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Abstract

Émile Borel defined normality more than one hundred years ago to
formalize the most basic form of randomness for real numbers. A number
is normal to a given integer base if its expansion in that base is such that
all blocks of digits of the same length occur in it with the same limit-
ing frequency. This chapter is an introduction to the theory of normal
numbers. We present five different equivalent formulations of normality
and we prove their equivalence in full detail. Four of the definitions are
combinatorial and one is in terms of finite automata, analogous to the
characterization of Martin-Löf randomness in terms of Turing machines.
All known examples of normal numbers have been obtained by construc-
tions. We show three constructions of numbers that are normal to a given
base and two constructions of numbers that are normal to all integer
bases. We also prove Agafonov’s Theorem that establishes that a number
is normal to a given base exactly when its expansion in that base is such
that every subsequence selected by a finite automaton is also normal.

1 Introduction

Flip a coin a large number of times and roughly half of the flips will come up
heads and half will come up tails. Normality makes analogous assertions about
the digits in the expansion of a real number. Precisely, let b be an integer
greater than or equal to 2. A real number is normal to base b if each of the
digits 0, . . . , b−1 occurs in its expansion with the same asymptotic frequency 1/b,
each of the blocks of two digits occurs with frequency 1/b2, each of the blocks
of three digits occurs with frequency 1/b3, and so on, for every block length.
A number is absolutely normal if it is normal to every base. Émile Borel [17]
defined normality more than one hundred years ago to formalize the most basic
form of randomness for real numbers. Many of his questions are still open, such
as whether any of π, e or

√
2 is normal in some base, as well as his conjecture

that the irrational algebraic numbers are absolutely normal [18].
In this chapter we give an introduction to the theory of normal numbers.

We start by considering five different equivalent formulations of normality and
we prove their equivalence in full detail. These proofs have not appeared all
together in the literature before. Four of the definitions are combinatorial and
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one is in terms of finite automata, analogous to the characterization of Martin-
Löf randomness [29] in terms of Turing machines. This characterization of
normality holds for various enrichments of finite automata [13, 23], but the
relation with deterministic push-down automata remains unsolved. We also
briefly mention another well known equivalent definition of normality, in terms
of uniform distribution modulo 1, that will be further considered in Chapter ??.

All known examples of normal numbers have been obtained by constructions.
We first focus in three selected constructions of numbers that are normal to a
given base. We then present two constructions of absolutely normal numbers,
one is a sightly simplified version of of the pioneer work done by Alan Turing
and the other is a simplified version of the polynomial time algorithm in [10].

Finally we consider the problem of preserving normality by selection by finite
automata of a subsequence of a give sequence. We give the proof of Agafonov’s
Theorem [1] showing that a number is normal to a given base exactly when
its expansion in that base is such that every subsequence selected by a finite
automata is also normal.

Notation. Let A be finite set of symbols, that we refer as the alphabet. We
write Aω for the set of all infinite words in alphabet A, A∗ for the set of all
finite words, A≤k for the set of all words of length up to k, and Ak for the set
of words of length exactly k. The length of a finite word w is denoted by |w|.
The positions of finite and infinite words are numbered starting at 1. To denote
the symbol at position i of a word w we write w[i] and to denote the substring
of w from position i to j we write w[i . . . j]. The empty word is denoted by λ.

For w and u two words, the number |w|u of occurrences of u in w and the
number ||w||u of aligned occurrences of u in w are respectively given by

|w|u = |{i : w[i . . . i+ |u| − 1] = u}|,
||w||u = |{i : w[i . . . i+ |u| − 1] = u and i ≡ 1 mod |u|}|.

For example, |aaaaa|aa = 4 and ||aaaaa||aa = 2. Notice that the definition of
aligned occurrences has the condition i ≡ 1 mod |u| instead of i ≡ 0 mod |u|,
because the positions are numbered starting at 1. When a word u is just a
symbol, |w|u and ||w||u coincide. Counting aligned occurrences of a word of
length r over alphabet A is the same as counting occurrences of the correspond-
ing symbol over alphabet Ar. Precisely, consider alphabet A, a length r and an
alphabet B with |A|r symbols. The set of words of length r over alphabet A
and the set B are isomorphic, as witnessed by the isomorphism π : Ar → B
induced by the lexicographic order in the respective sets. Thus, for any w ∈ A∗
such that |w| is a multiple of r, π(w) has length |w|/r and π(u) has length 1, as
it is just a symbol in B. Then, for any u ∈ Ar, ||w||u = |π(w)|π(u).
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2 Borel’s definition of normality

A base is an integer greater than or equal to 2. For a real number x in the unit
interval, the expansion of x in base b is a sequence a1a2a3 . . . of integers from
{0, 1, . . . , b− 1} such that

x =
∑
k≥1

akb
−k = 0.a1a2a3 . . .

To have a unique representation of all rational numbers we require that expan-
sions do not end with a tail of b− 1. We will abuse notation and whenever the
base b is understood we will denote the first n digits in the expansion of x with
x[1 . . . n].

Definition 1 (Strong aligned normality, Borel [17]). A real number x is simply
normal to base b if, in the expansion of x in base b, each digit d occurs with
limiting frequency equal to 1/b,

lim
n→∞

|x[1 . . . n]|d
n

=
1

b

A real number x is normal to base b if each of the reals x, bx, b2x, . . . are simply
normal to bases b1, b2, b3, . . .. A real x is absolutely normal if x is normal to
every integer base greater than or equal to 2.

Theorem 2 (Borel [17]). Almost all real numbers (with respect to Lebesgue
measure) are absolutely normal.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely nor-
mal? Or at least simply normal to some base? The question remains open.

Conjecture 3 (Borel [18]). Irrational algebraic numbers are absolutely normal.

The most famous example of a normal number is due to Champernowne [25].
He proved that the number

0.12345678910112131415161718192021222324252627 . . .

is normal to base 10. The construction can be done in any base, obtaining a
number normal to that base. It is unknown whether Champernowne numbers
are normal to the bases that are multiplicatively independent to the base used in
the construction. Champernowne’s construction has been generalized in many
interesting ways. There are also some other methods of to obtain examples of
numbers that are normal to a given base. In Section 7, we comment on the
different methods and we present three selected constructions.

All known examples of absolutely normal numbers are given by construc-
tions. The oldest were not even computable. The first computable construction
is due to A. Turing [54, 7]. In Section 8 we give references of known constructions
and we present two of them.
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3 Equivalences between combinatorial definitions
of normality

Borel’s original definition of normality turned out to be redundant. Pillai in
1940, see [22, Theorem 4.2], proved the equivalence between Definition 1 and
the following.

Definition 4 (Aligned normality). A real number x is normal to base b if x is
simply normal to bases b1, b2, b3, . . ..

Niven and Zuckerman in 1951, see [22, Theorem 4.5], proved yet another
equivalent formulation of normality by counting occurrences of blocks but not
aligned. This formulation was stated earlier by Borel himself, without proof.

Definition 5 (Non-aligned normality). A real number x is normal to base b if
for every block u,

lim
n→∞

|x[1 . . . n]|u
n

=
1

b|u|
.

We will prove that Definitions 1, 4 and 5 are equivalent. The following lemma
gives a central limit theorem that bounds the number of words in alphabet A
of length k having too few or too many occurrences of some block w.

Definition 6. Let A be an alphabet of b symbols. We define the set of words of
length k such that a given word w has a number of occurrences that differs from
the expected in plus or minus εk,

Bad(A, k,w, ε) =

{
v ∈ Ak :

∣∣∣∣ |v|wk − b−|w|
∣∣∣∣ ≥ ε} .

Lemma 7 (Adapted from Hardy and Wright [34, proof of Theorem 148]). Let
b be an integer greater than or equal to 2 and let k be a positive integer. If
6/k ≤ ε ≤ 1/b then for every d ∈ A,

|Bad(A, k, d, ε)| < 4bke−bε
2k/6.

Proof. Observe that for any d ∈ A,

Bad(A, k, d, ε) =
∑

n≤k/b−εk

(
k

n

)
(b− 1)k−n +

∑
n≥k/b+εk

(
k

n

)
(b− 1)k−n

Fix b and k and write N(n) for(
k

n

)
(b− 1)k−n.

For all n < k/b we have that N(n) < N(n+ 1) and the quotients

N(n)

N(n+ 1)
=

(n+ 1)(b− 1)

k − n
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decrease as n increases. Similarly, for all n > k/b we have that N(n) < N(n−1)
and the quotients

N(n)

N(n− 1)
=
k − n+ 1

n(b− 1)

increase as n decreases. The strategy will be to “shift” each of the sums m
positions.

We bound the first sum as follows. For any n we can write

N(n) =
N(n)

N(n+ 1)
· N(n+ 1)

N(n+ 2)
· . . . · N(n+m− 1)

N(n+m)
·N(n+m)

Let
m = bεk/2c and p = bk/b− εkc

For each n such that n ≤ p+m− 1 we have that n+m < k/b, so,

N(n)

N(n+ 1)
≤ N(p+m− 1)

N(p+m)

=
(p+m)(b− 1)

k − p−m+ 1

<
(k/b− εk/2)(b− 1)

k − k/b+ εk/2

= 1− εb/2

1− 1/b+ ε/2

< 1− εb/2 (using the hypothesis ε ≤ 1/b).

