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Signed-digit representations

Base 10 and digit-set {−5, . . . ,0, . . . ,5} Cauchy 1840

Base 10 and digit-set {−6, . . . ,0, . . . ,6} Avizienis 1961

Base 2 and digit-set {−1,0,1} Chow and Robertson 1978
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Redundancy



Algorithm of Avizienis 1961

Base β = b, b > 3 integer, parallel addition on alphabet
A = {−a, . . . ,0, . . . ,a}, b/2 < a 6 b − 1.

Input: xn · · · xm and yn · · · ym in A∗, m 6 n,
x =

∑n
i=m xiβ

i and y =
∑n

i=m yiβ
i .

Output: zn+1 · · · zm in A∗ such that

z = x + y =
n+1∑

i=m

ziβ
i .

for each i in parallel do
0. zi := xi + yi

1. if zi > a then qi := 1, ri := zi − b
if zi 6 −a then qi := −1, ri := zi + b
if −a + 1 6 zi 6 a − 1 then qi := 0, ri := zi

2. zi := qi−1 + ri



Avizienis
β = 10, digit-set {−6, . . . ,0, . . . ,6}

x 7→ 2 5 2 5 5 6 0 3
y 7→ 5 1 2 2 5 4 0 6 5

z 7→ 5 3 7 4 10 9 6 6 8

0 7→ 1 10
0 7→ 1 10
0 7→ 1 10
0 7→ 1 10
0 7→ 1 10
0 7→ 1 10

z 7→ 5 4 3 3 1 2 3 3 2

Minimal polynomial of β is X − 10
1 (10) is a (strong) representation of 0



Algorithm of Chow and Robertson 1978

Base β = b = 2a, a > 1, parallel addition on
A = {−a, . . . ,0, . . . ,a}.

Input: xn · · · xm and yn · · · ym in A∗, m 6 n,
x =

∑n
i=m xiβ

i and y =
∑n

i=m yiβ
i .

Output: zn+1 · · · zm in A∗ such that z = x + y =
∑n+1

i=m ziβ
i .

for each i in parallel do
0. zi := xi + yi

1. if a + 1 6 zi 6 b then qi := 1, ri := zi − b
if −b 6 zi 6 −a − 1 then qi := −1, ri := zi + b
if −a + 1 6 zi 6 a − 1 then qi := 0, ri := zi

if zi = a and zi−1 > 0 then qi := 1, ri := −a
if zi = a and zi−1 6 0 then qi := 0, ri := a
if zi = −a and zi−1 < 0 then qi := −1, ri := a
if zi = −a and zi−1 > 0 then qi := 0, ri := −a

2. zi := qi−1 + ri



Chow and Robertson (Cauchy)
β = 10, digit-set {−5, . . . ,0, . . . ,5}

x 7→ 2 5 1 0 3 2 0 3
y 7→ 1 3 1 2 5 5 3 5 5

z 7→ 1 5 6 1 5 8 5 5 8

0 7→ 1 10
0 7→ 1 10
0 7→ 1 10
0 7→ 1 10
0 7→ 1 10

z 7→ 1 4 4 1 4 3 4 4 2



Excursion into symbolic dynamics

A subset S ⊆ AZ is a symbolic dynamical system if it is closed
and shift-invariant.

S ⊆ AZ and T ⊆ BZ symbolic dynamical systems.
ϕ : S → T is a p-local function if ∃r , t > 0, and ∃Φ : Ap → B,
with p = r + t + 1, such that if u = (ui)i∈Z ∈ AZ and
v = (vi )i∈Z ∈ BZ, then

v = ϕ(u) ⇐⇒ ∀i ∈ Z, vi = Φ(ui+t · · · ui−r ).

The image of u by ϕ is obtained through a sliding window of
length p.
r is the memory and t is the anticipation of ϕ.
ϕ is called a sliding block code.
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Excursion into symbolic dynamics

A subset S ⊆ AZ is a symbolic dynamical system if it is closed
and shift-invariant.

