Automata and numeration systems

Christiane Frougny
LIAFA, Paris

Journée P-Automatique
30 avril 2013

Symbolic dynamical systems

A a finite alphabet. A symbolic dynamical system (or subshift) is a closed shift invariant subset of $A^{\mathbb{N}}$.

A subshift S of $A^{\mathbb{N}}$ is of finite type if it is defined by the interdiction of a finite set of factors.

A subshift S of $A^{\mathbb{N}}$ is sofic if $L(S) \subseteq A^{*}$, the language of S, is rational, or, equivalently if S is recognised by a finite Büchi automaton.

A subshift S of $A^{\mathbb{N}}$ is coded if there exists a prefix code $Y \subset A^{*}$ such that $L(S)=F\left(Y^{*}\right)$.

Symbolic dynamical systems and the lexicographic order
A is a totally ordered alphabet. $u=u_{1} u_{2} \cdots, v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}$, $u<_{\text {lex }} v$ if $u_{1} \cdots u_{k-1}=v_{1} \cdots v_{k-1}$ and $u_{k}<v_{k}$.
v in $A^{\mathbb{N}}, v_{[n]}=v_{1} v_{2} \cdots v_{n} . v_{[0]}=\varepsilon$.
Shift: $\sigma: A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$.

Symbolic dynamical systems and the lexicographic order

A is a totally ordered alphabet. $u=u_{1} u_{2} \cdots, v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}$,
$u<_{\text {lex }} v$ if $u_{1} \cdots u_{k-1}=v_{1} \cdots v_{k-1}$ and $u_{k}<v_{k}$.
v in $A^{\mathbb{N}}, v_{[n]}=v_{1} v_{2} \cdots v_{n} . v_{[0]}=\varepsilon$.
Shift: $\sigma: A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$.
$S_{v}=\left\{u \in A^{\mathbb{N}} \mid \forall k \geqslant 0, \sigma^{k}(u) \leqslant \operatorname{lex} v\right\}$,
$D_{v}=\left\{u \in A^{\mathbb{N}} \mid \forall k \geqslant 0, \sigma^{k}(u)<_{\text {lex }} v\right\}$,
$Y_{v}=\left\{v_{[n]} a \in A^{*} \mid \forall n \geqslant 0, \forall a \in A, a \ll_{l e x} v_{n+1}\right\}$.
A word $v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}$ is said to be a lexicographically shift maximal word (Ismax-word for short) if for every $k \geqslant 0$, $\sigma^{k}(v) \leqslant l e x v$.

Proposition

If v in $A^{\mathbb{N}}$ is an Ismax-word, then S_{v} is a subshift coded by Y_{v}.

Let \mathcal{S}_{v} be the (infinite) automaton:

- states are the $v_{[n]}$ for all n in \mathbb{N}
- transitions are $v_{[n]} \xrightarrow{v_{n+1}} v_{[n+1]}$ and $v_{[n]} \xrightarrow{a} v_{[0]}$ for every $a<v_{n+1}$.
All states are final and $v_{[0]}$ is initial.
\mathcal{S}_{v} recognises $\operatorname{Pref}\left(\mathrm{Y}_{v}^{*}\right)$, which is equal to $F\left(Y_{v}^{*}\right)$. As a Büchi automaton, \mathcal{S}_{v} recognises S_{v}.

Let \mathcal{D}_{v} be the automaton obtained from \mathcal{S}_{v} by taking $v_{[0]}$ as unique final state. As a Büchi automaton, \mathcal{D}_{v} recognises D_{v}.

Proposition

Let v be an Ismax-word in $A^{\mathbb{N}}$.

1. The following conditions are equivalent

- the subshift S_{v} is sofic
- the set D_{v} is recognised by a finite Büchi automaton
- v is eventually periodic.

2. The subshift S_{v} is of finite type if, and only if, v is purely periodic.

Similar results hold true for a lexicographically shift minimal word and the subshift defined accordingly.

