Univoque numbers and the Thue-Morse sequence

Christiane Frougny

LIAFA and Université Paris 8 http://www.liafa.jussieu.fr/~cf/
Joint work with
Jean-Paul Allouche

Greedy expansions

Base $\lambda>1, x \in[0,1]$.
Greedy algorithm of Rényi:
$x_{0}:=\lfloor\lambda x\rfloor$
$r_{0}:=\lambda x-x_{0}$
$x_{n}:=\left\lfloor\lambda r_{n-1}\right\rfloor$
$r_{n}:=\lambda r_{n-1}-x_{n}$

$$
x=\sum_{n \geqslant 0} x_{n} \lambda^{-(n+1)}
$$

Digits $x_{n} \in A_{\lambda}=\{0,1, \ldots,\lceil\lambda\rceil-1\}$

$$
d_{\lambda}(x)=x_{0} x_{1} x_{2} \cdots
$$

is the greedy λ-expansion of x.
It is the greatest representation in the lexicographic order.

Univoque numbers

$\lambda>1$ is univoque if there exists a unique sequence of integers $\left(a_{n}\right)_{n \geqslant 0}$ ，with $0 \leqslant a_{n}<\lambda$ ，such that

$$
1=\sum_{n \geqslant 0} a_{n} \lambda^{-(n+1)}
$$

2 is univoque，as $1=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots=.111 \cdots$
$\frac{1+\sqrt{5}}{2}$ is not univoque since $1=.11=.(10)^{k} 11=.(10)^{\infty}=.01^{\infty}$

$$
\begin{aligned}
\Gamma & :=\left\{A \in\{0,1\}^{\mathbb{N}}, \forall k \geqslant 0, \bar{A} \leqslant \sigma^{k} A \leqslant A\right\} \\
\Gamma_{\text {strict }} & :=\left\{A \in\{0,1\}^{\mathbb{N}}, \forall k \geqslant 1, \bar{A}<\sigma^{k} A<A\right\}
\end{aligned}
$$

σ is the shift on sequences
$\bar{a}:=(1-a) ; \bar{A}:=\left(1-a_{n}\right)_{n \geqslant 0}$
$\lambda \in(1,2)$ is univoque iff $d_{\lambda}(1) \in \Gamma_{\text {strict }}$

Smallest univoque number

(Komornik and Loreti 1998) There exists a smallest univoque number $\kappa \approx 1.787231$ and $d_{\kappa}(1)=\left(t_{n}\right)_{n \geqslant 0}$, where $\left(t_{n}\right)_{n \geqslant 0}=11010011 \ldots$ is the shifted Thue-Morse sequence

Thue-Morse sequence: $0 \rightarrow 01 ; 1 \rightarrow 10$
The Komornik-Loreti constant κ is transcendental (Allouche and Cosnard 2000).
$d_{\kappa}(1)$ is the smallest element of $\Gamma_{\text {strict }}$, i.e. the smallest nonperiodic sequence of Γ.

The smallest element of Γ is the periodic sequence (10) ${ }^{\infty}$ and it is a representation of 1 in base $\frac{1+\sqrt{5}}{2}$.

Generalization to bigger alphabets?

Admissible sequences

b a positive integer, if $t \in\{0,1, \ldots, b\}, \bar{t}=b-t$. A sequence $A=\left(a_{n}\right)_{n \geqslant 0}$ on $\{0,1, \ldots, b\}$ is admissible if

$$
\begin{aligned}
& \forall k \geqslant 0 \text { such that } a_{k}<b, \quad \sigma^{k+1} A<A, \\
& \forall k \geqslant 0 \text { such that } a_{k}>0, \quad \sigma^{k+1} A>\bar{A} .
\end{aligned}
$$

Theorem (Komornik and Loreti 2002)
There is a bijection from the set of univoque numbers in $(1, b+1)$ to the set of admissible sequences on $\{0,1, \ldots, b\}$:

$$
\lambda \in(1, b+1) \mapsto\left(a_{n}\right)_{n \geqslant 0} \in\{0,1, \ldots, b\}^{\mathbb{N}}
$$

such that

$$
1=\sum_{n \geqslant 0} a_{n} \lambda^{-(n+1)}
$$

Two possible generalizations to greater alphabets:

- to look at the smallest (if any) admissible sequence on the alphabet $\{0,1, \ldots, b\}$ (Komornik and Loreti 2002)
- to look at the smallest (if any) univoque number in ($b, b+1$) (de Vries and Komornik 2007).

