Automata and numeration systems

Christiane Frougny LIAFA, Paris

Journée P-Automatique 30 avril 2013

Symbolic dynamical systems

A a finite alphabet. A symbolic dynamical system (or subshift) is a closed shift invariant subset of $A^{\mathbb{N}}$.

A subshift S of $A^{\mathbb{N}}$ is of finite type if it is defined by the interdiction of a finite set of factors.

A subshift S of $A^{\mathbb{N}}$ is sofic if $L(S) \subseteq A^*$, the language of S, is rational, or, equivalently if S is recognised by a finite Büchi automaton.

A subshift S of $A^{\mathbb{N}}$ is coded if there exists a prefix code $Y \subset A^*$ such that $L(S) = F(Y^*)$.

Symbolic dynamical systems and the lexicographic order

A is a totally ordered alphabet. $u = u_1 u_2 \cdots, v = v_1 v_2 \cdots$ in $A^{\mathbb{N}}$, $u <_{lex} v$ if $u_1 \cdots u_{k-1} = v_1 \cdots v_{k-1}$ and $u_k < v_k$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

$$v$$
 in $A^{\mathbb{N}}$, $v_{[n]} = v_1 v_2 \cdots v_n$. $v_{[0]} = \varepsilon$.

Shift: $\sigma: A^{\mathbb{N}} \to A^{\mathbb{N}}$.

Symbolic dynamical systems and the lexicographic order

A is a totally ordered alphabet. $u = u_1 u_2 \cdots, v = v_1 v_2 \cdots$ in $A^{\mathbb{N}}$, $u <_{lex} v$ if $u_1 \cdots u_{k-1} = v_1 \cdots v_{k-1}$ and $u_k < v_k$.

$$v$$
 in $\mathcal{A}^{\mathbb{N}}$, $v_{[n]} = v_1 v_2 \cdots v_n$. $v_{[0]} = \varepsilon$.

Shift: $\sigma: A^{\mathbb{N}} \to A^{\mathbb{N}}$.

$$\begin{aligned} S_{v} &= \{ u \in A^{\mathbb{N}} \mid \forall k \geq 0, \ \sigma^{k}(u) \leq_{lex} v \}, \\ D_{v} &= \{ u \in A^{\mathbb{N}} \mid \forall k \geq 0, \ \sigma^{k}(u) <_{lex} v \}, \\ Y_{v} &= \{ v_{[n]} a \in A^{*} \mid \forall n \geq 0, \forall a \in A, \ a <_{lex} v_{n+1} \} \end{aligned}$$

A word $v = v_1 v_2 \cdots$ in $A^{\mathbb{N}}$ is said to be a lexicographically shift maximal word (Ismax-word for short) if for every $k \ge 0$, $\sigma^k(v) \le_{lex} v$.

Proposition

If v in $A^{\mathbb{N}}$ is an Ismax-word, then S_v is a subshift coded by Y_v .

Let S_v be the (infinite) automaton:

- states are the $v_{[n]}$ for all n in \mathbb{N}
- ▶ transitions are $v_{[n]} \xrightarrow{v_{n+1}} v_{[n+1]}$ and $v_{[n]} \xrightarrow{a} v_{[0]}$ for every $a < v_{n+1}$.

All states are final and $v_{[0]}$ is initial.

 S_v recognises $Pref(Y_v^*)$, which is equal to $F(Y_v^*)$. As a Büchi automaton, S_v recognises S_v .

Let \mathcal{D}_{v} be the automaton obtained from \mathcal{S}_{v} by taking $v_{[0]}$ as unique final state. As a Büchi automaton, \mathcal{D}_{v} recognises D_{v} .

Proposition

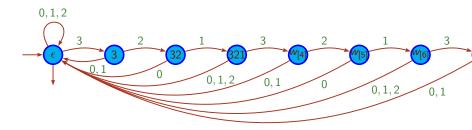
Let v be an Ismax-word in $A^{\mathbb{N}}$.