Example: $w=(321)^{\omega}$.
Infinite automaton for D_{w}

Finite automata for S_{w} and D_{w}

Symbolic dynamical systems and the alternate order

$$
\begin{aligned}
& u=u_{1} u_{2} \cdots, v=v_{1} v_{2} \cdots \text { in } A^{\mathbb{N}}, u \prec \text { alt } v \text { if } \\
& u_{1} \cdots u_{k-1}=v_{1} \cdots v_{k-1} \text { and }(-1)^{k}\left(u_{k}-v_{k}\right)<0 .
\end{aligned}
$$

Symbolic dynamical systems and the alternate order

$u=u_{1} u_{2} \cdots, v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}, u \prec_{a l t} v$ if $u_{1} \cdots u_{k-1}=v_{1} \cdots v_{k-1}$ and $(-1)^{k}\left(u_{k}-v_{k}\right)<0$.
A word $v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}$ is said to be an alternately shift maximal word (asmax-word for short) if $v_{1}=\min A$ and for every $k \geqslant 0, \sigma^{k}(v) \preceq$ alt v.

Symbolic dynamical systems and the alternate order

$u=u_{1} u_{2} \cdots, v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}, u \prec_{a l t} v$ if
$u_{1} \cdots u_{k-1}=v_{1} \cdots v_{k-1}$ and $(-1)^{k}\left(u_{k}-v_{k}\right)<0$.
A word $v=v_{1} v_{2} \cdots$ in $A^{\mathbb{N}}$ is said to be an alternately shift maximal word (asmax-word for short)
if $v_{1}=\min A$ and for every $k \geqslant 0, \sigma^{k}(v) \preceq$ alt v.
$S_{v}^{(a)}=\left\{u \in A^{\mathbb{N}} \mid \forall k \geqslant 0, \sigma^{k}(u) \preceq_{a / t} v\right\}$,
$D_{v}^{(a)}=\left\{u \in A^{\mathbb{N}} \mid \forall k \geqslant 0, \sigma^{k}(u) \prec_{a l t} v\right\}$.

Proposition

Let v be an asmax-word in $A^{\mathbb{N}}$.

1. The following conditions are equivalent

- the subshift $S_{v}^{(a)}$ is sofic
- the set $D_{v}^{(a)}$ is recognised by a finite Büchi automaton
- v is eventually periodic.

2. The subshift $S_{v}^{(a)}$ is of finite type if, and only if, v is purely periodic.

Similarly for an alternately shift minimal word.

Representation in real base $\alpha,|\alpha|>1$

Definition (Hejda, Masáková and Pelantová 2012)
Let $\alpha \in \mathbb{R},|\alpha|>1$, finite alphabet $A \subset \mathbb{R}$ and J bounded interval containing 0 . Let $D: J \rightarrow A$ such that $T(x)=\alpha x-D(x)$ maps J to J. The α-representation is a mapping $d_{\alpha, J, D}: J \rightarrow A^{\mathbb{N}}$ s.t.

$$
\begin{gathered}
d_{\alpha, J, D}(x)=x_{1} x_{2} \cdots \quad \text { with } x_{j}=D\left(T^{j-1}(x)\right) . \\
x=\sum_{j \geqslant 1} x_{j} \alpha^{-j}
\end{gathered}
$$

Proposition

x and y in $J, d_{\alpha, J, D}(x)=x_{1} x_{2} \cdots$ and $d_{\alpha, J, D}(y)=y_{1} y_{2} \cdots$.

- If $\alpha>1$ and D is non-decreasing then

$$
x<y \Longleftrightarrow x_{1} x_{2} \cdots<_{\text {lex }} y_{1} y_{2} \cdots
$$

- If $\alpha<-1$ and D is non-increasing then

$$
x<y \Longleftrightarrow x_{1} x_{2} \cdots \prec_{a l t} y_{1} y_{2} \cdots
$$

β-expansions, $\beta>1$

Rényi 1957

$$
\begin{aligned}
J=[0,1), A= & \{0,1, \ldots,\lceil\beta\rceil-1\} \\
& D:[0,1) \rightarrow A \text { with } D(x)=\lfloor\beta x\rfloor \\
& T:[0,1) \rightarrow[0,1) \text { with } T(x)=\beta x-D(x)
\end{aligned}
$$