S ⊆ AZ and T ⊆ BZ symbolic dynamical systems.
ϕ : S → T is a p-local function if ∃r , t > 0, and ∃Φ : Ap → B,
with p = r + t + 1, such that if u = (ui)i∈Z ∈ AZ and
v = (vi )i∈Z ∈ BZ, then

v = ϕ(u) ⇐⇒ ∀i ∈ Z, vi = Φ(ui+t · · · ui−r ).

The image of u by ϕ is obtained through a sliding window of
length p.
r is the memory and t is the anticipation of ϕ.
ϕ is called a sliding block code.

A function is computable in parallel iff it is a local function.
A local function is computable by a finite sequential transducer.



Differences between the two algorithms

Decision (choice) in step 1:

◮ Avizienis algorithm is neighbour free.
◮ Chow and Robertson algorithm is neighbour sensitive.

Locality : Addition on A is a function from (A+A)Z to AZ

◮ Avizienis addition is 2-local.
◮ Chow and Robertson addition is 3-local.



Strong representation of zero property

Base β algebraic number with |β| > 1.

Definition
β satisfies the strong representation of zero property (β is SRZ)
if there exist integers bk ,bk−1, . . . ,b1,b0,b−1, . . . ,b−h such that
β is a root of the polynomial

S(X ) = bkX k+bk−1X k−1+· · ·+b1X+b0+b−1X−1+· · ·+b−hX−h

and
B = b0 > 2

∑

i 6=0

|bi | = 2M .

The polynomial S is said to be a strong polynomial for β.



Strong representation of zero property

Base β algebraic number with |β| > 1.

Definition
β satisfies the strong representation of zero property (β is SRZ)
if there exist integers bk ,bk−1, . . . ,b1,b0,b−1, . . . ,b−h such that
β is a root of the polynomial

S(X ) = bkX k+bk−1X k−1+· · ·+b1X+b0+b−1X−1+· · ·+b−hX−h

and
B = b0 > 2

∑

i 6=0

|bi | = 2M .

The polynomial S is said to be a strong polynomial for β.

(bkbk−1 · · · b1b0.b−1 · · · b−h)β = 0



Suppose that β is SRZ, i.e. B > 2M.
Working alphabet A = {−a, . . . ,0, . . . ,a}
with

a =
⌈B−1

2

⌉
+

⌈
B−1

2(B−2M)

⌉

M.

Let
a′ =

⌈B−1
2

⌉
and c =

⌈
B−1

2(B−2M)

⌉

.

Then a = a′ + cM.
A′ = {−a′, . . . ,0, . . . ,a′} ⊂ A is the inner alphabet.



Parallel addition for base β SRZ on

A = {−a, . . . , 0, . . . , a}, a =
⌈

B−1
2

⌉

︸ ︷︷ ︸

a′

+

⌈
B−1

2(B−2M)

⌉

︸ ︷︷ ︸
c

M

Algorithm (S)

Input: xn · · · xm and yn · · · ym in A∗, with m 6 n,
x =

∑n
i=m xiβ

i and y =
∑n

i=m yiβ
i .

Output: zn+k · · · zm−h in A∗ such that z = x + y =
∑n+k

i=m−h ziβ
i .

for each i in parallel do
0. zi := xi + yi

1. find qi ∈ {−c, . . . ,0, . . . , c} such that zi − qiB ∈ A′

2. zi := zi −
k∑

j=−h
qi−jbj



Parallel addition for base β SRZ on

A = {−a, . . . , 0, . . . , a}, a =
⌈

B−1
2

⌉

︸ ︷︷ ︸

a′

+

⌈
B−1

2(B−2M)

⌉

︸ ︷︷ ︸
c

M

Algorithm (S)

Input: xn · · · xm and yn · · · ym in A∗, with m 6 n,
x =

∑n
i=m xiβ

i and y =
∑n

i=m yiβ
i .