< e−bε/2.

Then,

N(n) <
(
e−bε/2

)m
N(n+m)

≤ e−bε(εk/2−1)/2 N(n+m)

≤ 2e−bε
2k/4 N(n+m), (the hypothesis ε ≤ 1/b implies ebε/2 < 2)

We obtain, ∑
n≤p

N(n) < 2e−bε
2k/2

∑
n≤p

N(n+m) ≤ 2 bke−bε
2k/4.

We now bound the second sum, shifting it m positions. For any n we can
write

N(n) =
N(n)

N(n− 1)
· N(n− 1)

N(n− 2)
· . . . · N(n−m+ 1)

N(n−m)
·N(n−m)

Let
m = bεk/2c and q = dk/b+ εke.
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For each n such that n ≥ q −m+ 1 we have n−m > k/b, so,

N(n)

N(n− 1)
≤ N(q −m+ 1)

N(q −m)

=
k − q +m

(q −m+ 1)(b− 1)

=
k − dk/b+ εke+ bεk/2c

(dk/b+ εke − bεk/2c+ 1)(b− 1)

≤ k − k/b− εk/2
(k/b+ εk/2 + 1)(b− 1)

<
1− 1/b− ε/2

(1/b+ ε/2)(b− 1)

Now

1−1/b−ε/2
(1/b+ε/2)(b−1) ≤ 1− bε/3

⇔ 1− 1/b− ε/2 ≤ (1− bε/3)(1/b+ ε/2)(b− 1)
⇔ (b− 1)/b− ε/2 ≤ (1/b+ ε/2)(b− 1)− (bε/3)(1/b+ ε/2)(b− 1)
⇔ (bε/3)(1/b+ ε/2)(b− 1) ≤ bε/2
⇔ (1/b+ ε/2)(b− 1) ≤ 3/2.

Since ε ≤ 1/b we obtain the required inequality,

(1/b+ ε/2)(b− 1) ≤ (1/b+ 1/(2b))(b− 1) = 3/(2b)(b− 1) ≤ 3/2

We conclude,

N(n)

N(n− 1)
≤ 1− bε/3 ≤ e−bε/3.

Then,

N(n) <
(
e−bε/3

)m
N(n−m)

≤ e−bεbεk/2c/3N(n−m)

≤ e−bε(εk/2−1)/3N(n−m)

≤ 2 e−bε
2k/6N(n−m), (the hypothesis ε ≤ 1/b implies ebε/3 < 2).

Thus, ∑
n≥q

N(n) < 2 bke−bε
2k/6.

This completes the proof.

The next lemma bounds the number of words of k symbols in alphabet A
that contain too many or too few occurrences of some block of length `, with
respect to a toleration specified by ε.
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Lemma 8. Let A be an alphabet of b symbols. Let k, ` be positive integers and
ε a real such that 6/bk/`c ≤ ε ≤ 1/b`. Then,∣∣∣∣∣∣

⋃
w∈A`

Bad(A, k,w, ε)

∣∣∣∣∣∣ < 2` bk+2` e−b
`ε2k/(6`).

Proof. Split the set {1, 2, . . . , k} into the congruence classes modulo `. Each of
these classes contains either bk/`c or dk/`e elements. Let M0 denote the class
of all indices which leave remainder zero when being reduced modulo `. Let
n0 = |M0|.

For each x in Ak consider the word in (A`)n0

x[i1 . . . (i1 + `− 1)]x[i2 . . . (i2 + `− 1)] . . . x[in0 . . . (in0 + `− 1)]

for i1, . . . in0 ∈M0. By Lemma 7 we have∣∣Bad(A`, n0, w, ε)
∣∣ < 4 (b`)n0e−b

`ε2n0/6.

Clearly, similar estimates hold for the indices in the other residue classes. Let
n1, . . . , n`−1 denote the cardinalities of these other residue classes. By assump-
tion n0 + · · ·+ n`−1 = k. Then,

|Bad(A, k,w, ε)| ≤
`−1∑
j=0

∣∣Bad(A`, nj , w, ε)
∣∣

≤
`−1∑
j=0

4(b`)nje−b
`ε2nj/6

≤
`−1∑
j=0

4(b`)k/`+1e−b
`ε2k/(6`)

= 4 ` bk+` e−b
`ε2k/(6`).

The last inequality holds because

(b`)dk/`ee−b
`ε2dk/`e/6 < (b`)k/`+1e−b

`ε2k/(6`)

and ε ≤ 1/b` ensures

(b`)bk/`ce−b
`ε2bk/`c/6 ≤ bke−b

`ε2k/(6`)e1/(6b`) ≤ bke−b
`ε2k/(6`)b`.

Now, summing up over all w ∈ A` we obtain∣∣∣∣∣∣
⋃
w∈A`

Bad(A, k,w, ε)

∣∣∣∣∣∣ < 2` bk+2`e−b
`ε2k/(6`) .

Instead of the factor 4 we can put the factor 2 because if a word w ∈ A` occurs
fewer times than expected in a given word x ∈ Ak, then there is another word
v ∈ A` that occurs in x more times that expected.
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Lemma 9. Let (x1,n)n≥0, (x2,n)n≥0, . . . , (xk,n)n≥0 be sequences of real numbers

such that
∑k
i=1 xi,n = 1 and let c1, c2, . . . , ck be real numbers such that

∑k
i=1 ci =

1. Then,

1. If for each i, lim infn→∞ xi,n ≥ ci then for each i, limn→∞ xi,n = ci.

2. If for each i, lim supn→∞ xi,n ≤ ci then for each i, limn→∞ xi,n = ci.

Proof. For any i in {1, . . . , k},

lim sup
n→∞

xi,n = lim sup
n→∞

(1−
∑
j 6=i

xj,n)

= 1 + lim sup
n→∞

(−
∑
j 6=i

xj,n)

= 1− lim inf
n→∞

(
∑
j 6=i

xj,n)

≤ 1−
∑
j 6=i

lim inf
n→∞

xj,n

≤ 1−
∑
j 6=i

cj

= ci.

Since

lim inf ≤ lim sup and lim sup
n→∞

xi,n ≤ ci ≤ lim inf
n→∞

xi,n,

necessarily,

lim inf
n→∞

xi,n = lim sup
n→∞

= ci and lim
n→∞

xi,n = ci.

Theorem 10. Definitions 1, 4 and 5 are equivalent.

Proof. Let x be a real number. We use the fact that for every block w ∈ A∗,

lim
n→∞

|x[1 . . . n]|w
n

= b−|w|

if and only if there is a positive integer r such that

lim
n→∞

|x[1 . . . nr]|w
nr

= b−|w|.

A similar fact is true for the limit of ||x[1 . . . n`]||w/n.

1. We show that Strong aligned normality implies Non-aligned normality.
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Observe that for any w ∈ A`,

|x[1 . . . n]|w =

`−1∑
i=0

||(bix)[1 . . . n− i]||w

Then,

lim
n→∞

|x[1 . . . n]|w
n

=

`−1∑
i=0

lim
n→∞

||(bix)[1 . . . n− i]||w
n

=

`−1∑
i=0

b−`/` = b−`.

2. We prove that Non-aligned normality implies Aligned normality. Define

||v||w,r = |{i : v[i..i+ |w| − 1] = w and i = r mod |w|}|.
||v||w,∗ = max

1≤r≤|w|
||v||w,r

V (w, k, ε) = {v ∈ Ak|w|−1 : ||v||w,∗ > (k − 1)(b−|w| + ε)}

Given w ∈ A∗, let d be corresponding digit in A|w| and observe that for each
v ∈ V (w, k, ε) there is ṽ ∈ Bad(A|w|, k − 1, d, ε) and there are words s, t ∈ A∗
such that |s|+ |t| = |w| − 1 and v = sṽt. Thus,

|V (w, k, ε)| ≤ |w|b|w|−1|Bad(A|w|, k − 1, d, ε)|.

So by Lemma 8, for every positive real δ there is k0 such that for every k > 0,

|V (w, k, ε)| b−(k|w|−1) < δ.
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Fix ` and assume w ∈ A`. Then, for any k ≥ max(2, k0),

lim sup
n→∞

||x[1 . . . n`]||w
n

≤ lim sup
n→∞

1

n(k − 1)`

n`−`+1∑
t=1

||x[t . . . t+ (k − 1)`+ `− 2]||w,2−t

≤ lim sup
n→∞

1

n(k − 1)`

n`−`+1∑
t=1

||x[t . . . t+ (k − 1)`+ `− 2]||w,∗

= lim sup
n→∞

∑
v∈Ak`−1

|x[1 . . . (n+ k − 1)`− 1]|v
n`

||v||w,∗
k − 1

≤
∑

v∈Ak`−1

(
lim sup
n→∞

|x[1 . . . (n+ k − 1)`− 1]|v
n`

)
||v||w,∗
k − 1

=
∑

v∈Ak`−1

(
lim sup
n→∞

|x[1 . . . n`]|v
n`

)
||v||w,∗
k − 1

=
∑

v∈Ak`−1

b−(k`−1) ||v||w,∗
k − 1

=
∑

v∈Ak`−1\V (w,k,ε)

b−(k`−1) ||v||w,∗
k − 1

+
∑

v∈V (w,k,ε)

b−(k`−1) ||v||w,∗
k − 1

≤(b−` + ε)
∑

v∈Ak`−1\V (w,k,ε)

b−(k`−1) +
∑

v∈Ak`−1\V (w,k,ε)

b−(k`−1)

≤ b−` + ε+ δ.