Greedy algorithm
$r_{0}:=x ; j:=1$;
for $j \geqslant 1$ do

$$
\begin{aligned}
& x_{j}:=\left\lfloor\beta r_{j-1}\right\rfloor ; r_{j}:=\beta r_{j-1}-x_{j} \\
& j:=j+1
\end{aligned}
$$

The greedy expansion $g_{\beta}(x)=x_{1} x_{2} \cdots$ is the maximal representation of x (for the lexicographic order).

$$
x<y \Longleftrightarrow g_{\beta}(x) \ll_{\text {ex }} g_{\beta}(y)
$$

If s is the greedy β-expansion of some $x \in[0,1)$ it is said to be β-admissible. The set of β-admissible sequences is D_{β}, and the β-shift S_{β} is the closure of D_{β}.

The greedy algorithm applied to 1 gives an expansion which plays an important role. Set $\mathrm{d}_{\beta}(1)=\left(e_{n}\right)_{n \geqslant 1}$ and define
$d_{\beta}^{*}(1):= \begin{cases}d_{\beta}(1) & \text { if } d_{\beta}(1) \text { is infinite } \\ \left(e_{1} \cdots e_{m-1}\left(e_{m}-1\right)\right)^{\omega} & \text { if } d_{\beta}(1)=e_{1} \cdots e_{m-1} e_{m} \text { is finite. }\end{cases}$
$\mathrm{d}_{\beta}^{*}(1)$ is called the quasi-greedy β-expansion of 1 .
Theorem (Parry 1960)
Let $s=\left(s_{n}\right)_{n \geqslant 1}$ be a sequence in $A^{\mathbb{N}}$. Then

- $s \in D_{\beta}$ if, and only if,

$$
\forall k \geqslant 0, \quad 0^{\omega} \leqslant \text { lex } \sigma^{k}(s)<_{\text {lex }} \mathrm{d}_{\beta}^{*}(1)
$$

- $s \in S_{\beta}$ if, and only if,

$$
\forall k \geqslant 0, \quad 0^{\omega} \leqslant \text { lex } \sigma^{k}(s) \leqslant \text { lex } \mathrm{d}_{\beta}^{*}(1)
$$

- s is the greedy β-expansion of 1 for some (unique) $\beta>1$ if, and only if,

$$
\forall k \geqslant 1, \quad 0^{\omega}<\sigma^{k}(s)<_{\text {lex }} s .
$$

Remark: The quasi-greedy β-expansion of 1 is a Ismax-word.

Theorem (Ito and Takahashi 1974, Bertrand-Mathis 1986, Blanchard 1989)
The β-shift S_{β} is a coded symbolic dynamical system which is

1. sofic if, and only if, $\mathrm{d}_{\beta}^{*}(1)$ is eventually periodic,
2. of finite type if, and only if, $\mathrm{d}_{\beta}^{*}(1)$ is purely periodic, i.e., $\mathrm{d}_{\beta}(1)$ is finite.

Numbers β such that $\mathrm{d}_{\beta}(1)$ is eventually periodic (resp. finite) are called Parry numbers (resp. simple Parry numbers).

Example The golden mean shift: $\mathrm{d}_{\beta}(1)=11$ and $\mathrm{d}_{\beta}^{*}(1)=(10)^{\omega}$. 11 is forbidden. System of finite type. Local automaton.

Example The β-shift for $\beta=\frac{3+\sqrt{5}}{2}$: $\mathrm{d}_{\beta}(1)=\mathrm{d}_{\beta}^{*}(1)=21^{\omega}$. Sofic system not of finite type. Non-local automaton.

There is an important case where the β-expansion of 1 is eventually periodic.

A Pisot number is an algebraic integer >1 such that all its Galois conjugates have modulus <1. The natural integers and the golden mean are Pisot numbers.

Theorem (Schmidt 1980)
If β is a Pisot number, then every number of $\mathbb{Q}(\beta) \cap[0,1]$ has an eventually periodic β-expansion.

