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Peano

The successor function is a primitive recursive function Succ such
that Succ(n) = n + 1 for each natural number n.

Peano axioms define the natural numbers beyond 0:
1 is defined to be Succ(0)

Addition on natural numbers is defined recursively by:
m + 0 = m
m + Succ(n) = Succ(m) + n



Odometer

The odometer indicates the distance traveled by a vehicule.



Odometer

The odometer indicates the distance traveled by a vehicule.
Leonardo da Vinci 1519: odometer of Vitruvius





Adding machine

Machine arithmétique Pascal 1642 : Pascaline

The first calculator to have a controlled carry mechanism which
allowed for an effective propagation of multiple carries.
French currency system used livres, sols and deniers with 20 sols to
a livre and 12 deniers to a sol.
Length was measured in toises, pieds, pouces and lignes with 6
pieds to a toise, 12 pouces to a pied and 12 lignes to a pouce.
Computation in base 6, 10, 12 and 20.



To reset the machine, set all the wheels to their maximum, and
then add 1 to the rightmost wheel.
In base 10, 999999 + 1 = 000000.

Subtractions are performed like additions using 9’s complement
arithmetic.



Adding machine and adic transformation

An adic transformation is a generalisation of the adding machine in
the ring of p-adic integers to a more general Markov compactum.
Vershik (1985 and later): adic transformation based on Bratteli
diagrams: it acts as a successor map on a Markov compactum
defined as a lexicographically ordered set of infinite paths in an
infinite labeled graph whose transitions are provided by an infinite
sequence of transition matrices.
In the stationary case (the transition matrices coincide, the infinite
graph is a tree whose levels all have the same structure),
(generalised) adic transformations correspond to substitutions and
stationary odometers.
Solomyak 1991, 1992: spectral theory, beta-expansions.
Herman, Putnam, Skau 1992: every minimal Cantor dynamical
system is isomorphic to a Bratteli-Vershik dynamical system.
Durand, Host, Skau 1999: algorithmic proof.
Sidorov: arithmetic dynamics 2002.
Durand chapter in CANT 2010.



Odometers

Grabner, Liardet, Tichy 1995: continuity
Barat, Downarowicz, Iwanik, Liardet 2000: metrical approach
Barat, Downarowicz, Liardet 2002: combinatorial and topological
point of view
Berthé, Rigo 2007: Abstract numeration systems on regular
languages.



Part I: the carry propagation

When does the amortised carry propagation exist?



Carry propagation

Example (Fibonacci numeration system)

Defined by (Fn)n>0 where F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn

for all n > 0. Set of greedy expansions of the natural integers is
F = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ {ε}.

N cp

ε 0 1
1 1 2

10 2 3
100 3 1
101 4 4

N cp

1000 5 1
1001 6 2
1010 7 5

10000 8 1
10001 9 2

N cp

10010 10 3
10100 11 1
10101 12 6

100000 13 1
100001 14



Fibonacci words of length 5

10000   10001   10010   10100   10101

1000 1001 1010

100 101

1

10
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100 101

1
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General framework

(A, <) is a finite (totally) ordered alphabet.
Radix order: w and z two words in A∗; w ≺ z if
|w | < |z |, or
|w | = |z | and w = pas, z = pbt, a < b.
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The successor function on L ⊆ A∗ ordered by radix order is the
function SuccL : A∗ → A∗ that maps a word of L onto its successor
in the radix order in L.
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nodes are labeled by prefixes of words of L.
if w is a prefix of a word of L and a is a letter, there is an

edge w
a−→ wa if wa is a prefix of a word of L.



General framework

(A, <) is a finite (totally) ordered alphabet.
Radix order: w and z two words in A∗; w ≺ z if
|w | < |z |, or
|w | = |z | and w = pas, z = pbt, a < b.
The successor function on L ⊆ A∗ ordered by radix order is the
function SuccL : A∗ → A∗ that maps a word of L onto its successor
in the radix order in L.
L is prefix-closed if every prefix of a word of L is in L.
The trie TL of L ⊆ A∗ is a tree:

edges are labeled by letters from A
nodes are labeled by prefixes of words of L.
if w is a prefix of a word of L and a is a letter, there is an

edge w
a−→ wa if wa is a prefix of a word of L.

L is (right) extendable if every branch in the trie TL is infinite, i.e.,
for all w ∈ L, there exists u 6= ε such that wu ∈ L. A language L is
called pce if it is prefix-closed and right extendable.



