
Acta Informatica manuscript No.
(will be inserted by the editor)

First-order logics: some characterizations and
closure properties

Christian Choffrut · Andreas Malcher
Carlo Mereghetti · Beatrice Palano

Received: date / Accepted: date

Abstract The characterization of the class of FO[+]-definable languages by some generat-
ing or recognizing device is still an open problem. We prove that, restricted to word bounded
languages, this class coincides with the class of semilinear languages. We also study the clo-
sure properties of the classes of languages definable in FO[+1], FO[<], FO[+] and FOC[+]
under the main classical operations.

Keywords Word bounded languages · Semilinear sets · First-order logic · Counting
quantifier · Shuffle · Concatenation

1 Introduction

The aim of descriptive complexity is to provide logical characterizations of relevant classes
of languages. The first result in this area dates back to Büchi [4] who gave a characterization
of regular languages via monadic second order logic. Since then, a well consolidated trend
in the literature provides characterizations of several language classes via different logics.
This has also other consequences: a logical description of a language often leads to a precise
estimate of the parallel complexity of membership and related problems for that language
(see, e.g., [1,18]).

This work was partially supported by the Italian MURST under the project “PRIN: Aspetti matematici e
applicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici e combinatori in ambito
di linguaggi formali”, and by CRUI/DAAD under the project “Programma Vigoni: Reducing complexity by
introducing structure”.
A preliminary version has been published in the Proceedings of the 4th International Conference on Language
and Automata Theory and Applications (LATA 2010).

Christian Choffrut
LIAFA, UMR 7089, 175 Rue du Chevaleret, Paris 13, France
E-mail: fcc@liafa.jussieu.fr

Andreas Malcher
Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
E-mail: malcher@informatik.uni-giessen.de

Carlo Mereghetti · Beatrice Palano
DSI, Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy
E-mail: {mereghetti, palano}@dsi.unimi.it

2 Christian Choffrut et al.

Important first-order logics for language description are FO[+1], FO[<] and FO[+]. All
these logics are used to express properties of words, and their variables range over word po-
sitions. Along with the usual predicates Qa(x) holding true whenever the letter at position x
is a, and equality, they are provided with the predicates x + 1 = y, x < y and x + y = z, re-
spectively. A further step in incrementing the descriptive power was made two decades ago
by introducing the notion of counting quantifier (see, e.g., [1,6,17]) which roughly speaking
enables us to count the number of values satisfying a given formula. These new quantifiers
were modeled after the majority function used in circuit complexity and may not be con-
fused with the modular quantifiers whose descriptive power is much weaker.

It is well-known (see, e.g., [18]) that FO[+1] characterizes the class of locally thresh-
old testable languages, while FO[<] characterizes the wider class of star-free languages,
this latter class being itself strictly contained in that of regular languages. The class of lan-
guages described in FO[+] contains all the star-free languages, not all the regular languages
and also contains nonregular languages. Presently, no precise definition of the class of lan-
guages characterized by FO[+] is known. Thus, it is natural to investigate the possibility
of representing relevant subclasses. Our first result concerns the important subclass of the
bounded languages which are definable in FO[+], based on the well-known notion of semi-
linear languages introduced by Ginsburg and Spanier in 1964 [9].

Theorem. A bounded language is definable in FO[+] if and only if it is semilinear.

This is particularly interesting since such a logical characterization of bounded semilin-
ear languages complements the known characterizations by formal grammars (e.g., simple
matrix grammars [11]) and automata (e.g., certain variants of multi-head finite automata and
multi-head pushdown automata [12]).

The second part of this paper is concerned with another type of issue which, we think,
was only marginally considered by people working in parallel complexity and which is
more relevant in the theory of languages. Indeed, we investigate the closure properties of the
classes of languages defined in various logics, see Figure 1, where FOC[+] refers to FO[+]
augmented with counting quantifiers. Some entries of the table were already known, at least
implicitly. Two remain unanswered.

Table 1 Closure properties.

FO[+1] FO[<] FO[+] FOC[+]

length-preserving morphism no no no no
length-preserving inverse morphism yes yes yes yes
inverse morphism no yes no yes
concatenation no yes yes yes
shuffle no no no ?
disjoint shuffle no yes no yes
Kleene star no no no yes if TC0 = NC1

quotient yes yes yes yes
conjugate image yes yes yes yes
commutative image no no no ?
reversal yes yes yes yes

Our characterization and closure properties lead us to results on the logical definability
of the meaningful class of the Dyck languages [5,10]. It is known from [1] that the Dyck

First-order logics: some characterizations and closure properties 3

languages can be described by FOC[+]. Moreover, from [14], one may easily get that the
Dyck languages cannot be described in FO[+]. Here, we give a new proof of this latter result
relying on logics.

2 Preliminaries

The set of natural numbers is here denoted by N. We assume basic notions on formal lan-
guage theory [10]. Given an alphabet Σ , we denote by Σ ∗ the set of words on Σ , including
the empty word ε . We denote by |x| the length of a word x∈ Σ ∗ and by Σ i the set of words of
length i, with Σ 0 = {ε}. We let Σ+ = Σ ∗ \{ε}. For any x,w ∈ Σ ∗, we let |x|w be the number
of occurrences of the word w in x. A language on Σ is any subset of Σ ∗.

We assume familiarity with traditional and threshold circuits as computational models
to study the parallel complexity of problems (see, e.g., [15,19]). We recall that NCk (ACk)
is the class of problems solved by families of bounded (unbounded) fan-in AND/OR/NOT-
circuits of polynomial size and O(logk n) depth. The class TC0 contains those problems
solved by constant depth threshold circuits of polynomial size. We have the inclusions
AC0 ⊂ TC0 ⊆ NC1, and the latter inclusion is widely considered to be proper. It is known
that regular languages lie in NC1 [16], but not in TC0 unless TC0 = NC1 [3]. In [13], further
interesting subclasses of context-free languages are shown to be in NC1, such as the class
of the Dyck languages over an arbitrary number of parentheses, and the class of bounded
semilinear languages (see Sections 3 and 5 for a definition of these languages).

The connection between circuit complexity issues and first-order logic formalisms for
language description is extensively covered in [18]. In these formalisms, the words over Σ

are represented as first-order structures in the signature 〈{Qa}a∈Σ
, {Pi}1≤i≤m,last〉, so that

the structure for a word w of length n has universe {1, . . . ,n}, Qa is the unary predicate
holding true for 1 ≤ j ≤ n if and only if the jth letter of w is a, the Pi’s are numerical
predicates of different arities (e.g., x < y or x = y + z) and last is the constant n. In fact,
all logics considered in the sequel assume the predicates Qa, the numerical predicate x = y,
and the constant last. Yet, they differ on the set Z of the assumed additional numerical
predicates, e.g.: +1 for the immediate successor, < for the usual ordering on the nonnegative
integers, and + for the ternary predicate x = y+ z. In this way, we use the notation FO[Z],
where FO stands for first-order quantification. The formulas from FO[Z] are defined in
the usual way, i.e.: every atomic predicate is a formula; if ϕ1 and ϕ2 are formulas, then
ϕ1∧ϕ2, ϕ1∨ϕ2 and ¬ϕ1 are formulas; if ϕ(x1, . . . ,xn) is a formula whose free variables are
x1, . . . ,xn, then ∃xi ϕ(x1, . . . ,xn) and ∀xi ϕ(x1, . . . ,xn), with 1≤ i≤ n, are formulas.

The notion of counting quantifiers is less known and deserves a precise definition. We
restrict ourselves to the unary version. Given a formula φ(x1, . . . ,xn) and a variable y,
∃y

xi φ(x1, . . . ,xn) is a formula with free variables y,x1, . . . ,xi−1, xi+1, . . . ,xn. It is true for
the assignment b to y and a j to x j, j 6= i, if there exist b > 0 values a for xi such that
φ(a1, . . . ,ai−1,a,ai+1, . . . ,an) holds true. In other words it is equivalent to the formula

(1≤ y≤ last)∧ (y = |{x | φ(x1, . . . ,xi−1,x,xi+1, . . . ,xn)}|).