To obtain the inequality in the second line observe that each aligned occurrence
of w in a position j` + 1, where k − 1 ≤ j < n, is counted (k − 1)` times by
||x[t . . . t+ k`− 2]||w,2−t for (j + 1− k)`+ 1 ≤ t ≤ j`+ 1.

Since the last inequality is true for any δ, ε > 0, we conclude that

lim sup
n→∞

||x[1 . . . n`]||w
n

≤ b−`.

Applying Lemma 9, we conclude,

lim
n→∞

||x[1 . . . n`]||w
n

= b−|w|.

3. We prove that Aligned normality implies Strong aligned normality. It
is sufficient to prove that if x has aligned normality then bx also has aligned
normality. Define

U(k,w, i) = {u ∈ Ak : u[i . . . i+ |w| − 1] = w}.

Fix a positive integer `. For any w ∈ A` and for any positive integer r,
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lim inf
n→∞

||(bx)[1 . . . nr`]||w
nr

≥ lim inf
n→∞

1

r

r−2∑
k=0

∑
u∈U(r`,w,2+`k)

||x[1 . . . nr`]||u
n

=
1

r

r−2∑
k=0

∑
u∈U(`r,w,2+`k)

b−r`

=
r − 1

r
b−`.

For every r the following equality holds:

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

= lim inf
n→∞

||(bx)[1 . . . nr`]||w
nr

.

Then, using the inequality obtained above we have,

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

≥ r − 1

r
b−`.

Since this last inequality holds for every r, we obtain,

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

≥ b−`.

Finally, this last inequality is true for every w ∈ A`, hence by Lemma 9,

lim
n→∞

||(bx)[1 . . . n`]||w
n

= b−`.

4 Normality as a seemingly weaker condition

The following result is due to Piatetski-Shapiro in 1957 [46] and was rediscov-
ered later by Borwein and Bailey [19] who called it the Hot Spot Lemma. In
Theorem 11 below we present two versions of this result, one with non-aligned
occurrences and one with aligned occurrences. The theorem has been extended
relaxing the constant C to a sublinear function, see [22] for the references.

Theorem 11. Let x be a real and let b be an integer greater than or equal to 2.
Let A = {0, . . . , b− 1}. The following conditions are equivalent,

1. The real x is normal to base b.

2. There is a constant C such that for infinitely many lengths ` and for every
w in A`

lim sup
n→∞

||x[1 . . . n|w|]||w
n

< C · b−|w|.
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3. There is a constant C such that for infinitely many lengths ` and for every
w in A`

lim sup
n→∞

|x[1 . . . n]|w
n

< C · b−|w|.

Proof. The implications 1⇒ 2 and 1⇒ 3 follow from Theorem 10.
We now prove 2⇒ 1. Define,

B̃ad(A|w|, k, w, ε) =

{
v ∈ Ak|w| :

∣∣∣∣ ||v||wk − b−|w|
∣∣∣∣ > ε

}
Lemma 8 implies that the size of B̃ad(A|w|, k, w, ε) shrinks exponentially as k
increases. Suppose there is C such that for infinitely many lengths ` and for
every w ∈ A`,

lim sup
n→∞

||x[1 . . . n`]||w
n

< C · b−`.

Fix ` and w ∈ A`. Fix ε > 0 and take k large enough.

lim inf
n→∞

||x[1 . . . nk`||w
nk

= lim inf
n→∞

∑
v∈Ak`

||x[1 . . . nk`||v
n

||v||w
k

≥ lim inf
n→∞

∑
v∈Ak`\B̃ad(A`,k,w,ε)

||x[1 . . . nk`||v
n

||v||w
k

≥ (1− ε)b−` lim inf
n→∞

∑
v∈Ak`\B̃ad(A`,k,w,ε)

||x[1 . . . nk`||v
n

= (1− ε)b−` lim inf
n→∞

1−
∑

v∈B̃ad(A`,k,w,ε)

||x[1 . . . nk`||v
n


= (1− ε)b−`

1− lim sup
n→∞

∑
v∈B̃ad(A`,k,w,ε)

||x[1 . . . nk`]||v
n


≥ (1− ε)b−`

1−
∑

v∈B̃ad(A`,k,w,ε)

lim sup
n→∞

||x[1 . . . nk`]||v
n


≥ (1− ε)b−`

1−
∑

v∈B̃ad(A`,k,w,ε)

C · b−k`


≥ (1− ε)b−`(1− Cε).

Since this is true for all ε > 0,

lim inf
n→∞

||x[1 . . . nk`||w
nk

≥ b−`.
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Finally, this last inequality is true for every w ∈ A`, hence by Lemma 9

lim
n→∞

||x[1 . . . n`||w
n

= b−`.

The proof of implication 3 ⇒ 1 is similar to 2 ⇒ 1. Consider the set
Bad(A,w, k, ε) from Definition 6, the bound in Lemma 8 and the following fact.
Fix w of length `. Then for any n and k,

|x[1 . . . n]|w ≤
1

k

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r (|v|w + `− 1)

|x[1 . . . n]|w ≥
1

k − `+ 1

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r|v|w

Then,

lim
n→∞

|x[1 . . . n]|w
n

≤ lim
n→∞

1

k

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r
n

(|v|w + `− 1)

= lim
n→∞

1

k

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r
n

|v|w.

And

lim
n→∞

|x[1 . . . n]|w
n

≥ lim
n→∞

1

k − `+ 1

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r
n

|v|w

≥ lim
n→∞

1

k

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r
n

|v|w

Hence,

lim
n→∞

1

k

|x[1 . . . n]|w
n

= lim
n→∞

∑
v∈Ak

k−1∑
r=0

||x[1 . . . n]||v,r
n

|v|w = lim
n→∞

1

k

∑
v∈Ak

|x[1 . . . n]|v
n

|v|w.

5 Normality as incompressibility by finite au-
tomata

The definition of normality can be expressed as a notion of incompressibility
by finite automata with output also known as transducers. We consider non-
deterministic transducers. We focus on transducers that operate in real-time,
that is, they process exactly one input alphabet symbol per transition. We start
with the definition of a transducer (see Section ?? for the definition of automata
without output).
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Definition 12. A non-deterministic transducer is a tuple T = 〈Q,A,B, δ, I, F 〉,
where

• Q is a finite set of states,

• A and B are the input and output alphabets, respectively,

• δ ⊂ Q×A×B∗ ×Q is a finite transition relation,

• I ⊆ Q and F ⊆ Q are the sets of initial and final states, respectively.

A transition of such a transducer is a tuple 〈p, a, v, q〉 which is written p a|v−−→
q. A finite (respectively infinite) run is a finite (respectively infinite) sequence
of consecutive transitions,

q0
a1|v1−−−→ q1

a2|v2−−−→ q2 · · · qn−1
an|vn−−−−→ qn

A finite path is written q0
a1···an|v1···vn−−−−−−−−−→ qn. An infinite path is final if the

state qn is final for infinitely many integers n. In that case, the infinite run is
written q0

a1a2a3···|v1v2v3···−−−−−−−−−−−−→ ∞. An infinite run is accepting if it is final and
furthermore its first state q0 is initial. This is the classical Büchi acceptance
condition. For two infinite words x ∈ Aω and y ∈ Bω, we write T (x, y) whenever
there is an accepting run q0

x|y−−→∞ in T .

Definition 13. A transducer T is bounded-to-one if the function y 7→ |{x : T (x, y)}|
is bounded.

Definition 14. An infinite word x = a1a2a3 · · · is compressible by a non-
deterministic transducer if it has an accepting run q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→
q3 · · · satisfying

lim inf
n→∞

|v1v2 · · · vn|
n

log |B|
log |A|

< 1.

It follows from the results in [51, 27] that the words which are not compress-
ible by one-to-one deterministic transducers are exactly the normal words. A
direct proof of this result appears in [9]. Extensions of this characterization for
non-determinisms and extra memory appear in [13, 23].

Theorem 15. An infinite word is normal if and only if it not compressible by
a bounded-to-one non-deterministic transducer.

We first show that a non-normal word is compressible. We show a slightly
stronger result since the transducer can be chosen deterministic and one-to-one.

Lemma 16. A non-normal infinite word is compressible by a deterministic
one-to-one transducer.

Proof. Assume x ∈ Aω is not normal. Let us show that x is compressible
regardless of the choice of an output alphabet B. Since x is not normal, there
is some word u0 of length k such that

lim
n→∞

||x[1 . . . n]||u0

n/k
6= 1

|A|k

14



meaning that the limit on the left side either does not exist or it does exist
but it is different from 1/|A|k. There exists then an increasing sequence (ni)i≥0

of integers such that the limit fu = limi→∞ ||x[1 . . . ni]||u/(ni/k) does exists for
each word u of length k and furthermore fu0

6= 1/|A|k. Note that
∑
u∈Ak fu = 1.

