
CHAPTER 2

Sturmian Words

2.0. Introdution

Sturmian words are in�nite words over a binary alphabet that have exatly

n + 1 fators of length n for eah n � 0. It appears that these words admit

several equivalent de�nitions, and an even be desribed expliitly in arithmeti

form. This arithmeti desription is a bridge between ombinatoris and number

theory. Moreover, the de�nition by fators makes that Sturmian words de�ne

symboli dynamial systems. The �rst detailed investigations of these words

were done from this point of view. Their numerous properties and equivalent

de�nitions, and also the fat that the Fibonai word is Sturmian, has lead to

a great development, under various terminologies, of the researh.

The aim of this hapter is to present basi properties of Sturmian words and

of their transformation by morphisms. The style of exposition relies basially

on ombinatorial arguments.

The �rst setion is devoted to the proof of the Morse-Hedlund theorem

stating the equivalene of Sturmian words with the set of balaned aperiodi

word and the set of mehanial words of irrational slope. We also mention several

other formulations of mehanial words, suh as rotations and utting sequenes.

We next give properties of the set of fators of one Sturmian word, suh as

losure under reversal, the minimality of the assoiated dynamial system, the

fat that the set depends only on the slope, and we give the desription of speial

words.

In the seond setion, we give a systemati exposition of standard pairs

and standard words. We prove the haraterization by the double palindrome

property, desribe the onnetion with Fine and Wilf's theorem. Then, standard

sequenes are introdued to onnet standard words to harateristi Sturmian

words. The relation to Beatty sequenes is in the exerises. This setion also

ontains the enumeration formula for �nite Sturmian words. It ends with a

short desription of frequenies.

The third setion starts by proving that the monoid of Sturmian morphisms

is generated by three well-known morphisms. Then, standard morphisms are

investigated. A desription of all Sturmian morphisms in terms of standard

morphisms is given next. The setion ends with the haraterization of those

algebrai numbers that yield �xed points by standard morphisms.
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2.1. Equivalent de�nitions 41

Some problems are just exerises, but most ontain additional properties of

Sturmian words, with appropriate referenes. It is diÆult to trae bak many of

the properties of Sturmian words, beause of the sattered origins, terminology

and notation. When we quote a referene in the Notes setion, we are only

relatively ertain that it is the soure of the result.

In this hapter, words will be over a binary alphabet A = f0; 1g.

2.1. Equivalent de�nitions

This setion is devoted to the proof of a theorem (Theorem 2.1.13) stating the

equivalene of three properties, all de�ning what we all Sturmian words. We

start by de�ning Sturmian words to have minimal omplexity among aperiodi

in�nite words. We �rst prove that Sturmian words are exatly the aperiodi

balaned words. We then introdue so alled mehanial words and prove that

these yield another haraterization of Sturmian words. Other formulations of

the mehanial de�nition, by rotation and utting sequenes, are given in the

seond paragraph. The third paragraph ontains several properties onerning

the set of fators of a Sturmian word.

2.1.1. Complexity and balane

The omplexity funtion of an in�nite word x over some alphabet A was de�ned

in Chapter 1. It is the funtion that ounts, for eah integer n � 0, the number

P (x; n) of fators of length n in x:

P (x; n) = Card(F

n

(x)) :

A Sturmian word is an in�nite word s suh that P (s; n) = n+1 for any integer

n � 0. Aording to Theorem 1.3.13, Sturmian words are aperiodi in�nite

words of minimal omplexity. Sine P (s; 1) = 2, any Sturmian word is over two

letters. A right speial fator of a word x is a word u suh that u0 and u1 are

fators of x. Thus, s is a Sturmian word if and only if it has exatly one right

speial fator of eah length.

A suÆx of a Sturmian word is a Sturmian word.

Example 2.1.1. We show that the Fibonai word

f = 0100101001001010010100100101001001 � � �

de�ned in Chapter 1 is Sturmian. It will be onvenient, in this hapter, to start

the numeration of �nite Fibonai words di�erently, and to set f

�1

= 1, f

0

= 0.

Sine f = '(f), it is a produt of words 01 and 0. Thus, the word 11 is not

a fator of f and onsequently P (f; 2) = 3. The word 000 is not a fator of

'(f), sine otherwise it is a pre�x of some '(x) for a fator x of f , and x has

to start with 11.

To show that f is Sturmian, we prove that f has exatly one right speial

fator of eah length.
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We start by showing that, for no word x, both 0x0 and 1x1 are fators of

f . This is lear if x is the empty word and if x is a single letter. Arguing by

indution on the length, assume that 0x0 and 1x1 are in F (f). Then x starts

and ends with 0, and x = 0y0 for some y. Sine 00y00 and 10y01 have to be

fators of '(f), there exists a fator z of f suh that '(z) = 0y. Moreover,

00y0 = '(1z1) and 010y01 = '(0z0), showing that 1z1 and 0z0 are fators of

f . This is a ontradition beause jzj � j'(z)j < jxj.

We show now that f has at most one right speial fator of eah length.

Assume indeed that u and v are right speial fators of the same length, and

let x be the longest ommon suÆx of u and v. Then the four words 0x0, 0x1,

1x0, 1x1 are fators of f , whih ontradits our previous observation.

To show that f has at least one right speial fator of eah length, we use

the relation

f

n+2

= g

n

~

f

n

~

f

n

t

n

(n � 2) (2.1.1)

where g

2

= " and for n � 3

g

n

= f

n�3

� � � f

1

f

0

; t

n

=

�

01 if n is odd,

10 otherwise.

Observe that the �rst letter of

~

f

n

is the opposite of the �rst letter of t

n

. This

proves that

~

f

n

is a right speial fator for eah n � 2. Sine a suÆx of a right

speial fator is itself a right speial fator, this proves that right speial fators

of any length exist.

Equation (2.1.1) is proved by indution. Indeed, f

4

= "(010)(010)10 and

f

5

= 0(10010)(10010)01. Next, is it easily heked by indution that

'(~u)0 = 0('(u))

�

(2.1.2)

for any word u. It follows that '(

~

f

n

t

n

) = 0

~

f

n+1

t

n+1

and sine '(g

n

)0 = g

n+1

,

one gets (2.1.1).

We now start to give another desription of Sturmian words, namely as

balaned words. The height of a word x is the number h(x) of letters equal to

1 in x. Given two words x and y of the same length, their balane Æ(x; y) is the

number

Æ(x; y) =

�

�

h(x) � h(y)j

A set of words X is balaned if

x; y 2 X; jxj = jyj ) Æ(x; y) � 1

A �nite or in�nite word is itself balaned if the set of its fators is balaned.

Proposition 2.1.2. Let X be a fatorial set of words. If X is balaned, then

for all n � 0,

Card(X \ A

n

) � n+ 1 :



2.1. Equivalent de�nitions 43

Proof. The onlusion is lear for n = 0; 1, and it holds for n = 2 beause

X annot ontain both 00 and 11. Arguing by ontradition, let n � 3 be

the smallest integer for whih the statement is false. Set Y = X \ A

n�1

and

Z = X \ A

n

. Then Card(Y ) � n and Card(Z) � n + 2. For eah z 2 Z,

its suÆx of length n � 1 is in Y . By the pigeon-hole priniple, there exist two

distint words y; y

0

2 Y suh that all four words 0y; 1y; 0y

0

; 1y

0

are in Z. Sine

y 6= y

0

there exists a word x suh that x0 and x1 are pre�xes of y and y

0

. But

then, both 0x0 and 1x1 are words in X , showing that X is unbalaned.

The argument used in the proof an be re�ned as follows.

Proposition 2.1.3. Let X be a fatorial set of words. The set X is unbal-

aned if and only if there exists a palindrome word w suh that 0w0 and 1w1

are in X .

Proof. The ondition is learly suÆient. Conversely, assume that X is unbal-

aned. Consider two words u; v 2 X of the same length n suh that Æ(u; v) � 2,

and take them of minimal length. The �rst letters of u and v are distint, and

so are the last letters. Assuming that u starts with 0 and v with 1, there are

fatorizations u = 0wau

0

and v = 1wbv

0

for some words w; u

0

; v

0

and letters

a 6= b. In fat a = 0 and b = 1 sine otherwise Æ(u

0

; v

0

) = Æ(u; v), ontraditing

the minimality of n. Thus, again by minimality, u = 0w0 and v = 1w1.

Assume next that w is not a palindrome. Then there is a pre�x z of w and

a letter a suh that za is a pre�x of w, ~z is a suÆx of w but a~z is not a suÆx

of w. Then of ourse b~z is a suÆx of w, where b is the other letter. This gives

a proper pre�x 0za of u and a proper suÆx b~z1 of v. If a = 0 and b = 1,

then Æ(0z0; 1~z1) = 2, ontraditing the minimality of n. But then u = 0z1u

00

and v = v

00

1~z0 for two words with Æ(u

00

; v

00

) = Æ(u; v), ontraditing again the

minimality. Thus w is a palindrome.

Remark 2.1.4. In the proof that the Fibonai word f is Sturmian given in

Example 2.1.1, we atually started by showing that f is balaned.

Theorem 2.1.5. Let x be an in�nite word. The following onditions are equiv-

alent.

(i) x is Sturmian,

(ii) x is balaned and aperiodi.

Proof. If x is aperiodi, then P (x; n) � n + 1 for all n by Theorem 1.3.13. If

x is balaned, then by Proposition 2.1.2, P (x; n) � n + 1 for all n. Thus x is

Sturmian.

To prove the onverse, we assume x is Sturmian and unbalaned, and show

that x is eventually periodi. Sine x is unbalaned, there is a palindrome word

w suh that 0w0, 1w1 are fators of x. This shows that w is right speial. Set

n = jwj+1. Sine x is Sturmian, there is a unique right speial fator of length

n, whih is either 0w or 1w. We suppose that 0w is right speial, so 1w is not,

and 0w1 is a fator of x and 1w0 is not.
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Any ourrene of 1w in x is followed by the letter 1. Let v be a word of

length n�1 suh that u = 1w1v is in F (x). The word u has length 2n. We prove

that all fators of length n of u are onservative. In view of Proposition 1.3.14,

x is eventually periodi.

To show the laim, it suÆes to prove that the only right speial fator of

length n, that is 0w, is not a fator of u. Assume the ontrary. Then there exist

fatorizations w = s0t; v = yz; w = t1y.

u

1 w 1 v

0 w

1 s 0 t 1 y z

Sine w is a palindrome, the �rst fatorization implies w =

~

t0~s, and the letter

following the pre�x t in w is both a 0 and a 1.

The slope of a nonempty word x is the number �(x) =

h(x)

jxj

.

Example 2.1.6. The height of x = 0100101 is 3, and its slope is 3=7. The

word x an be drawn on a grid by representing a 0 (resp. a 1) as a horizontal

(resp. a diagonal) unit segment. This gives a polygonal line from the origin to

the point (jxj; h(x)), and the line from the origin to this point has slope �(x).

See Figure 2.1.

r r�

�

r r r�

�

r r�

�

r

0 1 0 0 1 0 1

(7,3)

Figure 2.1. Height and slope of the word 0100101.

It is easily heked that

�(xy) =

jxj

jxyj

�(x) +

jyj

jxyj

�(y)

Proposition 2.1.7. A fatorial set of words X is balaned if and only if, for

all x; y 2 X , x; y 6= ",

�

�

�(x) � �(y)

�

�

<

1

jxj

+

1

jyj

: (2.1.3)
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Proof. Assume �rst that (2.1.3) holds. For x; y 2 X of the same length, the

equation gives

�

�

h(x)� h(y)

�

�

< 2

showing that X is balaned.

Conversely, assume that X is balaned, and let x; y be in X . If jxj = jyj,

then (2.1.3) holds. Assume jxj > jyj, and set x = zt, with jzj = jyj. Arguing by

indution on jxj+ jyj, we have

�

�

�(t) � �(y)

�

�

<

1

jtj

+

1

jyj

and sine X is fatorial, jh(z)� h(y)j � 1, whene

�

�

�(z)� �(y)

�

�

�

1

jyj

. Next,

�(x) � �(y) =

jzj

jxj

�(z) +

jtj

jxj

�(t) � �(y)

=

jzj

jxj

�

�(z)� �(y)

�

+

jtj

jxj

�

�(t)� �(y)

�

thus

�

�

�(x)� �(y)

�

�

<

1

jxj

+

jtj

jxj

�

1

jyj

+

1

jtj

�

=

1

jxj

+

1

jyj

:

Corollary 2.1.8. Let x be an in�nite balaned word, and for eah n � 1,

let x

n

be the pre�x of length n of x. The sequene (�(x

n

))

n�1

onverges for

n!1.

Proof. Indeed, (2.1.3) shows that (�(x

n

))

n�1

is a Cauhy sequene.

The limit

� = lim

n!1

�(x

n

)

is the slope of the in�nite word x.

Example 2.1.9. To ompute the slope of an in�nite balaned word, it suÆes

to ompute the limit of the slopes of an inreasing sequene of pre�xes (or even

fators, as shown by the next proposition). For the Fibonai in�nite word, the

slopes of the �nite Fibonai words f

n

are easily omputed. Indeed, jf

n

j = F

n

and h(f

n

) = F

n�2

, whene

�(f) = lim

n!1

F

n�2

F

n

=

1

�

2

;

where � = (1 +

p

5)=2.

Proposition 2.1.10. Let x be an in�nite balaned word with slope �. For

every nonempty fator u of x, one has

�

�

�(u)� �

�

�

�

1

juj

: (2.1.4)
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More preisely, one of the following holds: either

�juj � 1 < h(u) � �juj+ 1 for all u 2 F (x) (2.1.5)

or

�juj � 1 � h(u) < �juj+ 1 for all u 2 F (x) (2.1.6)

Of ourse, the inequalities in (2.1.5) and (2.1.6) are strit if � is irrational.

Proof. Let x

n

be the pre�x of length n of x. Given some ", onsider n

0

suh

that for all n � n

0

,

�

�

�(x

n

)� �

�

�

� " :

Then, using (2.1.3),

�

�

�(u)� �

�

�

�

�

�

�(u)� �(x

n

)

�

�

+

�

�

�(x

n

)� �

�

�

<

1

juj

+

1

n

+ "

For n!1 and then "! 0, the inequality follows. Equation (2.1.4) means that

�juj � 1 � h(u) � �juj+ 1

If the seond laim were wrong, there would exist u; v in F (x) suh that �juj �

1 = h(u) and �jvj + 1 = h(v). But then j�(u) � �(v)j = 1=juj + 1=jvj, in

ontradition with (2.1.3).

Proposition 2.1.11. Let x be an in�nite balaned word. The slope � of x is

a rational number if and only if x is eventually periodi.

Proof. If x = uy

!

, then

�(uy

n

) =

h(u) + nh(y)

juj+ njyj

! �(y)

for n!1, showing that the slope is rational.

For the onverse, we suppose that (2.1.5) holds. The other ase is symmetri.

The slope of x is a rational number � = q=p with q and p relatively prime. By

(2.1.5), any fator u of x of length p has height q or q+1. There are only �nitely

many ourrenes of fators of length p and height q + 1, sine otherwise there

is a fator w = uzv of x with juj = jvj = p and h(u) = h(v) = q + 1. In view of

(2.1.5)

2 + 2q + h(z) = h(uzv) � 1 + �p+ �jzj+ �p = 1 + 2q + �jzj

whene h(z) � �jzj � 1, in ontradition with (2.1.5).

By the preeding observation, there is a fatorization x = ty suh that every

word in F

p

(y) has the same height. Consider now an ourrene azb of a fator

in y of length p + 1, with a and b letters. Sine h(az) = h(zb), one has a = b.

This means that y is periodi with period p. Consequently, x is eventually

periodi.
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2.1.2. Mehanial words, rotations

Given two real numbers � and � with 0 � � � 1, we de�ne two in�nite words

s

�;�

: N ! A; s

0

�;�

: N ! A

by

s

�;�

(n) = b�(n+ 1) + � � b�n+ �

s

0

�;�

(n) = d�(n+ 1) + �e � d�n+ �e

(n � 0)

It is easy to hek that s

�;�

(n) and s

0

�;�

(n) indeed are in f0; 1g. The word s

�;�

is the lower mehanial word and s

0

�;�

is the upper mehanial word with slope

� and interept �. (This slope will be shown in a moment to be the same as the

slope of a balaned word.) It is lear that if ���

0

is an integer, then s

�;�

= s

�;�

0

and s

0

�;�

= s

0

�;�

0

. Thus we may assume 0 � � < 1 or 0 < � � 1 (both will be

useful).

r r�

�

r
r r�

�

r r r

r
r�

�

r r r�

�

r r r

0 1 0 0 1 0 0

y = �x + �

P

n

P

0

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2.2. Mehanial words assoiated with the line y = �x+ �.

The terminology stems from the following graphial interpretation (see Fig-

ure 2.2). Consider the straight line with equation y = �x+ �. The points with

integer oordinates just below this line are P

n

= (n; b�n+ �). Two onseutive

points P

n

and P

n+1

are joined by a straight line segment that is horizontal if

s

�;�

(n) = 0 and diagonal if s

�;�

(n) = 1.

The same observation holds for the points P

0

n

= (n; d�n + �e) loated just

above the line.

r
r�

�

r
r r�

�

r

r
r r�

�

r
r�

�

r

s

�;�

s

0

�;�

n

0 1 0 0

0 0 1 0

y = �x+ �

!

!

!

!

!

!

!

!

!

!

!

!

Figure 2.3. Mehanial words with an integral point.
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Clearly,

s

0;�

= s

0

0;�

= 0

!

; s

1;�

= s

0

1;�

= 1

!

Let 0 < � < 1. Sine 1 + b�n+ � = d�n+ �e whenever �n + � is not an

integer, one has s

�;�

= s

0

�;�

exepted when �n+ � is an integer for some n � 0.

In this ase (see Figure 2.3),

s

�;�

(n) = 0; s

0

�;�

(n) = 1

and, if n > 0,

s

�;�

(n� 1) = 1; s

0

�;�

(n� 1) = 0

Thus, if � is irrational, s

�;�

and s

0

�;�

di�er by at most one fator of length 2.

A mehanial word is irrational or rational aording to its slope is rational or

irrational.

A speial ase deserves onsideration, namely when 0 < � < 1 and � = 0.

In this ase, s

�;0

(0) = b� = 0, s

0

�;0

(0) = d�e = 1, and if � is irrational

s

�;0

= 0

�

; s

0

�;0

= 1

�

where the in�nite word 

�

is alled the harateristi word of �.