In particular, it there exists no such a, then the formula is a contradiction.
Formulas are meant to specify languages. Indeed, if ϕ is a sentence (a formula without

free variables), we let Lϕ be the set of all words satisfying ϕ . Formally, we write Lϕ =
{w ∈ Σ ∗ | w |= ϕ}. In this case, we say that Lϕ is the language defined (or described) by ϕ .
We denote by L (FO[Z]) the class of languages definable in FO[Z], i.e., L (FO[Z]) =

4 Christian Choffrut et al.

{L ⊆ Σ ∗ | L = Lϕ , for some sentence ϕ ∈ FO[Z]}. Several classes of languages have been
logically characterized. For instance, FO[+1] (resp., FO[<]) is the first-order logic with
numerical predicate +1 (resp., <). It is well-known that L (FO[+1]) is the class of locally
threshold testable languages, while L (FO[<]) is the class of star-free languages. No formal
language characterization for L (FO[+]) is currently known. We denote by FOC the set
of first-order quantifiers together with the counting quantifier ‘∃y’. In the sequel, we use
the predicate symbol ‘∗’ for the natural multiplication. The following strict inclusions are
well-known (see [17], for more details):

L (FO[+1])⊂L (FO[<])⊂L (FO[+])⊂ L (FO[+,∗]) = AC0

L (FOC[<]) = L (FOC[+])
⊂ TC0 ⊆ NC1.

3 Bounded Languages

In this section, we exhibit a relevant class of languages contained in L (FO[+]), and show
that, restricted to bounded languages, FO[+] characterizes the semilinear languages.

We recall that a set X ⊆ Nm is linear whenever, for some integer r ∈ N, there exist
vectors v0, . . . ,vr ∈ Nm such that X = v0 + ∑

r
t=1 Nvt . A semilinear set is a finite union of

linear sets. Let w1, . . . ,wm be a sequence of words in Σ ∗ where the same word may have
several occurrences. We consider the natural embedding of Nm into Σ ∗ (we shall simply say
“the natural embedding”) relative to this sequence w1, . . . ,wm as the mapping χ : Nm→ Σ ∗

defined by χ(n1, . . . ,nm) = wn1
1 · · ·wnm

m . A language L⊆ Σ ∗ is bounded whenever L = χ(X)
holds for some X ⊆ Nm. It is letter bounded whenever all wi’s are letters. Moreover, L is
bounded (linear) semilinear whenever X is a (linear) semilinear set. Rigorously speaking,
we should always specify the sequence w1, . . . ,wm with the mapping χ . However, the context
should clearly determine which sequence is assumed.

We first prove the result under the hypothesis that the language is letter bounded, and
then we extend it to arbitrary bounded languages.

3.1 A preliminary reduction

Notice that, without loss of generality, we may assume wi 6= wi+1 for every 1 ≤ i < m. In-
deed, it clearly suffices to consider the case where X is linear, i.e., of the form v0 +∑

r
t=1 Nvt .

Suppose there exists 1 ≤ i < m such that wi = wi+1, and denote with vt, j the jth compo-
nent of the vector vt ∈ Nm. With each vt , for 1 ≤ t ≤ r, we associate the vector v′t ∈ Nm−1

defined by

v′t, j =


vt, j if j < i
vt, j + vt, j+1 if j = i
vt, j+1 otherwise.

By letting χ ′ be the natural embedding of Nm−1 into w∗1 · · ·w∗i w∗i+2 · · ·w∗m, we get L = χ ′(X ′)
with the linear set X ′ = v′0 +∑

r
t=1 Nv′t .

Some closure properties of the bounded semilinear languages are obtained as technical
adaptations of the closure properties of the semilinear sets in Nm, as we shall discuss in
Proposition 1. The following is a technical property which deals with the problem of the
occurrence of the empty word among w1, . . . ,wm.

First-order logics: some characterizations and closure properties 5

Lemma 1 Every bounded semilinear subset of Σ ∗ is a finite union of linear subsets in
w+

1 · · ·w+
m , with wi 6= ε for i = 1, . . . ,m, and possibly of the subset containing only the empty

word.

Proof Indeed, the sets of the form M1×·· ·×Mm, where Mi = {0} or Mi = N\{0}, are linear
and thus so are all intersections X∩M1×·· ·×Mm, with X a linear set. Let /0⊂ I⊆{1, . . . ,m}
be the set of indices i such that Mi = N \ {0}, let πI be the projection of Nm onto ∏i∈I Mi,
and let χ ′ be the unique natural embedding satisfying χ(v) = χ ′(πI(v)), for all v ∈ Nm, as
defined at the beginning of this section. Then, we get

χ(X ∩M1×·· ·×Mm) = χ
′

(
πI(X)∩∏

i∈I
Mi

)
.

Whenever I = /0, we have χ(X ∩M1×·· ·×Mm) = {ε}. ut

3.2 The Letter Case

A morphism of a free monoid into another is nonincreasing if the image of a letter is a
letter or the empty word. A length-preserving substitution is defined by a mapping h : Σ →
2Σ \ { /0}, and assigns to the word a1 · · ·an the set of words h(a1) · . . . · h(an). It extends to
subsets of words in the usual way.

Proposition 1 If L,L′ ⊆ a∗1 · · ·a∗m are letter bounded semilinear languages and if f is a
nonincreasing morphism, then L∪L′, L \L′, LL′, and f (L) are letter bounded semilinear.
Furthermore, if h is a length-preserving substitution, then L∩h(L′) is letter bounded semi-
linear.

Proof The first three properties are consequences of the results in [8]. Concerning nonin-
creasing morphisms, observe that they are a composition of morphisms of two types: those
renaming a letter and leaving all other letters invariant and those sending a letter to the
empty word and leaving all other letters invariant. In the former case, the result follows di-
rectly from the above observation concerning the non-repetition of two consecutive words.
In the latter case, assume the morphism f satisfies f (a) = ε and f (c) = c for all c ∈ Σ \{a}.
Let I the subset of indices i ∈ {1, . . . ,m} such that ai = a, and denote by π the morphism of
Nm into Nm−|I| assigning to any m-tuple the (m−|I|)-tuple obtained by ignoring the compo-
nents whose positions are in I. If L = χ(X) then f (L) = χ ′(π(X)), where χ ′ is the obvious
restriction of χ , and we apply the closure property under morphism of the semilinear sets [8].

The last statement follows from the fact that the intersection of a bounded semilinear
language with the image of a bounded semilinear language under a substitution by regular
sets is bounded semilinear [11, Thm 5.5]. Observe that h(L′) is not bounded in general,
which is why we consider the intersection with a bounded language. ut

We are now going to show that every letter bounded language is in L (FO[+]) if and
only if it is semilinear. We start with the “if” part.

Theorem 1 The class of letter bounded semilinear languages is in L (FO[+]).

Proof It clearly suffices to prove the result for letter bounded linear languages, i.e., lan-
guages of the form L = χ(X) where X ⊆Nm is linear and χ is the natural embedding of Nm

into a∗1 · · ·a∗m, for some sequence a1, . . . ,am of letters from Σ .

6 Christian Choffrut et al.

By Lemma 1, we may assume that L ⊆ a+
1 · · ·a+

m . We give an FO[+] formula defining
the letter bounded linear language L = χ(X), with X = v0 +∑

r
t=1 Nvt . By definition, a word

w ∈ Σ ∗ belongs to L if and only if:

(i) w is in a+
1 · · ·a+

m , and
(ii) for some α1, . . . ,αr ∈ N, it holds |w|a j = v0, j +∑

r
t=1 αtvt, j for 1≤ j ≤ m, where vt, j

denotes the jth component of the vector vt .

Let the variables y1, . . . ,ym be interpreted as the number of occurrences of the letters a1, . . . ,am
in w. Then, an FO[+] formula defining L is of the form

∃y1 · · ·∃ym ψ1(y1, . . . ,ym)∧ψ2(y1, . . . ,ym),

where ψ1 expresses condition (i) and ψ2 expresses condition (ii). Using natural abbreviations
in order to keep the formula readable, we have

ψ1(y1, . . . ,ym)≡ (y1 + · · ·+ ym = last)∧

∀z
(
(z≤ y1⇒ Qa1(z))∧

m∧
i=2

(i−1

∑
h=1

yh < z≤
i

∑
h=1

yh⇒ Qai(z)
))

.