An old work of Allouche 1983 gives a general tool.

The generalized Γ and $\Gamma_{\text {strict }}$ sets

(Allouche 1983)
b a positive integer
$\mathcal{A}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{b}\right\}$ in increasing order
$\overline{\alpha_{j}}=\alpha_{b-j}$

$$
\Gamma(\mathcal{A}):=\left\{A=\left(a_{n}\right)_{n \geqslant 0} \in \mathcal{A}^{\mathbb{N}}, a_{0}=\alpha_{b}, \forall k \geqslant 0, \bar{A} \leqslant \sigma^{k} A \leqslant A\right\}
$$

$$
\Gamma_{\text {strict }}(\mathcal{A}):=\left\{A=\left(a_{n}\right)_{n \geqslant 0} \in \mathcal{A}^{\mathbb{N}}, a_{0}=\alpha_{b}, \forall k \geqslant 1, \bar{A}<\sigma^{k} A<A\right\} .
$$

A sequence belongs to $\Gamma_{\text {strict }}(\mathcal{A})$ if and only if it belongs to $\Gamma(\mathcal{A})$ and is nonperiodic.

Proposition

Let $A=\left(a_{n}\right)_{n \geqslant 0}$ be a sequence in $\{0,1, \ldots, b\}^{\mathbb{N}}$, such that $a_{0}=t \in[0, b]$. Suppose that $A \neq b^{\infty}$. Then A is admissible if and only if $2 t>b$ and $A \in \Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})$.
Note that $\bar{j}=b-j$.
$\mathcal{A}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{b}\right\}$
$A=\left(a_{n}\right)_{n \geqslant 0}$ a periodic sequence of smallest period T, and such that $a_{T-1}=\alpha_{j}<\alpha_{b}$:

$$
A=\left(\begin{array}{llll}
a_{0} & a_{1} & \ldots & a_{T-2}
\end{array} \alpha_{j}\right)^{\infty}
$$

Define

$$
\Phi(A):=\left(\begin{array}{llll}
a_{0} & a_{1} & \ldots & a_{T-2}
\end{array} \alpha_{j+1} \overline{a_{0}} \overline{a_{1}} \ldots \overline{a_{T-2}} \alpha_{b-j-1}\right)^{\infty} .
$$

Proposition

The smallest element of $\Gamma(\{b-t, b-t+1, \ldots, t\})$ (where
$2 t>b)$ is the 2-periodic sequence
$P:=(t(b-t))^{\infty}=(t(b-t) t(b-t) t \ldots)$.
Theorem (Allouche 1983)
The smallest element of $\Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})$ is the sequence M defined by

$$
M:=\lim _{s \rightarrow \infty} \Phi^{s}(P)
$$

that actually takes the (not necessarily distinct) values $b-t$, $b-t+1, t-1, t$. Furthermore, this sequence $M=\left(m_{n}\right)_{n \geqslant 0}=t \quad b-t+1 \quad b-t \quad t \quad b-t \quad t-1 \ldots c a n b e$ recursively defined by

$$
\begin{aligned}
& \forall k \geqslant 0, \quad m_{2^{2 k}-1}=t, \\
& \forall k \geqslant 0, \quad m_{2^{2 k+1}-1}=b+1-t, \\
& \forall k \geqslant 0, \quad \forall j \in\left[0,2^{k+1}-2\right], \quad m_{2^{k+1}+j}=\overline{m_{j}} .
\end{aligned}
$$

＂Universal＂morphism

Morphism Θ on the alphabet $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$

$$
e_{3} \rightarrow e_{3} e_{1}, e_{2} \rightarrow e_{3} e_{0}, e_{1} \rightarrow e_{0} e_{3}, \quad e_{0} \rightarrow e_{0} e_{2}
$$