Let m be an integer to be fixed later. For each word w ∈ Akm, let fw be defined
by fw =

∏m
i=1 fui

where w is factorized w = u1 · · ·um with |ui| = k for each
1 ≤ i ≤ m. Since

∑
w∈Akm fw = 1, a word vw ∈ B∗ can be associated with

each word w ∈ Akm such that vw 6= vw′ for w 6= w′ , the set {vw : w ∈ Amk} is
prefix-free, and for each w ∈ Akm,

|vw| ≤ d−log fw/log |B|e.

We claim that the words (vw)w∈Akm can be used to construct a deterministic
transducer Tm which compresses x for m large enough. The state set Qm of Tm
is the set A<km of words of length less than km. Its initial state is the empty
word λ and all states are final. Its set Em of transitions is given by

Em = {w a|λ−−→ wa : |wa| < km} ∪ {w a|vwa−−−→ λ : |wa| = km}.

Let us denote by Tm(z) the output of the transducer Tm on some finite input
word z. Suppose that the word z is factorized z = w1 · · ·wnw′ where |wi| = km
for each 1 ≤ i ≤ n and |w′| < km. Note that n = b|z|/kmc. Note also that the
transducer Tm always comes back to its initial state λ after reading km symbols.

|Tm(z)| =
n∑
i=1

|vwi |

≤
n∑
i=1

d− log fwi/ log |B|e

≤ |z|
km

+

n∑
i=1

− log fwi/ log |B|

≤ |z|
km

+
∑

w∈Akm

||z||w
− log fw
log |B|

≤ |z|
km

+
∑
u∈Ak

||z||u
− log fu
log |B|

.

Applying this computation to the prefix z = x[1..n] of x gives

lim inf
n→∞

|Tm(x[1..n]) log |B|
n log |A|

≤ lim
i→∞

|Tm(x[1..ni]) log |B|
ni log |A|

≤ log |B|
km log |A|

+
1

k log |A|
∑
u∈Ak

fu(− log fu).

Since at least one number fu is not equal to 1/|A|k, the sum
∑
u∈Ak fu(− log fu)

is strictly less that k log |A|. For m chosen large enough, we obtain that Tm
compresses x.
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The following lemma is the key lemma to prove the converse.

Lemma 17. Let ` be a positive integer, and let u1, u2, u3, . . . be words of length `
over the alphabet A such that u1u2u3 · · · is simply normal to word length `. Let

C0
u1|v1−−−→ C1

u2|v2−−−→ C2
u3|v3−−−→ C3 · · ·

be a run where each Ci is a configuration of some kind of transducer. Assume
there is a real ε > 0 and a set U ⊆ A` of at least (1 − ε)|A|` words such that
ui ∈ U implies |vi| ≥ `(1− ε). Then,

lim inf
n→∞

|v1v2 · · · vn|
n`

≥ (1− ε)3.

Proof. Assume words ui as in the hypothesis. By definition of normality to
word length `, let n0 be such that for every u ∈ A` and for every n ≥ n0,

|{i : 1 ≤ i ≤ n, ui = u}| ≥ n|A|−`(1− ε).

Then, for every n ≥ n0,

|v1v2 · · · vn| =
n∑
i=1

|vi|

≥
∑

1≤i≤n,ui∈U

|vi|

≥
∑

1≤i≤n,ui∈U

`(1− ε)

≥ n|A|−`(1− ε)
∑
u∈U

`(1− ε)

≥ n|A|−`(1− ε)(1− ε)|A|``(1− ε)
≥ (1− ε)3n`.

We now come back to the proof that normal words are not compressible by
bounded-to-one transducers.

Proof. Fix a normal infinite word x = a1a2a3 · · · , a real ε > 0, a bounded-to-
one non-deterministic transducer T = 〈Q,A,B, δ, q0, F 〉, and an accepting run
q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · . It suffices to show that there is ` and U such
that Lemma 17 applies to this arbitrary choice of ε, T and accepting run. For
each word u ∈ A∗ let

hu = min{|v| : ∃i, j, 0 ≤ i ≤ j, qi
u|v−−→ qj}

be the minimum number of symbols that the processing of u can contribute to
the output in the run we fixed. Let

U` = {u ∈ A` : hu ≥ (1− ε)`}
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be the set of words of length ` with relatively large contribution to the output.
Let t be such that T is t-to-one. For each length `, pair of states p, q that appear
in the run, and for each word v, consider the set

U ′ = {u ∈ A` : p
u|v−−→ q}.

Since p and q appear in the run, let q0
u0|v0−−−→ p be a prefix of the run and

q x0|y0−−−→ ∞ be a suffix of the run. This implies q x0|y0−−−→ ∞ goes infinitely often
through an accepting state. Thus, for different u1, u2 ∈ U ′, there are accepting
runs q0

u0u1x0|v0vy0−−−−−−−−−→ ∞ and q0
u0u2x0|v0vy0−−−−−−−−−→ ∞, from which it follows that

T (u0u1x0, v0vy0) and T (u0u2x0, v0vy0). Therefore, by definition of t, |U ′| ≤ t.

|{u ∈ A` : p
u|v−−→ q}| ≤ t.

Thus,
|U`| ≥ |A|` − |Q|2t|B|(1−ε)`+1.

Fix ` such that |U`| > |A|`(1 − ε) and apply Lemma 17 with U = U` to the
considered run. This completes the proof.

6 Normality as uniform distribution modulo 1

Let (xj)j≥1 be a sequence of real numbers in the unit interval. The discrepancy
of the N first elements is

DN ((xj)j≥1) = sup
0≤u<v≤1

∣∣∣∣ |{j : 1 ≤ j ≤ N and u ≤ xj ≤ v}|
N

− (v − u)

∣∣∣∣ .
The sequence (xj)j≥1 is uniformly distributed in the unit interval if

lim
N→∞

DN ((xj)j≥1) = 0.

Schmidt [49] proved that for every sequence (xj)j≥1 of reals in the unit interval
there are infinitely many Ns such that

DN ((xj)j≥1) ≥ logN

100 N
.

There are sequences that achieve this lower bound, see [30].
Normality can be expressed in terms of uniform distribution modulo 1.

Theorem 18 (Wall 1949 [56]). A real number x is normal to base b if and only
if the sequence (bjx)j≥0 is uniformly distributed modulo 1.

The discrepancy modulo 1 of the sequence (bjx)j≥0 gives the speed of con-
vergence to normality to base b. Gál and Gál [33] and Philipp [45] proved that
for almost all real numbers x the discrepancy modulo 1 of the sequence (bjx)j≥0
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is essentially the same and it obeys the law of iterated logarithm up to a con-
stant factor that depends on b. Fukuyama [32] obtained the precise constant
factor.

For a real number x, we write {x} = x − bxc to denote the fractional part
of x.

Theorem 19 (Fukuyama 2008 [32]). For every real θ > 1, there is a constant
Cθ such that for almost all real numbers x (with respect to Lebesgue measure),

lim sup
N→∞

DN ({θjx}j≥0)
√
N√

log logN
= Cθ.

For instance, in case θ is an integer greater than or equal to 2,

Cθ =


√

84/9, if θ = 2√
2(θ + 1)/(θ − 1)/2, if θ is odd√
2(θ + 1)θ(θ − 2)/(θ − 1)3/2, if θ ≥ 4 is even.

It remains an open problem to establish the minimal discrepancy that can
be achieved by a sequence ({bjx})j≥0 for some x.

The formulation of normality in terms of uniform distribution modulo 1
has been used in constructions of numbers that are normal to one base and
not normal to another, where analytic tools come into play by way of Weyl’s
criterion of equidistribution [22, 38]. We give some references in Section 8.

7 Constructions of numbers that are normal to
a given base

Copeland and Erdős [26] generalized Champernowne’s construction [25]. They
show that for any increasing sequence of integers which does not grow too fast,
the concatenation of its terms yields the expansion of a normal number. In
particular, one can take the sequence of prime numbers. There are many other
generalizations, such as [28, 44].

Other examples of normal numbers are defined by arithmetic constructions,
the first ones are due to Stoneham [53] and Korobov [37]. For b, c be relatively
prime integers greater than 1, the real numbers

αb,c =

∞∑
n=1

1

cnbcn

are normal to to base b. Bailey and Borwein [4] showed that α2,3 is normal to
base 2 but not to base 6. Noticeably, for any given integer base b Levin [41] gives
an arithmetic construction of a real number x, subtler than the series for αb,c,
such that DN ({bnx}n≥0)is in O((logN)2/N). This is the lowest discrepancy
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obtained so far and it is close to the lower bound of O(log(N)/N) proved by
Schmidt for arbitrary sequences (see Section 6 above). It is an open question
whether there exists a real x for which DN ({bnx}n≥0) reaches Schmidt’s general
lower bound.

Yet there is a very different kind of construction of expansions of normal
numbers, based on combinatorics on words, specifically on de Bruijn words.
This is due to Ugalde in [55].

In all the cases the constructions have the form of an algorithm, or can be
turned into an an algorithm. Recall that a real number x is computable if there
is an algorithm that produces the expansion of x in some base, one digit after
the other. The algorithm computes in linear time or has linear time complexity
if it produces the first n digits in the expansion of x after performing a number
of operations that is linear in n. Similarly, we consider polynomial, exponential
or hyper-exponential complexity. Algorithms with exponential complexity can
not run in human time, but algorithms with sub-exponential complexity can.
In this monograph we analyze the computational complexity by counting the
number of mathematical operations required to output the first k digits of the
expansion of the computed number in a designated base. Thus, we do not
count how many elementary operations are implied by each of the mathematical
operations, which means that we neglect the computational cost of performing
arithmetical operations with arbitrary precision.