Concerning condition (ii), by denoting with z j the variables interpreted as the coefficients α j,
we have

ψ2(y1, . . . ,ym)≡ ∃z1 · · ·∃zr

(∧
1≤ j≤m

(
y j = v0, j +

r

∑
t=1

vt, j

∑
s=1

zt

))
.

ut

The converse of Theorem 1 goes by structural induction on FO[+] formulas. Indeed, we
consider not only sentences (i.e., formulas with only bound variables) but more generally
formulas with free variables, and define what it means for such formulas to be satisfied by
some model. We utilize the usual trick which consists of augmenting the letters of the alpha-
bet Σ with a new component specifying subsets of free variables: by so doing, we encode
the value of the free variables in the model. More precisely, a formula φ over a set V of free
variables is interpreted on V -structures, i.e., words of the form u = (σ1,V1) · · ·(σn,Vn) over
the alphabet Σ × 2V , with: (i) Vi ⊆ V , (ii) Vi ∩V j = /0 for i 6= j, (iii)

⋃n
i=1 Vi = V . We let

S|V | ⊆ (Σ ×2V)∗ denote the set of all V -structures.
Let us now explain what it means for a V -structure to satisfy a formula with free vari-

ables (the figure below should facilitate the intuition). To fix ideas, let φ(x1, . . . ,xk) be a
formula and V = {x1, . . . ,xk} be the set of its free variables. We say that the V -structure
u = (σ1,V1) · · ·(σn,Vn) ∈ S|V | satisfies φ(x1, . . . ,xk), and we write u |= φ(x1, . . . ,xk), if
φ(p1, . . . , pk) holds true in the model σ1 · · ·σn where, for 1 ≤ i ≤ k, the integer 1 ≤ pi ≤ n
is the unique position of the V -structure u such that xi ∈ Vpi . For instance, the following
V -structure

a b a a b b
/0 {x2} {x3,x4} /0 {x1} /0

satisfies the formula

Qb(x1)∧Qb(x2)∧¬Qb(x3)∧ (x2 < x3)∧ (x3 < x1)∧ (x2 < x4)∧ (x4 < x1).

The language defined by φ is the set Lφ ,V = {u ∈S|V | | u |= φ}. If φ is a sentence, i.e., a
formula without free variables, then Lφ = Lφ , /0 = {w ∈ Σ ∗ | w |= φ}, as recalled in Section 2.

First-order logics: some characterizations and closure properties 7

The following lemma, which is useful in the proof of the main result, shows the let-
ter boundedness and semilinearity of a language of V -structures. Given a V -structure u =
(σ1,V1) · · ·(σn,Vn), we define π(u) = σ1 · · ·σn. Then:

Lemma 2 Let a1, . . . ,am be a sequence of letters from an alphabet Σ and let V be a set of
free variables with |V |= k. The language

Bk = {u ∈Sk | π(u) ∈ a∗1 · · ·a∗m}

is letter bounded semilinear.

Proof The set a∗1 · · ·a∗m is the (finite) union of subsets of the form a+
i1
· · ·a+

is where 0≤ s≤m
and i1, . . . , is is a subsequence of 1, . . . ,m. So, we are reduced to prove that the set B′k =
{u ∈Sk | π(u) ∈ a+

1 · · ·a+
m} is letter bounded semilinear.

We claim that B′k is a finite union of letter bounded linear languages. A subset in this
union is specified by the choice of a sequence of nonempty subsets V1, . . . ,V` defining a
decomposition of V and a choice of letters from a1, . . . ,am which are associated with the
Vi’s. For instance, let k = 3 and m = 3, i.e., we are considering the words in a+

1 a+
2 a+

3 and
the formula has 3 free variables x1,x3,x3. Consider the decomposition V = V1 ∪V2 with
V1 = {x1,x3} and V2 = {x2}. Associate V1 with a1 and V2 with a3. Then, the associated
subset is

(a1, /0)∗(a1,V1)(a1, /0)∗(a2, /0)∗(a3, /0)∗(a3,V2)(a3, /0)∗,

which indicates that the positions of the interpretations of the variables x1 and x3 are inside
the factor of the word labeled by a1, while the interpretation of the variable x2 is inside the
factor of the word labeled by a3.

Formally, consider a sequence of the form (i1,V1), . . . ,(i`,V`) satisfying the following
conditions:

– 1≤ i1 < · · ·< i` ≤ m,
– Viα 6= /0, for 1≤ α ≤ `,
–
⋃`

α=1 Viα = V and Viα ∩Viβ = /0, for 1≤ α < β ≤ `.

Set i0 = 1 and i`+1 = m, and define

Lα = (aiα−1 , /0)∗ · · ·(aiα , /0)∗(aiα ,Vα)(aiα , /0)∗ · · ·(aiα+1 , /0)∗.

Then, each of these Lα is letter bounded linear and thus, by Proposition 1, the product
L1 · · ·L` is letter bounded linear as well. Since B′k is a finite union of such languages, it is
letter bounded semilinear. ut

Hereafter, for the sake of conciseness, given an alphabet Σ we let QΣ (x) stand for∨
σ∈Σ Qσ (x). We obtain the converse of Theorem 1 as a corollary of

Theorem 2 For every sequence a1, . . . ,am of letters in Σ and every language L ⊆ Σ ∗ in
L (FO[+]), the language L∩a∗1 · · ·a∗m is semilinear.

Proof Let φ be an FO[+] formula with V = {x1, . . . ,xk} free variables. To prove the result,
it is enough to show that Lφ ,V ∩Bk is semilinear, where Bk = {u ∈Sk | π(u) ∈ a∗1 · · ·a∗m} is
the letter bounded semilinear language in Lemma 2. We shall use the structural induction on
φ , starting from atomic predicates and then consider more complex formulas.

8 Christian Choffrut et al.

– φ ≡ Qa(x): If a does not occur in the sequence a1, . . . ,am, then Lφ ,V ∩B1 = /0, so we
assume a = ai for some 1≤ i≤ m. We have

Lφ ,{x}∩B1 = (a1, /0)∗ · · ·(ai, /0)∗(ai,{x})(ai, /0)∗ · · ·(am, /0)∗,

which is clearly letter bounded linear.
– φ ≡ (x1 + x2 = x3): We have to show that Lφ ,{x1,x2,x3}∩B3 is semilinear. The formula φ

is equivalent to (φ ∧(x1 < x2))∨(φ ∧(x1 = x2))∨(φ ∧(x1 > x2)). We prove that the lan-
guage Lφ<,{x1,x2,x3}∩B3 with φ< ≡ φ ∧ (x1 < x2) is letter bounded linear. The two other
cases are treated similarly. For W ⊆{x1,x2,x3}, let AW ={(σ ,W) | σ ∈{a1,a2, . . . ,am}}.
Then

Lφ<,{x1,x2,x3} = {A /0
α A{x1}A /0

β A{x2}A /0
α A{x3}A /0

γ | α,β ,γ ∈ N}.
This language is the image under the length-preserving substitution defined by h(a) =
A /0, h(b) = A{x1}, h(c) = A{x2} and h(d) = A{x3} of the letter bounded linear language
L′ = {aα baβ caα dγ | α,β ,γ ∈ N}. So

Lφ<,{x1,x2,x3}∩B3 = h(L′)∩B3,

and the result follows from Lemma 2 and Proposition 1.
– φ ≡ ¬ψ: We have

Lφ ,V ∩Bk = L¬ψ,V ∩Bk = (Sk \Lψ,V)∩Bk = (Sk ∩Lc
ψ,V)∩Bk

= Lc
ψ,V ∩Bk = Bk ∩ (Lc

ψ,V ∪Bc
k) = Bk \ (Lψ,V ∩Bk).

By inductive hypothesis, we have that Lψ,V ∩Bk is letter bounded semilinear. The result
follows from Lemma 2 and Proposition 1.

– φ ≡ψ1∧ψ2: We first transform ψ1 and ψ2 into equivalent formulas, each over the same
set of free variables, say V . To this purpose, let W1 and W2 be the set of free variables
of ψ1 and ψ2, respectively, so that V = W1∪W2. Define ψ̂1 ≡ ψ1∧

∧
x∈V \W1

QΣ (x) and
ψ̂2 ≡ ψ2∧

∧
x∈V \W2

QΣ (x). Clearly, φ is equivalent to ψ̂1∧ ψ̂2. We have

Lφ ,V ∩Bk = Lψ̂1∧ψ̂2,V ∩Bk = Lψ̂1,V ∩Lψ̂2,V ∩Bk

= (Lψ̂1,V ∩Bk)∩ (Lψ̂2,V ∩Bk).

By inductive hypothesis, Lψ1,W1 ∩B|W1| and Lψ2,W2 ∩B|W2| are letter bounded semilinear.
Let h be the length-preserving substitution which assigns to every letter (a,W) ∈S|W1|
the set of letters (a,V) ∈Sk where V = W ∪A, for A⊆W2 \W1. Then, we have

Lψ̂1,V ∩Bk = h(Lψ1,W1 ∩B|W1|)∩Bk.

