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Symbolic dynamical systems

A a finite alphabet. A symbolic dynamical system (or subshift) is a
closed shift invariant subset of AN.

A subshift S of AN is of finite type if it is defined by the
interdiction of a finite set of factors.

A subshift S of AN is sofic if L(S) ⊆ A∗, the language of S, is
rational, or, equivalently if S is recognised by a finite Büchi
automaton.

A subshift S of AN is coded if there exists a prefix code Y ⊂ A∗

such that L(S) = F (Y ∗).



Symbolic dynamical systems and the lexicographic order

A is a totally ordered alphabet. u = u1u2 · · · , v = v1v2 · · · in AN,
u <lex v if u1 · · · uk−1 = v1 · · · vk−1 and uk < vk .

v in AN, v[n] = v1v2 · · · vn. v[0] = ε.

Shift: σ : AN → AN.
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A is a totally ordered alphabet. u = u1u2 · · · , v = v1v2 · · · in AN,
u <lex v if u1 · · · uk−1 = v1 · · · vk−1 and uk < vk .

v in AN, v[n] = v1v2 · · · vn. v[0] = ε.

Shift: σ : AN → AN.

Sv = {u ∈ AN | ∀k > 0, σk(u) 6lex v},
Dv = {u ∈ AN | ∀k > 0, σk(u) <lex v},
Yv = {v[n]a ∈ A∗ | ∀n > 0,∀a ∈ A, a <lex vn+1}.

A word v = v1v2 · · · in AN is said to be a lexicographically shift
maximal word (lsmax-word for short) if for every k > 0,
σk(v) 6lex v .

Proposition

If v in AN is an lsmax-word, then Sv is a subshift coded by Yv .



Let Sv be the (infinite) automaton:

◮ states are the v[n] for all n in N

◮ transitions are v[n]
vn+1

−→ v[n+1] and v[n]
a

−→ v[0] for
every a < vn+1.

All states are final and v[0] is initial.

Sv recognises Pref(Y∗
v), which is equal to F (Y ∗

v ). As a Büchi
automaton, Sv recognises Sv .

Let Dv be the automaton obtained from Sv by taking v[0] as
unique final state. As a Büchi automaton, Dv recognises Dv .



Proposition

Let v be an lsmax-word in AN.

1. The following conditions are equivalent
◮ the subshift Sv is sofic
◮ the set Dv is recognised by a finite Büchi automaton
◮ v is eventually periodic.

2. The subshift Sv is of finite type if, and only if, v is purely
periodic.

Similar results hold true for a lexicographically shift minimal word
and the subshift defined accordingly.



Example: w = (321)ω .
Infinite automaton for Dw

ǫ 3 32 321 w[4] w[5] w[6] w
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Finite automata for Sw and Dw

ǫ 3 32

0, 1, 2

3 2
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ǫ 3 32 321
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1

0 3
0, 1, 2



Symbolic dynamical systems and the alternate order
u = u1u2 · · · , v = v1v2 · · · in AN, u ≺alt v if
u1 · · · uk−1 = v1 · · · vk−1 and (−1)k(uk − vk) < 0.
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Symbolic dynamical systems and the alternate order
u = u1u2 · · · , v = v1v2 · · · in AN, u ≺alt v if
u1 · · · uk−1 = v1 · · · vk−1 and (−1)k(uk − vk) < 0.
A word v = v1v2 · · · in AN is said to be an alternately shift
maximal word (asmax-word for short)
if v1 = min A and for every k > 0, σk(v) �alt v .

S
(a)
v = {u ∈ AN | ∀k > 0, σk(u) �alt v},

D
(a)
v = {u ∈ AN | ∀k > 0, σk(u) ≺alt v}.

Proposition

Let v be an asmax-word in AN.

1. The following conditions are equivalent

◮ the subshift S
(a)
v is sofic

◮ the set D
(a)
v is recognised by a finite Büchi automaton

◮ v is eventually periodic.