In this section we present three constructions of real numbers that are in-
sured to be normal to a given base. Since we care about the normality to
just one base, we will just construct infinite words in a given alphabet. We
first present the simplest possible construction à la Champernowne. Then we
present Ugalde’s construction and we give a much simpler proof than the one
in [55]. Finally we present a subtle construction of a normal word which has a
self similarity condition: the whole infinite word is identical to its subsequence
at the even positions. This result is due to Becher, Carton and Heiber (see [12,
Theorem 4.2]).

7.1 À la Champernowne

Theorem 20. Let A be an alphabet. Let wj be the concatenation of all words
over A of length j, in lexicographic order. The infinite word w = w1w2w3 . . . is
normal to alphabet A.

Proof. Let w = w1w2w3 . . . = a1a2 . . . where each ai is a symbol in A. Fix N
and let n be such that

n∑
j=1

j|A|j ≤ N <

n+1∑
j=1

j|A|j

Let u be a block of symbols in alphabet A. The occurrences of u in the prefix
of w[1..N ] are divided into two classes: those that are fully contained in a single
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block of length i in some wi and those that overlap several blocks.

|a1a2 . . . aN |u
N

≤
|a1a2 . . . axn+1 |u

n|A|n

≤ 1

n|A|n

 n+1∑
j=|u|

(j − |u|+ 1)|A|j−|u| +
n+1∑
j=1

(|u| − 1)|A|j


≤ (n+ 1)|A|−|u|

n|A|n
n+1∑
j=1

|A|j +
|u|

n|A|n
n+1∑
j=1

|A|j

≤ (n+ 1)

n(|A| − 1)
|A|−|u| + |u||A|2

n(|A| − 1)
.

The first term accounts for occurrences fully contained in a block and the second
of for those that overlap several blocks. It follows that

lim sup
N→∞

|a1a2 . . . aN |u
N

≤ 2

|A| − 1
|A|−|u|.

By Lemma 11, w is normal to alphabet A.

The infinite word w can be computed very efficiently: the first N symbols
can be produced in at most O(N) elementary operations. It is also possible to
produce just the N -th symbol of w in O(logN) many elementary operations.

7.2 Infinite de Bruijn words

See [15] for a fine presentation and history of de Bruijn words.

Definition 21 ([20, 47]). A (non cyclic) de Bruijn word of order n over alphabet
A is a word of length |A|n + n− 1 such that every word of length n occurs in it
exactly once.

Every de Bruijn word of order n over A with |A| ≥ 3 can be extended to
a de Bruijn word of order n + 1. Every de Bruijn word of order n over A
with |A| = 2 can not be extended to order n + 1, but it can be extended to
order n + 2. See [8] for a complete proof of this fact. This allows us to define
infinite de Bruijn words, as follows.

Definition 22. An infinite de Bruijn word w = a1a2 . . . in an alphabet of at
least three symbols is an infinite word such that, for every n, a1 . . . a|A|n+n−1 is
a de Bruijn word of order n. In case the alphabet has two symbols, an infinite
de Bruijn word w = a1a2 . . . is such that, for every odd n, a1 . . . a|A|n+n−1 is a
de Bruijn word of order n.

Ugalde [55] was the first to prove that infinite de Bruijn words are normal.

Theorem 23. Infinite de Bruijn words are normal.
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Proof. In case the alphabet A has two symbols, consider the instead the words
in the alphabet A′ of four symbols obtained by the morphism mapping blocks
two symbols in A to one symbol in A′ and prove normality for alphabet A′.

Suppose that the alphabet A has alt least 3 symbols Let x = a1a2 . . . be an
infinite de Bruijn word over A. Fix a word u of length ` and n > |A|`+`−1. Then
u occurs in a de Bruijn word of order n ≥ ` between |A|n−` and |A|n−` + n− `
times. To see this, observe if u occurs at a position i, for some i such that
1 ≤ i ≤ |A|n, then position i is the beginning of an occurrence of a word of
length n. There are exactly |A|n−` words of length n whose first ` symbols are
u. In addition, there are exactly n − ` other positions in a de Bruijn word of
order n at which a subword of length ` may start. Since x is infinite de Bruijn,
by definition, for each n, a1 . . . a|A|n+n−1 is a de Bruijn word or order n. Fix a
position N and let n be such that

|A|n + n− 1 ≤ N < |A|n+1 + n.

Then,

|a1 . . . aN |u
N

≤
|a1 . . . a|A|n+1+n|u
|A|n + n− 1

≤ |A|
n+1−` + n− `
|A|n + n− 1

≤ 2 |A|−`+1.

Thus,

lim sup
N→∞

|a1 . . . aN |u
N

< 2 |A|−`+1.

By Lemma 11, using C = 2 |A|, x is normal.

There is an obvious algorithm to compute an infinite de Bruijn word which,
for each n ≥ 1, extends a Hamiltonian cycle in a de Bruijn graph of order n
to an Eulerian cycle in the same graph. This is done in time exponential in n.
No efficient algorithm is known to compute the N -th symbol of an infinite de
Bruijn word without computing the first N symbols.

7.3 A normal and self similar word

For a given finite or infinite word x = a1a2a3 . . . where each ai is a symbol
in alphabet A, define even(x) = a2a4a6 · · · and odd(x) = a1a3a5 · · · . Thus,
x = even(x) means that an = a2n for all n.

Theorem 24 ([12, Theorem 4.2]). There is a normal word x such that x =
even(x).

We construct a normal word x = a1a2a3 · · · over the alphabet {0, 1} such
that a2n = an for every n. The construction can be extended to an alphabet of
size k to obtain a word a1a2a3 · · · such that akn = an for each integer n ≥ 1.

A finite word w is called `-perfect for an integer ` ≥ 1, if |w| is a multiple of `
and all words of length ` have the same number |w|/(`2`) of aligned occurrences
in w.
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Lemma 25. Let w be an `-perfect word such that |w| is a multiple of `22`.
Then, there exists a 2`-perfect word z of length 2|w| such that even(z) = w.

Proof. Since |w| is a multiple of `22` and w is `-perfect, for each word u of
length `, ||w||u is a multiple of 2`. Consider a factorization of w = w1w2 · · ·wr
such that for each i, |wi| = `. Thus, r = |w|/`. Since w is `-perfect, for any
word u of length `, the set {i : wi = u} has cardinality r/2`. Define z of length
2|w| as z = z1z2 · · · zr such that for each i, |zi| = 2`, even(zi) = wi and for
all words u and u′ of length `, the set {i : zi = u′ ∨ u} has cardinality r/22`.
This latter condition is achievable because, for each word u of length `, the set
{i : even(zi) = u} has cardinality r/2` which is a multiple of 2`, the number of
possible words u′.

Corollary 26. Let w be an `-perfect word for some even integer `. Then there
exists an `-perfect word z of length 2|w| such that even(z) = w.

Proof. Since w is `-perfect, it is also `/2-perfect. Furthermore, if u and v are
words of length `/2 and ` respectively then ||w||u = 2`/2+1||w||v. Thus, the
hypothesis of Lemma 25 is fulfilled with `/2.

Corollary 27. There exist a sequence (wn)n≥1 of words and a sequence of
positive integers (`n)n≥1 such that |wn| = 2n, even(wn+1) = wn, wn is `n-
perfect and (`n)n≥1 is non-decreasing and unbounded. Furthermore, it can be
assumed that w1 = 01.

Proof. We start with w1 = 01, `1 = 1, w2 = 1001 and `2 = 1. For each n ≥ 2,
if `n22`n divides |wn|, then `n+1 = 2`n and wn+1 is obtained by Lemma 25.
Otherwise, `n+1 = `n and wn+1 is obtained by Corollary 26. Note that the
former case happens infinitely often, so (`n)n≥1 is unbounded. Also note that
each `n is a power of 2.

of Theorem 24. Let (wn)n≥1 be a sequence given by Corollary 27. Let x =
11w1w2w3 · · · We first prove that x satisfies x = even(x). Note that x[2k +
1..2k+1] = wk for each k ≥ 1 and x[1..2k+1] = 11w1 · · ·wk. The fact that
wn = even(wn+1) implies x[2n] = x[n], for every n ≥ 3. The cases for n = 1
and n = 2 hold because x[1..4] = 1101.

We prove that x is normal. Consider an arbitrary index n0. By construction,
wn0 is `n0 -perfect and for each n ≥ n0, wn is also `n0-perfect. For every word u
of length `n0 and for every n ≥ n0,

||x[1..2n+1]||u ≤ ||x[1..2n0 ]||u + ||wn0
. . . wn||u.

Then, for every N such that 2n ≤ N < 2n+1 and n ≥ n0,
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||x[1..N ]||u
N/`n0

≤ ||x[1..2n+1]||u
N/`n0

≤ ||x[1..2n0 ]||u + ||wn0 . . . wn||u
N/`n0

≤ ||x[1..2n0 ]||u
2n/`n0

+
||wn0

. . . wn||u
2n/`n0

=
||x[1..2n0 ]||u

2n/`n0

+
(2n0 + . . .+ 2n)/(`n02`n0 )

2n/`n0

<
||x[1..2n0 ]||u

2n/`n0

+
2

2`n0

.