The result follows from Lemma 2 and Proposition 1.
– φ ≡ ∃xk+1 ψ(x1, . . . ,xk,xk+1): Let the nonincreasing morphism Π : Sk+1→Sk be de-

fined as Π(a,V) = (a,V \ {xk+1}). E.g., if u = (a, /0)(a,{x3})(b,{x1})(b,{x2}) ∈ S3,
we have Π(u) = (a, /0)(a, /0)(b,{x1})(b,{x2}) ∈S2. We extend Π to subsets of Sk+1 in
the usual way. Notice that Bk = Π(Bk+1). We have

Lφ ,V ∩Bk = L∃xk+1 ψ(x1,...,xk+1),V ∩Bk = Π(Lψ(x1,...,xk+1),V ∪{xk+1})∩Π(Bk+1)

= Π(Lψ(x1,...,xk+1),V ∪{xk+1}∩Bk+1).

The last equality follows from the saturation of Bk+1 relative to Π , i.e., from the fact
that Π(u) = Π(v) and u ∈ Bk+1 implies v ∈ Bk+1. By inductive hypothesis, we have that
Lψ(x1,...,xk+1),V ∪{xk+1} ∩Bk+1 is letter bounded semilinear, and the result follows from
Proposition 1. ut

First-order logics: some characterizations and closure properties 9

In conclusion, from Theorems 1 and 2, we get

Theorem 3 A letter bounded language is semilinear if and only if it belongs to L (FO[+]).

3.3 From Letters to Words

We show how to extend the result from letter bounded to word bounded languages. From
now on, the term bounded means word bounded unless otherwise stated.

Theorem 4 Let L be a bounded language. Then, L is semilinear if and only if L belongs to
L (FO[+]).

Proof By Lemma 1, we assume without loss of generality that the semilinear bounded lan-
guage we start with satisfies the further condition

L = {wr1
1 · · ·w

rm
m | (r1, . . . ,rm) ∈ X},

where X consists of m-tuples with nonzero components. We also introduce the alphabet
{a1, . . . ,am} of m new distinct symbols, where ai is in correspondence with wi. Observe that
there might be several occurrences of the same word. We construct an FO[+] formula which
defines L. Denoting by Y the componentwise product (|w1|, . . . , |wm|)X , the subset

L′ = {a|w1|r1
1 · · ·a|wm|rm

m | (|w1|r1, . . . , |wm|rm) ∈ Y}

is linear and therefore there exists an FO[+] formula φ ′ for L′. Let us introduce the following
predicates:

– ψai(x,y,x
′)≡ x≤ y≤ x′, i = 1, . . . ,m.

– γi(x,x′) which holds true whenever the factor of a word between the position x and x′,
both ends included, belongs to w+

i . Formally, set wi = wi,1 . . .wi,ki . We define

γi(x,x′)≡
∧

1≤ j≤ki

Qwi, j (x−1+ j) ∧

∀y
(
(x≤ y≤ x′− ki)∧

(∧
1≤ j≤ki

Qwi, j (y)⇒
∧

1≤ j≤ki

Qwi, j (y+ ki)
))

.

Then, the FO[+] formula for L is as follows:

∃x1 · · ·∃xm+1

(
(1 = x1 < · · ·< xm+1 = last)∧ γ1(x1,x2)∧

∧
1<i≤m

γi(xi +1,xi+1)∧φ

)
,

where φ is obtained from φ ′ by substituting ψa1(x1,y,x2) for Qa1(y) and, for 1 < i ≤ m,
ψai(xi +1,y,xi+1) for Qai(y).

Conversely, consider a bounded language L which is defined by the formula φ in FO[+].
The idea is to transform every word wr1

1 · · ·wrm
m into a|w1|r1

1 · · ·a|wm|rm
m and to show that the

subset L′ of a∗1 · · ·a∗m thus obtained is definable in FO[+]. Without loss of generality, here
we consider the case r1, . . . ,rm > 0:

∃x1 · · ·∃xm+1

(
(1 = x1 < · · ·< xm+1 = last) ∧∀y(x1 ≤ y≤ x2⇒ Qa1(y))∧(∧

1<i≤m

∀y(xi < y≤ xi+1⇒ Qai(y))
)
∧φ
′
)
,

10 Christian Choffrut et al.

where the formula φ ′ is obtained from the formula φ by substituting every occurrence of
Qσ (y) by the following predicate. Let I ⊆ {1, . . . ,m} be such that i ∈ I implies that wi
contains the symbol σ , and let |wi|= ki. Then:

ψσ (y)≡
∨
i∈I

∨
wi, j=σ

∃z(y = xi +1+ j + kiz).

By Theorem 3, the subset L′ is semilinear, therefore so is the subset L as can be readily
verified. This completes the proof. ut

4 Closure Properties

In this section, we investigate the closure properties of the classes L (FO[+1]), L (FO[<]),
L (FO[+]) and L (FOC[+]) under various operations. The results of the previous section
help us to show some negative closure results. On the other hand, also some positive closure
results are obtained. The complete picture is displayed in Figure 1 of the Introduction.

The following notation will be used in this section: Let φ(x1, . . . ,xr) be a formula with
x1, . . . ,xr free variables. We write (w,a1, . . . ,ar) |= φ whenever w |= φ(a1, . . . ,ar).

4.1 Morphisms

We need a more precise classification of the morphisms. We recall that a morphism h : Σ ∗→
∆ ∗ of a free monoid into another is entirely defined by the image of each letter of Σ . It is
an elementary result that h can be expressed as a composition of morphisms g of one of the
following types:

– g defines a permutation on the symbols of Σ and is called permutation morphism.
– g identifies two letters and leaves all other letters invariant, i.e., there exist a,b ∈ Σ such

that g(a) = g(b) = a and g(c) = c for all c 6= a,b. Call this morphism identifying.
– g deletes some letter and leaves all other letters unchanged, i.e, there exists a ∈ Σ such

that g(a) = ε and g(b) = b for all b 6= a. This morphism is called erasing.
– there exists a letter a ∈ Σ such that g(a) = ac and g(b) = b for all b 6= a. Let us call the

morphism growing.

Consistently with the definition given at the beginning of Section 3.2, we say that a
morphism h : Σ ∗ → ∆ ∗ is length-preserving whenever |h(w)| = |w|, for every w ∈ Σ ∗. We
start by showing that none of the classes considered are closed under length-preserving
homomorphisms.

Proposition 2 The classes L (FO[+1]), L (FO[<]), L (FO[+]) and L (FOC[+]) are not
closed under length-preserving homomorphism.

Proof Consider Σ = {a,b} and the language L = (ab)+. Notice that (ab)+ = aΣ ∗ ∩Σ ∗b \
Σ ∗{a2,b2}Σ ∗ holds, which implies L is a local set and belongs to L (FO[+1]) and thus
to L (FO[<]). Now, consider the length-preserving homomorphism h : {a,b}+ → {a}+
defined as h(a) = h(b) = a. We obtain h(L) = (a2)+, which does not belong to L (FO[<]).

Concerning L (FO[+]), we start by showing that the language

L = {abab2ab3a · · ·abia · · ·abka | k ∈ N\{0}}

First-order logics: some characterizations and closure properties 11

belongs to L (FO[+]) but h(L) does not belong to L (FOC[+]), where h is the length-
preserving homomorphism above defined. Observe that w ∈ {a,b}∗ belongs to L if and only
if both the following conditions hold true:

– w = aba or w ∈ abaΣ ∗a,
– if w 6= aba and w = uabiav, with u,v ∈ {a,b}∗ and i > 0, then there exists a suffix v′ of

v such that v = bi+1av′.

These two conditions can be expressed by the following FO[+] formula

Qa(1)∧Qb(2)∧Qa(3)∧Qa(last)∧
∀x [(∃y∃z Qa(x)∧Qa(x+ y)∧Qa(x+ y+ z))⇒ (∃y φ(x,y))],

with
φ(x,y)≡ Qa(x)∧Qa(x+ y+1)∧Qa(x+2y+3)∧

∀z(x < z < x+ y+1⇒ Qb(z))∧
∀z(x+ y+1 < z < x+2y+3⇒ Qb(z)).

Now, we have

h(L) = {a
(p+1)(p+2)

2 | p ∈ N\{0}}.

By Theorem 2, h(L) /∈L (FO[+]). Moreover, we know from [17] that FO[+] and FOC[+]
have the same expressive power when used for unary languages. This implies that h(L) /∈
L (FOC[+]) as well. ut

The situation is slightly different concerning the inverse morphisms.