- 1. The following conditions are equivalent
 - the subshift S_v is sofic
 - the set D_v is recognised by a finite Büchi automaton
 - v is eventually periodic.
- 2. The subshift S_v is of finite type if, and only if, v is purely periodic.

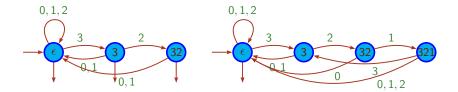
Similar results hold true for a lexicographically shift minimal word and the subshift defined accordingly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: $w = (321)^{\omega}$. Infinite automaton for D_w



Finite automata for S_w and D_w



Symbolic dynamical systems and the alternate order

$$u = u_1 u_2 \cdots, v = v_1 v_2 \cdots \text{ in } A^{\mathbb{N}}, \ u \prec_{alt} v \text{ if } u_1 \cdots u_{k-1} = v_1 \cdots v_{k-1} \text{ and } (-1)^k (u_k - v_k) < 0.$$

Symbolic dynamical systems and the alternate order

 $\begin{array}{l} u = u_1 u_2 \cdots, v = v_1 v_2 \cdots \text{ in } A^{\mathbb{N}}, \ u \prec_{alt} v \text{ if} \\ u_1 \cdots u_{k-1} = v_1 \cdots v_{k-1} \text{ and } (-1)^k (u_k - v_k) < 0. \\ \text{A word } v = v_1 v_2 \cdots \text{ in } A^{\mathbb{N}} \text{ is said to be an alternately shift} \\ \text{maximal word (asmax-word for short)} \\ \text{if } v_1 = \min A \text{ and for every } k \ge 0, \ \sigma^k(v) \preceq_{alt} v. \end{array}$

(日) (日) (日) (日) (日) (日) (日) (日)

Symbolic dynamical systems and the alternate order

$$\begin{split} & u = u_1 u_2 \cdots, v = v_1 v_2 \cdots \text{ in } A^{\mathbb{N}}, \ u \prec_{alt} v \text{ if } \\ & u_1 \cdots u_{k-1} = v_1 \cdots v_{k-1} \text{ and } (-1)^k (u_k - v_k) < 0. \\ & \text{A word } v = v_1 v_2 \cdots \text{ in } A^{\mathbb{N}} \text{ is said to be an alternately shift} \\ & \text{maximal word (asmax-word for short)} \\ & \text{if } v_1 = \min A \text{ and for every } k \ge 0, \ \sigma^k(v) \preceq_{alt} v. \\ & S_v^{(a)} = \{ u \in A^{\mathbb{N}} \mid \forall k \ge 0, \ \sigma^k(u) \preceq_{alt} v \}, \\ & D_v^{(a)} = \{ u \in A^{\mathbb{N}} \mid \forall k \ge 0, \ \sigma^k(u) \prec_{alt} v \}. \end{split}$$

Proposition

Let v be an asmax-word in $A^{\mathbb{N}}$.

- 1. The following conditions are equivalent
 - the subshift $S_v^{(a)}$ is sofic
 - the set $D_v^{(a)}$ is recognised by a finite Büchi automaton
 - v is eventually periodic.
- 2. The subshift $S_v^{(a)}$ is of finite type if, and only if, v is purely periodic.

Similarly for an alternately shift minimal word.

Representation in real base α , $|\alpha| > 1$

Definition (Hejda, Masáková and Pelantová 2012) Let $\alpha \in \mathbb{R}$, $|\alpha| > 1$, finite alphabet $A \subset \mathbb{R}$ and J bounded interval containing 0. Let $D: J \to A$ such that $T(x) = \alpha x - D(x)$ maps J to J. The α -representation is a mapping $d_{\alpha,J,D}: J \to A^{\mathbb{N}}$ s.t.

$$d_{\alpha,J,D}(x) = x_1 x_2 \cdots$$
 with $x_j = D(T^{j-1}(x))$.

$$x = \sum_{j \ge 1} x_j \alpha^{-j}$$

Proposition

x and y in J, $d_{\alpha,J,D}(x) = x_1 x_2 \cdots$ and $d_{\alpha,J,D}(y) = y_1 y_2 \cdots$.