Output: zn+k · · · zm−h in A∗ such that z = x + y =
∑n+k

i=m−h ziβ
i .

for each i in parallel do
0. zi := xi + yi

1. find qi ∈ {−c, . . . ,0, . . . , c} such that zi − qiB ∈ A′

2. zi := zi −
k∑

j=−h
qi−jbj

Algorithm (S) is neighbour free.



Integer base

β = b integer > 3 is SRZ for the polynomial −X + b, and
Algorithm (S) works with c = 1, a′ =

⌈b−1
2

⌉
, and a =

⌈b+1
2

⌉
.

for each i in parallel do
0. zi := xi + yi

1. find qi ∈ {−1,0,1} such that zi − qib ∈ A′

2. zi := zi − qib + qi−1

Algorithm (S) is the algorithm of Avizienis with a =
⌈b+1

2

⌉
.



For β = 2, −X + 2 is not a strong polynomial. But β satisfies
the strong polynomial

−X 2 + 4.

So Algorithm (S) works for base 2 on {−3, . . . ,0, . . . ,3}.



For β = 2, −X + 2 is not a strong polynomial. But β satisfies
the strong polynomial

−X 2 + 4.

So Algorithm (S) works for base 2 on {−3, . . . ,0, . . . ,3}.

Remind that the Chow and Robertson algorithm works with
smaller alphabet {−1,0,1}, but need to examine the right
neighbour of current position.



The Golden Mean

β = 1+
√

5
2 , the Golden Mean.

Every real number > 0 has an expansion on alphabet {0,1}.

β is one root of X 2 −X − 1, the second root is β′ = 1−
√

5
2 = − 1

β
.

Since β4 + (β′)4 = 7, β is a root of the strong polynomial

S(X ) = −X 4 + 7 − 1
X4

with B = 7 and M = 2. Thus c = 1, a′ = 3, and a = 5. The
working alphabet of Algorithm (S) is A = {−5, . . . ,0, . . . ,5}.

100070001 is a strong β-representation of 0.



a′ = 3, a = 5

x 7→ 2 5 2 5 5 0 0 3
y 7→ 5 1 2 2 5 4 0 0 5

z 7→ 5 3 7 4 10 9 0 0 8

0 7→ 1 0 0 0 7 0 0 0 1
0 7→ 1 0 0 0 7 0 0 0 1
0 7→ 1 0 0 0 7 0 0 0 1
0 7→ 1 0 0 0 7 0 0 0 1
0 7→ 1 0 0 0 7 0 0 0 1
0 7→ 1 0 0 0 7 0 0 0 1

z 7→ 1 0 1 1 1 2 0 3 5 2 1 1 2 1 0 0 1



Locality

Corollary
If β is SRZ with strong polynomial
S(X ) = bkX k+bk−1X k−1+· · ·+b1X+b0+b−1X−1+· · ·+b−hX−h

then addition realized by Algorithm (S) is a (h + k + 1)-local
function from {−2a, . . . ,0, . . . ,2a}Z to AZ.



Reduction of the alphabet

Definition
β satisfies the weak representation of zero property (β is WRZ)
if there exist integers bk ,bk−1, . . . ,b1,b0,b−1, . . . ,b−h such that
β is a root of the polynomial

W (X ) = bkX k+bk−1X k−1+. . .+b1X+b0+b−1X−1+. . .+b−hX−h

and
B = b0 >

∑

i 6=0

|bi | = M .

The polynomial W is said to be a weak polynomial for β.



β is WRZ, i.e. B > M. Working alphabet

A = {−a, . . . ,0, . . . ,a}, where a =
⌈B−1

2

⌉
+ M .

Inner alphabet is A′ = {−a′, . . . ,0, . . . ,a′} with a′ = ⌈B−1
2 ⌉.

Algorithm (W) works with
⌈

a
B−M

⌉

iterations.



Parallel addition for base β WRZ on
A = {−a, . . . , 0, . . . , a}, a =

⌈
B−1

2

⌉

︸ ︷︷ ︸

a′

+M

Algorithm (W)

Input: xn · · · xm and yn · · · ym in A∗, with m 6 n,
x =

∑n
i=m xiβ

i and y =
∑n

i=m yiβ
i .

