
Implementation of Hopcroft's Algorithm

Hang Zhou

19 December 2009

Abstract

Minimization of a deterministic �nite automaton(DFA) is a well-studied
problem of formal language. An e�cient algorithm for this problem is pro-
posed by Hopcroft in 1970 and we have already learned this algorithm in
the course. The goal of this writing is to discuss how this algorithm is
carried out in time complexity O(MNlog2N)(where M is the size of al-
phabet and N is the number of states). The writing is in three sections:
�rst, we review the original algorithm; second, we provide corresponding
data structures for carrying out the algorithm e�ciently; and at last we
prove that the algorithm is indeed in time O(MNlog2N) using these data
structures.

1 Introduction:

Let A be a deterministic �nite automaton (Q,A,E, I, F), where Q is the �nite
set of states, A the alphabet, E the set of transition edges, I and F the sets of
initial and �nal states respectively. Let M be the size of alphabet and N be the
number of states. For convenience, let A be the set of integers from 1 to M .

The problem of minimization is to �nd an automaton A′ with the minimum
number of states which is equivalent to A.

De�nition 1. Let P be a partition of Q. The number of classes in P is bounded
by N . Hence every class of P can be entitled with a unique name between 1
and N .

From the de�nition, for every pair (C, a), where C is a class and a is a letter,
it corresponds to a unique element in {1, .., N} × {1, ..,M}.

De�nition 2. Let A be a deterministic �nite automaton (Q,A,E, I, F). Let
a ∈ A and B,C ⊆ Q. A pair (C, a) is said to split B, if B ·a * C and B ·a∩C 6= ∅
with B · a = {x · a|x ∈ B}. In this case, B is split by (C, a) into two parts:
B′ = {x ∈ B|x · a ∈ C} and B′′ = {x ∈ B|x · a /∈ C}.

1

Recall Hopcroft's algorithm in our course:

Hopcroft's-Minimization-1st-Version()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S
5 while S 6= ∅
6 do Delete (C, a) from S
7 Decide subset T of P with element split by (C, a)
8 for each B ∈ T
9 do B′, B′′ ← Split(B,C, a)
10 Replace B by B′ and B′′ in P
11 for b ∈ A
12 do if (B, b) ∈ S
13 then Replace (B, b) by (B′, b) and (B′′, b) in S
14 else Insert (min(B′, B′′), b) to S

2 Data structure

In this section we provide several data structures for carrying out Hopcroft's
algorithm e�ciently.

Let Inverse = a−1C, which equals to {x|a · x ∈ C}. We will show in the
next section that the execution time of the while loop is O(|Inverse|).

In order to achieve the e�ect of T , we start by calculating the approximate
subset T ′ of P, which contains element B such that B

⋂
Inverse 6= ∅. It is

easier to obtain T ′ after scanning all elements in C. It is in O(1) time to check
whether an element in T ′ is also in T . So the previous algorithm can be rewrit-
ten as following:

Hopcroft's-Minimization-2nd-Version()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S
5 while S 6= ∅
6 do Delete (C, a) from S
7 Inverse← a−1C
8 Decide subset T ′ of P with element B such that B

⋂
Inverse 6= ∅

9 for each B ∈ T ′

10 do if B · a * C
11 then B′, B′′ ← Split(B,C, a)
12 Replace B by B′ and B′′ in P

2

13 for b ∈ A
14 do if (B, b) ∈ S
15 then Replace (B, b) by (B′, b) and (B′′, b) in S
16 else Insert (min(B′, B′′), b) to S

Here a partition P will be characterized by four arrays Class, Part, Card, Place:
• Class[x] : the name of the class which contains state x;
• Part [i] : a pointer to a doubly linked list with all states in class named i;
• Card [i] : the size of class named i;
• Place[x] : a pointer to the position of state x in the linked list Part[p],

where p=Class[x].
The structures above enable us to move a state from one class to another in
O(1) time.