• If $\alpha > 1$ and D is non-decreasing then

$$x < y \iff x_1 x_2 \cdots <_{lex} y_1 y_2 \cdots$$

• If $\alpha < -1$ and D is non-increasing then

 $x < y \iff x_1 x_2 \cdots \prec_{alt} y_1 y_2 \cdots$

$$\begin{array}{l} \beta\text{-expansions, } \beta > 1\\ \text{Rényi 1957}\\ J = [0,1), \ A = \{0,1,\ldots,\lceil\beta\rceil - 1\}\\ D : [0,1) \rightarrow A \text{ with } D(x) = \lfloor\beta x\rfloor\\ T : [0,1) \rightarrow [0,1) \text{ with } T(x) = \beta x - D(x) \end{array}$$

Greedy algorithm

$$\begin{aligned} r_0 &:= x; j := 1; \\ \texttt{for } j &\ge 1 \text{ do} \\ x_j &:= \lfloor \beta r_{j-1} \rfloor; \ r_j &:= \beta r_{j-1} - x_j \\ j &:= j+1 \end{aligned}$$

The greedy expansion $g_{\beta}(x) = x_1 x_2 \cdots$ is the maximal representation of x (for the lexicographic order).

$$x < y \iff g_{\beta}(x) <_{lex} g_{\beta}(y).$$

If s is the greedy β -expansion of some $x \in [0, 1)$ it is said to be β -admissible. The set of β -admissible sequences is D_{β} , and the β -shift S_{β} is the closure of D_{β} . The greedy algorithm applied to 1 gives an expansion which plays an important role. Set $d_{\beta}(1) = (e_n)_{n \ge 1}$ and define

$$\begin{aligned} \mathsf{d}_{\beta}^{*}(1) &:= \begin{cases} \mathsf{d}_{\beta}(1) & \text{if } \mathsf{d}_{\beta}(1) \text{ is infinite} \\ (\mathsf{e}_{1} \cdots \mathsf{e}_{m-1}(\mathsf{e}_{m}-1))^{\omega} & \text{if } \mathsf{d}_{\beta}(1) = \mathsf{e}_{1} \cdots \mathsf{e}_{m-1}\mathsf{e}_{m} \text{ is finite.} \end{cases} \\ \mathsf{d}_{\beta}^{*}(1) \text{ is called the quasi-greedy } \beta \text{-expansion of } 1. \\ \\ \mathsf{Theorem (Parry 1960)} \\ Let \ s &= (s_{n})_{n \geqslant 1} \text{ be a sequence in } A^{\mathbb{N}}. \text{ Then} \\ \blacktriangleright \ s \in D_{\beta} \text{ if, and only if,} \\ & \forall k \geqslant 0, \quad 0^{\omega} \leqslant_{lex} \sigma^{k}(s) <_{lex} \mathsf{d}_{\beta}^{*}(1) \\ \blacktriangleright \ s \in S_{\beta} \text{ if, and only if,} \end{aligned}$$

$$\forall k \geqslant 0, \ \ 0^{\omega} \leqslant_{\mathit{lex}} \sigma^k(s) \leqslant_{\mathit{lex}} \mathsf{d}^*_{eta}(1)$$

s is the greedy β-expansion of 1 for some (unique) β > 1 if, and only if,

$$orall k \geqslant 1, \ 0^\omega < \sigma^k(s) <_{lex} s.$$

Remark: The quasi-greedy β -expansion of 1 is a lsmax-word.

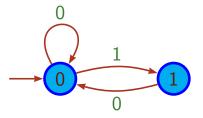
Theorem (Ito and Takahashi 1974, Bertrand-Mathis 1986, Blanchard 1989)

The β -shift S_{β} is a coded symbolic dynamical system which is

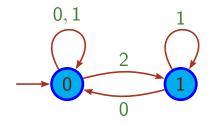
- 1. sofic if, and only if, $d^*_{\beta}(1)$ is eventually periodic,
- 2. of finite type if, and only if, $d_{\beta}^{*}(1)$ is purely periodic, i.e., $d_{\beta}(1)$ is finite.