Proposition 3 The class L (FO[<]) is closed under inverse homomorphism, but the classes
L (FO[+1]) and L (FO[+]) are not. All three classes are closed under inverse length-
preserving homomorphism.

Proof The assertion for L (FO[<]) follows from the fact that it is a pseudovariety of lan-
guages [18]. Concerning the nonclosure of L (FO[+1]) and L (FO[+]), we observe that
X = {ab} ∈ L (FO[+1]) and Y = {(a2)∗} ∈ L (FO[+]) \L (FO[<]). Consider the mor-
phisms h : {a,b,c}∗→{a,b}∗ and g : {a,b}∗→{a}∗ defined by h(a) = a, h(b) = b, h(c) = ε

and g(a) = a, g(b) = ε . Then, h−1(X) = c∗ac∗bc∗ 6∈ L (FO[+1]) and, by [2, Cor. 4.2]
which is the Crane-Beach conjecture for FO[+], g−1(Y) = {w ∈ {a,b}+ | |w|a mod 2 = 0}
6∈L (FO[+]).

The last statement holds in all generality. Indeed, a length-preserving homomorphism h
is a composition of permutation morphisms and identifying morphisms. We thus only con-
sider the latter case. Let a,b∈ Σ , h(a) = h(b) = a and h(c) = c whenever c 6= a,b. If X = Lφ

then h−1(X) = Lφ ′ where φ ′ is obtained from φ by substituting Qa(x)∨Qb(x) for each oc-
currence of Qa(x). ut

The class FOC[+] behaves very differently since it is closed under all inverse homo-
morphisms. We need a preliminary general result showing that under general conditions and
provided the language allows counting quantifiers, it is possible to simulate a structure into
another. This idea is similar to the notion of FO-reduction as exposed, e.g., in [6]. We prove
that in this embedding, sums and counting quantifications in the first structure are express-
ible in the other. Given a total ordering, we call rank of an element x the number ρ(x) of
elements less than or equal to x, i.e., ρ(x) = |{y | y≤ x}|.

12 Christian Choffrut et al.

Proposition 4 Let U(x,y) ∈ FOC[+] be a predicate, let (x1,y1)≤ (x2,y2) be a predicate in
FOC[+] which defines a total ordering on {(x,y) | U(x,y)} and let ρ(x,y) be the rank of
(x,y) in this ordering. Let k be an integer such that (a,b) |= U(x,y) implies a≤ k. Then:

(i) There exists a formula θ(x1,y1,x2,y2,x3,y3) in FOC[+] which holds true if and only if
for (x1,y1),(x2,y2),(x3,y3) |= U(x,y) the following property holds:

ρ(x1,y1)+ρ(x2,y2) = ρ(x3,y3). (1)

(ii) Let φ((x1,y1), . . . ,(xp,yp)) be an FOC[+] formula holding true only when (xi,yi) |=
U(x,y) for i = 1, . . . , p. Then, there exists an FOC[+] formula

ψ((x,y),(x2,y2), . . . ,(xp,yp))

which holds true for all assignments (a2,b2), . . . ,(ap,bp) of (x2,y2), . . . ,(xp,yp) exactly
for the value (a,b) of (x,y), if it exists, for which

ρ(a,b) = |{(a1,b1) | φ((a1,b1), · · · ,(ap,bp))}| (2)

holds true.

Proof We may not directly define values which exceed last. So we will first explain how
to manage values exceeding last, by representing ranks and differences of ranks less than
or equal to last.

We explain intuitively how we proceed. Equality (1) is equivalent to

ρ(x2,y2) = ρ(x3,y3)−ρ(x1,y1). (3)

In order to express it, we consider the graph of the total ordering enriched with a dummy
element of rank 0. The value ρ(x3,y3)− ρ(x1,y1) is less than k · last, which means that
there exists a path of length less than or equal to k, starting from (x1,y1) and ending in
(x3,y3) such that the difference of the ranks of two successive elements is less than or equal
to last. Equality (3) can thus be expressed by stating that there exists a path of the same
length starting with the element of rank 0, ending in (x2,y2) with the same sequence of
differences of ranks between corresponding elements. We do not need this dummy element
of rank 0 since the first difference is actually a rank. It thus suffices to show that we can
express the predicate

D((u,v),(z, t)) = d (4)

meaning that the difference of the ranks of (u,v) and (z, t) is equal to d ≤ last and the
predicate

R(u,v) = ρ (5)

meaning that the rank of (u,v) is equal to ρ ≤ last. Since the first component of each
element has value bounded by k, the set {(x,y) | (u,v) < (x,y) ≤ (z, t)} is the union, for
1≤ i≤ k, of

Xi = {(i,y) | (u,v) < (i,y)≤ (z, t)}.

As the definition of counting quantifier requires a nonzero value, we must select among
the Xi’s those which are nonempty. In order to express (4) we are thus led to consider the

First-order logics: some characterizations and closure properties 13

disjunction over all possible sequences 1≤ i1 < · · ·< ir ≤ k of the following predicates (but
at most one sequence is satisfied):

∃d1 · · ·∃dr

(
(d = ∑

1≤s≤r
ds)∧

r∧
s=1

∃ds
y ((u,v) < (is,y)≤ (z, t))

)
∧∧

i6=i1,...,ir

¬∃y((u,v) < (i,y)≤ (z, t)).

The predicate (5) can be dealt with similarly:

∃ρ1 · · ·∃ρr

(
(ρ = ∑

1≤s≤r
ρs)∧

r∧
s=1

∃ρs
y ((is,y)≤ (u,v))

)
∧∧

i6=i1,...,ir

¬∃y((i,y)≤ (u,v)).

Concerning the property (2), we proceed in the same manner by decomposing all pairs of
elements according to the value of their first component, since this value is bounded by k.
We use a formula in FOC[+] which has 2p variables, namely x2,y2, . . . ,xp,yp,x,y and which
is again a disjunction over all possible sequences 1 ≤ i1 < · · · < ir ≤ k of the following
formulas:

∃d1 · · ·∃dr ∃(u1,v1) · · ·∃(ur,vr)
[
(ur,vr) = (x,y)∧ (R(u1,v1) = d1)∧(r−1∧

s=1

D((us,vs),(us+1,vs+1)) = ds+1
)
∧

r∧
s=1

∃ds
y φ((is,y),(x2,y2), . . . ,(xp,yp))

]
∧∧

i6=i1,...,ir

¬∃yφ((i,y),(x2,y2), . . . ,(xp,yp)).

ut

We apply this result to the following property of L (FOC[+]):

Proposition 5 The class L (FOC[+]) is closed under all inverse homomorphisms.

Proof We use the preliminary observation of this subsection concerning the classification
of morphisms. The first two cases can be treated as in Proposition 3 (counting quantifiers
are straightforwardly managed). The erasing morphisms are actually considered in Proposi-
tion 8, since they can be regarded as a particular disjoint shuffle. Therefore it is enough to
prove the result for growing homomorphisms. More precisely, we prove that if a language L
is expressible in FOC[+] then g−1(L) is also expressible in FOC[+], where g is a growing
morphism defined as g(a) = ac and g(b) = b, for every b 6= a.

The universe of the structure h(w) can be encoded into the universe {1, . . . , |w|} of w
via the FOC[+] predicate:

U(x,y)≡ (y = 1∨ (Qa(x)∧ y = 2)).

The rank ρ(i, j) of a pair (i, j) is defined according to the alphabetic ordering and satisfies
the condition

ρ(i, j) = i+ |{x | Qa(x)∧ x < i}|+ j−1. (6)

14 Christian Choffrut et al.

Given a formula φ(x1, . . . ,xn) in FOC[+] and a word h(w), we show how to associate a
formula φ ′((x1,y1), . . . ,(xn,yn)) in FOC[+] such that the following holds:

(w,ρ−1(i1), . . . ,ρ−1(in)) |= φ ′((x1,y1), . . . ,(xn,yn))
⇔

(h(w), i1, . . . , in) |= φ(x1, . . . ,xn).

We proceed by structural induction starting with the basic predicates.
If φ(x)≡ Qb(x) then

φ
′(x,y)≡


Qa(x)∧ y = 1 if b = a
Qa(x)∧ y = 2 if b = c
Qb(x)∧ y = 1 otherwise,

and the predicate x = y+ z is replaced by the predicate of Proposition 4(i).
With the formula ¬φ(x1, . . . ,xn), we associate the formula

¬φ
′((x1,y1), . . . ,(xn,yn))∧

∧
1≤i≤n

U(xi,yi).