Remark 2.1.12. The ondition 0 � � � 1 in the de�nition of mehanial

words is not a restrition, but a simpli�ation. One ould indeed use the same

de�nition of s

�;�

without any ondition on �. Sine b� � s

�;�

(n) � 1 + b�,

the numbers s

�;�

(n) then an have the two values k and k + 1 where k = b�.

Thus the words s

�;�

and s

0

�;�

are over the two letter alphabet fk; k + 1g. This

alphabet an be transformed bak into f0; 1g by using the formula

s

�;�

(n) = b�(n+ 1) + � � b�n+ � � b�

Mehanial words an be interpreted in several other ways. Consider again

a straight line y = �x + �, for some � > 0 not restrited to be less than 1,

and � not restrited to be positive. Consider the intersetions of this line with

the lines of the grid with nonnegative integer oordinates. We get a sequene

Q

0

; Q

1

; : : : of intersetion points. We all Q

n

= (x

n

; y

n

) horizontal if y

n

is an

integer, and vertial if x

n

is an integer. If both are integers, we insert before Q

n

a sibling Q

n�1

of Q

n

with the same oordinates, and we agree that the �rst is

horizontal and the seond is vertial (or vie-versa, but we do always the same

hoie). In Figure 2.4 below, Q

0

is vertial, beause � is positive.

Writing a 0 for eah vertial point and a 1 for eah horizontal point, we

obtain an in�nite word K

�;�

that is alled the (lower) utting sequene (with

the other hoie for labeling siblings, one gets an upper utting sequene K

0

�;�

).

To eah Q

n

= (x

n

; y

n

), we assoiate a point I

n

= (u

n

; v

n

) with integer

oordinates. The point I

n

is the point below (below and to the right of) Q

n

if

Q

n

is vertial (horizontal). Formally,

(u

n

; v

n

) =

�

(dx

n

e ; y

n

� 1) if Q

n

is horizontal,

(x

n

; by

n

) if Q

n

is vertial
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Figure 2.4. Cutting sequene and orresponding mehanial sequene.

Similar points J

n

are de�ned above the line (see Figure 2.4). It is easy to hek

that u

n

+ v

n

= n for n � 0, and that

K

�;�

(n) = v

n+1

� v

n

= 1 + u

n

� u

n+1

In the speial ase � = 0 and � irrational, we again get the same in�nite word

up to the �rst letter. There is a word C

�

suh that

K

�;0

= 0C

�

; K

0

�;0

= 1C

�

Observe that Q

n

is horizontal if and only if

1 + v

n

� u

n

� + � < 1 + �+ v

n

(2.1.7)

and Q

n

is vertial if and only if

v

n

� u

n

� + � < 1 + v

n

(2.1.8)

We now hek that

K

�;�

= s

�=(1+�);�=(1+�)

Indeed, the transformation (x; y) 7! (x + y; x) of the plane maps the line y =

�x+ � to y = �=(1+�)x+ �=(1+�), and a point I

n

= (u

n

; v

n

) to I

0

n

= (n; v

n

).

It remains to show that

v

n

=

�

�

1 + �

n+

�

1 + �

�

(2.1.9)
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Using u

n

+ v

n

= n, we get from (2:1:7) that

v

n

+ 1=(1 + �) � �=(1 + �)n+ �=(1 + �) < 1 + v

n

and from (2:1:8) that

v

n

� �=(1 + �)n+ �=(1 + �) < v

n

+ 1=(1 + �)

Thus, (2:1:9) holds for horizontal and for vertial steps. Thus, utting sequenes

are just another formulation of mehanial words.

Mehanial words an also be generated by rotations. Let 0 < � < 1. The

rotation of angle � is the mapping R = R

�

from [0; 1[ into itself de�ned by

R(z) = fz + �g

where fzg = z � bz is the frational part of z. Iterating R, one gets

R

n

(�) = fn�+ �g

Moreover, a straightforward omputation shows that

b(n+ 1)�+ � = 1 + bn�+ � () fn�+ �g � 1� �

Thus, de�ning a partition of [0; 1[ by

I

0

= [0; 1� �[; I

1

= [1� �; 1[ ;

one gets

s

�;�

(n) =

�

0 if R

n

(�) 2 I

0

1 if R

n

(�) 2 I

1

(2.1.10)

It will be onvenient to identify [0; 1[ with the torus (or the unit irle). For 0 �

b < a < 1, the set [a; 1℄ [ [0; b[ is onsidered as an interval denoted [a; b[. Then,

for any subinterval I of [0; 1[, the sets R(I) and R

�1

(I) are always intervals

(even when overlapping the point 0).

As an example of the use of rotations, onsider a word w = b

0

b

1

� � � b

m�1

,

with b

0

; b

1

; : : : letters. We want to know whether w is a fator of some s

�;�

=

a

0

a

1

� � �, with a

0

; a

1

; : : : letters. By (2.1.10), a

n+k

= b

i

if and only if R

n+i

(�) 2

I

b

i

, or equivalently, if and only if R

n

(�) 2 R

�i

(I

b

i

). Thus, for n � 0,

w = a

n

a

n+1

� � �a

n+m�1

() R

n

(�) 2 I

w

(2.1.11)

where I

w

is the interval

I

w

= I

b

0

\ R

�1

(I

b

1

) \ � � � \R

�m+1

(I

b

m�1

)

The interval I

w

is non empty if and only if w is a fator of s

�;�

. Observe that

this property is independent of �, and thus words s

�;�

and s

�;�

0

have the same

set of fators. A ombinatorial proof will be given later (Proposition 2.1.18).

Mehanial words are quite naturally de�ned as two-sided in�nite words.

However, it appears that several properties, suh as Theorem 2.1.13 below, only

hold with some restritions (see Problem 2.1.1).
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Theorem 2.1.13. Let s be an in�nite word. The following are equivalent:

(i) s is Sturmian;

(ii) s is balaned and aperiodi;

(iii) s is irrational mehanial.

The proof will be a simple onsequene of two lemmas. In the proofs, we

will use several times the formula

x

0

� x� 1 < bx

0

 � bx < x

0

� x+ 1 :

Lemma 2.1.14. Let s be a mehanial word with slope �. Then s is balaned

of slope �. If � is rational, then s is purely periodi. If � is irrational, then s is

aperiodi.

Proof. Let s = s

�;�

be a lower mehanial word. The proof is similar for upper

mehanial words. The height of a fator u = s(n) � � � s(n+p�1) is the number

h(u) = b�(n+ p) + � � b�n+ �, thus

�juj � 1 < h(u) < �juj+ 1 (2.1.12)

This implies b�juj � h(u) � 1 + b�juj, and shows that h(u) takes only two

onseutive values, when u ranges over the fators of a �xed length of s. Thus,

s is balaned. Moreover, by (2.1.12)

�

�

�(u)� �

�

�

<

1

juj

Thus �(u)! � for juj ! 1 and � is the slope of s as it was de�ned for balaned

words. This proves the �rst statement.

If � is irrational, the word s is aperiodi by Proposition 2.1.11. If � = q=p is

rational, then b�(n+ p) + � = q+b�n+ �, for all n � 0. Thus s(n+p) = s(n)

for all n, showing that s is purely periodi.

Lemma 2.1.15. Let s be a balaned in�nite word. If s is aperiodi, then s is

irrational mehanial. If s is purely periodi, then s is rational mehanial.

Proof. In view of Corollary 2.1.8, s has a slope, say �. Denote by h

n

the height

of the pre�x of length n of s.

For every real number � , one at least of the following holds:

{ h

n

� b�n+ � for all n;

{ h

n

� b�n+ � for all n.

Indeed, on the ontrary there exist a real number � and two integers n; n+k suh

that h

n

< b�n+ � and h

n+k

> b�(n+ k) + � (or the symmetri relation).

This implies that h

n+k

� h

n

� 2 + b�(n+ k) + � � b�n+ � > 1 + �k, in

ontradition with (2.1.4).

Set

� = inff� j h

n

� b�n+ � for all ng
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By Proposition 2.1.10, one has � � 1, and � < 1 if � is irrational. Observe that

for all n � 0

h

n

� �n+ � � h

n

+ 1 (2.1.13)

sine otherwise there is an integer n suh that h

n

+ 1 < �n + �, and setting

� = h

n

+ 1 � �n, one has � < � and �n + � = h

n

+ 1 > h

n

, in ontradition

with the de�nition of �.

If s is aperiodi, then � is irrational by Proposition 2.1.11, and �n+ � is an

integer for at most one n. By (2.1.13), either h

n

= b�n+ � for all n, and then

s = s

�;�

, or h

n

= b�n+ � for all but one n

0

, and h

n

0

+ 1 = �n

0

+ �. In this

ase, one has h

n

= d�n+ �� 1e for all n and s = s

0

�;��1

.

If s = u

!

is purely periodi with period juj = p, then � = q=p with q =

h(u) = h

p

. Again h

n

= b�n+ � if �n+ � is never an integer (this depends on

�).

If h

n

= �n+ � for some n, we laim that h

n

= b�n+ � for all n. Assume

the ontrary. Then by (2.1.13), 1 + h

m

= �m + �, for some m and we may

assume n < m < n + p. Consider the words y = s(n + 1) � � � s(m) and z =

s(m+ 1) � � � s(n+ p). Then �(y) = (h

m

� h

n

)=(m� n) = �� 1=jyj and �(z) =

(h

n+p

� h

m

)=(n+ p�m) = �+ 1=jzj, whene

�

�

�(y)� �(z)

�

�

= 1=jyj+ 1=jzj, in

ontradition with Proposition 2.1.7. Similarly, if 1 + h

n

= �n+ � for some n,

then h

n

= d�n+ �e for all n.

Proof of theorem 2.1.13. We know already by Theorem 2.1.5 that (i) and (ii)

are equivalent. Assume that s is irrational mehanial. Then s is balaned

aperiodi by Lemma 2.1.14. Conversely, if s is balaned and aperiodi, then by

the Lemma 2.1.15 s is irrational mehanial.

Example 2.1.16. To show that a balaned in�nite word is not always me-

hanial when the slope is rational (so the onverse is false in Lemma 2.1.14),

onsider the in�nite balaned word 01

!

. It is not a mehanial word. Indeed,

it has slope 1, and all mehanial words s

1;�

are equal to 1

!

.

Let us onsider mehanial words with rational slope in some more detail.

For a rational number � = p=q with 0 � � � 1 and p; q relatively prime, the

in�nite words s

�;0

and s

0

�;0

are purely periodi. De�ne �nite words

t

p;q

= a

0

� � � a

q�1

; t

0

p;q

= a

0

0

� � � a

0

q�1

by

a

i

=

�

(i+ 1)

p

q

�

�

�

i

p

q

�

; a

0

i

=

�

(i+ 1)

p

q

�

�

�

i

p

q

�

Clearly, t

p;q

and t

0

p;q

have height p. They are primitive words beause (p; q) = 1.

In partiular, t

0;1

= 0 and t

1;1

= 1. These words are alled Christo�el words.

In any ase, s

p=q;0

= t

!

p;q

and s

0

p=q;0

= t

0

p;q

!

. Moreover, if 0 < p=q < 1, the

word t

p;q

starts with 0 and ends with 1 (and t

0

p;q

starts with 1 and ends with

0). There is a word z

p;q

suh that

t

p;q

= 0z

p;q

1; t

0

p;q

= 1z

p;q

0 (2.1.14)
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The word z

p;q

is easily seen to be a palindrome. Later, we will see that these

words, alled entral words, have remarkable ombinatorial properties.

The following result deals with �nite words.

Proposition 2.1.17. A �nite word w is a fator of some Sturmian word if

and only if it is balaned.

Proof. Clearly a fator of a Sturmian word is balaned. For the onverse,

onsider a balaned word w, and de�ne

�

0

= max(�(u)� 1=juj); �

00

= min(�(u) + 1=juj)

where the maximum and the minimum is taken over all non empty fators u of

w. Sine w is balaned, one gets from Proposition 2.1.10 that

�(u)� 1=juj < �(v) + 1=jvj

for all nonempty fators u and v of w. Thus �

0

< �

00

.

Take any irrational number � with �

0

< � < �

00

. Then by onstrution, for

every nonempty fator u of w,

�

�

�(u)� �

�

�

< 1 (2.1.15)

Let w

n

be the pre�x of length n of w. By (2.1.15), there exists a real �

n

suh that

h(w

n

) = n�+ �

n

; j�

n

j < 1

Moreover, for n > m, setting w

n

= w

m

u, one gets h(w

n

) � h(w

m

) = h(u) =

(n�m)�+ (�

n

� �

m

), showing that j�

n

� �

m

j < 1. Set

� = max

1�n�jwj

�

n

:

Then

n�+ � � h(w

n

) = n�+ �+ (�

n

� �) > n�+ �� 1

whene h(w

n

) = bn�+ �. This proves that w is a pre�x of the Sturmian word

s

�;�

.

2.1.3. The fators of one Sturmian word

The aim of this paragraph is to give properties of the set of fators of a single

Sturmian word.

Proposition 2.1.18. Let s and t be Sturmian words.

1. If s and t have same slope, then F (s) = F (t).

2. If s and t have distint slopes, then F (s) \ F (t) is �nite.
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Proof. Let � be the ommon slope of s and t. By Proposition 2.1.10, every

fator u of s veri�es

j�(u)� �j <

1

juj

(indeed, equality is impossible beause � is irrational). Next, for every fator v

of t,

j�(v)� �j <

1

jvj

Let X = F (s) [ F (t). The set X is fatorial. It is also balaned sine

j�(u)� �(v)j � j�(u)� �j+ j�(v)� �j <

1

juj

+

1

jvj

In view of Proposition 2.1.2

Card(X \A

n

) � n+ 1

for every n. Thus F (s) = X = F (t).

Let now � be the slope of s and � be the slope of t. We may suppose that

� > �. For any fator u of s suh that (���) � 2=juj, one has �(u)�� > �1=juj

by Proposition 2.1.10 whene �(u)� � = (�(u)� �) + (� � �) � 1=juj showing

that u is not a fator of t.

Proposition 2.1.19. The set F (s) of fators of a Sturmian word s is losed

under reversal.

Proof. Set

~

F (s) = f~x j x 2 F (s)g. The set X = F (s) [

~

F (s) is balaned.

In view of Proposition 2.1.2, Card(X \ A

n

) � n + 1, for eah n, and sine

Card(F (s) \ A

n

) = n+ 1, one has X = F (s). Thus

~

F (s) = F (s).

We now ompare Sturmian words, with respet to their slope and interept.

The lexiographi order de�ned in Chapter 1 extends to in�nite words as follows,

with the assumption that 0 < 1. Given two in�nite words x = a

0

� � � a

n

� � � and

y = b

0

� � � b

n

� � �, we say that x is lexiographially less than y, and we write

x < y if there is an integer n suh that a

i

= b

i

for i = 0; : : : ; n� 1 and a

n

= 0,

b

n

= 1.

Proposition 2.1.20. Let 0 < � < 1 be an irrational number and let �; �

0

be

real numbers with 0 � �; �

0

< 1. Then

s

�;�

< s

�;�

0

() � < �

0

:

Proof. Sine � is irrational, the set of frational parts f�ng for n � 0 is dense in

the interval [0; 1[. Thus � < �

0

if and only if there exists an integer n � 1 suh

that 1� �

0

� f�ng < 1� �, and this is equivalent to b�n+ �

0

 = 1+ b�n+ �.

If n is the smallest integer for whih this equality holds, then s

�;�

(n � 1) = 0

and s

�;�

0

(n� 1) = 1 and s

�;�

0

(k) = s

�;�

(k) for k < n� 1.

Observe that this proposition does not hold for rational slopes, sine indeed

s

0;�

= 0

!

for all �.
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Lemma 2.1.21. Let 0 < �;�

0

< 1 be irrational numbers and let �; �

0

be real

numbers. Any of the equalities s

�;�

= s

�

0

;�

0

, s

�;�

= s

0

�

0

;�

0

or s

0

�;�

= s

0

�

0

;�

0

implies

� = �

0

and � � �

0

mod 1.

Proof. Any of the equalities implies that � = �

0

beause equal words have the

same slope. Next, s

�;�

= s

�;�

0

implies � � �

0

mod 1 by the previous proposition.

Finally, onsider the equality s

�;�

= s

0

�;�

0

. If �n + �

0

is not an integer for all

n � 1, then s

0

�;�

0

= s

�;�

0

and the onlusion holds. Otherwise, let n be the

unique integer suh that �n+�

0

is an integer. Then s

�;�+(1+n)�

= s

0

�;�

0

+(1+n)�

,

showing again that � � �

0

mod 1.

Sturmian words with interept 0 have many interesting properties. We ob-

served already that, for an irrational number 0 < � < 1, the words s

�;0

and

s

0

�;0

di�er only by their �rst letter, and that

s

�;0

= 0

�

; s

0

�;0

= 1

�

where 

�

is the harateristi word of slope �. Equivalently,



�

= s

�;�

= s

0

�;�

The following proposition states a ombinatorial haraterization of harater-

isti words among Sturmian words.

Proposition 2.1.22. For every Sturmian word s, either 0s or 1s is Sturmian.

A Sturmian word s is harateristi if and only if 0s and 1s are both Sturmian.

Proof. The �rst laim follows from the fat that s

�;���

= as

�;�

, for some

a 2 f0; 1g.

If s = s

�;�

= s

0

�;�

is the harateristi word of slope �, then 0s = s

�;0

and

1s = s

0

�;0

are Sturmian.

Conversely, the Sturmian words 0s and 1s have same slope, say �. Denote

by � and �

0

their interept. Then their ommon shift s has interept � + � =

�

0

+ �, and by Lemma 2.1.21, � � �

0

mod 1 and we may take 0 � � = �

0

< 1.

Thus 0s = s

�;�

and 1s = s

0

�;�

. Assume � > 0. The �rst letter of 0s is gives

0 = b�+ ��b� = b�+ � and the �rst letter of 1s is 1 = d�+ �e�d�e. Then

2 = d�+ �e, a ontradition. Thus � = 0.

We are now able to desribe right speial fators.

Proposition 2.1.23. The set of right speial fators of a Sturmian word is

the set of reversals of the pre�xes of the harateristi word of same slope.

Call a fator w of a Sturmian word s left speial if both 0w and 1w are fators of

s. Clearly, w is left speial if and only if ~w is right speial. Thus the proposition

states that the set of left speial fators of a Sturmian word is the set of pre�xes

of the harateristi word of same slope.
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Proof. Let s be a Sturmian word of slope �. By Proposition 2.1.22, the in�nite

words 0

�

and 1

�

are Sturmian and learly have slope �. Thus

F (s) = F (

�

) = F (0

�

) = F (1

�

)

by Proposition 2.1.18. Consequently, for eah pre�x p of 

�

, 0p and 1p are

fators of s. Sine F (s) is losed under reversal, this shows that ~p is right

speial. Thus ~p is the unique right speial fator of length jpj.