2. The subshift S
(a)
v is of finite type if, and only if, v is purely

periodic.

Similarly for an alternately shift minimal word.



Representation in real base α, |α| > 1

Definition (Hejda, Masáková and Pelantová 2012)

Let α ∈ R, |α| > 1, finite alphabet A ⊂ R and J bounded interval
containing 0. Let D : J → A such that T (x) = αx − D(x) maps J
to J . The α-representation is a mapping dα,J,D : J → AN s.t.

dα,J,D(x) = x1x2 · · · with xj = D(T j−1(x)).

x =
∑

j>1 xjα
−j

Proposition

x and y in J, dα,J,D(x) = x1x2 · · · and dα,J,D(y) = y1y2 · · · .

◮ If α > 1 and D is non-decreasing then

x < y ⇐⇒ x1x2 · · ·<lex y1y2 · · · .

◮ If α < −1 and D is non-increasing then

x < y ⇐⇒ x1x2 · · · ≺alty1y2 · · · .



β-expansions, β > 1
Rényi 1957
J = [0, 1), A = {0, 1, . . . , ⌈β⌉ − 1}

D : [0, 1) → A with D(x) = ⌊βx⌋

T : [0, 1) → [0, 1) with T (x) = βx − D(x)

Greedy algorithm
r0 := x ; j := 1;
for j > 1 do

xj := ⌊βrj−1⌋; rj := βrj−1 − xj

j := j + 1

The greedy expansion gβ(x) = x1x2 · · · is the maximal
representation of x (for the lexicographic order).

x < y ⇐⇒ gβ(x) <lex gβ(y).

If s is the greedy β-expansion of some x ∈ [0, 1) it is said to be
β-admissible. The set of β-admissible sequences is Dβ, and the
β-shift Sβ is the closure of Dβ.



The greedy algorithm applied to 1 gives an expansion which plays
an important role. Set dβ(1) = (en)n>1 and define

d∗
β(1) :=

{

dβ(1) if dβ(1) is infinite
(e1 · · · em−1(em − 1))ω if dβ(1) = e1 · · · em−1em is finite.

d∗
β(1) is called the quasi-greedy β-expansion of 1.

Theorem (Parry 1960)

Let s = (sn)n>1 be a sequence in AN. Then

◮ s ∈ Dβ if, and only if,

∀k > 0, 0ω
6lex σ

k(s) <lex d∗
β(1)

◮ s ∈ Sβ if, and only if,

∀k > 0, 0ω
6lex σ

k(s) 6lex d∗
β(1)

◮ s is the greedy β-expansion of 1 for some (unique) β > 1 if,
and only if,

∀k > 1, 0ω < σk(s) <lex s.



Remark: The quasi-greedy β-expansion of 1 is a lsmax-word.

Theorem (Ito and Takahashi 1974, Bertrand-Mathis 1986,
Blanchard 1989)

The β-shift Sβ is a coded symbolic dynamical system which is

1. sofic if, and only if, d∗
β(1) is eventually periodic,

2. of finite type if, and only if, d∗
β(1) is purely periodic, i.e.,

dβ(1) is finite.

Numbers β such that dβ(1) is eventually periodic (resp. finite) are
called Parry numbers (resp. simple Parry numbers).



Example The golden mean shift: dβ(1) = 11 and d∗
β(1) = (10)ω .

11 is forbidden. System of finite type. Local automaton.

0 1
1

0

0

Example The β-shift for β = 3+
√

5

2
: dβ(1) = d∗

β(1) = 21ω. Sofic
system not of finite type. Non-local automaton.

0 1
2

0

0, 1 1



There is an important case where the β-expansion of 1 is
eventually periodic.

A Pisot number is an algebraic integer > 1 such that all its Galois
conjugates have modulus < 1. The natural integers and the golden
mean are Pisot numbers.