Infinite fixed point beginning in e_{3}

$$
\Theta^{\infty}\left(e_{3}\right)=\lim _{k \rightarrow \infty} \Theta^{k}\left(e_{3}\right)=e_{3} e_{1} e_{0} e_{3} e_{0} e_{2} e_{3} e_{1} e_{0} e_{2} \ldots
$$

Theorem

Let $\left(\varepsilon_{n}\right)_{n \geqslant 0}$ be the Thue-Morse sequence, defined by $\varepsilon_{0}=0$ and for all $k \geqslant 0, \varepsilon_{2 k}=\varepsilon_{k}$ and $\varepsilon_{2 k+1}=1-\varepsilon_{k}$. Then $M=\left(m_{n}\right)_{n \geqslant 0}$ the smallest element of $\Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})$ satisfies

$$
\forall n \geqslant 0, m_{n}=\varepsilon_{n+1}-(2 t-b-1) \varepsilon_{n}+t-1
$$

- if $2 t \geqslant b+3$, then $M=\Theta^{\infty}\left(e_{3}\right)$ with $e_{0}:=b-t$, $e_{1}:=b-t+1, e_{2}:=t-1, e_{3}:=t(2 t \geqslant b+3$ implies that these 4 numbers are distinct);
- if $2 t=b+2$ (thus $b-t+1=t-1$), then M is the pointwise image of $\Theta^{\infty}\left(e_{3}\right)$ by the map g where $g\left(e_{3}\right):=t$, $g\left(e_{2}\right)=g\left(e_{1}\right):=t-1, g\left(e_{0}\right):=b-t ;$
- if $2 t=b+1$ (thus $b-t=t-1$ and $b-t+1=t$), then M is the pointwise image of $\Theta^{\infty}\left(e_{3}\right)$ by the map h where $h\left(e_{3}\right)=h\left(e_{1}\right):=t, h\left(e_{2}\right)=h\left(e_{0}\right):=t-1$.

Square-free sequences on three letters

Istrail sequence: $102120102 \ldots$ fixed point of the (non-uniform) morphism

$$
0 \rightarrow 12,1 \rightarrow 102,2 \rightarrow 0
$$

is square-free (Istrail 1977).
The Istrail sequence is the image of $\Theta^{\prime \infty}(1)$ where

$$
\Theta^{\prime}: 0 \rightarrow 12,1 \rightarrow 13,2 \rightarrow 20,3 \rightarrow 21
$$

by the map $0 \rightarrow 0,1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 0$.
It cannot be the fixed point of a uniform morphism (Berstel 1979).
Θ^{\prime} is an avatar of $\Theta: 3 \rightarrow 31,2 \rightarrow 30,1 \rightarrow 03,0 \rightarrow 02$, obtained by renaming letters as follows: $0 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 0,3 \rightarrow 1$.

The sequence $\left(m_{n}\right)_{n \geqslant 0}$, in the case where $2 t=b+2$, is the fixed point of the non-uniform morphism

$$
(t-1) \rightarrow t(b-t), t \rightarrow t(t-1)(b-t),(b-t) \rightarrow(t-1)
$$

i.e., is an avatar of Istrail's square-free sequence.

From Berstel this sequence on three letters cannot be the fixed point of a uniform morphism.

The square-free Braunholtz sequence (Braunholtz 1963) is exactly our sequence $\left(m_{n}\right)_{n \geqslant 0}$ when $t=b=2$, i.e., the sequence $210201210120 \ldots$

Small admissible sequences with values in $\{0,1, \ldots, b\}$

Let $\left(\varepsilon_{n}\right)_{n \geqslant 0}$ be the Thue-Morse sequence, defined by $\varepsilon_{0}=0$ and for all $k \geqslant 0, \varepsilon_{2 k}=\varepsilon_{k}$ and $\varepsilon_{2 k+1}=1-\varepsilon_{k}$.
Corollary (Komornik and Loreti 2002)
Let b be an integer $\geqslant 1$. The smallest admissible sequence with values in $\{0,1, \ldots, b\}$ is the sequence

- $\left(z+\varepsilon_{n+1}\right)_{n \geqslant 0}$ if $b=2 z+1$
- $\left(z+\varepsilon_{n+1}-\varepsilon_{n}\right)_{n \geqslant 0}$ if $b=2 z$.