Example 2.1.24. Consider again the Fibonai word f . We have seen in

Example 2.1.1 that its right speial fators are the reversals of its pre�xes.

Thus eah pre�x of f is left speial. This shows that F (f) = F (0f) = F (1f).

Consequently, f is harateristi of slope 1=�

2

.

Proposition 2.1.25. The dynamial system generated by a Sturmian word

is minimal.

Proof. Let s be a Sturmian word, and let x be an in�nite word suh that F (x) �

F (s). Clearly, x is balaned. Also, x has the same irrational slope as s. Thus x

is aperiodi and therefore is Sturmian. By Proposition 2.1.18(1), F (x) = F (s).

This shows that s and x generate the same dynamial system.

Observe that Proposition 2.1.18(2) is a onsequene of Proposition 2.1.25.

Indeed, the intersetion of two distint minimal dynamial systems is the trivial

system.

2.2. Standard words

This setion is onerned with a family of �nite words that are basi briks for

onstruting harateristi Sturmian words, in the sense that every harater-

isti Sturmian word is the limit of a sequene of standard words. This will be

shown in Setion 2.2.2.

2.2.1. Standard words and palindrome words

After basi de�nitions, we give two haraterizations of standard words. The

�rst is by a speial deomposition into palindrome words (Theorem 2.2.4), the

seond (Theorem 2.2.11) by an extremal property on the periods of the word

that is losely related to Fine and Wilf's theorem. We give then a \mehanial"

haraterization of entral and standard words (Proposition 2.2.15). We end

with an enumeration formula for standard words.

Consider two funtions � and � from f0; 1g

�

� f0; 1g

�

into itself de�ned by

�(u; v) = (u; uv); �(u; v) = (vu; v)

The set of standard pairs is the smallest set of pairs of words ontaining the

pair (0; 1) and losed under � and �. A standard word is any omponent of a

standard pair.
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(0; 1)

(0; 01) (10; 1)

(0; 001) (010; 01) (10; 101) (110; 1)

�

�

(0; 0001) (0010; 001) (010; 01001)(01010; 01) (10; 10101)

(01001010; 01001)

Figure 2.5. The tree of standard pairs.

Example 2.2.1. Figure 2.5 shows the beginning of the tree of standard pairs.

Considering the leftmost and rightmost paths, one gets the pairs

(0; 0

n

1); (1

n

0; 1) (n � 1)

Next to them are the pairs

(0(10)

n

; 01); (10; (10)

n

1) (n � 1)

These are the pairs with one omponent of length 1 or 2.

Finite Fibonai words are standard, sine (f

0

; f

�1

) = (0; 1), and for n � 1,

(f

2n+2

; f

2n+1

) = ��(f

2n

; f

2n�1

).

Every standard word whih is not a letter is a produt of two standard words

whih are the omponents of some standard pair. The next proposition states

some elementary fats.

Proposition 2.2.2. Let r = (x; y) be a standard pair.

1. If r 6= (0; 1) then one of x or y is a proper pre�x of the other.

2. If x (resp. y) is not a letter, then x ends with 10 (resp. y ends with 01).

3. Only the last two letters of xy and yx are di�erent.

Proof . We prove the last laim by indution on jxyj. Assume indeed that xy =

p01 and yx = p10. Then �(r) = (x; xy) and xxy = xp01, (xy)x = x(yx) = xp10,

so the laim is true for �(r). The same holds for �(r).

Every standard pair is obtained in a unique way from (0; 1) by iterated use

of � and �. Indeed, if (x; y) is a standard pair, then it is an image through

� (resp. �) if and only if jxj < jyj (resp. jxj > jyj). Thus, there is a unique

produt W = �

1

Æ : : : Æ �

n

, with �

i

2 f�;�g suh that

(x; y) =W (0; 1)
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Consider two matries

L =

�

1 0

1 1

�

; R =

�

1 1

0 1

�

and de�ne a morphism � from the monoid generated by � and � into the set

of 2� 2 matries by

�(�) = L; �(�) = R;

and �(�

1

Æ: : :Æ�

n

) = �(�

1

) � � ��(�

n

). If (x; y) =W (0; 1), then a straightforward

indution shows that

�(W ) =

�

jxj

0

jxj

1

jyj

0

jyj

1

�

(2.2.1)

Observe that every matrix �(W ) has determinant 1. Thus if (x; y) is a standard

pair,

jxj

0

jyj

1

� jxj

1

jyj

0

= 1 (2.2.2)

showing that the entries in the same row (olumn) of �(W ) are relatively prime.

From (2.2.2), one gets

h(y)jxj � h(x)jyj = 1 : (2.2.3)

(reall that h(w) = jwj

1

is the height of w). This shows also that jxj and jyj are

relatively prime. A simple onsequene is the following property.

Proposition 2.2.3. A standard word is primitive.

Proof. Let w be a standard word whih is not a letter. Then w = x or w = y

for some standard pair (x; y). From (2.2.3), one gets that h(w) and jwj are

relatively prime. This implies that w is primitive.

The operations � and � an be explained through three morphisms E, G,

D on f0; 1g

�

whih we introdue now. These will be used also in the sequel. Let

E :

0 7! 1

1 7! 0

; G :

0 7! 0

1 7! 01

; D :

0 7! 10

1 7! 1

It is easily heked that E Æ D = G Æ E = '. We observe that, for every

morphism f ,

�(f(0); f(1)) = (fG(0); fG(1)); �(f(0); f(1)) = (fD(0); fD(1))

For W = �

1

Æ : : : Æ�

n

, with �

i

2 f�;�g, de�ne

^

W =

^

�

n

Æ : : : Æ

^

�

1

, with

^

� = G,

^

� = D. Then

W (0; 1) = (

^

W (0);

^

W (1)) : (2.2.4)

Standard words have the following desription.

Theorem 2.2.4. A word w is standard if and only if it is a letter or there exist

palindrome words p, q and r suh that

w = pab = qr (2.2.5)

where fa; bg = f0; 1g. Moreover, the fatorization w = qr is unique if q 6= ".
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Example 2.2.5. The word 01001010 is standard (see Figure 2.5) and

01001010 = (010010)10 = (010)(01010) :

We start the proof with a lemma of independent interest.

Lemma 2.2.6. If a primitive word is a produt of two nonempty palindrome

words, then this fatorization is unique.

Proof. Let w be a primitive word and assume w = pq = p

0

q

0

for palindrome

words p; q; p

0

; q

0

. We suppose jpj > jp

0

j, so that p = p

0

s(= ~sp

0

), sq = q

0

(= q~s)

for some nonempty word s. Thus ~sp

0

q = pq = p

0

q

0

= p

0

q~s, showing that p

0

q and

~s are powers of some word z. But then w = pq = ~sp

0

q = z

n

for some n � 2,

ontraditing primitivity.

Observe that (2.2.5) implies the following relations.

Lemma 2.2.7. If w = pab = qr for palindrome words p, q, r, and letters a 6= b,

then one of the following holds

(i) r = ", p = (ba)

n

b, q = (ba)

n+1

b = w for some n � 0;

(ii) r = b, p = a

n

, q = a

n+1

, w = a

n+1

b for some n � 0;

(iii) r = bab, p = b

n+1

, q = b

n

, w = b

n+1

ab for some n � 0;

(iv) r = basab, p = qbas, w = qbasab for some palindrome word s.

We need another lemma.

Lemma 2.2.8. Let x; y be words with jxj; jyj � 2. The pair (x; y) is a standard

pair if and only if there exist palindrome words p, q, r suh that

x = p10 = qr and y = q01 (2.2.6)

or

x = q10 and y = p01 = qr : (2.2.7)

Proof. Assume that (2.2.6) holds (the other ase is symmetri). If r is the empty

word, then by the previous lemma

(x; y) = ((01)

n+1

0; (01)

n+1

001) = �((01)

n+1

0; 01)

showing that the pair (x; y) is standard.

If r = 0, then (x; y) = (1

n

0; 1

n

01) = �(1

n

0; 1), and if r = 010, then (x; y) =

(0

n

10; 0

n

1) = �(0; 0

n

1).

Thus, we may assume that r = 01s10 for some palindrome word s. By

(2.2.6), if follows that y is a pre�x of x, so x = yz for some word z. We show

that (z; y) is standard. From p = q01s = s10q it follows that q 6= s. Assume

jqj < jsj (the other ase is symmetri). Then s = qt for some word t, and the

equation p = qt10q shows that the word r

0

= t10 is a palindrome. Thus

y = q01; z = qr

0

= s10
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and (z; y) satis�es (2.2.6).

Conversely, let (x; y) be a standard pair, and assume (x; y) = �(x; z), that

is y = xz. If z is a letter, then (x; z) = (1

n

0; 1) for some n � 1 and

x = q10; y = p01 = qr

for q = 1

n�1

, p = 1

n

, r = 101.

Thus we may assume that for some palindrome words p, q, r, either

x = p10 = qr; z = q01

or

x = q10; z = p01 = qr :

In the �rst ase,

x = p10; y = xz = (qrq)01 = p(10q01)

In the seond ase,

x = q10; y = xz = q(10p01) = (qrq)01

beause 10p = rq. Thus (2.2.7) holds.

Proof of Theorem 2.2.4. Let w be a standard word, jwj � 2. Then there exists

a standard pair (x; y) suh that w = xy (or symmetrially w = yx). If x = 0,

then y = 0

n

1 for some n � 0, and xy = 0

n+1

1 has the desired fatorization.

A similar argument holds for y = 1. Otherwise, either (2.2.6) or (2.2.7) of

Lemma 2.2.8 holds. In the �rst ase, xy = p(10q01) = qrq01 and in the seond

ase, xy = q(10p01) = qrq01 beause 10p = rq. The fatorization is unique by

Lemma 2.2.6 beause a standard word is primitive.

Conversely, if w = p10 = qr (or w = p01 = qr) for palindrome words p, q, r,

then by Lemma 2.2.8, the word w is a omponent of some standard pair, and

thus is a standard word.

A word w is entral if w01 (or equivalently w10) is a standard word. As we

shall see, entral words play indeed a entral role.

Corollary 2.2.9. A word is entral if and only if it is in the set

0

�

[ 1

�

[ (P \ P10P )

where P is the set of palindrome words. The fatorization of a entral word w

as w = p10q with p; q palindrome words is unique.

Observe that P \ P10P = P \ P01P .

Proof. Let w 2 0

�

[ 1

�

[ (P \ P10P ). By the previous haraterization, w01

is a standard word, so w is entral. Conversely, if w01 is standard, then w

is a palindrome and w01 = qr for some palindrome words q and r. Either

w 2 0

�

[ 1

�

, or by Lemma 2.2.7, r = " and w = (10)

n

1 for some n � 1, or

w = q10s for some palindrome s, as required.

As a simple onsequene, we obtain.
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Corollary 2.2.10. A palindrome pre�x (suÆx) of a entral word is entral.

Proof. We onsider the ase of a pre�x. Let p be a entral word. If p 2 0

�

[1

�

, the

result is lear. Let x be a standard word suh that x = pab, with fa; bg = f0; 1g.

Then x = yz for a standard pair (y; z) or (z; y). Set y = qba and z = rab, where

q; r are entral words. Then p = qbar = rabq and by symmetry we may assume

that jrj < jqj.

Let w be a palindrome pre�x of p. If jwj � jqj, the result holds by indution.

If w = qb then w is a power of b. Thus set w = qbat where t is a pre�x of r.

Sine r is a pre�x of q, the word t is a pre�x of q, and sine w =

~

tabq, one has

t =

~

t. Thus, by Corollary 2.2.9, w = qbat is entral.

The next haraterization relates entral words to periods in words. Reall

from Chapter 1 that given a word w = a

1

� � � a

n

, where a

1

; : : : ; a

n

are letters,

an integer k is a period of w if k � 1 and a

i

= a

i+k

for all 1 � i � n� k. Any

integer k � n is a period with this de�nition.

An integer k with 1 � k � jwj is a period of w if and only if there exist

words x, y, and z suh that

w = xy = zx; jyj = jzj = k :

Fine and Wilf's theorem states that if a word w has two periods k and `, and

jwj � k + ` � gd(k; `), then gd(k; `) is also a period of w. In partiular, if k

and ` are relatively prime, and jwj � k + `� 1, then w is the power of a single

letter. The bound is sharp, and the question arises to desribe the words w of

length jwj = k + ` � 2 having periods k and `. This is the objet of the next

theorem.

Theorem 2.2.11. A word w is entral if and only if it has two periods k and

` suh that gd(k; `) = 1 and jwj = k + ` � 2. Moreover, if w =2 0

�

[ 1

�

, and

w = p10q with p, q palindrome words, then fk; `g = fjpj + 2; jqj + 2g and the

pair fk; `g is unique.

The proof will show that any word w having two periods k and ` suh that

gd(k; `) = 1 and jwj = k + `� 2 is over an alphabet with at most two letters.

Proof. Let w be a entral word. Then w01 is a standard word, and there is

a standard pair (x; y) suh that w01 = xy. If x = 0 or y = 1, then w is a

power of 0 resp. of 1, and w has periods k = 1 and ` = jwj + 1. Otherwise,

x = p10 and y = q01 for some palindrome words p, q, and w = p10q = q01p

has two periods k = jxj and ` = jyj whih are relatively prime by Equation

(2.2.3). Assume that w has also periods fk

0

; `

0

g, with k

0

+ `

0

� 2 = jwj. We

may suppose k < k

0

< `

0

< `. Sine k + `

0

� 1 � jwj, Fine and Wilf's theorem

applies. So w has also the period d = gd(k; `

0

). Similarly, w has also the period

d

0

= gd(k; k

0

). So it has the period gd(d; d

0

) = 1. This proves that the pair

fk; `g is unique.

Conversely, if w is a power of a letter, the result is trivial. Thus we assume

that w ontains two distint letters. Sine k; ` 6= 1, we assume 2 � k < `.
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Sine w has period k, there is a word x of length jxj = `� 2 that is both a

pre�x and a suÆx of w. Similarly, there is a word y of length jyj = k� 2 that is

both a pre�x and a suÆx of w. Consequently, there exist words u and v, both

of length 2, suh that

w = yux = xvy

We prove by indution on jwj that x, y, w are palindrome words, that u and

v are omposed of distint letters, and that no other letters than those of u

appear in w (that is w is over an alphabet of two letters).

If k = 2, then y is the empty word. Thus ux = xv, and ` is odd. Therefore

u = ab, v = ba, x = (ab)

n

a, w = (ab)

n+1

a for letters a 6= b and some n � 0.

The result holds in this ase.

If k = `� 1, then x = ya = by for letters a and b. But then a = b and w is

a power of a letter, a ase that we have exluded.

Thus we assume k � `� 2. Then yu is a pre�x of x. De�ne z by yuz = x.

Then

x = yuz = zvy

showing that x has periods jyuj = k and juzj = ` � k. Sine gd(k; ` � k) = 1

and jxj = k + (`� k)� 2, we get by indution that x is a palindrome, and that

its pre�x of length k � 2, that is y, and its suÆx of length ` � k � 2, that is z

also are palindromes. Moreover, u = ab for letters a 6= b, and ~u = v beause

yuz = z~uy = zvy. Also, the word x (and y, and therefore also w) is omposed

only of a's and b's. Thus w is entral.

Theorem 2.2.11 assoiates, to every entral word of length m, a pair fk; `g

of relatively prime integers suh that k + ` � 2 = m. We now show that, for

eah pair fk; `g of relatively prime integers, there exists indeed a entral word

of length k + `� 2 and periods k and `.

Let h;m be relatively prime integers with 1 � h < m. De�ne a word

z

h;m

= a

1

a

2

� � � a

m�2

(a

n

2 f0; 1g)

by

a

n

=

�

(n+ 1)

h

m

�

�

�

n

h

m

�

:

These words have already been mentioned in our disussion of rational mehan-

ial words (Equation 2.1.14). Eah word z

h;m

has length m � 2 and height

h� 1.

Proposition 2.2.12. For every ouple 1 � h < m of relatively prime integers,

the word z

h;m

is entral. It has the periods k and ` where k + ` = m and

kh � 1 mod m.

Proof . De�ne k by 1 � k � m� 1, and set kh = 1+ �m. Observe that k exists

beause h and m are relatively prime. Let ` = m � k. Then `h � �1 mod m,

and ` is the unique integer in the interval [0 : : : ;m�1℄ with this property. Next

�

(n+ k)

h

m

�

= �+

�

nh+ 1

m

�
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Sine nh 6� �1 mod m for 1 � n � `� 1, it follows that

�

nh+ 1

m

�

=

�

nh

m

�

(1 � n � `� 1)

Consequently, a

n+k

= a

n

for 1 � n � `� 2. A similar argument holds when k

is replaed by ` and �1 is hanged into 1.

Assume that some integer d divides k and `. Then d divides also m. But

k and ` are relatively prime to m, so d = 1 and gd(k; `) = 1. This proves, by

Theorem 2.2.11, that z

h;m

is entral.

Example 2.2.13. The words z

1;m

= 0

m�2

and z

m�1;m

= 1

m�2

are entral.

In partiular, z

1;2

= ".

Example 2.2.14. For h = 5, m = 18, one gets z

5;18

= 0010001001000100, a

word of length 16. By inspetion, one �nds the periods 7 and 11. The previous

proposition allows to ompute them, sine 11 � 5 � 1 mod 18.

Proposition 2.2.15. Let h;m be relatively prime integers with 1 � h < m.

There exist exatly two standard words of height h and lengthm, namely z

h;m

10

and z

h;m

01. These words are balaned.

Proof. By Proposition 2.2.12, the words z

h;m

10 and z

h;m

01 are standard words

of height h and length m. They are fators of the Sturmian words s

h=m;0

and

s

0

h=m;0

and therefore are balaned. We prove that there exists only one standard

word of height h and length m ending in 10. Assume there are two, say w and

w

0

. Then

w = xy; w

0

= x

0

y

0

for some standard pairs (x; y), (x

0

; y

0

). By formula (2.2.3),

h(x)jyj � h(y)jxj = 1; h(x

0

)jy

0

j � h(y

0

)jx

0

j = 1

Sine m = jxj+ jyj and h = h(x) + h(y), this gives

h(x)m� jxjh = 1; h(x

0

)m� jx

0

jh = 1

whene

(h(x) � h(x

0

))m = (jx

0

j � jxj)h

Sine gd(m;h) = 1, m divides jx

0

j � jxj. Thus jxj = jx

0

j, that is x = x

0

and

y = y

0

.