Theorem (Schmidt 1980)

If β is a Pisot number, then every number of Q(β) ∩ [0, 1] has an
eventually periodic β-expansion.

For some Pisot numbers, for instance the golden mean, every
element of Z(β) ∩ R+ has a finite β-expansion.



Lazy β-expansions

Lazy algorithm
r0 := x ; j := 1;
for j > 1 do

xj := max(0, ⌈βrj−1 − ⌊β⌋
β−1

⌉); rj := βrj−1 − xj

j := j + 1

The lazy expansion ℓβ(x) = x1x2 · · · , where
xj ∈ A = {0, 1, . . . , ⌈β⌉ − 1}, is the minimal representation of x
(for the lexicographic order).

x < y ⇐⇒ ℓβ(x) <lex ℓβ(y).



Let s = (sn)n>1 be in AN. Denote by sn := ⌊β⌋ − sn the
complement of sn, and by extension s̄ := (sn)n>1.

s = gβ(x) ⇐⇒ s̄ = ℓβ(
⌊β⌋

β − 1
− x).

Theorem (Erdős, Joó and Komornik 1990, Dajani and
Kraaikamp 2002)

Let s = (sn)n>1 be a sequence in AN. Then

◮ s is the lazy β-expansion of some x ∈ [0, 1) if and only if

∀k > 0, 0ω
6lex σ

k(s̄) <lex d∗
β(1)

◮ s is the lazy β-expansion of 1 for some β > 1 if and only if

∀k > 1, 0ω < σk(s̄) <lex s.

The (greedy) β-shift and the lazy β-shift have the same structure.



Example The lazy golden mean shift: 00 is forbidden. System of
finite type. Local automaton.

0 1

0

1

1



Univoque numbers

β > 1 is said to be univoque if there exists a unique sequence of
integers (sn)n>1, with 0 6 sn < β, such that 1 =

∑

n>1 snβ
−n.

Definition (Allouche 1983)

◮ A sequence s = (sn)n>1 in {0, 1}N is self-bracketed if for every
k > 1

s̄ 6lex σ
k(s) 6lex s

◮ If all the inequalities above are strict, the sequence s is said to
be strictly self-bracketed. If one of the inequalities is an
equality, then s is said to be periodic self-bracketed.

Theorem (Erdős, Joó, Komornik 1990)

A sequence in {0, 1}N is the unique β-expansion of 1 for a univoque
number β in (1, 2) if and only if it is strictly self-bracketed.



Theorem (Komornik and Loreti 1998)

There exists a smallest univoque real number κ ∈ (1, 2).
κ ≈ 1.787231, and dκ(1) = (tn)n>1, where (tn)n>1 = 11010011 . . .
is obtained by shifting the Thue-Morse sequence.

Theorem (Allouche and Cosnard 2000)

The Komornik-Loreti constant κ is transcendental.

Theorem (Allouche, F. and Hare 2007)

There exists a smallest univoque Pisot number, of degree 14.



(−β)-expansions, β > 1

Ito and Sadahiro 2009
J = [− β

β+1
, 1

β+1
), A = {0, 1, . . . , ⌊β⌋}

D : J → A with D(x) = ⌊−βx +
β

β + 1
⌋

T : J → J with T (x) = −βx − D(x)

For every x ∈ J denote d−β(x) the (−β)-expansion of x . Then

d−β(x) = (xi)i>1 if and only if xi = ⌊−βT i−1

−β (x) + β
β+1

⌋, and

x =
∑

i>1 xi(−β)
−i .

x < y ⇐⇒ d−β(x) ≺alt d−β(y).



A word (xi)i>1 is (−β)-admissible if there exists a real number
x ∈ J such that d−β(x) = (xi)i>1.
The (−β)-shift S−β is the closure of the set of (−β)-admissible
words.
Define the sequence d∗

−β(
1

β+1
) as follows:

◮ if d−β(−
β

β+1
) = d1d2 · · · is not a periodic sequence with odd

period,

d∗
−β(

1

β + 1
) = d−β(

1

β + 1
) = 0d1d2 · · ·

◮ otherwise if d−β(−
β

β+1
) = (d1 · · · d2p+1)

ω,

d∗
−β(

1

β + 1
) = (0d1 · · · d2p(d2p+1 − 1))ω.