Small univoque numbers in $(b, b+1)$

$\lambda \in(b, b+1)$ and $d_{\lambda}(1)=\left(a_{n}\right)_{n \geqslant 0}$ is equivalent to $a_{0}=b$.
So we study the admissible sequences with values in $\{0,1, \ldots, b\}$ that begin in b, i.e., the set $\Gamma_{\text {strict }}(\{0,1, \ldots, b\})$.

Corollary

There exists a smallest univoque number in $(b, b+1)$. It is the solution of the equation $1=\sum_{n \geqslant 0} d_{n} \lambda^{-(n+1)}$, where the sequence $\left(d_{n}\right)_{n \geqslant 0}$ is given by $d_{n}=\varepsilon_{n+1}-(b-1) \varepsilon_{n}+b-1$

$$
\begin{equation*}
\left(d_{n}\right)_{n \geqslant 0}=b 10 b 0 b-1 b 10 b-1 b 0 \ldots \tag{1}
\end{equation*}
$$

The sequence (1) corresponding to the smallest univoque number in $(b, b+1)$ was obtained by de Vries and Komornik in 2007 by a different method.

Transcendence results

Theorem
$t \in[0, b]$ an integer with $2 t \geqslant b+1$ ，
$m_{n}=\varepsilon_{n+1}-(2 t-b-1) \varepsilon_{n}+t-1$ for all $n \geqslant 0$ ．
Then the univoque number λ belonging to $(1, b+1)$ defined by $1=\sum_{n \geqslant 0} m_{n} \lambda^{-(n+1)}$ is transcendental．

Proof.
Define $r_{n}:=(-1)^{\varepsilon_{n}}=1-2 \varepsilon_{n}$.
For $X<1$ let $F(X)=\sum_{n \geqslant 0} r_{n} X^{n}$, then $F(X)=\prod_{k \geqslant 0}\left(1-X^{2^{k}}\right)$.
$2 m_{n}=2 \varepsilon_{n+1}-2(2 t-b-1) \varepsilon_{n}+2 t-2=b-r_{n+1}+(2 t-b-1) r_{n}$
implies

$$
2 X \sum_{n \geqslant 0} m_{n} X^{n}=((2 t-b-1) X-1) F(X)+1+\frac{b X}{1-X}
$$

Taking $X=1 / \lambda$ where $1=\sum_{n \geqslant 0} m_{n} \lambda^{-(n+1)}$, we get

$$
2=((2 t-b-1)(1 / \lambda)-1) F(1 / \lambda)+1+\frac{b}{\lambda-1}
$$

If λ were algebraic, then $F(1 / \lambda)$ would be algebraic. But, since $1 / \lambda$ would be an algebraic number in $(0,1)$, the quantity $F(1 / \lambda)$ would be transcendental from a result of Mahler, a contradiction.

In particular the univoque number corresponding to the smallest admissible sequence with values in $\{0,1, \ldots, b\}$ is transcendental (Komornik and Loreti 2002).

Also the smallest univoque number in $(b, b+1)$ is transcendental.

Univoque Pisot numbers in $(b, b+1)$

A Pisot number is an algebraic integer >1 with all its Galois conjugates <1 in modulus.
There exists a smallest univoque Pisot number ≈ 1.8800, of degree 14 (Allouche, Frougny, Hare 2007).

The number corresponding to the smallest element of $\Gamma(\{b-t, b-t+1, \ldots, t\})$ (where $2 t>b)$ is the larger root of the polynomial $X^{2}-t X-(b-t+1)$, hence a quadratic Pisot number β.
If $t=b$, then $d_{\beta}(1)=b 1$, and $\beta=\frac{b+\sqrt{b^{2}+4}}{2}$ is the smallest element of $\Gamma \cap(b, b+1)$.

For any $b \geqslant 2$, the real number β such $d_{\beta}(1)=b 1^{\infty}$ is a univoque Pisot number in $(b, b+1)$.

It is a limit point from above of univoque Pisot numbers with expansion $b 1^{n} 2^{\infty}$.
$b+1$ is a limit point from below of univoque Pisot numbers with expansion $b^{n}(b-1)^{\infty}$.

Open question Smallest univoque Pisot number in $(b, b+1)$?