Reall that Euler's totient funtion � is de�ned for m � 1 as the number

�(m) of positive integers less than m and relatively prime to m

Corollary 2.2.16. The number of standard words of length m is 2�(m), the

number of entral words of length m is �(m + 2), where � is Euler's totient

funtion.
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2.2.2. Standard sequenes and harateristi words

In this setion, we use partiular morphisms that will also be onsidered in the

next setion. Three of them, namely E, G, and D, were already introdued

earlier. Here, these morphisms are used to relate standard words to hara-

teristi words, and both to the ontinued fration expansion of the slope of a

harateristi word. Consider the morphisms

E :

0 7! 1

1 7! 0

; ' :

0 7! 01

1 7! 0

; ~' :

0 7! 10

1 7! 0

From these, we get other morphisms, denoted G,

~

G, D,

~

D and de�ned by

G = ' ÆE :

0 7! 0

1 7! 01

;

~

G = ~' ÆE :

0 7! 0

1 7! 10

D = E Æ ' :

0 7! 10

1 7! 1

;

~

D = E Æ ~' :

0 7! 01

1 7! 1

Of ourse, ' = G ÆE = E ÆD and ~' =

~

G ÆE = E Æ

~

D.

Lemma 2.2.17. For any real number �, the following relations hold: E(s

�;�

) =

s

0

1��;1��

and E(s

0

�;�

) = s

1��;1��

.

Proof . For n � 0,

s

0

1��;1��

(n) = d(1� �)(n+ 1) + 1� �e � d(1� �)n+ 1� �e

= 1� (d��n� �e � d��(n+ 1)� �e) = 1� s

�;�

(n)

beause �d�re = br for every real number r. This proves the �rst equality,

and the seond is symmetri.

Lemma 2.2.18. Let 0 < � < 1. For 0 � � < 1,

G(s

�;�

) = s

�

1+�

;

�

1+�

;

~

G(s

�;�

) = s

�

1+�

;

�+�

1+�

; '(s

�;�

) = s

0

1��

2��

;

1��

2��

and for 0 < � � 1,

G(s

0

�;�

) = s

0

�

1+�

;

�

1+�

;

~

G(s

0

�;�

) = s

0

�

1+�

;

�+�

1+�

; '(s

0

�;�

) = s 1��

2��

;

1��

2��

:

Proof . Let s = a

0

a

1

� � � a

n

� � � be an in�nite word, the a

i

being letters. An integer

n is the index of the k-th ourrene of the letter 1 in s if a

0

� � � a

n

ontains k

letters 1 and a

0

� � �a

n�1

ontains k� 1 letters 1. If s = s

�;�

and 0 � � < 1, this

means that

b�(n+ 1) + � = k; b�n+ � = k � 1

whih implies �n+ � < k � �(n+ 1) + �, that is

n =

�

k � �

�

� 1

�

:
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Similarly, if s = s

0

�;�

and 0 < � � 1, then

d�(n+ 1) + �e = k + 1; d�n+ �e = k

and n =

j

k��

�

k

.

Set G(s

�;�

) = b

0

b

1

� � � b

i

� � �, with b

i

2 f0; 1g. Sine every letter 1 in s

�;�

is

mapped to 01 in G(s

�;�

), the pre�x a

0

� � �a

n

of s

�;�

(where n is the index of

the k-th letter 1) is mapped onto the pre�x b

0

b

1

� � � b

n+k

of G(s

�;�

). Thus the

index of the k-th letter 1 in G(s

�;�

) is

n+ k =

&

k �

�

1+�

�

1+�

� 1

'

This proves the �rst formula.

Next, we observe that, for any in�nite word x, one has

G(x) = 0

~

G(x)

Indeed, the formula G(w)0 = 0

~

G(w) is easily shown to hold for �nite words w

by indution. Furthermore, if a Sturmian word s

�;�

starts with 0 and setting

s

�;�

= 0t, one gets t = s

�;�+�

. Altogether

~

G(s

�;�

) = s

�=(1+�);(�+�)=(1+�)

for

0 � � < 1. The proof of the other formula is similar. Finally, sine ' = G Æ E,

'(s

�;�

) = G(s

0

1��;1��

) = s

0

(1��)=(2��);(1��)=(2��)

.

Corollary 2.2.19. For any Sturmian word s, the in�nite words E(s), G(s)

~

G(s), '(s), ~'(s), D(s)

~

D(s) are Sturmian.

Formulas similar to those of Lemma 2.2.18 hold for ~';D;

~

D (Problem 2.2.6).

Reall that the harateristi word of irrational slope � is de�ned by



�

= s

�;�

= s

0

�;�

:

The previous lemmas imply

Corollary 2.2.20. For any irrational � with 0 < � < 1, one has

E(

�

) = 

1��

; G(

�

) = 

�=(1+�)

For m � 1, de�ne a morphism �

m

by

�

m

:

0 7! 0

m�1

1

1 7! 0

m�1

10

It is easily heked that

�

m

= G

m�1

ÆE ÆG :

Corollary 2.2.21. For m � 1, one has �

m

(

�

) = 

1=(m+�)

.
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Proof . Sine E Æ G(

�

) = 

1=(1+�)

, the formula holds for m = 1. Next,

G(

1=(k+�)

) = 

1=(1+k+�)

, so the laim is true by indution.

We use this orollary for onneting ontinued frations to harateristi

words. Reall that every irrational number  admits a unique expansion as a

ontinued fration

 = m

0

+

1

m

1

+

1

m

2

+

1

� � �

(2.2.8)

where m

0

;m

1

; : : : are integers, m

0

� 0, m

i

> 0 for i � 1. If (2.2.8) holds, we

write

 = [m

0

;m

1

;m

2

; : : :℄ :

The integers m

i

are alled the partial quotients of . If the sequene (m

i

) is

eventually periodi, and m

i

= m

k+i

for i � h, this is reported by overlining the

purely periodi part, as in

 = [m

0

;m

1

;m

2

; : : : ;m

h�1

;m

h

; : : : ;m

h+k�1

℄ :

Let � = [0;m

1

;m

2

; : : :℄ be the ontinued fration expansion of an irrational �

with 0 < � < 1. If, for some � with 0 < � < 1,

� = [0;m

i+1

;m

i+2

; : : :℄

we agree to write

� = [0;m

1

;m

2

; : : : ;m

i

+ �℄ :

Corollary 2.2.22. If � = [0;m

1

;m

2

; : : : ;m

i

+ �℄ for some irrational � and

0 < �; � < 1, then



�

= �

m

1

Æ �

m

2

Æ � � � Æ �

m

i

(

�

)

Let (d

1

; d

2

; : : : ; d

n

; : : :) be a sequene of integers, with d

1

� 0 and d

n

> 0 for

n > 1. To suh a sequene, we assoiate a sequene (s

n

)

n��1

of words by

s

�1

= 1; s

0

= 0; s

n

= s

d

n

n�1

s

n�2

(n � 1) (2.2.9)

The sequene (s

n

)

n��1

is a standard sequene, and the sequene (d

1

; d

2

; : : :) is

its diretive sequene. Observe that if d

1

> 0, then any s

n

(n � 0) starts with

0; on the ontrary, if d

1

= 0, then s

1

= s

�1

= 1, and s

n

starts with 1 for n 6= 0.

Every s

2n

ends with 0, every s

2n+1

ends with 1.

Example 2.2.23. The diretive sequene (1; 1; : : :) gives the standard sequen-

e de�ned by s

n

= s

n�1

s

n�2

, that is the sequene of �nite Fibonai words.

Observe that the diretive sequene (0; 1; 1; : : :) results in the sequene of words

obtained from Fibonai words by exhanging 0 and 1.
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Every standard word ours in some standard sequene, and every word

ourring in a standard sequene is a standard word. This results by indution

from the fat that, for s

n

= s

d

n

n�1

s

n�2

, one has

(s

n

; s

n�1

) = �

d

n

(s

n�2

; s

n�1

); (s

n�1

; s

n

) = �

d

n

(s

n�1

; s

n�2

)

Thus

(s

2n

; s

2n�1

) = �

d

2n

Æ �

d

2n�1

Æ � � � Æ �

d

1

(0; 1)

(s

2n

; s

2n+1

) = �

d

2n+1

Æ�

d

2n

Æ �

d

2n�1

Æ � � � Æ �

d

1

(0; 1)

By Equation 2.2.4, this gives the expressions

s

2n

= G

d

1

ÆD

d

2

Æ � � � ÆD

d

2n

(0) = G

d

1

Æ � � � ÆD

d

2n

ÆG

d

2n+1

(0)

s

2n+1

= G

d

1

ÆD

d

2

Æ � � � ÆD

d

2n+2

(1) = G

d

1

Æ � � � ÆD

d

2n

ÆG

d

2n+1

(1)

Proposition 2.2.24. Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration ex-

pansion of some irrational � with 0 < � < 1, and let (s

n

) be the standard

sequene assoiated to (d

1

; d

2

; : : :). Then every s

n

is a pre�x of 

�

and



�

= lim

n!1

s

n

:

Proof. By de�nition, s

n

= s

d

n

n�1

s

n�2

for n � 1. De�ne morphisms h

n

by

h

n

= �

1+d

1

Æ �

d

2

Æ � � � Æ �

d

n

:

We laim that

s

n

= h

n

(0); s

n

s

n�1

= h

n

(1); n � 1

This holds for n = 1 sine h

1

(0) = 0

d

1

1 = s

1

and h

1

(1) = 0

d

1

10 = s

1

s

0

. Next,

for n � 2,

h

n

(0) = h

n�1

(�

d

n

(0)) = h

n�1

(0

d

n

�1

1) = s

d

n

�1

n�1

s

n�1

s

n�2

= s

n

and

h

n

(1) = h

n�1

(0

d

n

�1

10) = s

n

s

n�1

For any in�nite word x, the in�nite word h

n

(x) starts with s

n

beause both

h

n

(0) and h

n

(1) start with s

n

. Thus, setting �

n

= [0; d

n+1

; d

n+2

; : : :℄, one has



�

= h

n

(

�

n

) by Corollary 2.2.22 and thus 

�

starts with s

n

. This proves the

�rst laim. The seond is an immediate onsequene.

It is easily heked that

�

1+d

1

Æ �

d

2

Æ � � � Æ �

d

r

= G

d

1

ÆE ÆG

d

2

ÆE Æ � � � ÆG

d

r

ÆE ÆG

=

�

G

d

1

ÆD

d

2

Æ � � � ÆD

d

r

ÆG if r is even,

G

d

1

ÆD

d

2

Æ � � � ÆD

d

r

ÆD ÆE otherwise.

Example 2.2.25. The diretive sequene for the Fibonai word is (1; 1; : : :).

The orresponding irrational is 1=�

2

= [0; 2; 1; 1; : : :℄, and indeed the in�nite

Fibonai word is the harateristi word of slope 1=�

2

.
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Example 2.2.26. Sine 1=� = [0; 1; 1; 1; : : :℄, the orresponding standard se-

quene is s

1

= 1, s

2

= 10, s

3

= 101,. . . . The sequene is obtained from the Fi-

bonai sequene by exhanging 0's and 1's, in onordane with Lemma 2.2.17,

sine indeed 1=� + 1=�

2

= 1.

Example 2.2.27. Consider � = (

p

3 � 1)=2 = [0; 2; 1; 2; 1; : : :℄. The diretive

sequene is (1; 1; 2; 1; 2; 1; : : :), and the standard sequene starts with s

1

= 01,

s

2

= 010, s

3

= 01001001, . . . , whene



(

p

3�1)=2

= 010010010100100100101001001001 � � �

Due to the periodiity of the development, we get for n � 2 that s

n+2

= s

2

n+1

s

n

if n is odd, and s

n+2

= s

n+1

s

n

if n is even.

Corollary 2.2.28. Every standard word is a pre�x of some harateristi

word.

Thus, every standard word is left speial.

Corollary 2.2.29. A word is entral if and only if it is a palindrome pre�x

of some harateristi word.

Proof. A entral word is a pre�x of some standard word, so also of some hara-

teristi word. Conversely, a palindrome pre�x of a harateristi word is a pre�x

of any suÆiently long word in its standard sequene, so also of some suÆiently

long entral word. Thus the result follows from Proposition 2.2.10.

Proposition 2.2.24 has several interesting onsequenes. The relation to �x-

points is left to setion 2.3.6. We fous on two properties, �rst the powers that

may appear in a Sturmian word, and then the omputation of the number of

fators of Sturmian words.

Let x be an in�nite word. For w 2 F (x), the index of w in x is the greatest

integer d suh that w

d

2 F (x), if suh an integer exists. Otherwise, w is said to

have in�nite index.

Proposition 2.2.30. Every nonempty fator of a Sturmian word s has �nite

index in s.

Proof. Assume the ontrary. There exist a Sturmian word s and a nonempty

fator u of s suh that u

n

is a fator of s for every n � 1. Consequently, the

periodi word u

!

is in the dynamial system generated by s. Sine this system

is minimal, F (s) = F (u

!

), a ontradition.

An in�nite word x has bounded index if there exists an integer d suh that

every nonempty fator of x has an index less than or equal to d.

Theorem 2.2.31. A Sturmian word has bounded index if and only if the on-

tinued fration expansion of its slope has bounded partial quotients.
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We start with a lemma.

Lemma 2.2.32. Let (s

n

)

n��1

be the standard sequene of the harateristi

word 

�

, with � = [0; 1 + d

1

; d

2

; : : :℄. For n � 3, the word s

1+d

n+1

n

is a pre�x of



�

, and s

2+d

n+1

n

is not a pre�x. If d

1

� 1, this holds also for n = 2.

Example 2.2.33. For the Fibonai word f = 0100101001001 � � �, we have

s

n

= f

n

and d

n

= 1 for all n. The lemma laims that for n � 2, the word f

2

n

is

a pre�x of the in�nite word f , and that f

3

n

is not. As an example, f

2

2

= 010010

is a pre�x and f

3

2

= 010010010 is not. Observe also that f

2

1

= 0101 is not a

pre�x of f .

Proof. We show that for n � 3 (and for n � 2 if d

1

� 1), one has

s

n�1

s

n

= s

n

t

n�1

; with t

n

= s

d

n

�1

n�1

s

n�2

s

n�1

Indeed

s

n�1

s

n

= s

n�1

s

d

n

n�1

s

n�2

= s

d

n

n�1

s

d

n�1

n�2

s

n�3

s

n�2

= s

d

n

n�1

s

n�2

s

d

n�1

�1

n�2

s

n�3

s

n�2

= s

n

t

n�1

provided d

n�1

� 1. Observe that t

n�1

is not a pre�x of s

n

, sine otherwise

s

n

= t

n�1

u for some word u, and s

n�1

s

n

u = s

2

n

and s

n

is not primitive.

Clearly, s

n+1

s

n

is a pre�x of the harateristi word 

�

. Sine

s

n+1

s

n

= s

d

n+1

n

s

n�1

s

n

= s

1+d

n+1

n

t

n�1

the word s

1+d

n+1

n

is a pre�x of 

�

, and sine t

n�1

is not a pre�x of s

n

, the word

s

2+d

n+1

n

is not a pre�x of 

�

.

Proof of Theorem 2.2.31. Sine a Sturmian word has the same fators as the

harateristi word of same slope, it suÆes to prove the result for harateristi

words. Let  be the harateristi word of slope � = [0; 1 + d

1

; d

2

; : : :℄. Let

(s

n

)

n��1

be the assoiated standard sequene.

To prove that the ondition is neessary, observe that s

d

n+1

n

is a pre�x of

 for eah n � 1. Consequently, if the sequene (d

n

) of partial quotients is

unbounded, the in�nite word  has fators of arbitrarily great exponent.

Conversely, assume that the partial quotients (d

n

) are bounded by some D

and arguing by ontradition, suppose that  has unbounded index. Let r be

some integer suh that F () ontains a primitive word of length r with index

greater than D+4. Among those words, let w be a word of length r of maximal

index. Let d+1 be the index of w. Then d � D+3. The proof is in three steps.

(1) The harateristi word  has pre�xes of the form w

d

, with d � D + 3.

Indeed, if w

d+1

is a pre�x of , we are done. Otherwise, onsider an ourrene

of w

d+1

. Set w = za with a a letter, and let b be the letter preeding the

ourrene of w

d+1

. If b = a, replae w by az and proeed. The proess will

stop after at most jwj�1 steps beause either a pre�x of  is obtained, or beause

otherwise w would our in  at the power d+ 2. Thus, we may assume b 6= a.
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Thus b(za)

d+1

is a fator of . This implies that a(za)

d

and b(za)

d

are fators,

so w

d

is a right speial fator, and therefore it is a pre�x of .

(2) If w

d

is a pre�x of the harateristi word , then w is one of the standard

words s

n

. Indeed, set e = d�2, so that e � D+1. Let n be the greatest integer

suh that s

n

is a pre�x of w

e+1

. Then w

e+1

is a pre�x of s

n+1

= s

d

n+1

n

s

n�1

,

thus also of s

1+d

n+1

n

. This shows that

(1 +D)jwj � (1 + e)jwj � (1 + d

n+1

)js

n

j � (1 +D)js

n

j

whene jwj � js

n

j. Now, sine both w

e+2

and s

1+d

n+1

n

are pre�xes of , one

is a pre�x of the other. If w

e+2

is the shorter one, then jw

e+2

j = jw

e+1

j +

jwj � js

n

j + jwj. Thus, w

e+2

and s

1+d

n+1

n

share a ommon pre�x of length

� js

n

j + jwj. Consequently, w and s

n

are powers of the same word, and sine

they are primitive, they are equal.

If s

1+d

n+1

n

is the shorter one then, sine (1 + e)jwj � (1 + d

n+1

)js

n

j,

�

�

s

1+d

n+1

n

�

�

= js

n

j+ d

n+1

js

n

j � js

n

j+

d

n+1

1 + d

n+1

(1 + e)jwj � js

n

j+ jwj

and the same onlusion holds.

(3) If follows that s

1+e

n

is a pre�x of  and, sine e � D+1 � d

n+1

+1, also

s

2+d

n+1

n

is a pre�x of , ontraditing Lemma 2.2.32.

We onlude this setion with the omputation of the number of fators of

Sturmian words. Another haraterization of entral words will help. Reall

that a �nite word is balaned if and only if it is a fator of some Sturmian

word. Moreover, every balaned word w, as a fator of some uniformly reurrent

in�nite word, an be extended to the right and to the left, that is wa and bw

are balaned for some letters a; b.

Proposition 2.2.34. For any word w, the following are equivalent:

(i) the word w is entral;

(ii) the words 0w0, 0w1, 1w0, 1w1 are balaned;

(iii) the words 0w1 and 1w0 are balaned.