Numbers β such that $d_{\beta}(1)$ is eventually periodic (resp. finite) are called Parry numbers (resp. simple Parry numbers).

Example The golden mean shift: $d_{\beta}(1) = 11$ and $d_{\beta}^*(1) = (10)^{\omega}$. 11 is forbidden. System of finite type. Local automaton.



Example The β -shift for $\beta = \frac{3+\sqrt{5}}{2}$: $d_{\beta}(1) = d_{\beta}^{*}(1) = 21^{\omega}$. Sofic system not of finite type. Non-local automaton.



・ ロ ト ・ 何 ト ・ 日 ト ・ 日 ト

There is an important case where the β -expansion of 1 is eventually periodic.

A Pisot number is an algebraic integer > 1 such that all its Galois conjugates have modulus < 1. The natural integers and the golden mean are Pisot numbers.

Theorem (Schmidt 1980)

If β is a Pisot number, then every number of $\mathbb{Q}(\beta) \cap [0,1]$ has an eventually periodic β -expansion.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

For some Pisot numbers, for instance the golden mean, every element of $\mathbb{Z}(\beta) \cap \mathbb{R}_+$ has a finite β -expansion.

Lazy β -expansions

Lazy algorithm $r_0 := x; j := 1;$ for $j \ge 1$ do $x_j := \max(0, \lceil \beta r_{j-1} - \frac{\lfloor \beta \rfloor}{\beta - 1} \rceil); r_j := \beta r_{j-1} - x_j$ j := j + 1

The lazy expansion $\ell_{\beta}(x) = x_1 x_2 \cdots$, where $x_j \in A = \{0, 1, \dots, \lceil \beta \rceil - 1\}$, is the minimal representation of x (for the lexicographic order).

$$x < y \iff \ell_{\beta}(x) <_{lex} \ell_{\beta}(y).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $s = (s_n)_{n \ge 1}$ be in $A^{\mathbb{N}}$. Denote by $\overline{s_n} := \lfloor \beta \rfloor - s_n$ the complement of s_n , and by extension $\overline{s} := (\overline{s_n})_{n \ge 1}$.

$$s = g_{eta}(x) \iff ar{s} = \ell_{eta}(rac{\lflooreta
floor}{eta-1} - x).$$

Theorem (Erdős, Joó and Komornik 1990, Dajani and Kraaikamp 2002) Let $s = (s_n)_{n \ge 1}$ be a sequence in $A^{\mathbb{N}}$. Then \blacktriangleright s is the lazy β -expansion of some $x \in [0, 1)$ if and only if

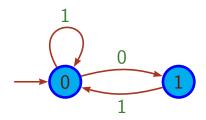
$$\forall k \geqslant 0, \ 0^{\omega} \leqslant_{\mathit{lex}} \sigma^k(\bar{s}) <_{\mathit{lex}} \mathsf{d}^*_{\beta}(1)$$

• s is the lazy β -expansion of 1 for some $\beta > 1$ if and only if

$$orall k \geqslant 1, \;\; 0^\omega < \sigma^k(ar s) <_{lex} s.$$

The (greedy) β -shift and the lazy β -shift have the same structure.

Example The lazy golden mean shift: 00 is forbidden. System of finite type. Local automaton.



ヘロト 人間 と 人 ヨ と 人 ヨ と

æ

Univoque numbers

 $\beta > 1$ is said to be univoque if there exists a unique sequence of integers $(s_n)_{n \ge 1}$, with $0 \le s_n < \beta$, such that $1 = \sum_{n \ge 1} s_n \beta^{-n}$. Definition (Allouche 1983)

A sequence s = (s_n)_{n≥1} in {0,1}^N is self-bracketed if for every k≥ 1

$$\bar{s} \leqslant_{lex} \sigma^k(s) \leqslant_{lex} s$$

 If all the inequalities above are strict, the sequence s is said to be strictly self-bracketed. If one of the inequalities is an equality, then s is said to be periodic self-bracketed.

