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta=-1+\imath$ with digits in $\{0,1\}$.
Example: $3=1101$.
Minimal polynomial $f(X)=X^{2}+2 X+2$, and lower bound
$=|f(1)|=5$.
$\beta^{4}=-4$. Parallel addition is possible on any alphabet of minimal cardinality 5.

Knuth numeration system (1955): $\beta=2{ }_{l}$ with digits in $\{0, \ldots, 3\}$.
Minimal polynomial $f(X)=X^{2}+4$, and lower bound $=|f(1)|=5$. Parallel addition is possible on any alphabet of minimal cardinality 5.

Complex bases

Penney numeration system (1964): every integer has a unique finite expansion in base $\beta=-1+\imath$ with digits in $\{0,1\}$.
Example: $3=1101$.
Minimal polynomial $f(X)=X^{2}+2 X+2$, and lower bound
$=|f(1)|=5$.
$\beta^{4}=-4$. Parallel addition is possible on any alphabet of minimal cardinality 5 .

Knuth numeration system (1955): $\beta=2 \imath$ with digits in $\{0, \ldots, 3\}$.
Minimal polynomial $f(X)=X^{2}+4$, and lower bound $=|f(1)|=5$. Parallel addition is possible on any alphabet of minimal cardinality 5 .
$\beta=\imath \sqrt{2}$ with digits in $\{0,1\}$.
Minimal polynomial $f(X)=X^{2}+2$, and lower bound
$=|f(1)|=3$. Parallel addition is possible on any alphabet of minimal cardinality 3.

β root of $X^{2}=a X-1, a \geqslant 3$

β is a quadratic Pisot unit.
By the greedy algorithm of Rényi 1957, every positive real has an expansion on the canonical alphabet $\mathcal{C}=\{0, \ldots, a-1\}$. Uniqueness iff avoids any string of the form
$(a-1)(a-2)^{k}(a-1)$.
If no admissibility condition, then redundancy, which is sufficient.

Minimal polynomial $f(X)=X^{2}-a X+1$ and lower bound $=$ $|f(1)|+2=a$
Theorem
β root of $X^{2}=a X-1, a \geqslant 3$. Every alphabet of size a containing 0 allows parallel addition.

β root of $X^{2}=a X+1, a \geqslant 1$

β is a quadratic Pisot unit.
Every positive real has an expansion on the canonical alphabet $\mathcal{C}=\{0, \ldots, a\}$.
Uniqueness iff avoids any string of the form a1.
If no admissibility condition, then redundancy, but it's not sufficient.
$a=1$: Golden Mean. Minimal alphabet has size 3.
Minimal polynomial $f(X)=X^{2}-a X-1$ and lower bound $=$ $|f(1)|+2=a+2$
Theorem
β root of $X^{2}=a X+1, a \geqslant 1$. Every alphabet of size $a+2$ containing 0 allows parallel addition.

Rational base $\beta=a / b$

By a modification of the Euclidean division algorithm any natural integer has a unique and finite expansion on the alphabet $\{0, \ldots, a-1\}$ in base $\beta=a / b$ (Akiyama, Frougny and Sakarovitch 2008; Frougny and Klouda 2011).

Example: $\beta=3 / 2$, then $4=21$
If $b \geqslant 2, a / b$ is an algebraic number which is not an algebraic integer, so our lower bound is $\lceil a / b\rceil$, which is not attained.

Theorem

In base $\beta=a / b$, with a and b co-prime such that $a>b \geqslant 1$, the only alphabets of minimal cardinality $a+b$ allowing parallel addition are:

- $\{0, \ldots, a+b-1\}$ and $\{-a-b+1, \ldots, 0\}$
- every alphabet of cardinality $a+b$ containing $\{-b, \ldots, 0, \ldots, b\}$.

Negative rational base $\beta=-a / b$

By a modification of the Euclidean division algorithm any integer has a unique and finite expansion on the alphabet $\{0, \ldots, a-1\}$ in base $\beta=-a / b$ (F. and Klouda 2011).

If $b \geqslant 2,-a / b$ is a negative algebraic number which is not an algebraic integer, so we have no lower bound
Theorem
In base $\beta=-a / b$, with a and b co-prime such that $a>b \geqslant 1$, every alphabet of minimal cardinality $a+b$ containing 0 allows parallel addition.

Base	Canonical al- phabet	Minimal alphabet for parallel addition
$b \geqslant 2$ in \mathbb{N}	$\{0, \ldots, b-1\}$	All alphabets of size $b+1$
$-b, b \geqslant 2$ in \mathbb{N}	$\{0, \ldots, b-1\}$	All alphabets of size $b+1$
$\sqrt[k]{b}, b \geqslant 2$ in \mathbb{N}		All alphabets of size $b+1$
$-1+\imath$	$\{0,1\}$	All alphabets of size 5
$2 \imath$	$\{0, \ldots, 3\}$	All alphabets of size 5
$\imath \sqrt{2}$	$\{0,1\}$	All alphabets of size 3
$\beta^{2}=a \beta-1$	$\{0, \ldots, a-1\}$	All alphabets of size a
$\beta^{2}=a \beta+1$	$\{0, \ldots, a\}$	All alphabets of size $a+2$
a / b	$\{0, \ldots, a-1\}$	$\{0, \ldots, a+b-1\}, \quad\{-a-$ $b+1, \ldots, 0\}$, and all alpha- bets of size $a+b$ containing $\{-b, \ldots, 0, \ldots, b\}$
$-a / b$	$\{0, \ldots, a-1\}$	All alphabets of size $a+b$