Proof . (i) ) (ii). The words w01 and w10 are standard, and therefore are

pre�xes of some harateristi words  and 

0

. By Proposition 2.1.22 the four

in�nite words 0, 1, 0

0

and 1

0

are Sturmian, and onsequently their pre�xes

0w0, 0w1, 1w0, 1w1 are balaned. (ii)) (iii) is trivial.

(iii)) (i). We prove �rst that w is a palindrome word. Assume the ontrary.

Then there are words u,v, v

0

and letters a 6= b suh that w = uav = v

0

b~u. But

then awb = auavb = av

0

b~ub has fators aua and b~ub with height satisfying

jh(aua)� h(b~ub)j = 2, ontradition.

Let  be a harateristi word suh that 0w1 2 F (). Sine F () is losed

under reversal (Proposition 2.1.19), and w is a palindrome, 1w0 2 F (), showing

that w is a right speial fator of . Thus its reversal (that is w itself) is a pre�x

of . In view of Corollary 2.2.29, the word w is entral.
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Words satisfying ondition (ii) are sometimes alled stritly bispeial.

We now want to ount the number of balaned words of length n. We need

a lemma.

Lemma 2.2.35. Let w be a word. If w0 and w1 are balaned, then there is a

letter a suh that aw0 and aw1 are balaned.

Before giving the proof, let us observe that there seems to be a di�erene, for a

word w, to be right speial or have both extensions w0 and w1 balaned. Indeed,

a word w an only be right speial with respet to some Sturmian word s that

ontains both fators w0 and w1. On the ontrary, if w0 and w1 are balaned,

then there exist Sturmian words x an y suh that w0 2 F (x) and w1 2 F (y),

but x and y need not be the same. In fat, one an show (Problem 2.2.7) that

both notions oinide.

Proof of Lemma 2.2.35. Sine w0 and w1 are fators of Sturmian words, there

exist letters a and b suh that aw0 and bw1 are balaned. If a = b, we get

the laim. If a = 1 and b = 0, then w is entral by Proposition 2.2.34, and

therefore is balaned. Thus suppose a = 0, b = 1. Then 0w0 and 1w1 are

balaned, but neither 1w0 nor 0w1 are. Aording to Proposition 2.1.3, there

exists a palindrome word u suh that 1u1 and 0u0 are fators of 1w0. However,

sine 1w and w0 are balaned, 1u1 is a pre�x of 1w0 and 0u0 is a suÆx of

1w0. Thus there exist words p; s suh that 1w0 = 1u1s0 = 1p0u0, whene w =

u1s = p0u. Similarly, there exist words u

0

; p

0

; s

0

suh that w = u

0

0s

0

= p

0

1u

0

.

We may assume juj < ju

0

j and set u

0

= u1x = y0u for some words x; y. Then

w = y0u0s

0

= p

0

1u1x, showing that w is unbalaned, a ontradition.

Theorem 2.2.36. The number of balaned words of length n is

1 +

n

X

i=1

(n+ 1� i)�(i)

where � is Euler's totient funtion.

Proof. Let R(n) be the set of words w of length n suh that 0w and 1w are

balaned, and set r(n) = Card R(n). Then r(0) = 1 = �(1) and

r(n+ 1) = r(n) + �(n+ 2)

Indeed, for eah w 2 R(n), one has 0w 2 R(n + 1) or 1w 2 R(n + 1) by

Lemma 2.2.35, and both 0w; 1w 2 R(n + 1) if and only if w 2 R(n) and 0w1

and 1w0 are balaned, that is if and only if w is entral, by Proposition 2.2.34.

Thus r(n+ 1)� r(n) is the number of entral words of length n, whih in turn

is �(n+ 2) by Corollary 2.2.16. It follows that

r(n) =

n+1

X

i=1

�(n) :
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Let g(n) be the number of balaned words of length n. Then

g(n+ 1) = g(n) + r(n)

sine for eah balaned word w, the word w0 or w1 is balaned, and both are

balaned if and only if w 2 R(n). Sine g(0) = 1, it follows that

g(n) = 1+

n�1

X

k=0

r(k) = 1+

n�1

X

k=0

k+1

X

i=1

�(i) = 1+

n

X

k=1

k

X

i=1

�(i) = 1+

n

X

i=1

(n+1� i)�(i)

as required.

2.2.3. Frequenies

Let x be an in�nite word. Reall from Chapter 1 that the fator graph G

n

(x)

of order n is the graph with vertex set F

n

(x) and domain F

n+1

(x). A triple

(p; a; s) is an edge if and only if pa = bs 2 F

n+1

(x) for some letter b.

01 10

00

010

101

100001

0100 1001 0010

01011010

01001 10010

00100

00101

01010

10100

Figure 2.6. Fator graphs for the Fibonai word.

If x is a Sturmian word, then there is exatly one vertex in G

n

(x) with out-

degree 2. This is the right speial fator d

n

of length n. The edges leaving d

n

are (d

n

; 0; d

n�1

0) and (d

n

; 1; d

n�1

1), beause d

n�1

is a suÆx of d

n

. Similarly,

there is exatly one vertex with in-degree 2. This is the left speial fator g

n

of

length n. Let a be the letter suh that g

n

= g

n�1

a. Then the edges entering g

n

are (0g

n�1

; a; g

n

) and (1g

n�1

; a; g

n

). Observe that d

n

= g

n

if and only if d

n

is a

palindrome word. See Figure 2.6 for the word graphs of the Fibonai word.

The fator graph of order n of a Sturmian word x is omposed of three

paths: the �rst is from g

n

to d

n

, both verties inluded. This path is never

empty. There are two other paths, from d

n

to g

n

, one through vertex d

n�1

0 the
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other through d

n�1

1. We onsider that the endpoints d

n

and g

n

are not part

of these paths. Then suh a path may be empty. This happens if and only if

d

n�1

0 = g

n

or d

n�1

1 = g

n

whih in turn is the ase if and only if d

n�1

= g

n�1

beause g

n�1

is a pre�x of g

n

.

Let s = s

�;�

be a Sturmian word of slope �. We have seen how to assoiate

to s a rotation R on the unit irle. Also (Equation 2.1.11), a word w is a fator

of s if and only if the interval I

w

of the unit irle is non empty. Moreover,

an integer n � 0 is the starting index of an ourrene of w in s if and only if

R

n

(�) 2 I

w

.

Let �

N

(w) be the number of ourrenes of w in the pre�x of length N +

jwj�1 of s. This is exatly the number of integers n, with 0 � n < N , suh that

R

n

(�) 2 I

w

. It is known from number theory that the numbers R

n

(�), (n � 1)

are uniformly distributed in the interval [0; 1[. As a onsequene, the limit

�(w) = lim

N!1

�

N

(w)

always exists and is equal to the length of the interval I

w

. The number �(w) is

the frequeny of w in s. Of ourse, �(w) = 0 if and only if w =2 F (s). It is easily

seen that, for any word w, one has �(0w) + �(1w) = �(w) and symmetrially

�(w) = �(w0) + �(w1).

Theorem 2.2.37. Let s be a Sturmian word. For eah n, the frequenies of

the fators of length n take at most three values. If they take three values, then

one is the sum of the two others.

Lemma 2.2.38. Let s be a Sturmian word. Let (p; a; q) be an edge in G

n

(s).

If p is not right speial and q is not left speial, then �(p) = �(q).

Proof. There exists a letter b suh that pa = bq 2 F

n+1

(s). Sine pb; aq =2 F

n+1

,

one has �(p) = �(pa) = �(bq) = �(q).

Proof of Theorem 2.2.37. By the lemma, the frequenies are onstant on eah

of the three paths in the fator graph G

n

(s). Thus there are at most three

frequenies. Assume that none of the three paths in the fator graph is empty.

Aording to our disussion, this happens if and only if d

n�1

6= g

n�1

. Moreover,

the frequenies are those of any set of verties taken in the paths, e.g. �(d

n

),

�(d

n�1

0), and �(d

n�1

1). Set d

n

= 0d

n�1

. Sine d

n�1

is not left speial, 1d

n�1

is not a fator of s. Thus

�(d

n

) = �(0d

n�1

) = �(d

n�1

) = �(d

n�1

0) + �(d

n�1

1)

showing the seond part of the theorem.

2.3. Sturmian morphisms

All morphisms will be endomorphisms of f0; 1g

�

. The identity morphism Id

and the morphism E that exhanges the letters 0 and 1 will be alled trivial

morphisms.
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A morphism f is Sturmian if f(s) is a Sturmian word for every Sturmian

word s. Sine an erasing morphism an never be Sturmian, all morphisms

onsidered here are assumed to be nonerasing. The trivial morphisms Id and

E are Sturmian. The set of Sturmian morphisms is losed under omposition,

and onsequently is a submonoid of the monoid of endomorphisms of f0; 1g

�

.

2.3.1. A set of generators

The main result of this setion is the haraterization of Sturmian morphisms

(Theorem 2.3.7). Consider the morphisms

' :

0 7! 01

1 7! 0

~' :

0 7! 10

1 7! 0

Reall from Chapter 1 that the morphism ' generates the in�nite Fibonai

word f = '(f) = 010010100100101001010 � � �.

Proposition 2.3.1. The morphisms E, ' and ~' are Sturmian.

Proof. This follows from Corollary 2.2.19.

We shall see below that every Sturmian morphism is a omposition of these

three morphisms. The following property gives a onverse of Proposition 2.3.1.

Proposition 2.3.2. Let x be an in�nite word.

(i) If '(x) is Sturmian then x is Sturmian.

(ii) If ~'(x) is Sturmian and x starts with the letter 0, then x is Sturmian.

Proof . Let x be an in�nite word. If '(x) or ~'(x) is Sturmian, then x is learly

aperiodi. Arguing by ontradition, let us suppose that x is not balaned and

suppose that 0v0 and 1v1 are both fators of x.

Clearly, '(0v0) = 01'(v)01, '(1v1) = 0'(v)0 and every ourrene of

'(1v1) in '(x) is followed by the letter 0. Consequently 1'(v)01 and 0'(v)00

are both fators of '(x) whih is not balaned.

Next, if x does not start with 1, then either 01v1 or 11v1 is a fator of x.

But ~'(0v0) ontains the fator 10 ~'(v)1, and ~'(01v1) and ~'(11v1) both ontain

the fator 00 ~'(v)0. Consequently, ~'(x) is not balaned.

Corollary 2.3.3. Let x be an in�nite word and let f be a morphism that is

a omposition of E and '. If f(x) is Sturmian then x is Sturmian.

Example 2.3.4. We give an example of a non Sturmian word x starting with 1

and suh that ~'(x) is Sturmian. Let f be the Fibonai word. The in�nite word

11f is not Sturmian beause it ontains both 00 and 11 as fators. However,

sine f is a harateristi word, the in�nite word 0f is Sturmian. Consequently

~'('(0f)) = ~'(01f) = 100 ~'(f) is Sturmian. Thus 00 ~'(f) also is Sturmian and,

sine 00 = ~'(11), ~'(11f) is Sturmian.
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Let us denote St the submonoid of the monoid of endomorphisms obtained

by omposition of E, ' and ~' in any number and order. St is alled the monoid

of Sturm and by Proposition 2.3.1 all its elements are Sturmian. A �rst step to

the onverse is the following.

Lemma 2.3.5. Let f and g be two morphisms and let x a Sturmian word. If

f 2 St and f Æ g(x) is a Sturmian word, then g(x) is a Sturmian word.

Proof. Let x be a Sturmian word and g a morphism. It suÆes to prove the

onlusion for f = E, f = ' and f = ~'.

Set y = g(x). If E(y) is a Sturmian word then y is also a Sturmian word too

and, by Proposition 2.3.2, this also holds if '(y) is a Sturmian word. It remains

to prove that if ~'(y) is a Sturmian word then so is y.

Suppose that y is not a Sturmian word. Observe that y is aperiodi, sine

otherwise ~'(y) is eventually periodi thus it is not Sturmian. Thus y = g(x) is

not balaned and ontains two fators 0v0 and 1v1 whih are fators of images of

some fators of x. The Sturmian word x is reurrent, thus 1v1 ours in�nitely

often in y, whih implies that 01v1 or 11v1 is a fator of y. Sine ~'(0v0) =

10 ~'(v)10 and ~'(1v1) = 0~'(v)0, both 10 ~'(v)1 and 00 ~'(v)0 are fators of ~'(y)

and thus ~'(y) is not balaned. A ontradition.

Corollary 2.3.6. Let f 2 St and g be a morphism. The morphism f Æ g is

Sturmian if and only if g is Sturmian.

Proof. Assume �rst that g is Sturmian. Sine f is a omposition of E, ' and ~',

the morphism f Æ g is Sturmian by Proposition 2.3.1.

Conversely, if f Æ g is Sturmian, then for every Sturmian word x, the in�nite

word f Æ g(x) is Sturmian and, by Lemma 2.3.5, the in�nite word g(x) is Stur-

mian. This means that g is Sturmian.

A morphism f is loally Sturmian if there exists at least one Sturmian word

x suh that f(x) is a Sturmian word.

Theorem 2.3.7. Let f be a morphism. The following three onditions are

equivalent:

(i) f 2 St ;

(ii) f is Sturmian;

(iii) f is loally Sturmian.

The equivalene of (i) and (ii) means that the monoid of Sturm is exatly the

monoid of Sturmian morphisms.

The length of a morphism f is the number kfk = jf(0)j+ jf(1)j. The proof

of Theorem 2.3.7 is based on the following fundamental lemma.

Lemma 2.3.8. Let f be a non trivial morphism. If f is loally Sturmian then

f(0) and f(1) both start or end with the same letter.
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Proof . Let f be a non trivial morphism and suppose that f(0) and f(1) do not

start nor end with the same letter.

Suppose f(0) starts with the letter 0: Then f(1) starts with the letter 1:

If f(0) ends with 1 then f(1) ends with 0: But in this ase f(01) ontains a

fator 11 and f(10) ontains a fator 00: Thus the image of any Sturmian word

ontains the two fators 00 and 11 whih means that f is not loally Sturmian.

Otherwise f(0) 2 0A

�

0[f0g and f(1) 2 1A

�

1[f1g, and we prove the result

by indution on kfk:

If kfk = 3, then f(a) =  and f(b) = d for letters a; b; ; d, a 6= b, and sine

any Sturmian word x ontains the two fators a

n+1

and ba

n

b for some integer

n, f(x) ontains ()

n+1

and d()

n

d and thus is not Sturmian.

Arguing by ontradition, suppose that kfk � 4 and f is loally Sturmian.

Let x be a Sturmian word suh that f(x) is Sturmian (suh a word exists

beause f is loally Sturmian) and suppose that x ontains the fator 00 (the

ase where x ontains 11 is learly the same). Sine f(0) starts and ends with

0, f(x) ontains also 00. Consequently, sine the in�nite word f(x) is balaned,

neither f(0) nor f(1) ontains the fator 11.

Sine x is Sturmian, x does not ontain 11 and there is an integer m � 1

suh that every blok of 0 between two onseutive ourrenes of 1 is either 0

m

or 0

m+1

.

The word f(0) does not ontain the fator 00. Indeed, otherwise f(0) = u00v

and f(1) = r1 = 1s for some words u; v; r; s. Sine 0

m+1

and 10

m

1 are fators

of w, the words f(0

m+1

) and f(10

m

1) are fators of f(x). But

f(0

m+1

) = u00vf(0

m�1

)u00v = uw

1

v; f(10

m

1) = r1f(0

m�1

)u00v1s = rw

2

s

for suitable w

1

; w

2

, and one has jw

1

j = jw

2

j and Æ(w

1

; w

2

) = 2, a ontradition.

Consequently f(0) = (01)

n

0 for some integer n � 0.

Sine 10

m

1 and 10

m+1

1 are fators of x, the in�nite word f(x) ontains the

two fators 10

m

1 and 10

m+1

1 if n = 0, and the two fators 101 and 1001 if

n 6= 0. Set p = m if n = 0, and p = 1 if n 6= 0. Then in both ases, f(x)

ontains the fators 10

p

1 and 10

p+1

1, and in both ases 1 � p � m.

Sine f(1) does not ontain the fator 11, there exist an integer k � 0, and

integers m

1

; : : : ;m

k

2 f0; 1g suh that

f(1) = 10

p+m

1

10

p+m

2

1 � � � 10

p+m

k

1

Consider a new alphabet B = fa; bg and two morphisms �; � : B

�

! A

�

� :

a 7! 0

b 7! 0

p

1

� :

a 7! (01)

n

0

b 7! 0

p

1

We show that there exists a word u over B suh that f(�(b)) = �(bub).

(i) If n = 0, set u = a

m

1

ba

m

2

b : : : ba

m

k

. Sine f(1) 6= 1, one has f(1) =

1�(u)0

p

1. Thus f(�(b)) = f(0

p

1) = �(bub).

(ii) If n 6= 0 and m

1

= : : : = m

k

= 0, set u = b

k+n�1

. Sine f(1) = (10)

k

1,

one gets �(u) = (01)

k+n�1

and f(�(b)) = f(01) = �(bub).
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(iii) Otherwise n 6= 0 and m

i

= 1 for at least one integer i; 1 � i � k. Thus

there exist integers t � 2, n

1

; : : : ; n

t

suh that

f(1) = 1(01)

n

1

0(01)

n

2

0 : : : (01)

n

t�1

0(01)

n

t

Sine f(01) starts with (01)

n+1

, one has n

1

� 0, n

i

� n for 2 � i � t � 1 and

n

t

� 1. Set u = b

n

1

ab

n

2

�n

a : : : b

n

t�1

�n

ab

n

t

�1

. Then, again, f(�(b)) = f(01) =

�(bub).

De�ne a morphism g : B

�

! B

�

by

g :

a 7! a

b 7! bub

Then f Æ � = � Æ g. Sine m � p, by deleting if neessary some letters at the

beginning of x, one may suppose that x starts with 0

p

1. It follows that there

exists a (unique) in�nite word x

0

over B suh that �(x

0

) = x:

Thus there exists a (unique) in�nite word y

0

over B suh that

�

?

�

?

�

x

x

0

f

g

f(x)

y

0

�

Identifying a with 0 and b with 1, one has � = (' Æ E)

p

: If n = 0 then

� = �: If n 6= 0 then p = 1, so � = ' ÆE Æ (E Æ ')

n

: Thus sine x and f(x) are

Sturmian, the words x

0

and y

0

are Sturmian by Corollary 2.3.3. Consequently

the morphism g is loally Sturmian.

However, the words g(0) and g(1) do not start nor end with the same letter

and 3 � kgk < kfk. By indution, g is not loally Sturmian, a ontradition.

The lemma is proved.

Proof of Theorem 2.3.7. It is easily seen that (i)) (ii) and (ii)) (iii).