Fibonacci trie

10000   10001   10010   10100   10101

1000 1001 1010

100 101

1

10



Carry propagation of a language

∆(w , z) =

{

max(|w |, |z |) if |w | 6= |z |,
|w | − |lclf (w , z)| if |w | = |z |

where lclf (w , z) is the longest common left factor of w and z .
L ordered by radix order, the carry propagation at a word w of L is:

cpL(w) = ∆(w , SuccL(w))

By abuse, we also write, for every integer i ,

cpL(i) = cpL(〈i〉L) = ∆(〈i〉L, 〈i + 1〉L)



The set of words of L of each length that are maximal in the radix
order is denoted as maxlg(L).
Let u and v be two words in a language L.
dL(u, v) = the length of the shortest path from u to v in the
trie TL.

Proposition

Let L be a pce language and w a word in L. Then

1. if w 6∈ maxlg(L) then | SuccL(w)| = |w | and

cpL(w) =
1

2
dL(w , SuccL(w))

2. if w ∈ maxlg(L) then | SuccL(w)| = |w | + 1 and

cpL(w) = |w | + 1 = kL +
1

2
(dL(w , SuccL(w)) + 1) .



The carry propagation of a language L is the amortised carry
propagation at the words of L, that is, the limit, if it exists, of the
mean of the carry propagation at the first N words of the language:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cpL(i)



The carry propagation of a language L is the amortised carry
propagation at the words of L, that is, the limit, if it exists, of the
mean of the carry propagation at the first N words of the language:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cpL(i)

uL(ℓ) = #(L ∩ Aℓ) vL(ℓ) = #(L ∩ A6ℓ)

acpL(ℓ) =
∑

w∈L
|w |=ℓ

cpL(w) =

vL(ℓ)−1
∑

i=vL(ℓ−1)

cpL(i)

Proposition

If L is a pce language, then, ∀ℓ, acpL(ℓ) = vL(ℓ).

Example (Fibonacci)

ℓ = 4, vF (4) = 8

1000 7→ 1001 7→ 1010 7→ 10000



The length-filtered carry propagation of L is the limit, if it exists,
of the mean of the carry propagation at the first vL(ℓ) words of L:

FCPL = lim
n→∞

1

vL(ℓ)

∑

w∈L
|w |6ℓ

cpL(w) = lim
n→∞

1

vL(ℓ)

ℓ
∑

i=0

acpL(i)



The length-filtered carry propagation of L is the limit, if it exists,
of the mean of the carry propagation at the first vL(ℓ) words of L:

FCPL = lim
n→∞

1

vL(ℓ)

∑

w∈L
|w |6ℓ

cpL(w) = lim
n→∞

1

vL(ℓ)

ℓ
∑

i=0

acpL(i)

FCPL = lim
ℓ→∞

1

vL(ℓ)

ℓ
∑

i=0

vL(i)



Remark
If CPL exists then FCPL exists and CPL = FCPL.

Remark
Let L be a pce language such that uL(ℓ) = P(ℓ) for some
polynomial P of degree d with rational coefficients. Then vL(ℓ) is
a polynomial of degree d + 1 and,

ℓ
∑

i=0

acpL(i) =
ℓ

∑

i=0

vL(i)

is a polynomial of degree d + 2. Therefore,

lim
ℓ→∞

1

vL(ℓ)

ℓ
∑

i=0

acpL(i) = +∞

and FCPL does not exist.



Example (Integer base p)

The successor function changes the least digit of every number,
plus another one every p numbers, plus again another one every p2

numbers, and so on...
Hence the carry propagation is equal to

1 +
1

p
+

1

p2
+

1

p3
+ · · · = p

p − 1
.



Local growth rate

L is a pce language with exponential growth (uL(ℓ) the number of
words of length ℓ grows exponentially).

Local growth rate of L is the limit, if it exists

γL = lim
ℓ→+∞

uL(ℓ + 1)

uL(ℓ)
.

Proposition

L is a pce language with exponential growth. Then

FCPL exists ⇐⇒ γL exists.

In this case
FCPL =

γL

γL − 1
.



γL exists 6⇒ CPL exists

A = {a, b, c} and H is defined by: Hℓ = H ∩ Aℓ. H ′
ℓ (resp. H ′′

ℓ ) the
first (resp. last) 2ℓ−1 words of length ℓ in Hℓ.
Set H1 = {a, c}. For all ℓ > 0, Hℓ+1 = {H ′

ℓ}A ∪ {H ′′
ℓ }b. Thus

uH(ℓ) = 2ℓ and vH(ℓ) = 2ℓ+1 − 1.

a c

a
b

c
b

a
b

c a
b

c
b b

Since γH = 2, FCPH = 2.
Let Jℓ = H ∩ A6ℓ ∪ H ′

ℓ+1
. The amortised carry propagation of the

subsequence Jℓ is equal to 11

6
6= 2.