Theorem (Ito and Sadahiro 2009)

Let s = (sn)n>1 be a sequence in AN. Then

◮ s is (−β)-admissible if and only if

∀k > 0, d−β(−
β

β + 1
) �alt σ

k(s) ≺alt d∗
−β(

1

β + 1
).

◮ s is an element of the (−β)-shift if and only if

∀k > 0, d−β(−
β

β + 1
) �alt σ

k(s) �alt d∗
−β(

1

β + 1
).



Remark: d−β(−
β

β+1
) is an asmin-word and d∗

−β(
1

β+1
) is an

asmax-word.

Theorem (Ito and Sadahiro 2009, F. and Lai 2009)

The (−β)-shift S−β is a symbolic dynamical system which is

1. sofic if, and only if, d−β(−
β

β+1
) is eventually periodic,

2. of finite type if, and only if, d−β(−
β

β+1
) is purely periodic.



Theorem (F. and Lai 2009)

If β is a Pisot number, then every number of Q(β) ∩ [0, 1] has an
eventually periodic (−β)-expansion.



Example Let ϕ = 1+
√

5

2
. Then d−ϕ(−

ϕ
ϕ+1

) = 10ω the (−ϕ)-shift is
a sofic system which is not of finite type.
Finite automata for the ϕ-shift (left) and for the (−ϕ)-shift (right)

1

0

0

0

0

1



Example Let ϕ = 1+
√

5

2
. Then d−ϕ(−

ϕ
ϕ+1

) = 10ω the (−ϕ)-shift is
a sofic system which is not of finite type.
Finite automata for the ϕ-shift (left) and for the (−ϕ)-shift (right)

1

0

0

0

0

1

Example β = 3+
√

5

2
. d−β(−

β
β+1

) = (21)ω and the (−β)-shift is of
finite type: the set of minimal forbidden factors is {20}.
Finite automata for the β-shift (left) and for the (−β)-shift (right)

2

0

0, 1 1

2

1

0, 1 2



Entropy

The topological entropy of a subshift S is

h(S) = lim
n→∞

1

n
log(Bn(S))

where Bn(S) is the number of factors of S of length n.
When S is sofic, the entropy of S is equal to the logarithm of the
spectral radius of the adjacency matrix of the finite automaton
recognising L(S).

Theorem (Takahashi 1980, F. and Lai 2009)

The entropy of the β-shift and of the (−β)-shift are equal to log β.



Theorem (Steiner 2013)

A sequence s = (sn)n>1 in AN is the (−β)-expansion of − β
β+1

(for
some unique β) if, and only if,

1. ∀k > 2, s �alt σ
k(s),

2. s ≺alt u = 10011100100100111 · · · , where u = ψω(1) with
ψ(1) = 100 and ψ(0) = 1,

3. s /∈ {s1 · · · sk , s1 · · · sk−1(sk − 1)0}ω \ (s1 · · · sk)
ω for all k > 1

with (s1 · · · sk)
ω ≺alt u,

4. s /∈ {s1 · · · sk0, s1 · · · sk−1(sk + 1)}ω for all k > 1 with
(s1 · · · sk−1(sk + 1))ω ≺alt u.



Maximal and minimal (−β)-expansions

Hejda, Masáková and Pelantová 2012

Proposition

s is the maximal (−β)-expansion (for the alternate order) of x if,

and only if, s̄ is the minimal (−β)-expansion of − ⌊β⌋
β+1

− x .

Remark
The Ito-Sadahiro transformation does not give the maximal
(−β)-expansion (for the alternate order).

Example ϕ the golden mean. Let x = −1

2
.