For some Pisot numbers, for instance the golden mean, every element of $\mathbb{Z}(\beta) \cap \mathbb{R}_{+}$has a finite β-expansion.

Lazy β-expansions

Lazy algorithm

$$
\begin{aligned}
& r_{0}:=x ; j:=1 \\
& \text { for } j \geqslant 1 \text { do } \\
& \qquad x_{j}:=\max \left(0,\left\lceil\beta r_{j-1}-\frac{\lfloor\beta\rfloor}{\beta-1}\right\rceil\right) ; r_{j}:=\beta r_{j-1}-x_{j} \\
& j:=j+1
\end{aligned}
$$

The lazy expansion $\ell_{\beta}(x)=x_{1} x_{2} \cdots$, where $x_{j} \in A=\{0,1, \ldots,\lceil\beta\rceil-1\}$, is the minimal representation of x (for the lexicographic order).

$$
x<y \Longleftrightarrow \ell_{\beta}(x)<_{\operatorname{lex}} \ell_{\beta}(y)
$$

Let $s=\left(s_{n}\right)_{n \geqslant 1}$ be in $A^{\mathbb{N}}$. Denote by $\overline{s_{n}}:=\lfloor\beta\rfloor-s_{n}$ the complement of s_{n}, and by extension $\bar{s}:=\left(\overline{s_{n}}\right)_{n \geqslant 1}$.

$$
s=g_{\beta}(x) \Longleftrightarrow \bar{s}=\ell_{\beta}\left(\frac{\lfloor\beta\rfloor}{\beta-1}-x\right) .
$$

Theorem (Erdős, Joó and Komornik 1990, Dajani and Kraaikamp 2002)
Let $s=\left(s_{n}\right)_{n \geqslant 1}$ be a sequence in $A^{\mathbb{N}}$. Then

- s is the lazy β-expansion of some $x \in[0,1)$ if and only if

$$
\forall k \geqslant 0, \quad 0^{\omega} \leqslant l e x \sigma^{k}(\bar{s})<_{\text {lex }} \mathrm{d}_{\beta}^{*}(1)
$$

- s is the lazy β-expansion of 1 for some $\beta>1$ if and only if

$$
\forall k \geqslant 1, \quad 0^{\omega}<\sigma^{k}(\bar{s})<_{\text {lex }} s .
$$

The (greedy) β-shift and the lazy β-shift have the same structure.

Example The lazy golden mean shift: 00 is forbidden. System of finite type. Local automaton.

Univoque numbers

$\beta>1$ is said to be univoque if there exists a unique sequence of integers $\left(s_{n}\right)_{n \geqslant 1}$, with $0 \leqslant s_{n}<\beta$, such that $1=\sum_{n \geqslant 1} s_{n} \beta^{-n}$.
Definition (Allouche 1983)

- A sequence $s=\left(s_{n}\right)_{n \geqslant 1}$ in $\{0,1\}^{\mathbb{N}}$ is self-bracketed if for every $k \geqslant 1$

$$
\bar{s} \leqslant_{\text {lex }} \sigma^{k}(s) \leqslant_{\text {lex }} s
$$

- If all the inequalities above are strict, the sequence s is said to be strictly self-bracketed. If one of the inequalities is an equality, then s is said to be periodic self-bracketed.

Theorem (Erdős, Joó, Komornik 1990)
A sequence in $\{0,1\}^{\mathbb{N}}$ is the unique β-expansion of 1 for a univoque number β in $(1,2)$ if and only if it is strictly self-bracketed.

Theorem (Komornik and Loreti 1998)

There exists a smallest univoque real number $\kappa \in(1,2)$.
$\kappa \approx 1.787231$, and $d_{\kappa}(1)=\left(t_{n}\right)_{n \geqslant 1}$, where $\left(t_{n}\right)_{n \geqslant 1}=11010011 \ldots$ is obtained by shifting the Thue-Morse sequence.