Note that H is not recognisable by a finite automaton.



The carry propagation of rational languages

Rational language = language recognised by a finite automaton

A rational language such that the local growth rate does not
exist
A = {a, b, c} and L = ({a, c}{a, b, c})∗{a, c , ε}.
We get uL(0) = 1, uL(2ℓ + 1) = 2 uL(2ℓ) and
uL(2ℓ + 2) = 3 uL(2ℓ + 1), hence γL does not exist, although the
global growth rate is ηL = lim supℓ→+∞

ℓ
√

uL(ℓ) =
√

6.

a, c

a, b, c

Remark
If the local growth rate γL exists then γL = ηL.



Proposition

Let L be a pce language with exponential growth. Then, FCPL

exists if and only if γL exists and in this case FCPL = γL

γL−1
.

Corollary

If CPL exists then γL exists and CPL = γL

γL−1
.



DEV languages

A rational language L has a dominating eigenvalue, and we say
that L is DEV, if there is, among the eigenvalues of the adjacency
matrix of its trim minimal automaton, a unique (real) eigenvalue λ
such that, for all other eigenvalues λi , λ > |λi |.
Proposition

Let L be a DEV language and let λ be its the dominating
eigenvalue. Then γL exists and γL = λ.

Theorem
Let L be a pce DEV language and let λ be its dominating
eigenvalue. Then CPL exists and CPL = λ

λ−1
.

Corollary

In the Fibonacci numeration system the carry propagation is equal
to ϕ

ϕ−1
where ϕ is the Golden Ratio.



Part II: the concrete complexity

How to compute the successor function of a rational pce language
and evaluate the complexity of this computation?



Theorem (F. 1997)

The successor function of a rational language can be realised by a
right letter-to-letter finite transducer.

Base 3

p i

2 |0

0 |1, 1 |2

0 |1, 1 |2

2 |0

0 |0, 1 |1, 2 |2



Fibonacci numeration system

0 |1

1 |0
0 |0

1 |0

0 |0

0 |1

0 |0

1 |1

0 |0
0 |0

Transducer is not (right) sequential, i.e. not input deterministic.



Sequentiality

In the Fibonacci numeration system the successor function is
right sequential

q p

q′ p′

i
1 |0

0 |ε

1 |00

0 |ε

0 |01

1 |1

0 |0
0 |0

Gives an algorithm



The numeration system based on the sequence of Fibonacci
numbers of even rank (Gn)n>0 = {1, 3, 8, 21, . . .}
Set of greedy expansions of the natural integers is
G = {w ∈ {0, 1, 2}∗ | w does not contain 21∗2}.

The successor function in G is not realisable by a (right) sequential
finite transducer.

211111111 7→ 1000000000
011111111 7→ 011111112

The successor function in G is not continuous (see Grabner,
Liardet, Tichy).



A function realisable by a right sequential finite transducer is called
a co-sequential function.
A function which is a finite union of (co-)sequential functions with
pairwise disjoint domains is called a piecewise (co-)sequential
function.

Theorem (Angrand and Sakarovitch 2010)

The successor function of a rational language is piecewise
co-sequential.

Theorem (Angrand and Sakarovitch 2010)

A piecewise (co)-sequential function is realised by a cascade of
(right) finite transducers.



The successor function in G (Fibonacci numbers of even rank)

1 |0

1 |2
0 |1

2 |0
1 |0

2 |0

0 |1

1 |2 0 |0

1 |1

2 |2

0 |0
0 |0
1 |11 |1



A cascade for the successor function in G (Fibonacci numbers
of even rank)

p

q
0 |0

2 |2
1 |1

2 |2

0 |0

0 |0
1 |1
2 |2

1 |1

0 |0
1 |1
2 |2

(a) R

0 |1
1 |2

2 |2

0 |0
0 |0
1 |11 |1

(b) Ep

1 |0
2 |0

1 |0
2 |0

0 |1
1 |2

2 |2

0 |0
0 |0
1 |11 |1

(c) Eq



Complexity of computations

Base 3 (sequential letter-to-letter)

w = 102022222 7→ Succ3(w) = 102100000
cp(w) = 6. No additional information neded.
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cc(w) = 7.



Complexity of computations

Base 3 (sequential letter-to-letter)

w = 102022222 7→ Succ3(w) = 102100000
cp(w) = 6. No additional information neded.