For large values ofN and n such that 2n ≤ N < 2n+1, the expression ||x[1..2n0 ]||u/(2n/`n0
)

becomes arbitrarily small. We obtain for every word u of length `n0
,

lim sup
N→∞

||x[1..N ]||u
N/`n0

≤ 3 2−`n0 .

Since the choice of `n0 was arbitrary, the above inequality holds for each `n.
Since (`n)n≥1 is unbounded, the hypothesis of Lemma 11 is fulfilled, with C = 3,
so we conclude that x is normal.

It is possible to compute a normal word x such that x = even(x) in linear
time.

8 Constructions of absolutely normal numbers

The first constructions of absolutely normal numbers were given, independently,
by Lebesgue [39] and Sierpiński [52], when the theory of computing was unde-
veloped. The numbers defined by these two constructions cannot be computed
because they are just determined as the infimum of a set defined by infinite
unions and intersections. The first example of a computable absolutely normal
number was given by Turing [54, 7] and, unfortunately, it has doubly exponential
time complexity. The computable reformulation of Sierpiński’s construction [6]
has also doubly exponential time complexity.

There are exponential algorithms that use analytic tools, such as Levin’s
construction [40, 3] of an absolutely normal number with fast convergence to
normality and Schmidt’s construction [50] of a number that is normal to all the
bases in a prescribed set but not normal to the bases in the complement, see
Theorem 43.

Some years ago several efficient algorithms were published. Figueira and Nies
gave in [31] an algorithm based on martingales with polynomial time complexity.
Becher, Heiber and Slaman [10] reworked Turing’s strategy and obtained an
algorithm with just above quadratic time complexity. Madritsch, Scheerer and

23



Tichy [43] adapted it and obtained an efficient algorithm to compute a number
that is normal to all Pisot bases. Recently Lutz and Mayordomo [42] obtained
an algorithm based on martingales with poly-logarithmic linear time complexity.

Another aspect in constructions of absolutely normal numbers is the the
speed of convergence to normality. Aistleitner, Becher, Scheerer and Slaman [2]
constructed an absolutely normal real number x so that for every integer b
greater than or equal to 2 the discrepancy modulo 1 of the sequence (bnx)n≥0 is
strictly below that realized by almost all real numbers (see Section 6) The con-
struction yields an exponential algorithm that achieves a discrepancy estimate
lower than that in Levin’s work [40]. According to Scheerer’s analysis [48], cur-
rently there are no other known constructions achieving a smaller discrepancy.
The problem of the existence of an absolutely normal number computable with
polynomial complexity having fast rate of convergence to normality remains
open.

We will present two algorithms and we will analyze their computational
complexity. We first need some notation.

If v is a block of digits in base b, Iv denotes b-ary interval

(.v, .v + b−|v|)

Definition 28. Let x be a real in the unit interval, and let xb be its expansion
in base b. We define

∆N (xb) = max
d∈{1,...,b}

∣∣∣∣ |xb[1 . . . N ]|d
N

− 1

b

∣∣∣∣ .
If w is a finite block of digits in base b we just write ∆(w) instead of ∆|w|(w).

8.1 Turing’s construction of absolutely normal numbers

Theorem 29 (Turing 1937? [54, 7]). There is an algorithm that computes the
expansion in base 2 of an absolutely normal number y in the unit interval.

The construction is done by steps. We will use n as the step number and
we will define the following functions of n: Nn is the number of digits looked
at step n, bn is the largest base considered at step n and εn is the maximum
difference between the expected frequency of digits and the tolerated frequency
of digits at step n. It is required that bn be non-decreasing and unbounded and
εn be non-increasing and goes to zero. Many instantiations of these functions
can work.

Definition 30. Define the following functions of n,

Nn = 2n0+2n,wheren0 = 11,

bn = blogNnc
εn = 1/bn.
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Define the following sets of real numbers,

E0 = (0, 1), and for each n

En =
⋂

b∈{2,..,bn}

{x ∈ (0, 1) : ∆Nn
(xb) < εn}.

The value n0 has been selected so that the forthcoming calculations are
simple. Observe that for every n, bn ≥ 2. Thus, for each n the set En consists
of all the real numbers whose expansion in the bases 2,3, . . . , bn exhibit good
frequencies of digits in the first Nn digits. We write µ for Lebesgue measure.

Proposition 31. For each n, En is a finite union of open intervals with rational
endpoints, En+1 ⊂ En, and µEn > 1−N2

n.

Proof. The values of Nn and εn satisfy the hypotheses of Lemma 8 with digits
in base b (that is, let k be Nn, let ` be 1 and let ε be εn),

µ{x ∈ (0, 1) : ∆Nn
(xb) ≥ εn} < 2b2e−ε

2
nbNn/6.

Then, for bn ≤ logNn, ε ≥ 1/ logNn and Nn > e10 can be checked that

bn∑
b=2

2b2e−ε
2bNn/6 < 1/N2

n.

Hence,

µEn ≥ 1−
bn∑
b=2

2b2e−ε
2bNn/6 ≥ 1− 1/N2

n.

Proposition 32. The set
⋂
n≥0En has positive measure and consists just of

absolutely normal numbers.

Proof. From Proposition 31 follows that
⋂
n≥0En has positive measure. Sup-

pose x ∈
⋂
n≥0En. Then, for every n, x ∈ En, so for each b = 2, 3, . . . , bn,

∆Nn(xb) ≤ εn.

Let b be an arbitrary base and let M be an arbitrary position. Let n be such
that

Nn ≤M < Nn+1.

For each b smaller than bn we have that for each digit d in {0, . . . , b− 1},

|xb[1 . . .M ]|d
M

<
|xb[1 . . . Nn+1]|d

Nn
<

Nn+1

Nn

(
1

b
+ εn+1

)
= 4

(
1

b
+ εn+1

)
|xb[1 . . .M ]|d

M
>

|xb[1 . . . Nn]|d
Nn+1

>
Nn
Nn+1

(
1

b
− εn

)
=

1

4

(
1

b
− εn

)
.
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Since εn is decreasing in n and goes to 0, we conclude that for each base b =
2, 3 . . .,

lim sup
N→∞

|xb[1 . . . N ]|d
N

< 4
1

b
.

Using the morphism that maps digits in base b` to words in base b, this is
equivalent to say that that for each base b, for every length `, for every word u
of length `,

lim sup
N→∞

||xb[1 . . . `N ]||u
N

< 4
1

b`
.

By Theorem 11, x is normal to every base b, hence absolutely normal.

Turing’s construction selects nested binary intervals I1, I2, . . . such that, for
each n, µIn = 1/2n. Each interval In+1 is either the left half or the right half
of In. The base-2 expansion of the computed number y is denoted with the
sequences y1, y2, . . . which is the trace of the left/right selection at each step.
Recall Definition 30 where the sets En are defined, for every n ≥ 0.

Algorithm 1.

Initial step, n = 0. I0 = (0, 1), E0 = (0, 1).

Recursive step, n > 1. Assume that in the previous step we have computed
In−1.

Let I0
n be left half of In−1 and I1

n be right half of In−1.

If µ
(
I0
n ∩

⋂n
j=0Ej

)
> 1/Nn then let In = I0

n and yn = 0.

Else let In = I1
n and yn = 1.

of Theorem 29. From Algorithm 1 follows that the intervals I1, I2, . . . are nested
and for each n, µIn = 1/2n. To prove the correctness of the algorithm we need
to prove that the following condition is invariant along every step n of the
algorithm:

µ

In ∩ n⋂
j=1

Ej

 > 0.

We prove it by induction on n. Recall Nn = 2n0+2n.
Base case n = 0.

µ(I0 ∩ E0) = µ((0, 1)) >
1

N2
0

=
1

22n0
.

Inductive case, n > 0. Assume as inductive hypothesis that

µ

In ∩ n⋂
j=0

Ej)

 >
1

Nn
.
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We now show it holds for n+ 1. Recall µEn > 1− 1/N2
n. Then,

µ

In ∩ n+1⋂
j=0

Ej

 = µ

In ∩ n⋂
j=0

Ej ∩ En+1

 >
1

Nn
− 1

N2
n+1

>
2

Nn+1
.

Since the algorithm chooses In+1 among I0
n and I1

n ensuring µ(In+1∩
⋂n+1
j=0 Ej) >

1/Nn+1, we conclude µ(In+1 ∩
⋂n+1
j=0 Ej) > 1/Nn+1 as required.

Finally, since (In)n≥0 is a nested sequence of intervals and µ(In∩
⋂n
j=0Ej) >

0, for every n, we obtain that

⋂
n≥0

In =
⋂
n≥0

In ∩ n⋂
j=0

Ej

 .

contains a unique real number y. By Lemma 32, all the elements in
⋂
j≥0Ej

are absolutely normal. This concludes the proof of Theorem 29.

We now bound the number of mathematical operations computed by the
algorithm to output the first n digits of the expansion of the computed number
in a designated base. We do not count how many elementary operations are
implied by each of the mathematical operations, which means that we neglect
the computational cost of performing arithmetical operations with arbitrary
precision.