Output: zn+k · · · zm−h in A∗ such that

z = x + y =

n+k∑

i=m−h

ziβ
i .

for each i in parallel do
0. zi := xi + yi

1. for ℓ := 1 to
⌈

a
B−M

⌉

do

if zi ∈ A′ then qi := 0 else qi := sgn zi

zi := zi −
∑k

j=−h qi−jbj



Example
β = 1+

√
5

2 , the Golden Mean.
Since −β2 + 3 − 1

β2 = 0, β is a root of the weak polynomial

W (X ) = −X 2 + 3 − 1
X2

with B = 3 and M = 2. Thus a′ = 1, and a = 3.

Algorithm (W) works on A = {−3, . . . ,0, . . . ,3}, with 3
iterations.

10301 is a weak β-representation of 0.



Step 0. x 7→ 3 1 3 0 3
y 7→ 2 0 3 2 3

z 7→ 5 1 6 2 6

Step 1. 0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1

z 7→ 1 0 3 2 5 1 4 1 1

Step 2. 0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1

z 7→ 2 1 1 1 4 0 2 1 2

Step 3. 0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1
0 7→ 1 0 3 0 1

z 7→ 1 0 1 1 3 1 2 0 1 1 0 0 1



Corollary
If β is WRZ with weak polynomial W (X ) =
bkX k + bk−1X k−1 + · · ·+ b1X + b0 + b−1X−1 + · · ·+ b−hX−h

then addition realized by Algorithm (W) is a

(h
⌈

a
B−M

⌉

+ k
⌈

a
B−M

⌉

+ 1)-local function from

{−2a, . . . ,0, . . . ,2a}Z to AZ.
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(h
⌈

a
B−M

⌉

+ k
⌈

a
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⌉
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Corollary
If β is WRZ with weak polynomial W (X ) =
bkX k + bk−1X k−1 + · · ·+ b1X + b0 + b−1X−1 + · · ·+ b−hX−h

then addition realized by Algorithm (W) is a

(h
⌈

a
B−M

⌉

+ k
⌈

a
B−M

⌉

+ 1)-local function from

{−2a, . . . ,0, . . . ,2a}Z to AZ.

Algorithm (W) is neighbour free.

Remark
Algorithm (S) and Algorithm (W) coincide if, and only if,
B > 4M − 1.

Example

◮ If b integer > 3, −X + b is a strong polynomial for b.
Algorithm (S) and Algorithm (W) coincide with
A = {−a, . . . ,a}, a =

⌈b+1
2

⌉
.

◮ For b = 2, −X + 2 is a weak polynomial. Algorithm (W)
works with A = {−2,−1,0,1,2} with 2 iterations.



What numbers are SRZ (or WRZ)?

Theorem
Let β with |β| > 1 be an algebraic number.
β is SRZ (or WRZ) ⇐⇒ all its algebraic conjugates have
modulus 6= 1.

The proof gives a constructive method to obtain a strong (or
weak) polynomial from the minimal polynomial of β.



What numbers are SRZ (or WRZ)?

Theorem
Let β with |β| > 1 be an algebraic number.
β is SRZ (or WRZ) ⇐⇒ all its algebraic conjugates have
modulus 6= 1.

The proof gives a constructive method to obtain a strong (or
weak) polynomial from the minimal polynomial of β.

Remark
Let β with |β| > 1 be an algebraic number of degree d.

◮ If d is odd or
◮ if d = 2 or
◮ if d is even > 4 and the minimal polynomial of β is not

reciprocal,

then β has no conjugate of modulus 1.
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The Golden Mean

In 1986 Berstel has given a parallel addition algorithm in base
the Golden Mean on {0,1, . . . ,12}.

It is known that it is not possible to perform parallel addition in
base the Golden Mean on {0,1}.

We give Algorithm (G) for parallel addition in base the Golden
Mean on {−1,0,1}. This algorithm is neighbour sensitive.