So let us suppose that f is a loally Sturmian morphism. The property is

straightforward if f = Id or f = E. Thus we assume kfk � 3.

Let x be a Sturmian word suh that f(x) is also a Sturmian word. Sine

f(x) is balaned, it ontains only one of the two words 00 or 11.

Suppose that f(x) ontains 00. From Lemma 2.3.8, the words f(0) and f(1)

both start or end with 0. Consider �rst the ase where f(0) and f(1) both

start with 0. Then f(0); f(1) 2 f0; 01g

+

and there exists two words u and v

suh that f(0) = '(u) and f(1) = '(v). De�ne g a morphism by g(0) = u and

g(1) = v. Then f = ' Æ g and, by Lemma 2.3.5, g(x) is a Sturmian word. Next,

kfk = kgk + juvj

0

and juvj

0

> 0. Otherwise, f(0) = '(u) and f(1) = '(v)

would ontain only 0 and f(x) = 0

!

would not be Sturmian. Thus kgk < kfk

and the result follows by indution.
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If f(0) and f(1) both end with 0, the same argument holds with ~' instead of

', and if f(x) ontains 11 then E Æf is of the same height and ontains 00.

We give here only one property of the monoid St whih shows how deide

whether a morphism is Sturmian by trying to deompose it over fE;'; ~'g.

Other properties will be seen in setion 2.3.3 and in the problem setion.

Corollary 2.3.9. The monoid of Sturm is left and right unitary, i.e. for all

morphisms f and g:

1. If f Æ g 2 St and f 2 St then g 2 St .

2. If f Æ g 2 St and g 2 St then f 2 St .

Proof . Let f and g be two morphisms suh that f Æg 2 St . Let x be a Sturmian

word. Then f Æ g(x) is a Sturmian word.

1. If f 2 St then by Lemma 2.3.5, g(x) is a Sturmian word. Consequently g

is loally Sturmian and, by Theorem 2.3.7, g 2 St .

2. If g 2 St then g(x) is a Sturmian word. Thus f is loally Sturmian and

by Theorem 2.3.7, f 2 St .

From this property we dedue an algorithm to deide whether a morphism is

Sturmian. Indeed, if f is a non trivial Sturmian morphism then f deomposes

as f = g Æ �, where g is Sturmian by Corollary 2.3.9 and where � is one of

the eight morphisms in f'; ' Æ E;E Æ ';E Æ ' Æ E; ~'; ~' Æ E;E Æ ~';E Æ ~' Æ Eg.

Aording to �, one gets the following fatorizations of f(0) and f(1).

g(0) = f(1) and f(0) = f(1)u with u = g(1) if � = ';

g(0) = f(1) and f(0) = uf(1) with u = g(1) if � = ~';

g(1) = f(1) and f(0) = f(1)u with u = g(0) if � = E Æ ';

g(1) = f(1) and f(0) = uf(1) with u = g(0) if � = E Æ ~';

g(0) = f(0) and f(1) = f(0)u with u = g(1) if � = ' ÆE;

g(0) = f(0) and f(1) = uf(0) with u = g(1) if � = ~' ÆE;

g(1) = f(0) and f(1) = f(0)u with u = g(0) if � = E Æ ' ÆE;

g(1) = f(0) and f(1) = uf(0) with u = g(0) if � = E Æ ~' ÆE.

Proposition 2.3.10. A morphism f is Sturmian if and only if, with f as

input, the algorithm below ends with g = Id or E. In this ase, the output h is

a deomposition of f over fE;'; ~'g.

Algorithm:

input: f morphism;

output: h morphism;

loal: g morphism;

begin

g  f;

h Id;

while one of the two words g(0) and g(1) is a proper pre�x

or a proper suÆx of the other

do if g(1) = g(0)u then
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g(1) u; h ' ÆE Æ h

else if g(1) = ug(0) then

g(1) u; h ~' ÆE Æ h

else if g(0) = g(1)u then

g(0) u; h E Æ ' Æ h

else fg(0) = ug(1)g

g(0) u; h E Æ ~' Æ h;

if g = E then h E Æ h

end.

Observe that f(0) may be both a proper pre�x and a proper suÆx of f(1)

(or vie versa). In this ase, there are two deompositions of f over fE;'; ~'g.

These are obtained in the algorithm by inverting the order in the tests. We

shall see in Setion 2.3.3, that these are all deompositions (not ontaining E

2

)

of a given Sturmian morphism over fE;'; ~'g.

2.3.2. Standard morphisms

In this setion it will be onvenient to onsider unordered standard pairs. An

unordered standard pair is a set fx; yg suh that either (x; y) or (y; x) is a

standard pair.

In partiular, if fx; yg is a unordered standard pair then fE(x); E(y)g is a

unordered standard pair. On the ontrary, f ~'(x); ~'(y)g is never a unordered

standard pair beause ~'(x) and ~'(y) both end with the same letter (Proposi-

tion 2.2.2).

Consequently, Sturmian morphisms that are ompositions of E and ' are

an interesting speial ase. Beause of the following proposition, a morphism is

alled standard if it is a omposition of E and '.

Proposition 2.3.11. A morphism f is standard if and only if ff(0); f(1)g is

an unordered standard pair.

Proof . Assume �rst that f is standard and, arguing by indution on kfk, suppose

that ff(0); f(1)g is an unordered standard pair. If g = f ÆE, then fg(0); g(1)g =

ff(0); f(1)g is an unordered standard pair. If g = f Æ ', then fg(0); g(1)g =

ff(0)f(1); f(0)g is also an unordered standard pair.

Conversely, assume that ff(0); f(1)g is an unordered standard pair, and

that jf(0)j > jf(1)j. Then f(0) = f(1)v for some word v, and fv; f(1)g is an

unordered standard pair. By indution, there is a standard morphism g suh

that fg(0); g(1)g = fv; f(1)g. If g(0) = f(1) and g(1) = v then f = g Æ', in the

other ase f = g ÆE Æ '. Thus f is standard.

The set of standard morphisms is interesting beause these morphisms are

losely related to harateristi words (reall that an in�nite word x is har-

ateristi if and only if 0x and 1x are Sturmian words), as it will appear in a

moment.
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A morphism f is harateristi if f(x) is a harateristi word for every har-

ateristi word x, and it is loally harateristi if there exists a harateristi

word x suh that f(x) is a harateristi word.

The following theorem is an analogue of Theorem 2.3.7 for standard mor-

phisms.

Theorem 2.3.12. Let f be a morphism. The following onditions are equiv-

alent:

(i) f is standard;

(ii) f is harateristi;

(iii) f is loally harateristi.

To prove this result we need the following lemma.

Lemma 2.3.13. Let x be an in�nite word.

1. x is harateristi if and only if E(x) is harateristi.

2. x is harateristi if and only if '(x) is harateristi.

Proof. This is a onsequene of Corollary 2.2.20 and Proposition 2.3.2.

Proof of Theorem 2.3.12. The impliation (ii)) (iii) is obvious and the impli-

ation (i)) (ii) is an immediate onsequene of Lemma 2.3.13.

Let f be a loally harateristi morphism. Then f is loally Sturmian and

by Theorem 2.3.7, it is a omposition of E, ' and ~'. We show that no ourrene

of ~' appears in the deomposition of f , by indution on kfk.

If kfk = 2 then f = Id or f = E and the result holds.

Assume kfk � 3 and let x be a harateristi word suh that f(x) is har-

ateristi.

If x ontains 11 as a fator then we an replae x by E(x) whih is also

a harateristi word (Lemma 2.3.13) and onsider f Æ E instead of f , and if

f(x) ontains 11 as a fator then we an onsider E Æ f instead of f . Sine

kfk = kf Æ Ek = kE Æ fk, we may suppose that x and f(x) both ontain the

fator 00 (and thus none ontains the fator 11).

Sine x and f(x) are harateristi, both 1x and 1f(x) are Sturmian, and

thus both x and f(x) start with the letter 0, and thus f(0) also starts with 0.

If f(1) starts with 1 then, by Lemma 2.3.8, f(0) and f(1) both end with the

same letter. If this letter is a 1 then 11 is a fator of f(01) and thus of f(x)

whih is impossible. So f(0) and f(1) both end with the letter 0. Let r � 1 be

suh that x starts with 0

r

1. Sine 0x is Sturmian, x ontains 0

r+1

1 and then

10

r+1

as a fator. Consequently 1f(0

r

)1 is a pre�x of 1f(x) and 0f(0

r

)0 is a

fator of f(x). A ontradition.

Thus, f(1) starts with 0 and sine f(0) and f(1) do not ontain 11 as a fator,

f(0) 2 f01; 0g

+

and f(1) 2 f01; 0g

+

. Consequently there exists a morphism g

suh that f = ' Æ g with kgk < kfk. But ' Æ g(x) is harateristi thus g(x) is

harateristi (Lemma 2.3.13) and, by indution, g 2 fE;'g

�

. So f is standard.
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2.3.3. A presentation of the monoid of Sturm

In this setion, it will be onvenient to write the omposition of morphisms as

a onatenation (so we will write fg instead of f Æ g).

Let G = 'E and

~

G = ~'E. Clearly, the monoid of Sturm St is also generated

by E, G and

~

G.

Theorem 2.3.14. The monoid of Sturm has the presentation

E

2

= Id; (2.3.1)

GEG

k

E

~

G =

~

GE

~

G

k

EG; k � 0 : (2.3.2)

Formula (2.3.2) an be rewritten, in terms of the generators ' and ~', as

'('E)

k

E ~' = ~'( ~'E)

k

E'; k � 0 :

Proof. We onsider words over the alphabet fE;G;

~

Gg. For eah word W over

fE;G;

~

Gg, denote by f

W

the Sturmian morphism de�ned by omposing the

letters of W . Two words W and W

0

are equivalent if f

W

= f

W

0

. The words

W and W

0

are ongruent (W � W

0

) if one an obtain one from the other by a

repeated appliation of (2.3.1) and (2.3.2) viewed as rewriting rules (i.e. if W

andW

0

are in the same equivalene lass of the ongruene generated by (2.3.1)

and (2.3.2)).

We prove that equivalent words are ongruent (the onverse is lear). Let

W;W

0

be equivalent words. The proof is by indution on jWW

0

j. We may

assume that W and W

0

do not ontain E

2

. Sine E;G;

~

G are injetive, we may

also assume that W and W

0

do not start with the same letter. Observe that if

W starts with ' or ~', then jf

W

(01)j

1

< jf

W

(01)j

0

and if W starts with E Æ' or

E Æ ~', then jf

W

(01)j

1

> jf

W

(01)j

0

. Consequently W starts with E if and only

if W

0

starts with E, so we suppose that none does. Finally, sine G

~

G �

~

GG, we

may assume that one of W and W

0

starts with G

n

E and the other with

~

G

p

E

with n 6= 0 and p 6= 0 . Thus

W =

~

G

r

1

E

~

G

r

2

G

s

2

E � � �E

~

G

r

q

G

s

q

W

0

= G

s

0

1

E

~

G

r

0

2

G

s

0

2

E � � �E

~

G

r

0

q

0

G

s

0

q

0

with r

1

; s

0

1

� 1, r

i

; s

i

; r

0

i

; s

0

i

� 0, and r

i

+ s

i

� 1 for 2 � i < q, r

0

j

+ s

0

j

� 1for

2 � j < q

0

.

Observe �rst that f

W

0

(0) and f

W

0

(1) both start with the letter 0 (beause

G does).

Next, s

2

= 0. Indeed, otherwise W is ongruent to a word starting with

~

G

r

1

EG, and sine

~

G

r

1

EG(0) and

~

G

r

1

EG(1) both start with the letter 1, W

0

is

not equivalent to W .

If s

i

= 0 for i = 3; : : : ; q, then W =

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

q

, and f

W

(0) or

f

W

(1) starts with the letter 1, aording to whether q is even or odd. Thus,

there is a smallest i � 3 suh that s

i

� 1. Then W is ongruent to a word

starting with

U =

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

i�2

E

~

G

r

i�1

EG
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If i is even, then f

U

(0) and f

U

(1) start with the letter 1. Thus i is odd, and

using (2.3.2), U is ongruent to

U

0

=

~

G

r

1

E

~

G

r

2

E � � �E

~

G

r

i�2

�1

GEG

r

i�1

E

~

G

and eventually U is ongruent to

G

~

G

r

1

�1

EG

r

2

E

~

G

r

3

E � � �E

~

G

r

i�2

EG

r

i�1

E

~

G

Thus W

0

and some word ongruent to W start with the same letter. By indu-

tion, they are ongruent.

As a orollary, we obtain a presentation of the monoid of standard mor-

phisms.

Corollary 2.3.15. The only nontrivial identity in the monoid of standard

morphisms generated by E and ' is E

2

= Id.

2.3.4. Conjugate morphisms

In this setion, we haraterize Sturmian morphisms by standard morphisms.

The main notion is a speial kind of onjugay relation for morphisms.

Let f and g be morphisms. The morphism g is a right onjugate of f , in

symbols f / g if there is a word w suh that

f(x)w = wg(x); for all words x 2 A

�

(2.3.3)

This implies that the words f(x) and g(x) are onjugate, and moreover all pairs

(f(x); g(x)) share the same \sandwih" word w. It suÆes, for (2.3.3) to hold,

that

f(a)w = wg(a); for all letters a 2 A (2.3.4)

sine by indution f(xa)w = f(x)f(a)w = f(x)wg(a) = wg(xa). Observe that if

(2:3:4) holds for a nonempty word w, then all words f(a) for a 2 A start with the

same letter. Right onjugay is a preorder over the set of all morphisms over A.

Indeed, if f(x)w = wg(x) and g(x)v = vh(x), then f(x)wv = wg(x)v = wvh(x).

Example 2.3.16. The morphism ~' is a right onjugate of ' sine '(0)0 =

010 = 0~'(0) and '(1) = ~'(1) = 0. Observe that ' is not a right onjugate of ~'

sine ~'(0) and ~'(1) do not start with the same letter.

This example shows that right onjugay is not a symmetri relation. However,

one has the following formulas.

Lemma 2.3.17. Let f; g; f

0

; g

0

be morphisms.

(i) If f / g and f

0

/ g, then f / f

0

or f

0

/ f ,

(ii) If f / g and f / g

0

, then g / g

0

or g

0

/ g,

(iii) If f / g and f

0

/ g

0

, then f Æ f

0

/ g Æ g

0

.



2.3. Sturmian morphisms 83

Proof. We start with the �rst impliation. If f(x)w = wg(x) and f

0

(x)v = vg(x),

then for onvenient x, the word g(x) is longer than v and w. Thus w is a suÆx

of v or vie-versa. Assume v = zw. Then zf(x) = f

0

(x)z. The seond is

symmetri.

For the third, assume f(x)w = wg(x) for all words x. For any morphism h,

h(f(x)w) = h(f(x))h(w) = h(w)h(g(x)), and onsequently h Æ f / h Æ g. Also

f(h(x))w = wg(h(x)), showing that f Æ h / g Æ h. Thus, if f / g and f

0

/ g

0

, then

f Æ f

0

/ g Æ f

0

/ g Æ g

0

.

The next result states that the monoid of Sturm is the losure under right

onjugay of the monoid of standard morphisms.

Proposition 2.3.18. A morphism is Sturmian if and only if it is a right on-

jugate of some standard morphism.

Proof. We show �rst that a Sturmian morphism is a right onjugate of some

standard morphism. Let g be a Sturmian morphism, and onsider a deompo-

sition

g = h

1

Æ h

2

Æ � � � Æ h

n

with h

1

; : : : ; h

n

2 fE;'; ~'g. If none of the h

i

is equal to ~', then g is standard.

Otherwise, onsider the smallest i suh that h

i

= ~'. Then g = g

0

Æ ~' Æ g

00

,

for g

0

= h

1

Æ � � � Æ h

i�1

and g

00

= h

i+1

Æ � � � Æ h

n

. By indution, g

00

is a right

onjugate of some standard morphism f

00

, and sine '/ ~' and by Lemma 2.3.17,

g

0

Æ ' Æ f

00

/ g, with g

0

Æ ' Æ f

00

a standard morphism.

Conversely, let f be a standard morphism, and let g be a right onjugate

of f . Then there is a word w suh that f(x)w = wg(x) for every word x. It

follows that, for any in�nite word s, one has f(s) = wg(s). If s is a Sturmian

word, then g(s) is a Sturmian word, and g is a Sturmian morphism.

We start an expliit desription of the right onjugates of a standard mor-

phism by the following observation.

Proposition 2.3.19. Right onjugate standard morphisms are equal.

Proof . Let f and f

0

be two standard morphisms, and assume f / f

0

. There is a

word w suh that

f(0)w = wf

0

(0); f(1)w = wf

0

(1) (2.3.5)

Set x = f(0), y = f(1), and x

0

= f

0

(0), y

0

= f

0

(1). Then jxj = jx

0

j and jyj =

jy

0

j. Next, by Proposition 2.3.11, fx; yg and fx

0

; y

0

g are unordered standard

pairs. If fx; yg = f0; 1g, then fx; yg = fx

0

; y

0

g and f = f

0

. Otherwise, the

words xy, yx, x

0

y

0

and y

0

x

0

are standard words with same height and length

by (2:3:5), and moreover xy 6= yx, x

0

y

0

6= y

0

x

0

by Proposition 2.2.2. In view

of Proposition 2.2.15, there exist exatly two standard words of this height and

length. Thus xy = x

0

y

0

or (xy = y

0

x

0

and yx = x

0

y

0

). In the �rst ase, f = f

0

.

In the seond ase, assume jxj � jyj. Then x is a pre�x of y, and the equation

yx = x

0

y

0

shows that x = x

0

. Thus f = f

0

in this ase also.
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We now show a way to onstrut all Sturmian morphisms from standard

morphisms.

As in Lothaire (1983) Setion 1.3, we use the permutation  over A

+

de�ned

by (ax) = xa, a 2 A, x 2 A

�

. Two words x; y are onjugate if and only if

y = 

i

(x) for some 0 � i < jxj.

Let f be a standard morphism. For 0 � i � kfk � 1, de�ne a morphism f

i

by f

i

(01) = 

i

(f(01)) and jf

i

(0)j = jf(0)j.

Example 2.3.20. Let f be the morphism de�ned by f(0) = 01010, f(1) = 01.

The orresponding 7 morphisms are

f

0

: 0 7! 01010 ; 1 7! 01

f

1

: 0 7! 10100 ; 1 7! 10

f

2

: 0 7! 01001 ; 1 7! 01

f

3

: 0 7! 10010 ; 1 7! 10

f

4

: 0 7! 00101 ; 1 7! 01

f

5

: 0 7! 01010 ; 1 7! 10

f

6

: 0 7! 10101 ; 1 7! 00

It is easily heked that all morphisms exept f

6

are Sturmian and are right

onjugates of f .