Theorem (Allouche and Cosnard 2000)
The Komornik-Loreti constant κ is transcendental.
Theorem (Allouche, F. and Hare 2007)
There exists a smallest univoque Pisot number, of degree 14.

$(-\beta)$-expansions, $\beta>1$

Ito and Sadahiro 2009
$J=\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right), A=\{0,1, \ldots,\lfloor\beta\rfloor\}$

$$
D: J \rightarrow A \text { with } D(x)=\left\lfloor-\beta x+\frac{\beta}{\beta+1}\right\rfloor
$$

$$
T: J \rightarrow J \text { with } T(x)=-\beta x-D(x)
$$

For every $x \in J$ denote $\mathrm{d}_{-\beta}(x)$ the $(-\beta)$-expansion of x. Then $\mathrm{d}_{-\beta}(x)=\left(x_{i}\right)_{i \geqslant 1}$ if and only if $x_{i}=\left\lfloor-\beta T_{-\beta}^{i-1}(x)+\frac{\beta}{\beta+1}\right\rfloor$, and $x=\sum_{i \geqslant 1} x_{i}(-\beta)^{-i}$.

$$
x<y \Longleftrightarrow \mathrm{~d}_{-\beta}(x) \prec_{a / t} \mathrm{~d}_{-\beta}(y)
$$

A word $\left(x_{i}\right)_{i \geqslant 1}$ is $(-\beta)$-admissible if there exists a real number $x \in J$ such that $\mathrm{d}_{-\beta}(x)=\left(x_{i}\right)_{i \geqslant 1}$.
The $(-\beta)$-shift $S_{-\beta}$ is the closure of the set of $(-\beta)$-admissible words.
Define the sequence $\mathrm{d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right)$ as follows:

- if $\mathrm{d}_{-\beta}\left(-\frac{\beta}{\beta+1}\right)=d_{1} d_{2} \cdots$ is not a periodic sequence with odd period,

$$
\mathrm{d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right)=\mathrm{d}_{-\beta}\left(\frac{1}{\beta+1}\right)=0 d_{1} d_{2} \ldots
$$

- otherwise if $d_{-\beta}\left(-\frac{\beta}{\beta+1}\right)=\left(d_{1} \cdots d_{2 p+1}\right)^{\omega}$,

$$
\mathrm{d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right)=\left(0 d_{1} \cdots d_{2 p}\left(d_{2 p+1}-1\right)\right)^{\omega}
$$

Theorem (Ito and Sadahiro 2009)
Let $s=\left(s_{n}\right)_{n \geqslant 1}$ be a sequence in $A^{\mathbb{N}}$. Then

- s is $(-\beta)$-admissible if and only if

$$
\forall k \geqslant 0, \quad d_{-\beta}\left(-\frac{\beta}{\beta+1}\right) \preceq_{a l t} \sigma^{k}(s) \prec_{a l t} \mathrm{~d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right) .
$$

- s is an element of the $(-\beta)$-shift if and only if

$$
\forall k \geqslant 0, \quad d_{-\beta}\left(-\frac{\beta}{\beta+1}\right) \preceq_{\text {alt }} \sigma^{k}(s) \preceq_{\text {alt }} \mathrm{d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right) .
$$

Remark: $\mathrm{d}_{-\beta}\left(-\frac{\beta}{\beta+1}\right)$ is an asmin-word and $\mathrm{d}_{-\beta}^{*}\left(\frac{1}{\beta+1}\right)$ is an asmax-word.

Theorem (Ito and Sadahiro 2009, F. and Lai 2009)
The $(-\beta)$-shift $S_{-\beta}$ is a symbolic dynamical system which is

1. sofic if, and only if, $\mathrm{d}_{-\beta}\left(-\frac{\beta}{\beta+1}\right)$ is eventually periodic,
2. of finite type if, and only if, $\mathrm{d}_{-\beta}\left(-\frac{\beta}{\beta+1}\right)$ is purely periodic.

Theorem (F. and Lai 2009)
If β is a Pisot number, then every number of $\mathbb{Q}(\beta) \cap[0,1]$ has an eventually periodic $(-\beta)$-expansion.