Proposition 33. Turing’s algorithm has double exponential time-complexity.

Proof. At step n the algorithm computes the set In−1 ∩ En by computing first
the set

In−1 ∩ En =
⋂

b∈{2,..,bn}

{x ∈ In−1 ∩ En−1 : ∆Nn
(xb) < εn}

and choosing one of its halves. Then, the number of words to be examined to
compute In ∩ En is

(bn)Nn−Nn−1−(n−1).

Since Nn = 2n0+2n and bn = blogNnc, this number of words is in the order of

O
(
(2n)22n)

.

The examination of all these words requires O
(
(2n)22n)

mathematical opera-
tions. We conclude by noticing that using the set In∩En at step n the algorithm
determines the n− th binary digit of the computed number.
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8.2 A fast construction of absolutely normal numbers

We give a simplified version of the algorithm given by Becher, Heiber and Slaman
in [10].

Theorem 34. There is an algorithm that computes an absolutely normal num-
ber x in nearly quadratic time completely: the first n digits in the expansion of x
in base 2 are obtained by performing O

(
n2 4
√

log n) mathematical operations.

The following two lemmas are not hard to prove.

Lemma 35 ([10, Lemma 3.1]). Let u and v be blocks and let a positive real ε.

1. If ∆(u) < ε and ∆(v) < ε then ∆(uv) < ε.

2. If ∆(u) < ε, v = a1...a|v| and |v|/|u| < ε then ∆(vu) < 2ε, and for every
` such that 1 ≤ ` ≤ |v|, ∆(ua1a2...a`) < 2ε.

Lemma 36 (Lemma 3.4 [10]). For any interval I and any base b, there is a
b-ary subinterval J such that µJ ≥ µI/(2b).

The next two definitions are the core of the construction.

Definition 37. A t-sequence −→σ is a sequence of intervals (σ2, . . . , σt) such that
for each base b = 2, . . . , t, σb is b-ary,

for each base b = 3, . . . , t, σb ⊂ σb−1 and µσb ≥ µσb−1/(2b).

Observe that the definition implies µσt ≥ (µσ2)/(2tt!).

Definition 38. A t-sequence −→τ = (τ2, . . . , τt) refines a t′-sequence −→σ = (σ2, . . . , σt′)
if t′ ≤ t and τb ⊂ σb for each b = 2, . . . , t′. A refinement has discrepancy less
than ε if for each b = 2, ..t′ there are words u, v such that σb = Iu, τb = Iuv and
∆(v) < ε.

We say that an interval is b-ary of order n if it is of the form(
a

bn
,
a+ 1

bn

)
for some integer a such that 0 ≤ a < bn. If σb and τb are b-ary intervals, and
τb ⊆ σb we say that the relative order of τb with respect to σb is the order of τb
minus the order of σb.

Lemma 39. Let t be an integer greater than or equal to 2, let t′ be equal to
t or to t + 1, and let ε be a positive real less than 1/t. Then, any t-sequence
−→σ = (σ2, . . . , σt) admits a refinement −→τ = (τ2, . . . , τt′) with discrepancy less
than ε. The relative order of τ2 can be any integer greater than or equal to
max(6/ε, 24(log2 t)(log(t!))/ε2).

28



Proof. First assume t′ = t. We must pick a t-sequence (τ2, . . . , τt) that refines
(σ2, . . . , σt) in a zone of low discrepancy. This is possible because the measure
of the zones of large discrepancy decreases at an exponential rate in the order
of the interval. To prove the lemma we need to determine the relative order N
of τ2. such that the measure of the union of the bad zones inside σ2 for the
bases b = 2, . . . t is strictly less than the measure of the set all the possible t-ary
subintervals τt of σ2.

Let L be the largest binary subinterval in σt. Consider the partition of L in
2N binary intervals τ2 of equal length. For each τ2 apply iteratively Lemma 36 to
define τ3, . . . , τtn . In this form we have defined 2N many tn-sequences (τ2, . . . τt).
Let S be the union of the set of all possible intervals τt over these 2N many
tn-sequences. Hence, by the definition of t-sequence,

µS ≥ µL/(2tt!).

By Lemma 36,
µL ≥ µσt/4.

And by the definition of t-sequence again,

µσt ≥ µσ2/(2
tt!).

Combining inequalities we obtain,

µS ≥ µσ2/(2
tt! 4 2tt!)

Now consider the bad zones inside σ2. For each b = 2, . . . t, for a length N
and a real value ε consider the the following set of intervals of relative order
dN/ log2 be with respect to σ2,

Bb,dN/ log2 be,ε =
⋃

u∈{0,...,b−1}dN/ log2 be

∆(u)≥ε

Iu.

Thus, the actual measure of the bad zones is

µσ2 µ
( ⋃
b=2,..,t

µBb,dN/ log2 be,ε

)
Then, N must be such that

µσ2 µ
( ⋃
b=2,..,t

Bb,dN/ log2 be,ε

)
< µS.

Using Lemma 8 on the left and the inequality above for µS on the right it
suffices that N be greater than 6/ε and also N be such that

2t2 · e−ε
2(N/3 log2 t) <

1

2tt!

1

4

1

2tt!
.
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We can take N greater than or equal to max(6/ε, 24(log2 t)(log(t!))/ε2).

The case t′ = t+ 1 follows easily by taking first a t-sequence −→τ refining −→σ
with discrepancy less than ε. Definition 38 does not require any discrepancy
considerations for τt+1. Take τt+1 the largest (t + 1)-ary subinterval of τt. By
Lemma 36, µτt+1 ≥ (µτt)/(2(t+1)). This completes the proof of the lemma.

The algorithm considers three functions of the step number n: tn is the
maximum base to be considered at step n, εn is the maximum discrepancy
tolerated at step n, and Nn is the number of digits in base 2 added at step n.
It is required that tn be increasing and εn be decreasing. Many instantiations
of this functions can work.

The algorithm constructs −→σ 0,
−→σ 1,
−→σ 2, . . . such that −→σ 0 = (0, 1) and for each

n ≥ 1, −→σ n is tn-sequence that refines −→σ n−1 with discrepancy εn and such that
the order of σn,2 is Nn plus the order of σn−1,2.

Definition 40. Define the following functions of n,

tn = max(2, b 4
√

log nc),
εn = 1/tn,

Nn = blog nc+ nstart,

where nstart is the minimum integer such that it validates the condition in
Lemma 39. Thus we require that for every positive n,

blog nc+ nstart ≥ 6/εn and

blog nc+ nstart ≥ 24(log2 tn)(log(tn!))/ε2
n.

Algorithm 2.

Initial step, n = 1. −→σ 1 = (σ2), with σ2 = (0, 1).

Recursive step, n > 1. Assume −→σ n−1 = (σ2, . . . , σtn−1
). Take

−→σ n = (τ2, . . . , τtn) the leftmost tn-sequence such that it is refine-
ment of −→σ n−1 with discrepancy less than εn such that the relative order
of τ2 is Nn.

of Theorem 34. Consider Algorithm 2. The existence of the sequence−→σ 1,
−→σ 2, . . .

is guaranteed by Lemma 39. We have to prove that the real number x defined
by the intersection of all the intervals in the sequence is absolutely normal. We
pick a base b and show that x is simply normal to base b. Let ε̃ > 0. Choose
n0 so that tn0 ≥ b and εn0 ≤ ε̃/4. At each step n after n0 the expansion of x in
base b was constructed by appending blocks un such that ∆(un) < εn0

. Thus,
by Lemma 35 (item 1) for any n > n0,

∆(un0
. . . un) < εn0

.
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Applying Lemma 35 (item 2a), we obtain n1 such that for any n > n1

∆(u1 . . . un) < 2εn0
.

Let N
(b)
n be the relative order of τb with respect to σb. By Lemma 36,

Nn
log2 b

≤ N (b)
n ≤ Nn + 1

log2 b
+ 1.

Since Nn = blog nc+nstart, Nn grows logarithmically and so does N
(b)
n for each

base b. Then, for n sufficiently large,

N (b)
n ≤ Nn + 1

log2 b
+ 1 ≤ 2εn0

n−1∑
j=1

Nj
log2 b

≤ 2εn0

n−1∑
j=1

N
(b)
j .

By Lemma 35 (item 2b) we conclude that for n sufficiently large, if un =
a1 . . . a|un| then for every ` such that 1 ≤ ` ≤ |un|,

∆`(u1 . . . un−1a1 . . . a`) < 4εn0 < ε̃.

So, x is simply normal to base b for every b ≥ 2.
We now analyze the computational complexity of the algorithm. Lemma 39

ensures the existence of the wanted t-sequence at each step n. To effectively
find it we proceed as follows. Divide the interval σ2 into

2Nn

equal binary intervals. In the worst case, for each of them, we need to check if it
allocates a tn-sequence (τ2, . . . , τtn) that refines (σ2 . . . , σtn−1

) with discrepancy
less than εn. Since we are just counting the number of mathematical operations
ignoring the precision, at step n the algorithm performs

O
(
2Nntn

)
many mathematical operations. Since Nn is logarithmic in n and tn is a rational
power of log(n) we conclude that at step n the algorithm performs

O(n 4
√

log n)

mathematical operations. Finally, in the first k steps the algorithm will output
at lest k many digits of the binary expansion of the computed number having
performed

O(k2 4
√

log k)

many mathematical operations. This completes the proof of Theorem 34.
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9 Normality, non-normality and other mathe-
matical properties

Recall that two positive integers are multiplicatively dependent if one is a rational
power of the other. Then, 2 and 8 are dependent, but 2 and 6 are independent.