We use the weak representation of zero −β2 + 3 − 1
β2 = 0.



Algorithm A: Base β = 1+
√

5
2 , reduction from {−2,−1,0,1,2} to

{−1,0,1,2}.

Input: a finite sequence of digits (zi) of {−2,−1,0,1,2}, with
z =

∑
ziβ

i .
Output: a finite sequence of digits (zi) of {−1,0,1,2}, with
z =

∑
ziβ

i .

for each i in parallel do

1. case







zi = −2
zi = −1
zi = 0 and zi+2 < 0 and zi−2 < 0






then

qi := −1

else qi := 0
2. zi := zi − 3qi + qi+2 + qi−2



Algorithm B: Base β = 1+
√

5
2 , reduction from {−1,0,1,2} to

{−1,0,1}.

Input: a finite sequence of digits (zi) of {−1,0,1,2}, with
z =

∑
ziβ

i .
Output: a finite sequence of digits (zi) of {−1,0,1}, with
z =

∑
ziβ

i .

for each i in parallel do
1. case





zi = 2
zi = 1 and (zi+2 > 1 or zi−2 > 1)
zi = 0 and zi+2 = zi−2 = 2
zi = 0 and zi+2 = zi−2 = 1 and zi+4 > 1 and zi−4 > 1
zi = 0 and zi+2 = 2 and zi−2 = 1 and zi−4 > 1
zi = 0 and zi−2 = 2 and zi+2 = 1 and zi+4 > 1







then qi := 1

else qi := 0
2. zi := zi − 3qi + qi+2 + qi−2



Algorithm G: Base β = 1+
√

5
2 , parallel addition on

A = {−1,0,1}.

Input: two finite sequences of digits (xi ) and (yi ) of {−1,0,1},
with x =

∑
xiβ

i and y =
∑

yiβ
i .

Output: a finite sequence of digits (zi) of {−1,0,1} such that

z = x + y =
∑

ziβ
i .

for each i in parallel do
0. vi := xi + yi

1. use Algorithm A with input (vi) and output (wi)
2. use Algorithm B with input (wi) and output (zi)



Addition in base the Golden Mean on {−1,0,1} realized by
Algorithm G is a 21-local function.



Addition in base the Golden Mean on {−1,0,1} realized by
Algorithm G is a 21-local function.

Algorithm S on {−5, . . . ,5}: 9-local

Algorithm W on {−3, . . . ,3}: 13-local



Minimal alphabets for parallel addition

A alphabet of contiguous integer digits containing 0.
β algebraic number, |β| > 1.

◮ β = b > 2 integer, any alphabet of cardinality b + 1 is
minimal.
Example: A = {−1,0, . . . ,b − 1} or {0, . . . ,b − 1,b}
Addition is a 3-local function.

◮ β is the Golden Mean: A = {−1,0,1} is minimal.



Lower bounds
A finite alphabet of contiguous integers containing 0 with at
least two elements.
β algebraic number, |β| > 1

Theorem

1. β a real algebraic number > 1. If addition on A is
computable in parallel then

#A > ⌈β⌉

2. β an algebraic integer with minimal polynomial f (X ).
If addition on A is computable in parallel then

#A > |f (1)|

If β is a real algebraic integer then

#A > |f (1)|+ 2



In the previous theorem

1. “#A > ⌈β⌉" can be replaced by

“#A > max{⌈γ⌉ | γ or γ−1 is a positive conjugate of β}”.

2. “β is an algebraic integer" can be replaced by “β or 1
β

is an
algebraic integer"
“β is an algebraic integer > 1" can be replaced by “β is an
algebraic integer and one of its algebraic conjugates is
> 1".



Addition versus conversion

A = {m, . . . ,0 . . . ,M}.

1. m = 0: Addition on A is parallelizable ⇐⇒

greatest digit elimination : A ∪ {M + 1} → A

is parallelizable.