Proposition 2.3.21. Let f be a non trivial standard morphism. The right

onjugates of f are the morphisms f

i

, for 0 � i � kfk � 2.

This means that the morphism f

kfk�1

is never Sturmian (in the example above,

this was f

6

).

Proof. Let g be a right onjugate of f . Then f(01)w = wg(01) for some word

w, so g = f

i

for some i.

For the onverse, we show �rst that f

i

(0) and f

i

(1) start with the same letter

if and only if 0 � i � kfk � 3. Indeed, set x = f(0), y = f(1), x

0

= f

i

(0) and

y

0

= f

i

(1), and set n = jxj = jx

0

j. The word x

0

y

0

is a fator of xyxy, thus

there exists a non empty word t of length i suh that xyxy starts with tx

0

y

0

.

The �rst letter of x

0

is the (i + 1)th letter of xy. The �rst letter of y

0

is the

(n + i + 1)th letter of xyx, i.e. the (i + 1)th letter of yx. Sine fx; yg is an

unordered standard pair, only the last two letters of the words xy and yx are

di�erent by Proposition 2.2.2. Consequently the �rst letter of x

0

is equal to the

�rst letter of y

0

if and only if i+ 1 � kfk � 2.

For any i with 0 � i � kfk � 3, set f

i

(0) = au, f

i

(1) = av for a letter a

and words u; v. Then f

i+1

(0) = ua, f

i+1

(1) = va. Thus f

i

(0)a = af

i+1

(0),

f

i

(1)a = af

i+1

(1), showing that f

i

/ f

i+1

, whene f / f

i+1

.

Proposition 2.3.22. Let g be a Sturmian morphism. There exists a unique

standard morphism f suh that f /g. This standard morphism is obtained from

any deomposition of g in elements of fE;'; ~'g by replaing all the ourrenes

of ~' by '.



2.3. Sturmian morphisms 85

Proof. Let g be a Sturmian morphism, and let f be obtained from a deompo-

sition of g in elements of fE;'; ~'g by replaing all the ourrenes of ~' by '.

Sine f is a omposition of E and ', f is standard. Moreover, sine ' / ~', one

has f / g by repeated appliation of Lemma 2.3.17(iii).

Moreover if there exists a standard morphism f

0

suh that f

0

/ g then by

Lemma 2.3.17, one has f

0

/ f or f / f

0

. By Proposition 2.3.19, f = f

0

whih

proves that f is unique.

2.3.5. Automorphisms of the free group

Consider two letters

�

0;

�

1 not in A = f0; 1g. The free monoid A

�

= f0; 1;

�

0;

�

1g

�

is equipped with an involution by de�ning

�

�a = a for a 2 A, and uv = �v�u. The

free group F (A) over A = f0; 1g is the quotient of the free monoid A

�

under the

ongruene relation generated by 0

�

0 �

�

00 � 1

�

1 �

�

11 � ". A word in A

�

without

fators of the form 0

�

0;

�

00; 1

�

1;

�

11 is redued. Every word in A

�

is equivalent to a

unique redued word. If w is redued, so is �w. The free group an be viewed as

the set of redued words. The produt of two elements in F (A) is the redued

word equivalent to the onatenation of the redued words orresponding to the

group elements, and the inverse of an element in F (A) represented by w is �w.

An element in F (A) has a length. It is the length of its orresponding redued

word.

In this setion, we give a haraterization of Sturmian morphisms in terms

of automorphisms of the free group F (A).

Any morphism f on A is extended in a natural way to an endomorphism

on F (A), by de�ning f(

�

0) = f(0), f(

�

1) = f(1). It follows that f( �w) = f(w)

for any w 2 F (A). Conversely, onsider an endomorphism f of F (A). It is

alled positive if the (redued) words f(0) and f(1) are words over A, that is

do not ontain any barred letter. An endomorphism f that is a bijetion is an

automorphism. Its inverse is denoted f

�1

.

The morphisms E;' and ~' are extended to F (A) by

E :

0 7! 1

1 7! 0

�

0 7!

�

1

�

1 7!

�

0

' :

0 7! 01

1 7! 0

�

0 7!

�

1

�

0

�

1 7!

�

0

~' :

0 7! 10

1 7! 0

�

0 7!

�

0

�

1

�

1 7!

�

0

They are automorphisms, and their inverses are given by

E

�1

= E
'

�1

:

0 7! 1

1 7!

�

10

~'

�1

:

0 7! 1

1 7! 0

�

1

It follows that every Sturmian morphism is a (positive) automorphism of F (A).

The onverse also holds.

Theorem 2.3.23. The positive automorphisms of F (A) are exatly the Stur-

mian morphisms.
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The theorem states that the three morphisms E;'; ~' are a set of generators

of the monoid of positive automorphisms. The full automorphism group of a

free group is a well-known objet (see Notes). In partiular, sets of generators

an be expressed in terms of so-alled Nielsen transformations. In the present

ase, the morphisms

0 7! 0

1 7!

�

1

0 7!

�

0

1 7! 1

0 7! 01

1 7! 1

0 7! 0

1 7! 10

generate the automorphism group of F (A). The two last morphisms are E Æ ~'

and ~' ÆE.

We �rst prove a speial ase of the theorem.

Proposition 2.3.24. Let f be a positive automorphism of F (A). If the words

f(0) and f(1) do not end with the same letter, then f is a standard Sturmian

morphism.

Proof. Let f be a positive automorphism of F (A). We may assume jf(0)j �

jf(1)j. We suppose �rst that f(0) is not a pre�x of f(1). There exist words u,

v

0

, v

1

over A suh that v

0

and v

1

start with di�erent letters and f(0) = uv

0

and f(1) = uv

1

. Sine f(0) and f(1) do not end with the same letter, the

words v

0

and v

1

also end with di�erent letters. The images of redued words

of length 2 under f are uv

a

uv

b

, uv

a

�v

b

�u, �v

a

v

b

, �v

a

�u�v

b

�u. Eah of these words is

redued beause v

0

and v

1

start and end with di�erent letters. It follows that

for any redued word w of length at least 2, the redued word f(w) has length

at least 2. Consider now any letter a 2 A. Sine jf(f

�1

(a))j = 1, it follows that

jf

�1

(a)j = 1, that is f is either the identity or E. Thus f is Sturmian.

Next, if f(0) is a pre�x of f(1), there exists a word u suh that f(1) = f(0)u.

De�ne a morphism g by g(0) = f(0) and g(1) = u. Then f = g Æ ' Æ E. Sine

f is a bijetion, g is also a bijetion. By indution on kgk, the morphism g is a

standard Sturmian morphism, and so is f .

Proof of Theorem 2.3.23. Let g be a positive automorphism. The words g(01)

and g(10) are di�erent beause g is a bijetion. They have same length. Let u

be their longest ommon suÆx. There exist words v

0

; v

1

over A of same length

suh that g(01) = v

0

u, g(10) = v

1

u and v

0

, v

1

do not end with the same letter.

Sine for letters a 6= b, g(aba) = v

a

ug(a) = g(a)v

b

u, the words ug(a) end with

u. De�ne a morphism f by f(a) = ug(a)�u for a 2 f0; 1g. Then f(w) = ug(w)�u

for all w in F (A). Sine ug(a) ends with u for a 2 f0; 1g, the morphism f is

positive.

Sine g is a bijetion, f is also a bijetion. Moreover f(01) = uv

0

and

f(10) = uv

1

end with di�erent letters and sine f is positive, also f(0) and

f(1) end with di�erent letters. By Proposition 2.3.24, f is a standard Sturmian

morphism. Now f(0)u = ug(0) and f(1)u = ug(1) whih means that g is a right

onjugate of f . Consequently, by Proposition 2.3.18, g is a Sturmian morphism.
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2.3.6. Fixpoints

In this setion, we make use of Theorem 2.3.12 to desribe those harateristi

words that are �xpoints of standard morphisms. As an example, we know from

Chapter 1 that the morphism ' �xes the in�nite Fibonai word f .

We say that a morphism h �xes an in�nite word x if h(x) = x. In this ase,

x is a �xpoint of h. Every in�nite word is �xed by the identity, and no in�nite

word is �xed by E.

For the desription of harateristi words whih are �xpoints of morphisms,

we introdue a speial set of irrational numbers. A Sturm number is a number

� that has a ontinued fration expansion of one of the following kinds:

(i) � = [0; 1; a

0

; a

1

; : : : ; a

k

℄, with a

k

� a

0

,

(ii) � = [0; 1 + a

0

; a

1

; : : : ; a

k

℄, with a

k

� a

0

� 1.

Observer that (i) implies � > 1=2, and (ii) implies � < 1=2. More preisely, �

has an expansion of type (i) if and only if 1� � has an expansion of type (ii).

Consequently, � is a Sturm number if and only 1� � is a Sturm number.

As an example, 1=� = [0; 1℄ is overed by the �rst ase (for k = 1 and

a

k

= a

0

= 1), and 1=�

2

= [0; 2; 1℄ is overed by the seond ase.

We shall give later (Theorem 2.3.26) a simple algebrai desription of Sturm

numbers. There is also a simple ombinatori haraterization of these numbers

(Problem 2.3.4).

Theorem 2.3.25. Let 0 < � < 1 be an irrational number. The harateristi

word 

�

is a �xpoint of some non trivial morphism if and only if � is a Sturm

number.

Proof. Let

� = [0;m

1

;m

2

; : : :℄

be the ontinued fration expansion of �, and suppose that f(

�

) = 

�

for some

morphism f . In view of Theorem 2.3.12, the morphism f is standard. Thus, f

is a produt of E and G, and is not a power of E. Also, f is not a proper power

of G, beause a morphism G

n

with n � 1 �xes only the in�nite word 0

!

. Thus

(we write omposition as onatenation), f has the form

f = G

n

1

EG

n

2

� � �EG

n

k

EG

n

k+1

for some k � 1, n

1

; n

k+1

� 0, and n

2

; : : : ; n

k

� 1. We use the morphisms

�

m

= G

m�1

EG for m � 1 and the fat (Corollary 2.2.21) that

�

m

(

�

) = 

1=(m+�)

:

There are three ases.

(a) Suppose �rst that n

k+1

> 0. Then

f = �

n

1

+1

�

n

2

� � � �

n

k

G

n

k+1

�1

Sine f �xes 

�

, this implies

[0;m

1

;m

2

; : : :℄ = [0; 1 + n

1

; n

2

; : : : ; n

k

; n

k+1

� 1 +m

1

;m

2

; : : :℄
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whih in turn givesm

1

= 1+n

1

,m

2

= n

2

, . . . ,m

k

= n

k

,m

k+1

= n

k+1

�1+m

1

=

n

k+1

+ n

1

, and m

j

= m

j+k

for j � 2. Thus

� = [0; 1 + n

1

; n

2

; : : : ; n

k+1

+ n

1

℄; with n

1

� 0; n

2

; : : : ; n

k+1

� 1 (2.3.6)

(b) Suppose now that n

k+1

= 0, and onsider the morphism f

0

= EfE. From



�

= f(

�

), it follows that f

0

(E

�

) = E

�

, that is f

0

(

�

) = 

�

for � = 1 � �.

Now

f

0

= EG

n

1

EG

n

2

� � �EG

n

k

where n

1

� 0 and n

2

; : : : ; n

k

� 1. There are two sub-ases.

(b.1) If n

1

= 0, then k � 3 and

f

0

= G

n

2

� � �EG

n

k

= �

n

2

+1

� � � �

n

k�1

G

n

k

�1

whene, as above, � = [0; 1 + n

2

; n

3

; : : : ; n

k�1

; n

2

+ n

k

℄ and sine n

2

� 1,

� = 1� � = [0; 1; n

2

; n

3

; : : : ; n

k�1

; n

2

+ n

k

℄ with n

2

; : : : ; n

k

� 1 (2.3.7)

(b.2) If n

1

� 1, then

f

0

= EG

n

1

� � �EG

n

k

= �

1

�

n

1

� � � �

n

k�1

G

n

k

�1

whene as above � = [0; 1; n

1

; : : : ; n

k�1

; n

k

℄ and

� = 1� � = [0; 1 + n

1

; n

2

; n

3

; : : : ; n

k

; n

1

℄ with n

1

; : : : ; n

k

� 1 (2.3.8)

To show that Equations (2.3.6){(2.3.8) desribe exatly Sturm numbers, observe

that Equation (2.3.6) with n

1

= 0 orresponds, in the de�nition of Sturm num-

bers, to ase (i) with a

k

= a

0

, that Equation (2.3.6) with n

1

> 0 orresponds

to ase (ii) with a

k

> a

0

, that Equation (2.3.7) is equivalent to ase (i) with

a

k

> a

0

and that Equation (2.3.8) is ase (ii) with a

k

= a

0

.

The proof that a Sturm number indeed yields a �xpoint is exatly the reverse

of the previous one.

Sturm numbers have a simple algebrai desription. Clearly, a Sturm number

� is quadrati irrational, that is solution of some equation

x

2

+ px+ q = 0

with rational oeÆients p; q. The other solution of this equation is the onjugate

of �, denoted by ��, and satis�es ��� = q. It is easy to prove that the onjugate

of 1� � is 1� ��, and that the onjugate of 1=� is 1=��.

Theorem 2.3.26. A quadrati irrational � with 0 < � < 1 is a Sturm number

if and only if 1=�� < 1.

We need some fats from number theory. A quadrati irrational number 

is said to be redued if  > 1 and �1 < � < 0. This is equivalent to 1 > 1= > 0

and 1=� < �1. It is known that
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1. the ontinued fration of a quadrati irrational  is purely periodi if and

only if  is redued.

2. if  is redued and  = [a

1

; : : : ; a

n

℄, then �1=� = [a

n

; : : : ; a

1

℄.

Proof of Theorem 2.3.26. The ondition 1=�� < 1 is equivalent to �� =2 [0; 1℄.

This in turn is equivalent to 1 � �� =2 [0; 1℄. Thus �� veri�es the ondition if

and only if 1 � �� does. Consequently, it suÆes to prove the equivalene for

0 < � < 1=2. We have to prove that 1=�� < 1 if and only if

� = [0; 1 + a

0

; a

1

; : : : ; a

k

℄; with a

k

� a

0

� 1 :

Let �rst � be a Sturm number with 0 < � < 1=2. Then

� =

1

1 + a

0

+

1



; with  = [a

1

; : : : ; a

k

℄; a

k

� a

0

� 1 (2.3.9)

Thus  is redued, and sine �1=� = [a

k

; : : : ; a

1

℄ > a

k

, it follows from (2.3.9)

that

1=�� = 1 + a

0

+ 1=� < 1 + a

0

� a

k

� 1 :

Conversely, let 0 < � < 1=2 be a quadrati irrational with 1=�� < 1. Sine

2 < 1=�, write

1=� = 1 + a

0

+ 1= (2.3.10)

where a

0

= b1=�� 1 � 1 and 1 < 1= < 1. From 1=�� < 1 and the onjugate

of (2:3:10), one gets

1=� < �a

0

� �1

Thus  is redued, and writing  = [a

1

; : : : ; a

k

℄, one gets

a

0

< �1=� = [a

k

; : : : ; a

1

℄ < a

k

+ 1

whene a

k

� a

0

� 1 and

� =

1

1 + a

0

+

1



= [0; 1 + a

0

; a

1

; : : : ; a

k

℄ :

Problems

Setion 2.1

2.1.1 We onsider two-sided in�nite words over f0; 1g of omplexity n+ 1.

1. Show that the word x de�ned by x(k) = 1 for k � 0, and x(k) = 0

for k < 0 has n+ 1 fators of length n for eah n � 0.

2. Let z =2 0

�

[ 1

�

be a entral word with period k and `, and set

w = p10q where p and q are palindrome words with k = jpj, ` = jqj.

De�ne two (onesided) in�nite words x = (10q)

!

and y = (01p)

!

. Then

the two-sided in�nite word ~yzx has n + 1 fators of length n for eah

n � 1. (These are the only two-sided in�nite words with omplexity

n+ 1, see Coven and Hedlund 1973.)
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2.1.2 Let x be an in�nite word whih ontains in�nitely many ourrenes of

0 and of 1. The ell-ondition for x is the following: for any words w;w

0

suh that jwj

0

= jw

0

j

0

and 0w0; 0w

0

0 2 F (x), one has

�

�

jwj � jw

0

j

�

�

� 1,

and the same ondition with 0 and 1 exhanged. Show that x is balaned

if and only if x satis�es the ell-ondition. (Morse and Hedlund 1940.

A proof onsists in onsidering the word y suh that x = G(y).)

2.1.3 Let x be an in�nite word. For n � 1, let X

n

be the set of fators of x

starting with 0, ending with 0, and ontaining exatly n ourrenes of

the letter 0. De�ne similarly Y

n

, replaing 0 by 1. Show that x is Stur-

mian if and only if Card(X

n

) = Card(Y

n

) = n for every n (Rihomme

1999a).

2.1.4 Show that a word w is unbalaned if and only if it admits a fator-

ization w = xauayb~ubz for words u; x; y; z and letters a 6= b. Use this

haraterization to prove that the set of unbalaned words is a ontext-

free language. (Duluq and Gouyou-Beauhamps 1990, see also Mignosi

1991, 1990)

Setion 2.2

2.2.1 Show that for any standard word w 6= 0; 1, there is only one standard

pair (x; y) suh that w = xy or w = yx.

2.2.2 De�ne sequenes of words (A

n

)

n�0

and (B

n

)

n�0

by

A

0

= a; B

0

= b

and

R

1

:

A

n+1

= A

n

B

n+1

= A

n

B

n

and R

2

:

A

n+1

= B

n

A

n

B

n+1

= B

n

The R

i

's are alled Rauzy's rules (see Rauzy 1985).

1. Show that, provided eah of the rules R

i

is applied in�nitely many

often, the sequenes A

n

and B

n

onverge to the same in�nite word

whih is harateristi.

2. Show that onversely every harateristi word is obtained in this

way.

2.2.3 Let 0 � h � m be integers with (h;m) = 1. The lower and upper

Christo�el words t

h;m

and t

0

h;m

are de�ned by t

0;1

= t

0

0;1

= 0, t

1;1

=

t

0

1;1

= 1, and t

h;m

= 0z

h;m

1, t

0

h;m

= 1z

h;m

0 if m � 2. These are exatly

the words de�ned in Setion 2.1.2.