Theorem 41 (Maxfield 1953 [22]). Let b and b′ multiplicatively dependent. For
any real number x, x is normal to base b if and only if x is normal to base b′.

Theorem 42 (Cassels 1959 [24]). Almost all real numbers in the middle third
Cantor set (with respect to the uniform measure) are normal to every base which
is not a power of 3.

Theorem 43 (Schmidt 1961 [50]). For any given set S of bases closed under
multiplicative dependence, there are real numbers normal to every base in S
and not normal to any base in its complement. Furthermore, there is a real x
computable from S.

Theorem 43 was improved in [14] to obtain lack of simple normality for the
bases outside S instead of just lack of normality. Then Becher, Bugeaud and
Slaman [5] obtained the necessary and sufficient conditions on a set S for the
existence of real numbers simply normal to every base in S and not simply
normal to any base in its complement.

Theorem 44 (Becher, Bugeaud and Slaman [5]). Let S be a set of bases. There
is a real x that is simply normal to exactly the elements in S if and only if

1. for each b, if bk in S then b in S,

2. if infinitely many powers of b belong to S, then all powers of b belong to
S.

Moreover, the real x is computable from the set S. Furthermore, the set of real
numbers that satisfy this condition has full Hausdorff dimension.

We end the section with references on the relation of normality and Dio-
phantine approximations. The irrationality exponent m of a real number x
reflects how well x can be approximated by rational numbers. Precisely, it is
the supremum of the set of real numbers z for which the inequality

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0. Rational
numbers have irrationality exponent equal to 1. Liouville numbers are those
with infinite irrationality exponent. It follows from the fundamental work by [36]
that almost all irrational numbers (with respect to Lebesgue measure) have
irrationality exponent equal to 2. On the other hand, it follows from the theory
of continued fractions that for every m greater than 2 or equal to infinity, there
is a real number x with irrationality exponent equal to m.
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Absolute normality places no restriction on irrationality exponents of irra-
tional numbers. The existential result that for every real number a greater than
or equal to 2 there is an absolutely normal number with irrationality exponent
equal to follows from Kaufman [35]. Bugeaud [21] showed there is an absolutely
normal Liouville. In both cases, existence of such real numbers follows from the
existence of a measure whose Fourier transform vanishes sufficiently quickly at
infinity and which is supported by a subset of the real numbers with the appro-
priate irrationality exponent. Bugeaud’s argument employs an adaptation of
Kaufman’s methods to the set of Liouville numbers due to Bluhm [16]. Becher,
Heiber, and Slaman [11] exhibit a computable construction of an absolutely
number Liouville number.

10 Selection

We consider the selection of symbols from an infinite word and define a word
with the selected symbols. The general problem is which forms of selection
preserve normality, that is, which families of functions f performing selection
guarantee that f(x) is normal when x is normal. Notice that if a selection
procedure is allowed to read the symbol being decided, it would be possible to
“select only zeroes”, or yield similar schemes that do not preserve normality.

We consider three forms of selection. Prefix-selection looks at just the prefix
of length i − 1 to decide whether the symbol at position i is selected. Suffix
selection looks at just the suffix starting at position i + 1 to decide whether
symbol at position i is selected. Two-sided selection looks at the prefix of
length i−1 and the suffix starting at position i+1 to decide the selection of the
symbol at position i. Prefix-selection is the selection defined by Agafonov [1].

Let x = a0a1a2 · · · be an infinite word over alphabet A. Let L ⊆ A∗ be a
set of finite words over A and X ⊆ Aω a set of infinite words over A.

The word obtained by prefix-selection of x by L is x � L = ai0ai1ai2ai3 · · ·
where i0, i1, i2, · · · is the enumeration in increasing order of all the integers i
such that a0a2 · · · ai−1 ∈ L.

The word obtained by suffix-selection of x by X is x � X = ai0ai1ai2ai3 · · ·
where i0, i1, i2, · · · is the enumeration in increasing order of all the integers i
such that ai+1ai+2ai+3 · · · ∈ X.

Theorem 45 (Agafonov [1]). If x ∈ Aω is normal and L ⊂ A∗ is rational then
x � L is also normal.

Before giving the proof of Theorem 45 we discuss some other results. Agafanov’s
theorem can be extended to suffix selection by replacing the rational set of finite
words L by a rational set of infinite words X. The proof of this theorem is quite
technical so we do not give it here.

Theorem 46 ([13]). If x ∈ Aω is normal and X ⊂ Aω is rational then x � X
is also normal.
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The prefix and suffix selections cannot be combined to preserve normality: in
general, two-sided selection does not preserve normality. For instance, selecting
all symbols surrounded by two symbols 1 in a normal word over {0, 1} always
destroys normality: the factor 11 occurs more frequently than the factor 00 in
the resulting word.

We now give three lemmas to be used in the proof of Theorem 45.

Lemma 47. For any set of finite words L, the function x 7→ 〈x � L, x � A∗ \L〉
is one-to-one.

Proof. Let y1 = x � L and y2 = x � A∗ \ L. By definition, y1 contains some
symbols of x, in the same relative order, and y2 contains the complement, also
in the same relative order. It is possible to reconstruct x by interleaving appro-
priately the symbols in y1 and y2. For each i ≥ 1, the i-th symbol of x comes
from y1 if and only if the prefix of length i of x is in L. Thus, there is a unique
x such that y1 = x � L and y2 = x � A∗ \ L.

A (deterministic) two-output transducer is like transducer but it has two
output tapes. Each of its transitions has the form p a|v,w−−−→ q where a is the
symbol read on the input tape and v and w are the words written to the first
and the second output tape respectively.

An infinite word x = a0a1a2 · · · is compressible by a two-output transducer
if there is an accepting run q0

a0|v0,w0−−−−−→ q1
a1|v1,w1−−−−−→ q2

a2|v2,w2−−−−−→ · · · that satisfies

lim inf
n→∞

(|v0v2 · · · vn|+ |w0w2 · · ·wn|)
n+ 1

log |B|
log |A|

< 1.

The following lemma states that an extra output tape does not help for
compressing.

Lemma 48. An infinite word is compressible by a bounded-to-one two-output
transducer if and only if it is compressible by a bounded-to-one transducer.

Proof. The “if” part is immediate by not using one of the output tapes.
Suppose that x is compressible by the bounded-to-one two-output trans-

ducer T2. We construct a transducer T1 with a single output tape which also
compresses x. The main idea is to merge the two outputs into the single tape
without loosing the bounded-to-one assumption. Let m be an integer to be
fixed later. The transducer T1 simulates T2 on the input and uses two buffers
of size m to store the outputs made by T2. Whenever one of the two buffers
is full and contains m symbols, its content is copied to the output tape of T1

with an additional symbol in front of it. This symbol is either 0 or 1 to indicate
whether the m following symbols comes from the first or the second buffer. This
trick preserves the bounded-to-one assumption. This additional symbol for each
block of size m increase the length of the output by a factor (m+ 1)/m. For m
large enough, the transducer T1 also compresses x.

Lemma 49. Let x = a0a1a2 · · · be a normal word and let q0
a0−→ q1

a1−→ q2
a2−→

· · · be a run in a deterministic automaton. If the state q is visited infinitely
often then lim infn→∞ |{i ≤ n : qi = q}|/n > 0.
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Proof. Let A be a deterministic automaton. For a state p and a finite word w,
the unique state q such that p w−→ q is denoted p · w.

Let q = q1, . . . , qn be the states occurring infinitely often in the run. For
1 ≤ i, j len, let ui,j be a word such that qi ·ui,j = qj . Let us define the sequence
of words (wk)1≤k≤n by w1 = λ and wk+1 = wkui,1 where qk+1 · wk = qi. By
definition qk ·wk = q and thus the finite run qi

wn−−→ qi ·wn visits the state q for
each i since wi is a prefix of wn. Since the number of occurrences of wn in x
converges to 1/|A||wn|, the result holds.

of Theorem 45. Let x be a normal word. Let L ⊂ A∗ be a rational language.
We suppose by constriction that x � L is not normal and we show that x can
be compressed, contradicting its normality.

Let A be a deterministic automaton accepting L. This automaton can be
turned into a two-output transducer that outputs x � L and x � A∗ \ L on
its first and second output tapes respectively. Each transition that leaves a
final state, copies its input symbol to the first output tape and each transition
that leaves a non-final states copies its input symbol to the second output tape.
By hypothesis, x � L is not normal, and therefore can be compressed by some
deterministic transducer. Combining, these two transducers yields a two-output
transducer that compresses x. This later result holds because, by Lemma 49,
the states that select symbols from x are visited at least linearly often. Then,
by Lemma 48, x can be compressed and is not normal.
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de Théorie des Nombres de Bordeaux, 12(1):165–177, 2000.

[56] D. D. Wall. Normal Numbers. PhD thesis, University of California, Berke-
ley, California, 1949.

39