Fibonacci (sequential but not letter-to-letter)

w = 100010101 7→ SuccF(w) = 100100000
cp(w) = 6. Need to read the blue 0. Concrete complexity of w is
cc(w) = 7.

Fibonacci of even rank (non-sequential: cascade)

w = 101021111 7→ SuccG(w) = 101100000
cp(w) = 6. cc(w) = 6.
w = 101011111 7→ SuccG(w) = 101011112
cp(w) = 1. Need to read the blue 01111. cc(w) = 6.

In bold: recopy.
Surcharge for computing the successor of w is
sc(w) = cc(w) − cp(w).



Copy ideal

T = (Q, A, B, δ, η, i , T ) a (right) sequential finite transducer.
The copy ideal I of T is the largest subset of Q such that:
(i) it is closed under δ: ∀s ∈ I ∀a ∈ A δ(s, a) ∈ I;
(ii) every state s in I is final and T (s) = ε;
(iii) every transition inside I realises the identity:

∀s ∈ I ∀a ∈ A η(s, a) = a.

q p

q′ p′

i
1 |0

0 |ε

1 |00

0 |ε

0 |01

1 |1

0 |0
0 |0



Concrete complexity

Suppose that SuccL is realised by a finite right sequential
transducer TL having some technical “good” properties.

Let w be in L and i
w |w ′

−→ q in TL.

◮ If q is in IL, let p be the first state which belongs to IL:

i
u|v−→ p

h|h−→ q. Put ccL(w) = max(|u|, |v |).
◮ If q is not in IL, put ccL(w) = max(|w |, |w ′|).

The amortised concrete complexity of SuccL, is the limit, if it
exists,

CCL = lim
N→∞

1

N

N−1
∑

i=0

ccL(i)

Definition extends to the case that SuccL is realised by a cascade
of finite right sequential transducers.



The amortised surcharge of SuccL, is the limit, if it exists,

SCL = lim
N→∞

1

N

N−1
∑

i=0

scL(i) = CCL − CPL.

Proposition

If SuccL is realised by a right sequential letter-to-letter finite
transducer, then

CCL = CPL.

Each move in the transducer is determined only by the input letter
and produces an output letter, so there is no surcharge.



Numeration on an integer basis and beta numeration

V = (vn)n>0 increasing sequence of integers with v0 = 1.
Greedy algorithm (Fraenkel 1985): N ∈ N has a V -expansion
ak · · · a0, with 0 6 ai < vi+1/vi , such that N =

∑k
i=0 aivi . Set of

greedy expansions L(V ).

Let β > 1 be a real number. Any real number x ∈ [0, 1] can be
represented by a greedy algorithm (Rényi 1957) as x =

∑+∞
i=1

xiβ
−i

with xi ∈ Aβ = {0, . . . , ⌈β⌉ − 1} for all i > 1.
The greedy sequence dβ(x) = (xi )i>1 is the β-expansion of x .
When the expansion ends in infinitely many 0’s, it is said finite,
and the 0’s are omitted.
dβ(1) = (tn)n>1 the β-expansion of 1.

◮ If dβ(1) is finite, of the form dβ(1) = t1 · · · tm, tm 6= 0, let
d∗

β(1) = (t1 · · · tm−1(tm − 1))ω

◮ If the β-expansion of 1 is infinite, set d∗
β(1) = dβ(1).



Sequentiality

Suppose that L(V ) is rational; then V is a linear recurrent
sequence. Let P be the characteristic polynomial of V , and
assume that P has a dominant root β. Such a number is called a
Perron number.

Proposition (F. 1997)

Let V be a linear recurrent sequence with dominant root β, and
suppose that L(V ) is rational.
Then the successor function on L(V ) is right sequential if, and
only if,

1. the β-expansion of 1 is finite, of the form dβ(1) = t1 · · · tm,

2. V is defined by

vn = t1vn−1 + · · · + tmvn−m for n > n0 > m

and 1 = v0 < v1 < · · · < vn0−1.



Let β > 1 be a real number.

◮ If dβ(1) = t1 · · · tm, then set v0 = 1,
vn = t1vn−1 + · · · + tnv0 + 1 for 1 6 n 6 m − 1, and
vn = t1vn−1 + · · · + tmvn−m for n > m.

◮ If dβ(1) = (tn)n>1, then set v0 = 1,
vn = t1vn−1 + · · · + tnv0 + 1 for n > 1.

Vβ = (vn)n>0 forms the canonical numeration system associated
with β. The set of greedy expansions of the natural integers is
denoted Lβ.
We have limn→∞ vn+1/vn = β (Bertrand 1989).
Thus the local growth rate of Lβ is equal to

γLβ
= β.