Theorem (Erdős, Joó, Komornik 1990)

A sequence in $\{0,1\}^{\mathbb{N}}$ is the unique β -expansion of 1 for a univoque number β in (1,2) if and only if it is strictly self-bracketed.

Theorem (Komornik and Loreti 1998)

There exists a smallest univoque real number $\kappa \in (1, 2)$. $\kappa \approx 1.787231$, and $d_{\kappa}(1) = (t_n)_{n \ge 1}$, where $(t_n)_{n \ge 1} = 11010011...$ is obtained by shifting the Thue-Morse sequence.

Theorem (Allouche and Cosnard 2000)

The Komornik-Loreti constant κ is transcendental.

Theorem (Allouche, F. and Hare 2007)

There exists a smallest univoque Pisot number, of degree 14.

 $(-\beta)$ -expansions, $\beta > 1$

Ito and Sadahiro 2009

$$J = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right], A = \{0, 1, \dots, \lfloor\beta\rfloor\}$$

$$D: J \to A \text{ with } D(x) = \lfloor-\beta x + \frac{\beta}{\beta+1}\rfloor$$

$$T: J \to J \text{ with } T(x) = -\beta x - D(x)$$
For every $x \in J$ denote $d_{-\beta}(x)$ the $(-\beta)$ -expansion of x .

For every $x \in J$ denote $d_{-\beta}(x)$ the $(-\beta)$ -expansion of x. Then $d_{-\beta}(x) = (x_i)_{i \ge 1}$ if and only if $x_i = \lfloor -\beta T_{-\beta}^{i-1}(x) + \frac{\beta}{\beta+1} \rfloor$, and $x = \sum_{i \ge 1} x_i (-\beta)^{-i}$.

$$x < y \iff \mathsf{d}_{-\beta}(x) \prec_{\mathsf{alt}} \mathsf{d}_{-\beta}(y).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A word $(x_i)_{i \ge 1}$ is $(-\beta)$ -admissible if there exists a real number $x \in J$ such that $d_{-\beta}(x) = (x_i)_{i \ge 1}$.

The $(-\beta)$ -shift $S_{-\beta}$ is the closure of the set of $(-\beta)$ -admissible words.

Define the sequence $d^*_{-\beta}(\frac{1}{\beta+1})$ as follows:

If d_{-β}(-^β/_{β+1}) = d₁d₂ ··· is not a periodic sequence with odd period,

$$\mathsf{d}_{-\beta}^*(\frac{1}{\beta+1}) = \mathsf{d}_{-\beta}(\frac{1}{\beta+1}) = 0d_1d_2\cdots$$

► otherwise if $\mathsf{d}_{-\beta}(-rac{\beta}{\beta+1}) = (d_1 \cdots d_{2p+1})^{\omega}$,

$$d^*_{-eta}(rac{1}{eta+1}) = (0d_1\cdots d_{2p}(d_{2p+1}-1))^\omega.$$

Theorem (Ito and Sadahiro 2009) Let $s = (s_n)_{n \ge 1}$ be a sequence in $A^{\mathbb{N}}$. Then \blacktriangleright s is $(-\beta)$ -admissible if and only if

$$\forall k \ge 0, \ \ \mathsf{d}_{-\beta}(-\frac{\beta}{\beta+1}) \preceq_{\textit{alt}} \sigma^k(s) \prec_{\textit{alt}} \mathsf{d}_{-\beta}^*(\frac{1}{\beta+1}).$$

• s is an element of the $(-\beta)$ -shift if and only if

$$\forall k \geq 0, \ \ \mathsf{d}_{-\beta}(-\frac{\beta}{\beta+1}) \preceq_{\mathit{alt}} \sigma^k(s) \preceq_{\mathit{alt}} \mathsf{d}^*_{-\beta}(\frac{1}{\beta+1}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark: $d_{-\beta}(-\frac{\beta}{\beta+1})$ is an asmin-word and $d^*_{-\beta}(\frac{1}{\beta+1})$ is an asmax-word.