Concerning the conjunction, assume without loss of generality that the two formulas are
φ1(x1, . . . ,xn, . . . ,xn+m) and φ2(xn+1, . . . ,xn+m, . . .xn+m+p), i.e., that the common variables
occur among the last and first ones in the formulas, respectively. Then, with the formula

φ1(x1, . . . ,xn+m)∧φ2(xn+1, . . . ,xn+m+p)

we associate the formula

φ
′
1((x1,y1), . . . ,(xn+m,yn+m))∧φ

′
2((xn+1,yn+1), . . . ,(xn+m+p,yn+m+p)).

Finally, the rule for the counting quantifiers is given in Proposition 4(ii). ut

4.2 Concatenation, Shuffle and Kleene Star

Let us start by considering the closure under concatenation:

Proposition 6 The classes L (FO[<]), L (FO[+]) and L (FOC[+]) are closed under con-
catenation, while the class L (FO[+1]) is not.

Proof As a preliminary observation, we assume that in the formulas φ1 and φ2 defining
two languages L1 and L2, respectively, all quantified variables are expressed in the form
∃x ≤ last and ∀x ≤ last and that no variable, whether free or bound, is shared by both
formulas. We apply the method of relativization: if u ∈ L1 and v ∈ L2 then uv is defined by
saying that u satisfies φ1, and that the “translate” of the factor v obtained by shifting it |u|
positions to the left satisfies φ2. The new formula is therefore of the form

ψ = ∃` (φ ′1∧φ
′
2).

The case L (FO[<]) can be treated directly, but the result is a simple consequence of the
fact that it is a pseudovariety of languages.

Concerning L (FO[+]), we apply two different sets of transformations on the formulas
with arbitrary free variables according to whether we define the prefix or the suffix of the
word w = uv:

First-order logics: some characterizations and closure properties 15

– φ ′1 is obtained from φ1 by replacing last by `, every occurrence of Qa(x) by Qa(x)∧x≤
`, every occurrence of z = x+y by z = x+y∧(x≤ `)∧(y≤ `)∧(z≤ `). Straightforward
substitutions can manage the inductive construction of formulas.

– φ ′2 is obtained from φ2 by replacing every occurrence of Qa(x) by Qa(x)∧ x > `, every
occurrence of z = x + y by z = x + y− `∧ (x > `)∧ (y > `)∧ (z > `). Straightforward
substitutions can manage the inductive construction of formulas.

It suffices to check by structural induction that the following holds

(u, i1, . . . , ir) |= φ1 and (v, j1, . . . , js) |= φ2
⇔

(uv, i1, . . . , ir, j1 + |u|, . . . , js + |u|) |= φ ′1∧φ ′2.
(7)

We now deal with the third language class, and assume φ1 and φ2 are FOC[+] formulas:

– φ ′1 is obtained from φ1 as above with the additional rule
– ∃y

x1 θ(x1, . . . ,xn) replaced by ∃y
x1 (θ(x1, . . . ,xn)∧ (x1 ≤ `)).

– φ ′2 is obtained from φ2 as above with the additional rule
– ∃y

x1 θ(x1, . . . ,xn) replaced by ∃t (∃t
x1

θ(x1, . . . ,xn)∧ (x1 > `))∧ (y = t + `)).
where t is a new variable. With these two modifications, it suffices to verify a formula
as (7).

For the last statement, it suffices to observe that the languages c∗ac∗ and c∗bc∗ are in
L (FOC[+1]) but not their concatenation (see, e.g., [18, Cor. IV.3.4]). ut

We now turn to the shuffle operation which assigns a finite subset of words to a pair of
words by the following recursive definition:

wX ε = ε Xw = w,
auXbv = b(auX v)∪a(uXbv),with a,b ∈ Σ and u,v ∈ Σ ∗.

E.g., if u = aba and v = aa then u X v = {a3ba,a2ba2,aba3}. This notation extends to
languages A,B ⊆ Σ ∗ by defining A X B =

⋃
x∈A,y∈B x X y. A disjoint shuffle is a shuffle

performed between two languages defined over disjoint alphabets.

Proposition 7 The classes L (FO[+1]), L (FO[<]) and L (FO[+]) are not closed under
shuffle.

Proof This assertion is proved via counterexamples. The languages X = c∗ and Y = {ab}
are in L (FO[+1]) but X XY is not. The languages X = b∗, Y = (a2b)∗ and Z = (ab)∗ are in
L (FO[<]) but (X XY)∩Z = ((ab)2)∗ is not. Finally, the languages X = (a2)∗ and Y = b∗

belong to L (FO[+]) but X XY does not by [2, Cor. 4.2]. ut

The situation changes for disjoint shuffles:

Proposition 8 The classes L (FO[<]) and L (FOC[+]) are closed under disjoint shuffle,
while the classes L (FO[+1]) and L (FO[+]) are not.

16 Christian Choffrut et al.

Proof Let the formulas φ1 and φ2 define the languages L1 ⊆ Σ ∗1 and L2 ⊆ Σ ∗2 , respectively,
with Σ1 ∩Σ2 = /0. Given u ∈ Σ ∗1 and v ∈ Σ ∗2 , let w = w1 · · ·wr+s ∈ u X v with |u| = r and
|v|= s. For i = 1, . . .r, let f (i) be the position in w of the ith letter of u, and similarly let g(j)
be the position in w of the jth letter of v. Example: with u = aba, v = ddcd and w = ddabcda
we have f (1) = 3, f (2) = 4, f (3) = 7 and g(1) = 1, g(2) = 2, g(3) = 5, g(4) = 6.

The statement for FO[<] comes straightforwardly since the syntactic monoid of L1 XL2
is the direct product of the syntactic monoids of L1 and L2. Since each of these two syntactic
monoids has trivial groups only, so does the direct product.

Concerning FOC[+], we assume without loss of generality that the formulas φ1 and φ2
do not contain standard existential quantifiers since they can be simulated by counting
quantifiers, that the symbol last does not occur and that the two sets of their variables,
whether free or bound, are disjoint. In order to simplify the notations, we let QΣi(x) stand
for
∨

a∈Σi
Qa(x). We denote by φ ′ the formula resulting from φ and we drop the index since

for obvious reasons of symmetry, the two formulas are modified according to the same rules.
We proceed according to the usual structural induction, by applying the following rules:

– If φ(x)≡ Qa(x) then φ ′(x)≡ Qa(x).
– If φ(x,y,z)≡ x = y+ z then

φ ′(x,y,z)≡ ∃x′∃y′∃z′
(
(x′ = y′+ z′)∧∃y′

u (QΣ (u)∧u≤ y) ∧

∃z′
u (QΣ (u)∧u≤ z)∧∃x′

u (QΣ (u)∧u≤ x)
)
.

– If φ ≡ ¬ψ(x1, . . . ,xn) then

φ
′ ≡ ¬ψ

′(x1, . . . ,xn)∧
n∧

i=1

QΣ (xi).

– If φ ≡ ψ ∧θ then φ ′ ≡ ψ ′∧θ ′.
– If φ(x)≡ ∃x

uψ(u) then φ ′(x)≡ ∃x
u (ψ ′(u)∧QΣ (u)).

It suffices to verify by structural induction that if φ ′1 and φ ′2 are the formulas obtained from
φ1 and φ2 by applying the above rules, then we have

(u, i1, . . . , ir) |= φ1(x1, . . . ,xr) and (v, j1, . . . , js) |= φ2(y1, . . . ,ys)
⇔

(w, f (i1), . . . , f (ir),g(j1), . . . ,g(js)) |= φ ′1(x1, . . . ,xr)∧φ ′2(y1, . . . ,ys).

To see that L (FO[+1]) and L (FO[+]) are not closed under disjoint shuffle, it is enough
to check counterexamples provided in Proposition 7 for general shuffle. ut

Finally, let us consider the closure under Kleene star:

Proposition 9 The classes L (FO[+1]), L (FO[<]) and L (FO[+]) are not closed under
Kleene star.

Proof The counterexample for L (FO[+1]) and L (FO[<]) is the subset (a2)∗. Now, if
L (FO[+]) were closed under Kleene star, by Proposition 6 the whole class of regular lan-
guages would be contained in L (FO[+]) due to Kleene’s Theorem. However, the regular
language {w ∈ {a,b}+ | |w|a mod 2 = 0} does not belong to L (FO[+]) by [2, Cor. 4.2], a
contradiction. ut

First-order logics: some characterizations and closure properties 17

To the best of our knowledge, the status of L (FOC[+]) relative to the Kleene star is
still open. All we can say is that:

If L (FOC[+]) were closed under Kleene star, then TC0 = NC1.