Example Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then $\mathrm{d}_{-\varphi}\left(-\frac{\varphi}{\varphi+1}\right)=10^{\omega}$ the $(-\varphi)$-shift is a sofic system which is not of finite type.
Finite automata for the φ-shift (left) and for the $(-\varphi)$-shift (right)

Example Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then $\mathrm{d}_{-\varphi}\left(-\frac{\varphi}{\varphi+1}\right)=10^{\omega}$ the $(-\varphi)$-shift is a sofic system which is not of finite type.
Finite automata for the φ-shift (left) and for the $(-\varphi)$-shift (right)

Example $\beta=\frac{3+\sqrt{5}}{2} . \mathrm{d}_{-\beta}\left(-\frac{\beta}{\beta+1}\right)=(21)^{\omega}$ and the $(-\beta)$-shift is of finite type: the set of minimal forbidden factors is $\{20\}$.
Finite automata for the β-shift (left) and for the ($-\beta$)-shift (right)

Entropy

The topological entropy of a subshift S is

$$
h(S)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(B_{n}(S)\right)
$$

where $B_{n}(S)$ is the number of factors of S of length n.
When S is sofic, the entropy of S is equal to the logarithm of the spectral radius of the adjacency matrix of the finite automaton recognising $L(S)$.
Theorem (Takahashi 1980, F. and Lai 2009)
The entropy of the β-shift and of the $(-\beta)$-shift are equal to $\log \beta$.

Theorem (Steiner 2013)
A sequence $s=\left(s_{n}\right)_{n \geqslant 1}$ in $A^{\mathbb{N}}$ is the $(-\beta)$-expansion of $-\frac{\beta}{\beta+1}$ (for some unique β) if, and only if,

1. $\forall k \geqslant 2, \quad s \preceq_{\text {alt }} \sigma^{k}(s)$,
2. $s \prec_{\text {alt }} u=10011100100100111 \cdots$, where $u=\psi^{\omega}(1)$ with $\psi(1)=100$ and $\psi(0)=1$,
3. $s \notin\left\{s_{1} \cdots s_{k}, s_{1} \cdots s_{k-1}\left(s_{k}-1\right) 0\right\}^{\omega} \backslash\left(s_{1} \cdots s_{k}\right)^{\omega}$ for all $k \geqslant 1$ with $\left(s_{1} \cdots s_{k}\right)^{\omega} \prec_{a / t} u$,
4. $s \notin\left\{s_{1} \cdots s_{k} 0, s_{1} \cdots s_{k-1}\left(s_{k}+1\right)\right\}^{\omega}$ for all $k \geqslant 1$ with $\left(s_{1} \cdots s_{k-1}\left(s_{k}+1\right)\right)^{\omega} \prec_{\text {alt }} u$.

Maximal and minimal $(-\beta)$-expansions

Hejda, Masáková and Pelantová 2012

Proposition

s is the maximal ($-\beta$)-expansion (for the alternate order) of x if, and only if, \bar{s} is the minimal $(-\beta)$-expansion of $-\frac{\lfloor\beta\rfloor}{\beta+1}-x$.

Remark

The Ito-Sadahiro transformation does not give the maximal
$(-\beta)$-expansion (for the alternate order).
Example φ the golden mean. Let $x=-\frac{1}{2}$.
The minimal $(-\varphi)$-expansion of x is $1(001110)^{\omega}$.
The Ito-Sadahiro $(-\varphi)$-expansion of x is $(100)^{\omega}$.
The maximal $(-\varphi)$-expansion of x is $(111000)^{\omega}$.

$$
1(001110)^{\omega} \prec_{a l t}(100)^{\omega} \prec_{a l t}(111000)^{\omega} .
$$

There is no transformation of the form $T(x)=-\beta x-D(x)$ which generates for every x the maximal or the minimal $(-\beta)$-expansion of x.

