Decidability of some classes of rational relations

Olivier Carton,
Christian Choffrut, Serge Grigorieff
LIAFA, CNRS
Université Paris 7
Szeged 2006

(1) Introduction
(2) Automata

- Deterministic automata
- Synchronous automata
- Asynchronous automata
(3) Hierarchy

4 The non commutative case
(5) The commutative case

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

n-tapes automata (as Turing machines)

Run on the input $(c a b c a, b b a, a a b c b c) \in A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Deterministic n-tapes automata

- deterministic control
- end-markers (as automata)

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ are deterministic
- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\} \cup\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not deterministic

The set of relations accepted by deterministic automata is denoted DRat (M).

Synchronous n-tapes automata

| Q | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | a | b | c | a | $\#$ | $\#$ |
| b | b | a | $\#$ | $\#$ | $\#$ | $\#$ |
| a | a | b | c | b | c | $\#$ |

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

Q	\downarrow						
	c	a	b	c	a	\#	\#
	b	b	a	\#	\#	\#	\#
	a	a	b	c	b	c	\#

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

| Q | a | b | c | a | $\#$ | $\#$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | b | a | $\#$ | $\#$ | $\#$ | $\#$ |
| a | a | b | c | b | c | $\#$ |

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

Q	\downarrow						
	c	a	b	c	a	\#	\#
	b	b	a	\#	\#	\#	\#
	a	a	b	c	b	c	\#

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

Q	\downarrow						
	c	a	b	c	a	\#	\#
	b	b	a	\#	\#	\#	\#
	a	a	b	c	b	c	\#

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Synchronous n-tapes automata

| Q | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | a | b | c | a | $\#$ | $\#$ |
| b | b | a | $\#$ | $\#$ | $\#$ | $\#$ |
| a | a | b | c | b | c | $\#$ |

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ et $\{(u, v) \mid u$ prefix of $v\}$ are synchronous
- $\left\{\left(a^{n}, b^{2 n}\right) \mid n \geq 0\right\}$ is not synchronous
- $((a, a b)+(b, b))^{*}$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata

- sequential moves of the heads

Examples

- $R=\left(a A^{*} \times A^{*} a\right) \cup\left(b A^{*} \times A^{*} b\right)$ is recognizable
- $R=\bigcup_{i=1}^{n} K_{i} \times L_{i}$ is recognizable if the sets K_{i} and L_{i} are rational.
- the diagonal $\left\{(u, u) \mid u \in A^{*}\right\}$ is not recognizable

Asynchronous n-tapes automata (other view)

- one control state for each tape : $Q=Q_{1} \times \cdots \times Q_{n}$

The set of relations accepted by asynchronous automata is denoted $\operatorname{Rec}(M)$.

The strict hierarchy

$$
M=A_{1}^{*} \times \cdots \times A_{n}^{*}
$$

$$
\begin{array}{ccccccc}
\operatorname{Rec}(M) & \subset & \operatorname{Sync}(M) & \subset & \operatorname{DRat}(M) & \subset & \operatorname{Rat}(M) \\
\mathcal{F}_{0} & & \mathcal{F}_{1} & & \mathcal{F}_{2} & & \mathcal{F}_{3}
\end{array}
$$

InCLUSION-I-IN-J
Input: $R \in \mathcal{F}_{j}$
Output: $R \in \mathcal{F}_{i}$?

The different cases

To avoid trivial cases, it is assumed that

- $n \geq 2$
- $\left|A_{i}\right| \geq 1$ for each $1 \leq i \leq n$.

There are two distinct main cases.

- $\left|A_{1}\right|=\cdots=\left|A_{n}\right|=1$: all alphabets are of size 1 . The monoid $M=A_{1}^{*} \times \cdots \times A_{n}^{*}$ is commutative : $M \approx \mathbb{N}^{n}$.
- $\left|A_{1}\right| \geq 2: M$ is not commutative
- $\left|A_{2}\right|=\cdots=\left|A_{n}\right|=1$: exactly one the alphabets is of size greater or equal to 2 .
- $\left|A_{2}\right| \geq 2$: at least two of the alphabets are of size greater or equal to 2 .

Known results (non commutative case)

	Rat (M)	DRat (M)	$\operatorname{Sync}(M)$
$\operatorname{DRat}(M)$	undecidable Fischer, Rosenberg 1967 Lisovik 1979	undecidable Sync (M)	open
$\operatorname{Rec}(M)$	undecidable idem	decidable Carton, Choffrut Grigorieff 2006	decidable in 20(n) Carton, Choffrut Grigorieff 2006

Relations as languages (binary case $A^{*} \times B^{*}$)

Correspondence relation \leftrightarrow language.

$$
R \subseteq A^{*} \times B^{*} \mapsto L_{R} \in A^{*} \# B^{*}
$$

where

$$
L_{R}=\left\{\tilde{u} \# v \in A^{*} \# B^{*} \mid(u, v) \in R\right\}
$$

- R is a rational relation iff L_{R} is a linear language with a unique final production $X \rightarrow \#$.
- If R is a deterministic rational, then L_{R} is a deterministic pushdown language.
- R is a recognizable relation iff L_{R} is a rational language.

Stearns' results

Theorem (Stearns 1967)

If can be decided whether a language given by a deterministic pushdown automaton is rational.

- Very nice proof (majoration of the stack height)
- complexity of the procedure: 3 exponentials
- The complexity has been lowered to 2 exponentials by Valiant in 1976 (optimal, see Meyer et Fischer 1971)
- Therefore, it can be decided if a binary deterministic relation is recognizable.

Known results (commutative case)

	$\operatorname{Rat}(M)$
$\operatorname{DRat}(M)$	decidable Carton, Choffrut Grigorieff 2006
$\operatorname{Sync}(M)$	decidable idem
$\operatorname{Rec}(M)$	decidable Ginsburg, Spanier 67

Run in \mathbb{N}^{2}

Run in \mathbb{N}^{2}

Run in \mathbb{N}^{2}

Run in \mathbb{N}^{2}

Run in \mathbb{N}^{2}

Reduction to Presburger logic

Let R be given by the formula $\theta(x ; b)$

$$
R=\left\{x \in \mathbb{N}^{k} \mid \theta(x ; b)\right\}
$$

One constructs the formula $\Psi_{\theta}(b)$

$$
\begin{aligned}
\Psi_{\theta}(b)=\exists \mu \exists \pi & (\forall x \geq 0 \quad \theta(x+\mu ; b) \Longleftrightarrow \theta(x+\mu+\pi ; b) \wedge \\
& \forall u<\mu \quad \forall v<\pi \\
& \bigwedge_{\varnothing \neq I \subseteq\{1, \ldots, k\}} \\
& \left(\operatorname{Null}(\mu-u)=I \Longrightarrow \Psi_{\theta_{I}^{\prime}}(b, \mu, u)\right) \\
& \left.\left(\operatorname{Null}(\pi-v)=I \Longrightarrow \Psi_{\theta_{I}^{\prime}}(b, \mu+\pi, \mu+v)\right)\right)
\end{aligned}
$$

which is satisfiable iff R is deterministic.