Indeed, in that case L (FOC[+]) ⊂ TC0 would be closed under the regular operations and
thus it would contain all regular languages. However, as proved in [3], there exists a regular
language which is complete for NC1.

4.3 Quotient

The left quotient of a language L by a letter a, denoted a−1L, is the set of words u such that
au ∈ L. In this subsection, “quotient” means left quotient. For obvious reasons of symmetry,
the same result holds for right quotients.

Proposition 10 The classes L (FO[+1]), L (FO[<]), L (FO[+]), L (FOC[+]) are closed
under quotient.

Proof We encode the universe of aw into the universe of w as the set of pairs (x,y) which
satisfy the predicate

U(x,y)≡ ((x = 1∧ y = 1)∨ x = 2).

The rank of an element (i, j) of this set relative to the alphabetic ordering is ρ(i, j)=i+ j−1,
and can be defined in the logics FO[+] and FOC[+]. We encode the predicates Qb and +1,
of the universe of aw into the universe of w as follows, respectively:

Pb(x,y)≡
{

(x = 1∧ y = 1)∨ (x = 2∧Qa(y)) if b = a
x = 2∧Qb(y) otherwise.

Succ((x1,y1),(x2,y2)) ≡ (x1 = y1 = y2 = 1∧ x2 = 2)∨
((x1 = x2 = 2)∧ (y2 = y1 +1)).

If φ ∈ FO[+1] defines the language L then the language a−1L is defined by the for-
mula φ ′ which is obtained by recursively applying the following rules:

– If φ(x)≡ Qb(x) then φ ′(x,y)≡ Pb(x,y).
– If φ(x1,x2)≡ x2 = x1 +1 then φ ′((x1,y1),(x2,y2))≡ Succ((x1,y1),(x2,y2)).
– If ψ(x1, . . . ,xn)≡ ¬φ(x1, . . . ,xn) then

ψ
′((x1,y1), . . . ,(xn,yn))≡ ¬φ

′((x1,y1), . . . ,(xn,yn))∧
n∧

i=1

U(xi,yi).

– If ψ ≡ φ1∧φ2 then ψ ′ ≡ φ ′1∧φ ′2.
– If ψ(x1,x2, . . . ,xn)≡ ∃x1 φ(x1,x2, . . . ,xn) then

ψ
′((x1,y1),(x2,y2), . . . ,(xn,yn))≡ ∃x1∃y1 φ

′((x1,y1),(x2,y2), . . . ,(xn,yn))∧U(x1,y1).

18 Christian Choffrut et al.

The assertion concerning FO[<] follows from the fact that L (FO[<]) is a pseudovariety.
In order to treat the case FO[+], we encode the predicate x + y = z by the predicate which
asserts that the rank of (z1,z2) in the alphabetic ordering is the sum of the ranks of (x1,x2)
and (y1,y2), i.e., ρ(x1,y1) + ρ(x2,y2) = ρ(x3,y3), which is clearly expressible in FO[+].
Then, we have

(w,(i1, j1), . . . ,(in, jn)) |= φ ′((x1,y1), . . . ,(xn,yn))
⇔

(aw,ρ(i1, j1), . . . ,ρ(in, jn)) |= φ(x1, . . . ,xn).

For FOC[+], the only new transformation rule is the one involving ∃y
x1 φ(x1, . . . ,xn). By

induction, with the formula φ for L the formula φ ′((x1,y1), . . . ,(xn,yn)) for a−1L is assigned.
Indeed, we replace the formula ∃y

x1 φ(x1, . . . ,xn) with the formula

ψ((z1, t1),(x2,y2), . . . ,(xn,yn))

whose truth value for a fixed assignment (a2,b2), . . . ,(an,bn) can be described as follows:
Let r be the number of values (a1,b1) such that φ ′((a1,b1),(a2,b2), . . . ,(an,bn)) holds true.
If r = 0, ψ((z1, t1),(a2,b2), . . . ,(an,bn)) is a contradiction, otherwise it assumes the value
true for the unique pair (a1,b1) such that ρ(a1,b1) = r. The implementation of ψ is given
in Proposition 4(ii). ut

4.4 Conjugacy

We recall that two words x and y are conjugate if there exist u and v such that x = uv and
y = vu. More generally, the conjugate of a language L is the set of all conjugates of the words
it contains, i.e., it is the set CONJ(L) = {vu ∈ Σ ∗ | uv ∈ L}.

Proposition 11 The classes L (FO[+1]), L (FO[<]), L (FO[+]), L (FOC[+]) are closed
under conjugacy.

Proof A language is expressible in FO[+1] if and only if it is locally threshold testable [18],
i.e., for some integers k and T it is a union of classes of an equivalence relation u∼ v defined
by the following conditions:

– u and v have the same prefix and the same suffix of length k−1,
– for all w of length k, either |u|w = |v|w < T or |u|w, |v|w ≥ T holds.

It thus suffices to consider a single equivalence class consisting of words of length greater
than k, i.e. to fix k,T ∈ N and p,s ∈ Σ k−1, a mapping f : Σ k → {0, . . . ,T}, and to consider
the language of the words u satisfying

u ∈ pΣ
∗∩Σ

∗s and, for all w ∈ Σ
k, |u|w = f (w) if f (w) < T or else |u|w ≥ T.

Let us introduce the following definition. A word w is a cyclic occurrence of u if u = xwy
holds or if there exists a factorization w = w1w2, with w1,w2 6= ε , and a word x such that
u = w2xw1 holds. The cyclic occurrence starts (resp., ends) at position k if |x|= k in the first
case and if |w2x| = k in the second case (resp., if |xw| = k in the first case and if |w2| = k
in the second case). Moreover, it avoids position ` if it does not contain the `th letter of u.
Then, the set of conjugates of this equivalence class is defined by a formula which says
that for some integer `, the word has a cyclic occurrence of p starting at position `, a cyclic
occurrence of s ending at position ` and such that for all words w of length k, it has exactly

First-order logics: some characterizations and closure properties 19

f (w) cyclic occurrences w avoiding ` if f (w) < T or at least T cyclic occurrences avoiding `
otherwise.

The result concerning FO[<] is well-known. We briefly recall it for the sake of self
containment. Consider a deterministic aperiodic automaton1 recognizing the language L,
with q0 as initial state and F as set of final states. Then the set of conjugates of L is the
union of the languages YqZq, where Yq is the set of words recognized by the automaton
with q as initial state and F as set of final state and Zq is the set of words recognized by
the automaton with q0 as initial state and where the set of final states reduces to q. These
automata are aperiodic, thus they recognize star-free languages. We conclude by recalling
that, by definition, star-free languages are closed under union and concatenation.

For the logic FO[+], we proceed as follows. Given a formula φ defining a language L, we
construct a formula ∃t φ ′(t) defining the conjugate of L. The variable t under the existential
quantifier must be interpreted as the shift of a word in L. Indeed, consider the following
function describing, for all fixed values of the variable t, a bijection of {1, . . . ,last} into
itself which defines where the position of a letter in uv maps in vu:

f (x, t) =
{

x+last− t if x≤ t
x− t otherwise. (8)

Observe that this correspondence is definable in FO[+].
From a formula φ(x1, . . . ,xn) in FO[+], we define a formula φ ′(x1, . . . ,xn, t) with the

property

(uv, i1, . . . , in) |= φ(x1, . . . ,xn)
⇔

(vu, f (i1, |u|), . . . , f (in, |u|), |u|) |= φ ′(x1, . . . ,xn, t)
(9)

by applying the usual structural induction (we assume the variable t does not occur in the
formula φ):

– If φ(x)≡ Qa(x) then φ ′(x, t)≡ Qa(f (x, t)).
– If φ(x,y,z)≡ z = x+ y then φ ′(x,y,z, t)≡ f (z, t) = f (x, t)+ f (y, t).
– If φ(x1, . . . ,xn)≡ φ1(y1, . . . ,yp)∧φ2(z1, . . . ,zm), where x1, . . . ,xn is the set consisting of

the variables of φ1 and of φ2, then φ ′(x1, . . . ,xn, t)≡ φ ′1(y1, . . . ,yp, t)∧φ ′2(z1, . . . ,zm, t).
– If φ ≡ ¬ψ then φ ′ ≡ ¬ψ ′.
– If φ ≡ ∃x1 ψ(x1,x2, . . . ,xn) then φ ′ ≡ ∃x1 ψ ′(x1,x2, . . . ,xn).