Theorem (Ito and Sadahiro 2009, F. and Lai 2009) The $(-\beta)$ -shift $S_{-\beta}$ is a symbolic dynamical system which is 1. sofic if, and only if, $d_{-\beta}(-\frac{\beta}{\beta+1})$ is eventually periodic, 2. of finite type if, and only if, $d_{-\beta}(-\frac{\beta}{\beta+1})$ is purely periodic.

Theorem (F. and Lai 2009)

If β is a Pisot number, then every number of $\mathbb{Q}(\beta) \cap [0,1]$ has an eventually periodic $(-\beta)$ -expansion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

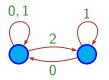
Example Let $\varphi = \frac{1+\sqrt{5}}{2}$. Then $d_{-\varphi}(-\frac{\varphi}{\varphi+1}) = 10^{\omega}$ the $(-\varphi)$ -shift is a sofic system which is not of finite type. Finite automata for the φ -shift (left) and for the $(-\varphi)$ -shift (right)

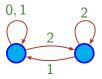
イロト イポト イヨト

э

Example Let $\varphi = \frac{1+\sqrt{5}}{2}$. Then $d_{-\varphi}(-\frac{\varphi}{\varphi+1}) = 10^{\omega}$ the $(-\varphi)$ -shift is a sofic system which is not of finite type. Finite automata for the φ -shift (left) and for the $(-\varphi)$ -shift (right)

Example $\beta = \frac{3+\sqrt{5}}{2}$. $d_{-\beta}(-\frac{\beta}{\beta+1}) = (21)^{\omega}$ and the $(-\beta)$ -shift is of finite type: the set of minimal forbidden factors is $\{20\}$. Finite automata for the β -shift (left) and for the $(-\beta)$ -shift (right)





▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Entropy

The topological entropy of a subshift S is

$$h(S) = \lim_{n \to \infty} \frac{1}{n} \log(B_n(S))$$

where $B_n(S)$ is the number of factors of S of length n. When S is sofic, the entropy of S is equal to the logarithm of the spectral radius of the adjacency matrix of the finite automaton recognising L(S).

Theorem (Takahashi 1980, F. and Lai 2009)

The entropy of the β -shift and of the $(-\beta)$ -shift are equal to $\log \beta$.

Theorem (Steiner 2013)

A sequence $s = (s_n)_{n \ge 1}$ in $A^{\mathbb{N}}$ is the $(-\beta)$ -expansion of $-\frac{\beta}{\beta+1}$ (for some unique β) if, and only if,

 ∀k≥2, s ≤_{alt} σ^k(s),
 s <_{alt} u = 1001110010010111..., where u = ψ^ω(1) with ψ(1) = 100 and ψ(0) = 1,
 s ∉ {s₁...s_k, s₁...s_{k-1}(s_k - 1)0}^ω \ (s₁...s_k)^ω for all k≥ 1 with (s₁...s_k)^ω ≺_{alt} u,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4. $s \notin \{s_1 \cdots s_k 0, s_1 \cdots s_{k-1}(s_k+1)\}^{\omega}$ for all $k \ge 1$ with $(s_1 \cdots s_{k-1}(s_k+1))^{\omega} \prec_{alt} u$.

Maximal and minimal $(-\beta)$ -expansions

Hejda, Masáková and Pelantová 2012

Proposition

s is the maximal $(-\beta)$ -expansion (for the alternate order) of x if, and only if, \overline{s} is the minimal $(-\beta)$ -expansion of $-\frac{|\beta|}{\beta+1} - x$.

Remark

The Ito-Sadahiro transformation does not give the maximal $(-\beta)$ -expansion (for the alternate order).

Example φ the golden mean. Let $x = -\frac{1}{2}$. The minimal $(-\varphi)$ -expansion of x is $1(001110)^{\omega}$. The Ito-Sadahiro $(-\varphi)$ -expansion of x is $(100)^{\omega}$. The maximal $(-\varphi)$ -expansion of x is $(111000)^{\omega}$.

 $1(001110)^{\omega} \prec_{alt} (100)^{\omega} \prec_{alt} (111000)^{\omega}$.