Parry numbers

If the β-expansion of 1 is finite or eventually periodic then β is said
to be a Parry number. If the β-expansion of 1 is finite β is said to
be a simple Parry number.
When β is a Parry number, the sequence Vβ = (vn)n>0 is linear
recurrent, and Lβ is rational and in fact is a pce DEV language.

ϕ = 1+
√

5

2

The ϕ-expansion of 1 is equal to 11, thus ϕ is a simple Parry
number. The canonical linear numeration system associated with
the golden mean is the Fibonacci numeration system.

τ = 3+
√

5

2

The τ -expansion of 1 is equal to 21ω, so τ is a non-simple Parry
number. The canonical linear numeration system associated with τ
is the numeration system based on Fibonacci numbers of even
rank.



Theorem
If β > 1 is a Parry number then the carry propagation of the
successor function for the canonical numeration system Vβ

associated with β is equal to

CPLβ
=

β

β − 1
.



Theorem
If β > 1 is a Parry number then the carry propagation of the
successor function for the canonical numeration system Vβ

associated with β is equal to

CPLβ
=

β

β − 1
.

A question

X 2 − 5X + 5 has two roots, β = 5+
√

5

2
= 3.618 and

β′ = 5−
√

5

2
= 1.381.

β is a Perron number which is not a Parry number since β′ > 1.
dβ(1) = 320301021 . . . is aperiodic and thus Lβ is not recognisable
by a finite automaton.

Does the carry propagation of Lβ exist?



Parry numeration

Corollary

The function SuccLβ
is realised by a sequential finite right

transducer if, and only if, β is a simple Parry number.

Proposition

If β is a non-integer simple Parry number and the β-expansion of 1
is of length m, the (amortised) concrete complexity of the
successor function for the canonical linear numeration system
associated with β satisfies

β

β − 1
< CCLβ

6
β

β − 1
+ (m − 1).

The upper bound is attained by the Fibonacci numeration
system with CCLϕ

= ϕ

ϕ−1
+ 1.



Using some construction of a particular sequential transducer
(reps. a cascade of sequential transducers) computing the
successor function in the canonical numeration system associated
with a simple (resp. non-simple) Parry number we are able to read
the surcharge on this transducer (resp. cascade).



τ = 3+
√

5

2
, dτ (1) = 21ω.

Right automaton L recognising 0∗Lτ :

2 1
2

0

1 0, 1

Right automaton M recognising the set of maximal words
M = 21∗ ∪ {ε}:

ε

2′ 1′
2

12

1



Cascade performing SuccLτ
:

2 1
2 |2

0 |0
1 |1 0 |0, 1 |1

ε

2′ 1′

0 |0
0 |11 |2

2 |$

1 |22 |$

1 |1
0 |1

0 |0, 1 |0, 2 |0

$ |0

0 |0, 1 |1, 2 |2

w = 101021111 7→ 1011$1112 7→ 101100000 = SuccG(w)
cp(w) = 6. sc(w) = 6.
z = 101011111 7→ 101011112 = SuccG(z)
cp(z) = 1. sc(z) = 5.



Computation of the surcharge:
Let Vi(q) be the number of words of length i starting from state q.

We have
SCLτ

= limℓ→∞
1

vℓ

(
∑ℓ−1

i=0
Z(1′, i) Vℓ−i−1(1) +

∑ℓ−1

i=0
Z(2′, i) Vℓ−i−1(1) +

∑ℓ−1

i=0
Z(2′, i) Vℓ−i−1(2)

)

with Z(1′, i) = i for i > 0 and Z(1′, 0) = 0, and Z(2′, i) = i + 1
for i > 0 and Z(2′, 0) = 0.

Since 1 is the initial state of L, Vℓ−i−1(1) = vℓ−i−1.

We need to compute the limit of Vℓ−i−1(2)/vℓ. By standard tools
of linear algebra, we have that

Vℓ−i−1(2) ∼ τ ℓ−i−1 2τ − 1

τ2 − 1

and

vℓ = Vℓ(1) ∼ τ ℓ τ2

τ2 − 1
.



Therefore

SCLτ
=

∞
∑

i=1

i
1

τ i+1
+

∞
∑

i=1

(i +1)
1

τ i+1
+

∞
∑

i=1

(i +1)
1

τ i+1

2τ − 1

τ2
= τ −1.

Thus

CPLτ
=

τ

τ − 1
= τ − 1 and CCLτ

= 2(τ − 1).