So, if L is defined by the closed formula φ then its conjugate is defined by the formula ∃t φ ′(t).
We now turn to the logic FOC[+]. It suffices to show how to deal with the counting

quantifier ∃y
x1 φ(x1, . . . ,xn). This expression is recursively transformed into

∃y1∃y2
(

f (y, t) = f (y1, t)+ f (y2, t)
)
∧

∃y1
x1 (φ ′(x1, . . . ,xn, t)∧ (x1 ≤ last− t))∧
∃y2

x1 (φ ′(x1, . . . ,xn, t)∧ (x1 > last− t)).

Similarly to FO[+], if a language L is defined by a closed formula φ then its conjugate is
defined by the formula ∃t φ ′(t). ut

1 A deterministic automaton is aperiodic if and only if there exists n > 0 such that q ·wn = q ·wn+1, for
any state q and any word w.

20 Christian Choffrut et al.

4.5 Commutative Image

The commutative image of a language L is the language

COMM(L)={x1 · · ·xn ∈ Σ
∗ | xi1 · · ·xin ∈ L and {i1, . . . , in}= {1, . . . ,n}}.

Proposition 12 The classes L (FO[+1]), L (FO[<]) and L (FO[+]) are not closed under
commutative image.

Proof For L (FO[+1]) and L (FO[<]), it suffices to see that COMM((ab)∗) is not a regular
language. Now, let L = {abab2ab3a · · ·abia · · ·abka | k > 0}. By the proof of Proposition 2,

we have that L∈ FO[+]. Consider the language L′= COMM(L)∩a∗b∗= {anb
(n−1)n

2 | n>1}.
If L (FO[+]) were closed under commutative image, then L′ should be semilinear by The-
orem 2, a contradiction. ut

4.6 Reversal

Given a word x = x1 · · ·xn, with xi ∈ Σ , its reversal is the word xR = xn · · ·x1 (with εR = ε).
The reversal of a language L is the language LR = {xR | x ∈ L}.

Proposition 13 The classes L (FO[+1]), L (FO[<]), L (FO[+]), L (FOC[+]) are closed
under reversal.

Proof Let φ be a formula defining a language in L (FO[+1]), L (FO[<]), L (FO[+]) and
L (FOC[+]), respectively. An FO[+1] formula for LR is obtained from φ by replacing each
occurrence of x = y + 1 by y = x + 1. Concerning L (FO[<]), it suffices to replace x < y
by y < x. Concerning L (FO[+]), we substitute x+y−last−1 = z for each occurrence of
x + y = z and, in addition for FOC[+], we substitute ∃z

x1
φ(x1, . . . ,xp)∧ (z + y = last+ 1)

for ∃y
x1 φ(x1, . . . ,xp). ut

5 An Application: Dyck Languages

From [1], we know that the Dyck languages are in L (FOC[+]), while from [14] we get that
they do not belong to L (FO[+]). As an application of closure properties in the previous
section, we are now going to provide an alternative proof of this latter fact.

The following preliminary notions are useful. Let A be a finite set of opening parentheses
and let A be the set of (one-to-one) corresponding closing parentheses. Set T = A∪A; a word
in T ∗ is correctly (or well) parenthesized if: (i) any opening parenthesis a is followed by a
corresponding closing parenthesis a, and (ii) if parenthesis a′ follows a, then a′ is closed
before a. The Dyck language DT is the set of correctly parenthesized words in T ∗.

The majority function Mσ ,σ :{σ ,σ}∗→{0,1} and the equality function Eσ ,σ :{σ ,σ}∗→
{0,1} are defined, respectively, as:

Mσ ,σ (x) =
{

1 if |x|σ > |x|σ
0 otherwise, Eσ ,σ (x) =

{
1 if |x|σ = |x|σ
0 otherwise.

We also need the notion of AC0-reduction between problems [18,19]. Informally, a prob-
lem P is AC0-reducible to a problem P′ whenever P can be solved by a family of polynomial
size, constant depth, unbounded fan-in AND/OR/NOT-circuits with oracle gates for P′. In this
case, it is easy to see that P′ ∈ AC0 implies P ∈ AC0 as well.

First-order logics: some characterizations and closure properties 21

Theorem 5 The Dyck language D{a,a} does not belong to L (FO[+]).

Proof We first prove that Ea,a is not in AC0. Indeed, since Ma,a is not in AC0 (see, e.g.,
[7]), it suffices to show that Ma,a is AC0-reducible to Ea,a. Consider x = x1 · · ·xn ∈ {a,a}n.
To compute Ma,a(x), we build an AC0-circuit Cn containing a first layer of oracle gates
O0, . . . ,Ob n

2c for Ea,a. As input to Oi, we give the word w(i) = ai+(n mod 2)xi+1 · · ·xn. If there
is an oracle Oi yielding 1, we have that |x|a ≤ |w(i)|a = |w(i)|a ≤ |x|a. On the contrary, if
all Oi’s yield 0, we get that |x|a > |x|a. Thus, we can complete Cn by plugging all the outputs
of Oi’s into an OR gate whose output, in turn, is sent to a final NOT gate.

Let us now turn to the Dyck language. First of all, it is not difficult to verify that

CONJ(D{a,a}) = {w ∈ {a,a}∗ | |w|a = |w|a}.

Now, assume by contradiction that D{a,a} ∈L (FO[+]). Proposition 11 says that L (FO[+])
is closed under conjugation, thus implying that CONJ(D{a,a}) ∈L (FO[+]) as well. How-
ever, we have w ∈ CONJ(D{a,a}) if and only if Ea,a(w) = 1. Since Ea,a is not in AC0 and
since L (FO[+])⊂ AC0, we get the result. ut

Theorem 6 The Dyck language DT does not belong to L (FO[+]).

Proof Let T = A∪A and a∈ A a type of parentheses of DT . By contradiction, suppose there
exists an FO[+] formula φ for DT , and construct the formula φ ′ = φ ∧∀x(Qa(x)∨Qa(x)).
Clearly, φ ′ is an FO[+] formula for the subset of DT consisting of the well parenthesized
words over the alphabet {a,a}, namely D{a,a}. This contradicts Theorem 5. ut

References

1. D.A. Mix Barrington and J. Corbett. On the relative complexity of some languages in NC. Information
Processing Letters, 32:251–256, 1989.

2. D.A. Mix Barrington, N. Immerman, C. Lautemann, N. Schweikardt and D. Thérien. First-order ex-
pressibility of languages with neutral letters or: The Crane Beach conjecture. J. Comput. Syst. Sci.,
70:101–127, 2005.

3. D.A. Mix Barrington, K.J. Compton, H. Straubing and D Thérien. Regular languages in NC1. J. Comput.
Syst. Sci., 44(3):478–499, 1992.

4. J.R. Büchi. Weak second order arithmetic and finite automata. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 6:66–92, 1960.

5. N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free languages. In P. Braffort and
D. Hirschberg, Eds., Computer Programming and Formal Systems, pp. 118–161. North Holland, 1963.

6. K. Etessami. Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst. Sci.,
54(3):400–411, 1997.

7. M. Furst, J.B. Saxe and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical
Systems Theory, 17:13–27, 1984.

8. S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.
9. S. Ginsburg and E.H. Spanier. Bounded ALGOL-like languages. Trans. Amer. Math. Soc., 113:333–368,

1964.
10. M.A. Harrison. Introduction to Formal Languages. Addison-Wesley, 1978.
11. O. Ibarra. Simple matrix grammars. Information and Control, 17:359–394, 1970.
12. O. Ibarra. A note on semilinear sets and bounded-reversal multihead pushdown automata. Information

Processing Letters, 3:25–28, 1974.
13. O. Ibarra, T. Jiang and B. Ravikumar. Some subclasses of context-free languages in NC1. Information

Processing Letters, 29:111–117, 1988.
14. D. Robinson. Parallel algorithms for group word problems. Doctoral Dissertation, Mathematics Dept.,

University of California, San Diego, 1993.

22 Christian Choffrut et al.

15. V. Roychowdhury, K.-Y. Siu and A. Orlitsky. Neural models and spectral methods. In: V. Roychowdhury,
K.-Y. Siu, and A. Orlitsky, Eds., Theoretical advances in Neural Computation and Learning, pp. 3–36.
Kluwer Academic, 1994.

16. W.L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22:365–383, 1981.
17. N. Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log.,

6(3):634–671, 2005.
18. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
19. I. Wegener. The Complexity of Boolean Functions. Teubner, 1987.