2. {−1,0,1} ⊂ A: Addition on A is parallelizable ⇐⇒

greatest digit elimination : A∪ {M + 1} → A

and

smallest digit elimination : {m − 1} ∪ A → A

are parallelizable.



How to pass from one alphabet allowing parallel
addition to another one of same size

Proposition
For K ,d ∈ Z, where 0 6 d 6 K − 1, denote

A−d = {−d , . . . ,0, . . . ,K − 1 − d} .

Let ϕ be a p-local function realizing conversion in base β from
A0 ∪ {K} to A0. If

◮ ϕ(ωd • dω) = ωd • dω and
◮ ϕ(ω(K − 1 − d) • (K − 1 − d)ω) =

ω(K − 1 − d) • (K − 1 − d)ω

then addition is performable in parallel on A−d as well.



Positive integer base

β = b, b > 2 integer. Minimal polynomial f (X ) = X − b.
Lower bound |f (1)|+ 2 = b + 1 is attained.

Parallel addition is feasible on any alphabet of cardinality b + 1
containing 0, in particular on alphabets A = {0,1, . . . ,b} and
A = {−1,0,1, . . . ,b − 1} (folklore).

If b is even, b = 2a, parallel addition is realizable on the
alphabet A = {−a, . . . ,a} of cardinality b + 1 by the algorithm
of Chow and Robertson (see Cauchy).



Negative integer base

β = −b, b > 2 integer.
Every integer has a unique finite representation with digits in
{0,1, . . . ,b − 1} (Grünwald 1885).

Minimal polynomial f (X ) = X + b. Lower bound |f (1)| = b + 1
is attained.

Theorem
Let β = −b ∈ Z, b > 2. Any alphabet A of contiguous integers
containing 0 with cardinality #A = b + 1 allows parallel
addition in base β = −b and this alphabet is minimal in size.



Parallel addition on {0, . . . ,b}: It is enough to show that
greatest digit elimination between {0, . . . ,b + 1} to {0, . . . ,b} is
performable in parallel.

Algorithm N: Base β = −b, greatest digit elimination from
{0, . . . ,b + 1} to {0, . . . ,b}.

Input: a finite sequence of digits (zi) of {0, . . . ,b + 1}, with
z =

∑
ziβ

i .
Output: a finite sequence of digits (zi) of {0, . . . ,b}, with
z =

∑
ziβ

i .

for each i in parallel do

1. case

{
zi = b + 1
zi = b and zi−1 = 0

}

then qi := 1

if zi = 0 and zi−1 > b then qi := −1
else qi := 0;

2. zi := zi − bqi − qi−1



Base k
√

b, b integer, |b| > 2

Proposition
Let β = k

√
b, b in Z, |b| > 2 and k > 1 integer. Any alphabet A

of contiguous integers containing 0 with cardinality #A = b + 1
allows parallel addition.

Use that γ = βk = b.

Proposition
If b is in N the polynomial X k − b is minimal for β, thus the
cardinality b + 1 is minimal.



Complex bases
Penney numeration system (1964): every integer has a unique
finite expansion in base β = −1 + ı with digits in {0,1}.
Example: 3 = 1101.
Minimal polynomial f (X ) = X 2 + 2X + 2, and lower bound
=|f (1)| = 5.
β4 = −4. Parallel addition is possible on any alphabet of
minimal cardinality 5.
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Example: 3 = 1101.
Minimal polynomial f (X ) = X 2 + 2X + 2, and lower bound
=|f (1)| = 5.
β4 = −4. Parallel addition is possible on any alphabet of
minimal cardinality 5.

Knuth numeration system (1955): β = 2ı with digits in
{0, . . . ,3}.
Minimal polynomial f (X ) = X 2 + 4, and lower bound
=|f (1)| = 5. Parallel addition is possible on any alphabet of
minimal cardinality 5.



Complex bases
Penney numeration system (1964): every integer has a unique
finite expansion in base β = −1 + ı with digits in {0,1}.
Example: 3 = 1101.
Minimal polynomial f (X ) = X 2 + 2X + 2, and lower bound
=|f (1)| = 5.
β4 = −4. Parallel addition is possible on any alphabet of
minimal cardinality 5.