1. Show that if h

0

m�m

0

h = 1, then

t

h;m

t

h

0

;m

0

= t

h+h

0

;m+m

0

; t

0

h

0

;m

0

t

0

h;m

= t

0

h+h

0

;m+m

0

2. For 1 � h < m and (h;m) = 1, show that there exist integers m

0

; h

0

with 0 � h

0

� m

0

< m, h

0

< h suh that m

0

h� h

0

m = 1, and

t

h;m

= t

h

0

;m

0

t

h�h

0

;m�m

0
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3. De�ne �

h;m

= z

h;m

10, �

0

h;m

= z

h;m

01. Show that

�

0

h;m

�

h

0

;m

0

= �

h+h

0

;m+m

0

; �

h;m

�

0

h

0

;m

0

= �

0

h+h

0

;m+m

0

:

Show that the pairs of standard words are (0; 1) and all the pairs

(�

h;m

; �

0

h;m

), for h

0

m� hm

0

= 1.

2.2.4 Consider a funtion �

0

from f0; 1g

�

into itself de�ned by �

0

(u; v) =

(uv; v). The family of Christo�el pairs is the smallest set of pairs of

words ontaining (0; 1) and losed under � and �

0

. A standard pair

and a Christo�el pair are orresponding if they are obtained by the

same sequene of � and � (resp. � and �

0

).

1. Let (u; v) be a standard pair and let (u

0

; v

0

) be the orresponding

Christo�el pair. Show that if u = p10, then u

0

= 0p1 and if v = q01,

the v

0

= 0q1.

2. Show that the omponents of Christo�el pairs are exatly the lower

Christo�el words. (see Borel and Laubie 1993.)

2.2.5 Christo�el words and Lyndon words.

1. Show that every lower Christo�el word is a Lyndon word.

2. Show that a balaned word is a Lyndon word if and only if it is a

Christo�el word (Berstel and De Lua 1997).

3. Any lower Christo�el word w whih is not a letter admits a unique

fatorization w = xy, where (x; y) is a Christo�el pair. Show that this

fatorization is the standard Lyndon fatorization (Borel and Laubie

1993).

2.2.6 Show that, for 0 � � < 1,

~'(s

�;�

) = s

0

1��

2��

;

2����

2��

; D(s

�;�

) = s

1

2��

;

1��+�

2��

;

~

D(s

�;�

) = s

1

2��

;

�

2��

:

Show that for 0 < � � 1,

~'(s

0

�;�

) = s 1��

2��

;

2����

2��

; D(s

0

�;�

) = s

0

1

2��

;

1��+�

2��

;

~

D(s

0

�;�

) = s

0

1

2��

;

�

2��

:

(see Parvaix 1997)

2.2.7 The aim of this problem is to prove that if w is a word suh that w0

and w1 are balaned, then w is a right speial fator of some Sturmian

word.

Let w be a word suh that w0 and w1 are balaned.

1. Show that if w is a palindrome, then w is entral.

2. Show that if w = uap, with a a letter and p a palindrome, then pa

is a pre�x of some harateristi word.

3. Show that w is always a suÆx of a entral word.

4. Show that w is a right speial fator of some Sturmian word.

(see De Lua 1997)
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2.2.8 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration expansion of the

irrational �, let (s

n

) be the assoiated standard sequene, and de�ne

(t

n

)

n��1

by

t

�1

= 1; t

0

= 0; t

n

= t

d

n

�1

n�1

t

n�2

t

n�1

; (n � 1) :

1. Show that t

0

t

1

� � � t

n

= s

n

� � � s

1

s

0

.

2. Show the follow produt formula: 

�

= t

0

t

1

� � � t

n

� � �.(Brown 1993)

2.2.9 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration expansion of the

irrational �, let (s

n

) be the assoiated standard sequene. Let w be a

standard word that is a pre�x of the harateristi word 

�

. Show that

there is an integer n suh that w = s

k

n

s

n�1

for some 1 � k � d

n+1

.

2.2.10 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration expansion of the

irrational �, let (s

n

) be the assoiated standard sequene. De�ne three

sequenes of words by (u

n

)

n��1

, (v

n

)

n��1

and (w

n

)

n��1

u

�1

= v

�1

= w

�1

= 1; u

0

= v

0

= w

0

= 0

and

u

2n

= u

2n�2

(u

2n�1

)

d

2n

(n � 1)

u

2n+1

= (u

2n

)

d

2n+1

u

2n�1

(n � 0)

v

2n

= (v

2n�1

)

d

2n

v

2n�2

(n � 1)

v

2n+1

= v

2n�1

(v

2n

)

d

2n+1

(n � 0)

w

n

= w

n�2

(w

n�1

)

d

n

(n � 1)

1. Show that

0

�

= lim

n!1

u

n

; 1

�

= lim

n!1

v

n

01

�

= lim

n!1

w

2n

10

�

= lim

n!1

w

2n+1

:

2. De�ne a sequene (p

n

)

n��1

by p

�1

= 0

�1

, p

0

= 1

�1

and

p

2n

= p

2n�2

(10�

2n�1

)

d

2n

n � 1

p

2n+1

= (p

2n

10)

d

2n+1

p

2n�1

n � 0

Show that the words p

n

, for n � 1 are palindromes, and

s

2n

= p

2n

10;

s

2n+1

= p

2n+1

01;

u

n

= 0p

n

1;

v

n

= 1p

n

0;

w

2n

= 01p

2n

;

w

2n+1

= 10p

2n+1

:

2.2.11 A number system assoiated with a diretive sequene.

Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration of the irrational �,

and (s

n

) be the assoiated standard sequene. De�ne integers by

q

�1

= 1; q

0

= 1; q

n

= d

n

q

n�1

+ q

n�2

; (n � 1) :

Then of ourse js

n

j = q

n

.
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1. Show that any integer m � 0 an be written in the form

m = z

h

q

h

+ � � �+ z

0

q

0

; (0 � z

i

� d

i+1

) (2.4.1)

2. Show that every integer 0 � m � q

h+1

� 1 admits a unique suh

representation provided

z

i

= d

i+1

=) z

i�1

= 0 (1 � i � h)

3. Show that ifm = z

h

q

h

+� � �+z

0

q

0

is as in eq. (2.4.1), then the pre�x of



�

of length m has the form s

z

h

h

� � � s

z

0

0

(see Fraenkel 1985, 1982, Brown

1993 and the referenes ited there).

2.2.12 A Beatty sequene is a set B = fbrn jn � 1g for some irrational number

r > 1 (it is a spetrum).

1. Let � = 1=r, and let 

�

= a

1

a

2

� � � be the harateristi word of slope

�. Show that B = fk j a

k

= 1g.

2. Two Beatty sequenes B and B

0

are omplementary if B and B

0

form a partition of f1; 2; : : :g. Show that the sets fbrn jn � 1g and

fbr

0

n jn � 1g are omplementary if and only if 1=r + 1=r

0

= 1. (Use

1., see Beatty 1926)

2.2.13 Write x < y if x is lexiographially less that y. Show that for any

irrational harateristi word , the word 0 is lexiographially smaller

than all its proper suÆxes, and 1 is lexiographially greater than all

its proper suÆxes. (Borel and Laubie 1993)

2.2.14 De�ne a mapping C : f0; 1g

�

! f0; 1g

�

by C(") = " and C(ax) = xa for

a 2 f0; 1g. This is just a yli permutation. Let � = [0; 1 + d

1

; d

2

; : : :℄

be the ontinued fration of the irrational �, and (s

n

) be the assoiated

standard sequene.

1. Show that for n � 0, the words C

�1

(s

2n

) and C

js

2n

�1j

(s

2n+1

) are

Lyndon words. (Borel and Laubie 1993, Melan�on 1996)

2. Set `

n

= C

js

2n

�1j

(s

2n+1

). Show that 

�

= `

d

2

0

`

d

4

1

� � � `

d

2n+2

n

� � � and

that the sequene `

n

is a lexiographially stritly dereasing sequene.

2.2.15 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration of the irrational �,

and (s

n

) be the assoiated standard sequene.

1. Show that s

2

n

is a fator of 

�

for every n � 1.

Sine s

n

is primitive, every fator of 

�

of length js

n

j exepted one is

a onjugate of s

n

. This is the singular word, denoted w

n

. For the

Fibonai word, the singular words are 00, 101, 00100, 10100101, . . . .

2. Let p

n

be the palindrome pre�x of s

n

of length js

n

j � 2. Show that

w

n

= a

n

p

n

a

n

, where a

n

= 0 if n is odd, and a

n

= 1 if n is even.

3. Show that the Fibonai word is the produt of 01 and its singular

words: f = 01(00)(101)(00100) � � �. (see Wen and Wen 1994b)

2.2.16 To ompute all onjugates of s

n

, de�ne sequenes (w

h

)

0�h�n

of words

parameterized by sequenes of integers z

0

; : : : ; z

n�1

with 0 � z

h

� d

h+1

by w

�1

= 1, w

0

= 0 and w

h+1

= w

d

h+1

�z

h

h

w

h�1

w

z

h

h

0 � h < n.

1. Show that w

n

= C

k

(s

n

), where k =

P

n�1

h=0

q

h

z

h

.

2. Show that one gets all onjugates exatly one. (see Chuan 1997)
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2.2.17 Sturmian words and palindromes.

1. Let s be a Sturmian word. Show that F (s) ontains exatly one palin-

drome word of even length, and two palindrome words of odd length for

eah nonnegative integer.

2. Show that onversely, if F (s) ontains exatly one palindrome word

of even length, and two palindrome words of odd length for eah non-

negative integer, then s is Sturmian (Droubay and Pirillo 1999).

2.2.18 Sturmian words and deimation.

Let 1 � k � m be integers with m � 2. Let x be an in�nite word with

in�nitely many 0's and 1's. The transformationM

k;m

deletes in x every

0 exepted those ourring at position ongruent to k modulo m. The

transformation D

k;m

operates in the same way on 1's. For example,

M

3;4

, applies to

0100101001001010010100100101001001 � � �

keeps only the italiized letter 0, and gives the word

101110110111011011 � � �

1. Give a geometri argument (by utting sequenes) showing that

M

k;m

(s) and D

k;m

(s) are Sturmian for Sturmian words.

2. Give expliit formulas forM

k;m

(s

�;�

) and D

k;m

(s

�;�

) similar to those

of Problem 2.2.6.

3. Show that M

m;m

Æ D

m;m

() =  for every harateristi word .

4. Show that onversely, if M

m;m

Æ D

m;m

(s) = s for every m, then

the in�nite word s is balaned. (Justin and Pirillo 1997, the expliit

formulas are in Parvaix 1998)

Setion 2.3

2.3.1 For integers m � 1; r � 1, set

w

m;r

= 0

m�1

1(0

m+1

1)

r+1

0

m

1(0

m+1

1)

r

0

m

1

w

0

m;r

= 0

m

1(0

m

1)

r+1

0

m+1

1(0

m

1)

r

0

m+1

1

In partiular, w

1;1

= 10

2

10

2

1010

2

101 is a word of length 14. Any Stur-

mian word ontains one and only one word from the set


 = fw

m;r

; w

0

m;r

; E(w

m;r

); E(w

0

m;r

) j m � 1; r � 1g :

1. Prove that a morphism f is Sturmian if and only if f is ayli

and there exists a word w 2 
 suh that f(w) is a balaned word (in

partiular, an ayli morphism f is Sturmian if and only if f(w

1;1

) is

a balaned word) (Berstel and S�e�ebold 1994a).

2. Prove that no word of length less or equal to 13 has the above prop-

erty. (Rihomme 1999b)
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2.3.2 Let C be the set of morphi Sturmian harateristi words. Prove that,

for any  2 C, the words 0; 1; 01 and 10 are morphi (Berstel and

S�e�ebold 1994a).

2.3.3 Prove that a morphism f is standard if and only if f(0), f(1) and f(01)

are standard words (De Lua 1997b).

2.3.4 Let � = [0; 1 + d

1

; d

2

; : : :℄ be the ontinued fration of an irrational

number �. De�ne an in�nite word Æ

�

over f0; 1g by

Æ

�

= 0

d

1

1

d

2

0

d

3

1

d

4

� � �

Show that � is a Sturm number if and only if Æ

�

is purely periodi

(Droubay, Justin, and Pirillo 2001).

Notes

The history of Sturmian words goes bak to the astronomer J. Bernoulli III

(Bernoulli 1772). The book of Venkov (1970) desribes early work by Christo�el

(1875) and Marko� (1882). The �rst in depth study is by Morse and Hedlund

(1940). They also introdue the term \Sturmian", more preisely Sturmian

trajetories, named after the mathematiian Charles Fran�ois Sturm (1803{

1855), born in Geneva, and who taught at the

�

Eole Polytehnique in Paris

sine 1840. He is famous for his rule to ompute the roots of an algebrai

equation. As desribed by Hedlund and Morse, Sturmian words are obtained

in onsidering the zeroes of solutions u(x) of linear homogeneous seond order

di�erential equations

y

00

+ �(x)y = 0 ;

where �(x) is ontinuous of period 1. If k

n

is the number of zeros of u in the in-

terval [n; n+1[, then the in�nite word 01

k

0

0

k

1

0

k

2

� � � is Sturmian (or eventually

periodi). The papers by Coven and Hedlund (1973) and Coven (1974) ontain

many ombinatorial properties (in partiular the desription of two-sided in�-

nite words of minimal omplexity), and the paper by Stolarsky (1976) shows

the relation with ontinued frations, �xpoints, and Beatty sequenes. The last

twenty years have seen large developments, from the point of view of arithmetis,

dynamial systems and ombinatoris on words. Surveys are by T. C. Brown

(1993), Berstel (1996), Ziardi (1995), partly De Lua (1997a) and for �nite

fators of Sturmian words Bender, Patashnik, and Rumsey (1994). Sturmian

words are known under many other names. Eah reets the emphasis on a par-

tiular property. Thus, they are alled two-distane sequenes (see e.g. Lunnon

and Pleasants 1992), Beatty sequenes (de Bruijn 1989, 1981), harateristi se-

quenes (Christo�el 1875), spetra (Boshernitzan and Fraenkel 1981, 1984, the

spetrum of a number � is the multiset fbn� j n � 1g in the book Graham,

Knuth, and Patashnik 1989), digitized straight lines, utting sequenes and even

musial sequene in a speial ase (Series 1985).

Sturmian words are of lowest possible omplexity. For an overview on om-

plexity of in�nite words, see Allouhe (1994). Two-sided in�nite words of om-

plexity P (n) = n + 1 inlude stritly mehanial words (Problem 2.1.1, Coven
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and Hedlund 1973). There is a large literature on in�nite words with slightly

more than minimal omplexity (Coven 1974, Alessandri 1996, Cassaigne 1996,

Ferenzi 1995, Rote 1994, Hubert 1995, 1996, Rauzy 1988). An extension to 3

letters has been initiated by Arnoux and Rauzy (1991), Arnoux, Mauduit, Sh-

iokawa, and Tamura (1994), Castelli, Mignosi, and Restivo (1999) (the last paper

relates Arnoux-Rauzy words to entral words over 3 letters). Several properties

have been extended to larger alphabets by Droubay et al. (2001). The property

of balane and Theorem 2.1.5 are due to Morse and Hedlund (1940), our expo-

sition bene�ts from Coven and Hedlund (1973). In partiular, Proposition 2.1.3

is there. Theorem 2.1.13 is also from Morse and Hedlund (1940). The argument

of the proof of Lemma 2.1.15 is from Tijdeman (1996). Christo�el words were

investigated in Christo�el (1875). A systemati geometri study is in Borel and

Laubie (1991, 1993). Several propositions of Setion 2.1.3 Propositions 2.1.18,

2.1.19, 2.1.23 are from Mignosi (1989). He uses rotations (in a slightly di�erent

setting).

Mehanial words are also known as digitized straight lines. They have

been onsidered for a long time in pattern reognition, where the problem is

to ompute the slope and the interept of a �nite Sturmian word as fast as

possible, to test whether a word is a �nite Sturmian word and, if not, to get the

polygonal deomposition (see Brukstein 1991, Dorst and Smeulders 1991 and

the literature quoted there, also Berstel and Pohiola 1996). Words generated

by rotations are in fat more general than Sturmian words when the partition

of [0; 1[ is de�ned independently from the angle of rotation (see Alessandri 1996,

Gambaudo, Lanford, and Tresser 1984, Iwanik 1994, Rauzy 1988, Sidorov and

Vershik 1993). Interval exhange is even more general, beause the exhange

funtions are pieewise rotations (see e.g. Rauzy 1979, Didier 1997).

Standard pairs were introdued in a slightly di�erent form in Rauzy (1985).

His onstrution is known as Rauzy's rules (see also Problem 2.2.2).

Theorem 2.2.4 and its orollaries are from De Lua and Mignosi (1994).

Theorem 2.2.11 is from De Lua and Mignosi (1994). It appears in a similar

form in Coven and Hedlund (1973), see also Pedersen 1988.

Lemmas 2.2.17 and 2.2.18 are from Parvaix (1997). Proposition 2.2.24 has

been proved by Fraenkel, Mushkin, and Tassa (1978), see also Brown (1993).

Theorem 2.2.31 is from Mignosi (1991), although the present proof is di�erent.

The proof of Theorem 2.2.36 given here is from De Lua and Mignosi (1994).

There are several other proofs, in Mignosi (1991), Berstel and Pohiola (1993).

The formula also appeared in Koplowitz, Lindenbaum, and Brukstein (1990).

The proof of Theorem 2.2.37 by the fator graphs is from Berth�e (1996). The

result is also known as the three distane theorem. There is a large literature

on this subjet (see Berth�e 1996 and the survey paper Alessandri and Berth�e

1998).

Sturmian morphisms were investigated in S�e�ebold (1991). The equivalene

(i) and (ii) of Theorem 2.3.7 is due to Mignosi and S�e�ebold (1993), the third is

adapted from Berstel and S�e�ebold (1994a). Proposition 2.3.11 is from Berstel

and S�e�ebold (1994b). Theorem 2.3.12 appears in De Lua (1997). The results

of Setion 2.3.4 are from S�e�ebold (1998). The relation to automorphisms of
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free groups is from Wen and Wen 1994a. The proof given here is simpler than

the original one. For results on free groups and their automorphisms, see e.g.

Magnus, Karrass, and Solitar 1966 or Lyndon and Shupp 1977. Theorem 2.3.25

is from Crisp, Moran, Pollington, and Shiue (1993). Several weak versions of

this theorem were known earlier (see Brown 1993 for a disussion). Our proof

is adapted from Berstel and S�e�ebold (1994a). A self-ontained proof exists by

Komatsu and van der Poorten (1996). The haraterization of Sturm numbers

is from Allauzen (1998). Several generalizations to non harateristi Sturmian

words were proposed (see e.g. Komatsu 1996, Arnoux, Ferenzi, and Hubert

2000).