The minimal (−ϕ)-expansion of x is 1(001110)ω .
The Ito-Sadahiro (−ϕ)-expansion of x is (100)ω .
The maximal (−ϕ)-expansion of x is (111000)ω .

1(001110)ω ≺alt (100)ω ≺alt (111000)ω .



There is no transformation of the form T (x) = −βx − D(x) which
generates for every x the maximal or the minimal (−β)-expansion
of x .

Theorem
Let β > 1, β /∈ N, A = {0, . . . , ⌊β⌋}, B = {−bβ + a | a, b ∈ A}.
Let π : B∗ → A∗ such that π(−bβ + a) = ba.

Let I = [−β⌊β⌋
β2−1

, ⌊β⌋
β2−1

].

1. ◮ There exists a transformation TG : I → I which generates G(x)
the maximal β2-expansion of x on B;

◮ π(G(x)) is the maximal (−β)-expansion of x on A (for the
alternate order).

2. ◮ There exists a transformation TL : I → I which generates L(x)
the minimal β2-expansion of x on B;

◮ π(L(x)) is the minimal (−β)-expansion of x on A (for the
alternate order).



Digit-set conversion and normalisation

Real base α, |α| > 1, A finite alphabet allowing representation of
elements of an interval J .
C an arbitrary finite alphabet of digits.
A digit-set conversion in base α on C is a partial function
χα,C : CN → AN such that

χα,C ((ci )i>1) = (ai)i>1 ⇐⇒
∑

i>1

ciα
−i =

∑

i>1

aiα
−i .

The normalisation να,C on C is a digit-set conversion where the
result (ai)i>1 is α-admissible.

Addition on A is a digit-set conversion (A + A)N → AN.



β > 1, A = {0, . . . , ⌊β⌋}.

Theorem (F. 1992, Berend and F. 1994, F. and Sakarovitch
1999)

The following are equivalent:

1. normalisation νβ,C is computable by a finite letter-to-letter
transducer on any alphabet C;

2. νβ,B is computable by a finite letter-to-letter transducer on
B = {0, . . . , ⌊β⌋, ⌊β⌋ + 1};

3. β is a Pisot number.

Example Take β the root > 1 of X 4 − 2X 3 − 2X 2 − 2. Then
dβ(1) = 2202 and β is a simple Parry number, but it is not a Pisot
number, since there is another root α ≈ −1.134186. One can show
that normalisation on A = {0, 1, 2} is not computable by a finite
transducer.



Proposition

If β > 1 is a Pisot number, then normalisation in base (−β) on
any alphabet C is realisable by a finite transducer.

Proposition

If β is a Pisot number, then conversion from base (−β) to base β
is realizable by a finite transducer. The result is β-admissible.

These transducers are neither left nor right sequential when β is
not an integer.



On-line computations

An on-line algorithm is such that, after a certain delay of latency
during which the data are read without writing, a digit of the
output is produced for each digit of the input.
Processing most significant digit first. Suitable for real numbers.
Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.
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1. In real base ±β, β > 1, addition is on-line computable on
{0, . . . , ⌊β⌋} (the result is not admissible).

2. If β is a Pisot number, the on-line transducer is finite.



On-line computations

An on-line algorithm is such that, after a certain delay of latency
during which the data are read without writing, a digit of the
output is produced for each digit of the input.
Processing most significant digit first. Suitable for real numbers.
Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

1. In real base ±β, β > 1, addition is on-line computable on
{0, . . . , ⌊β⌋} (the result is not admissible).

2. If β is a Pisot number, the on-line transducer is finite.

1. Conversion from base β to base (−β) is computable by an
on-line algorithm (the result is not admissible).

2. If β is a Pisot number, the on-line transducer is finite.



Conclusions

Base β and base (−β) are

◮ quite similar for the nature of the shift, the eventual
periodicity of the rationals, and addition,

◮ quite different for the maximal and minimal representations.