Knuth numeration system (1955): β = 2ı with digits in
{0, . . . ,3}.
Minimal polynomial f (X ) = X 2 + 4, and lower bound
=|f (1)| = 5. Parallel addition is possible on any alphabet of
minimal cardinality 5.

β = ı
√

2 with digits in {0,1}.
Minimal polynomial f (X ) = X 2 + 2, and lower bound
=|f (1)| = 3. Parallel addition is possible on any alphabet of
minimal cardinality 3.



β root of X 2
= aX − 1, a > 3

β is a quadratic Pisot unit.
By the greedy algorithm of Rényi 1957, every positive real has
an expansion on the canonical alphabet C = {0, . . . ,a − 1}.
Uniqueness iff avoids any string of the form
(a − 1)(a − 2)k (a − 1).
If no admissibility condition, then redundancy, which is
sufficient.

Minimal polynomial f (X ) = X 2 − aX + 1 and lower bound =
|f (1)|+ 2 = a

Theorem
β root of X 2 = aX − 1, a > 3. Every alphabet of size a
containing 0 allows parallel addition.



β root of X 2
= aX + 1, a > 1

β is a quadratic Pisot unit.
Every positive real has an expansion on the canonical alphabet
C = {0, . . . ,a}.
Uniqueness iff avoids any string of the form a1.
If no admissibility condition, then redundancy, but it’s not
sufficient.

a = 1: Golden Mean. Minimal alphabet has size 3.

Minimal polynomial f (X ) = X 2 − aX − 1 and lower bound =
|f (1)|+ 2 = a + 2

Theorem
β root of X 2 = aX + 1, a > 1. Every alphabet of size a + 2
containing 0 allows parallel addition.



Rational base β = a/b
By a modification of the Euclidean division algorithm any
natural integer has a unique and finite expansion on the
alphabet {0, . . . ,a − 1} in base β = a/b (Akiyama, Frougny and
Sakarovitch 2008; Frougny and Klouda 2011).

Example: β = 3/2, then 4 = 21

If b > 2, a/b is an algebraic number which is not an algebraic
integer, so our lower bound is ⌈a/b⌉, which is not attained.

Theorem
In base β = a/b, with a and b co-prime such that a > b > 1,
the only alphabets of minimal cardinality a + b allowing parallel
addition are:

◮ {0, . . . ,a + b − 1} and {−a − b + 1, . . . ,0}
◮ every alphabet of cardinality a + b containing

{−b, . . . ,0, . . . ,b}.



Negative rational base β = −a/b

By a modification of the Euclidean division algorithm any
integer has a unique and finite expansion on the alphabet
{0, . . . ,a − 1} in base β = −a/b (F. and Klouda 2011).

If b > 2, −a/b is a negative algebraic number which is not an
algebraic integer, so we have no lower bound

Theorem
In base β = −a/b, with a and b co-prime such that a > b > 1,
every alphabet of minimal cardinality a + b containing 0 allows
parallel addition.



Base Canonical al-
phabet

Minimal alphabet for parallel
addition

b > 2 in N {0, . . . ,b − 1} All alphabets of size b + 1
−b, b > 2 in N {0, . . . ,b − 1} All alphabets of size b + 1
k
√

b, b > 2 in N All alphabets of size b + 1
−1 + ı {0,1} All alphabets of size 5
2ı {0, . . . ,3} All alphabets of size 5
ı
√

2 {0,1} All alphabets of size 3
β2 = aβ − 1 {0, . . . ,a − 1} All alphabets of size a
β2 = aβ + 1 {0, . . . ,a} All alphabets of size a + 2
a/b {0, . . . ,a − 1} {0, . . . ,a + b − 1}, {−a −

b + 1, . . . ,0}, and all alpha-
bets of size a + b containing
{−b, . . . ,0, . . . ,b}

−a/b {0, . . . ,a − 1} All alphabets of size a + b