There is no transformation of the form $T(x) = -\beta x - D(x)$ which generates for every x the maximal or the minimal $(-\beta)$ -expansion of x.

Theorem

Let
$$\beta > 1$$
, $\beta \notin \mathbb{N}$, $A = \{0, \dots, \lfloor \beta \rfloor\}$, $B = \{-b\beta + a \mid a, b \in A\}$.
Let $\pi : B^* \to A^*$ such that $\pi(-b\beta + a) = ba$.
Let $I = [\frac{-\beta \lfloor \beta \rfloor}{\beta^2 - 1}, \frac{\lfloor \beta \rfloor}{\beta^2 - 1}]$.

- There exists a transformation T_G : I → I which generates G(x) the maximal β²-expansion of x on B;
 - π(G(x)) is the maximal (−β)-expansion of x on A (for the alternate order).
- There exists a transformation T_L : I → I which generates L(x) the minimal β²-expansion of x on B;
 - π(L(x)) is the minimal (−β)-expansion of x on A (for the alternate order).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Digit-set conversion and normalisation

Real base α , $|\alpha| > 1$, A finite alphabet allowing representation of elements of an interval J.

C an arbitrary finite alphabet of digits.

A digit-set conversion in base α on C is a partial function $\chi_{\alpha,C}: C^{\mathbb{N}} \to A^{\mathbb{N}}$ such that

$$\chi_{\alpha,C}((c_i)_{i\geq 1}) = (a_i)_{i\geq 1} \iff \sum_{i\geq 1} c_i \alpha^{-i} = \sum_{i\geq 1} a_i \alpha^{-i}.$$

The normalisation $\nu_{\alpha,C}$ on *C* is a digit-set conversion where the result $(a_i)_{i\geq 1}$ is α -admissible.

Addition on A is a digit-set conversion $(A + A)^{\mathbb{N}} \to A^{\mathbb{N}}$.

 $\beta > 1$, $A = \{0, \ldots, \lfloor \beta \rfloor\}$.

Theorem (F. 1992, Berend and F. 1994, F. and Sakarovitch 1999)

The following are equivalent:

- 1. normalisation $\nu_{\beta,C}$ is computable by a finite letter-to-letter transducer on any alphabet C;
- 2. $\nu_{\beta,B}$ is computable by a finite letter-to-letter transducer on $B = \{0, \dots, \lfloor \beta \rfloor, \lfloor \beta \rfloor + 1\};$
- 3. β is a Pisot number.

Example Take β the root > 1 of $X^4 - 2X^3 - 2X^2 - 2$. Then $d_{\beta}(1) = 2202$ and β is a simple Parry number, but it is not a Pisot number, since there is another root $\alpha \approx -1.134186$. One can show that normalisation on $A = \{0, 1, 2\}$ is not computable by a finite transducer.

Proposition

If $\beta > 1$ is a Pisot number, then normalisation in base $(-\beta)$ on any alphabet C is realisable by a finite transducer.

Proposition

If β is a Pisot number, then conversion from base $(-\beta)$ to base β is realizable by a finite transducer. The result is β -admissible.

These transducers are neither left nor right sequential when β is not an integer.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input. Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input. Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

1. In real base $\pm\beta$, $\beta > 1$, addition is on-line computable on $\{0, \ldots, \lfloor\beta\rfloor\}$ (the result is not admissible).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. If β is a Pisot number, the on-line transducer is finite.

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input. Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

- 1. In real base $\pm\beta$, $\beta > 1$, addition is on-line computable on $\{0, \ldots, \lfloor\beta\rfloor\}$ (the result is not admissible).
- 2. If β is a Pisot number, the on-line transducer is finite.
- 1. Conversion from base β to base $(-\beta)$ is computable by an on-line algorithm (the result is not admissible).
- 2. If β is a Pisot number, the on-line transducer is finite.

Conclusions

Base β and base $(-\beta)$ are

- quite similar for the nature of the shift, the eventual periodicity of the rationals, and addition,
- quite different for the maximal and minimal representations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