Theorem
Let $\beta>1, \beta \notin \mathbb{N}, A=\{0, \ldots,\lfloor\beta\rfloor\}, B=\{-b \beta+a \mid a, b \in A\}$. Let $\pi: B^{*} \rightarrow A^{*}$ such that $\pi(-b \beta+a)=b a$.
Let $I=\left[\frac{-\beta \backslash \beta \mid}{\beta^{2}-1}, \frac{|\beta|}{\beta^{2}-1}\right]$.

1. There exists a transformation $T_{G}: I \rightarrow I$ which generates $G(x)$ the maximal β^{2}-expansion of x on B;

- $\pi(G(x))$ is the maximal $(-\beta)$-expansion of x on A (for the alternate order).

2. There exists a transformation $T_{L}: I \rightarrow I$ which generates $L(x)$ the minimal β^{2}-expansion of x on B;

- $\pi(L(x))$ is the minimal $(-\beta)$-expansion of x on A (for the alternate order).

Digit-set conversion and normalisation

Real base $\alpha,|\alpha|>1, A$ finite alphabet allowing representation of elements of an interval J.
C an arbitrary finite alphabet of digits.
A digit-set conversion in base α on C is a partial function $\chi_{\alpha, C}: C^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$ such that

$$
\chi_{\alpha, C}\left(\left(c_{i}\right)_{i \geqslant 1}\right)=\left(a_{i}\right)_{i \geqslant 1} \Longleftrightarrow \sum_{i \geqslant 1} c_{i} \alpha^{-i}=\sum_{i \geqslant 1} a_{i} \alpha^{-i}
$$

The normalisation $\nu_{\alpha, C}$ on C is a digit-set conversion where the result $\left(a_{i}\right)_{i \geqslant 1}$ is α-admissible.

Addition on A is a digit-set conversion $(A+A)^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$.
$\beta>1, A=\{0, \ldots,\lfloor\beta\rfloor\}$.
Theorem (F. 1992, Berend and F. 1994, F. and Sakarovitch 1999)

The following are equivalent:

1. normalisation $\nu_{\beta, C}$ is computable by a finite letter-to-letter transducer on any alphabet C;
2. $\nu_{\beta, B}$ is computable by a finite letter-to-letter transducer on $B=\{0, \ldots,\lfloor\beta\rfloor,\lfloor\beta\rfloor+1\} ;$
3. β is a Pisot number.

Example Take β the root >1 of $X^{4}-2 X^{3}-2 X^{2}-2$. Then $\mathrm{d}_{\beta}(1)=2202$ and β is a simple Parry number, but it is not a Pisot number, since there is another root $\alpha \approx-1.134186$. One can show that normalisation on $A=\{0,1,2\}$ is not computable by a finite transducer.

Proposition

If $\beta>1$ is a Pisot number, then normalisation in base $(-\beta)$ on any alphabet C is realisable by a finite transducer.

Proposition

If β is a Pisot number, then conversion from base $(-\beta)$ to base β is realizable by a finite transducer. The result is β-admissible.
These transducers are neither left nor right sequential when β is not an integer.

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input.
Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input.
Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

1. In real base $\pm \beta, \beta>1$, addition is on-line computable on $\{0, \ldots,\lfloor\beta\rfloor\}$ (the result is not admissible).
2. If β is a Pisot number, the on-line transducer is finite.

On-line computations

An on-line algorithm is such that, after a certain delay of latency during which the data are read without writing, a digit of the output is produced for each digit of the input.
Processing most significant digit first. Suitable for real numbers. Sequentiality and synchronicity.

On-line functions are uniformly continuous for the prefix distance.

1. In real base $\pm \beta, \beta>1$, addition is on-line computable on $\{0, \ldots,\lfloor\beta\rfloor\}$ (the result is not admissible).
2. If β is a Pisot number, the on-line transducer is finite.
3. Conversion from base β to base $(-\beta)$ is computable by an on-line algorithm (the result is not admissible).
4. If β is a Pisot number, the on-line transducer is finite.

Conclusions

Base β and base $(-\beta)$ are

- quite similar for the nature of the shift, the eventual periodicity of the rationals, and addition,
- quite different for the maximal and minimal representations.