An integer variable Counter maintains the number of classes in P. It is
originally set to 2 (or 1, if F = Q), and increases during the execution of the
program.

In order to calculate Inverse = a−1C, we use an array Inv indexed by
{1, ..., N} × {1, ...,M} such that Inv[x, a] is a pointer to the linked list of state
y satisfying y · a = x. In this way, Inverse need not be constructed physi-
cally, but only be read in time proportional to its size when we traverse the
list Part[Class[C]] and, for each state y in this list, traverse Inv[y, a]. So
the expression "for all x ∈ Inverse" is carried out as : "for all y ∈ C and all
x ∈ Inv[y, a]".

The list S should e�ciently support these operations: insert, search, and
delete a "random" element. Noting that the size of S is bounded by MN , we
will use a linked list, together with a boolean array InList, which is indexed
by {1, ..., N}×{1, ...,M}(InList[C,a] is true if (C, a) ∈ S). In this way, insert
operation is done in O(1): insert this element into linked list and update its cor-
responding value in InList; search operation is done in O(1) thanks to InList;
delete operation is done in O(1): delete the head element from the linked list
and update its corresponding value in InList; at last, to test whether S 6= ∅ is
also done in O(1) because of the linked list structure.

In order to obtain T ′, we use the following three date structures:
• Involved : a linked list of the names of classes in T ′;
• Size : an integer array, such that for each class B with name i, Size[i] is the
cardinality of B

⋂
a−1C. This array should be cleared to 0 every time the while

loop is executed;
• Twin : an integer array, such that Twin[i] is the name of the new class created
while splitting the class named i. This array should also be initialized every
time the while loop is executed.

3

3 Analysis of time complexity

We now analyze the time complexity of Hopcroft's algorithm of the 2nd version
above. Here we are only concerned with the time complexity, while not caring
about the space complexity.

Lemma 3. The number of classes created during the execution is bounded by
2N − 1. In addition, the number of iterations of the while loop is bounded by
2MN .

Proof. Consider a binary tree which corresponds to the split operations such
that each node is a subset of Q. The root of the tree is the whole set Q. It
has two children, and their union equals to Q. Each non-leaf node P in this
tree has two children P ′ and P ′′, which is the result of a split operation applied
to P . Such a binary tree has at most N leaves, so at most 2N − 1 nodes,
hence we prove the �rst half of the lemma. In order to bound the number of
iterations of the while loop, it su�ces to prove that the number of pairs (C, a)
inserted to S is bounded by 2MN , because in each iteration we delete a pair
from S. Consider some pair (C, a) inserted to S. Here C is an element of current
partition and corresponds to some node in the binary tree above, so the choice
of C has at most 2N − 1 di�erent possibilities; and because the choice of a has
M di�erent possibilities, we conclude that the number of pairs (C, a) is bounded
by 2MN .

The initialization before the while loop is in time O(MN). The number of
iterations of the while loop is bounded by 2MN (by Lemma 3), so the global ex-
ecution time of line 6 is O(MN). And the number of classes created is bounded
by 2N − 1 (also by Lemma 3), so the global execution time of line 13 to line 16
is O(MN).

It only rests to evaluate the global execution time of line 7 to line 12. In order
to do this we take two steps: �rst, evaluate the sum of |Inverse| in all execution
of the while loop (this sum is noted as

∑
|Inverse| from now on), and then

prove that the global execution time from line 7 to line 12 is O(
∑
|Inverse|).

Proposition 4. Let a ∈ A, p ∈ Q being �xed. The number of times that we
Delete (C, a) from list S, satisfying p ∈ C, is bounded by log2N .

Proof. We call a pair (C, a) to be marked if p ∈ C. Before the while loop, S
contains at most one marked pair (this condition holds for all instances of a and
p). Let (C, a) be the �rst marked pair which is deleted from S. If there exists a
second marked pair (C ′′, a), then beforeDelete(C ′′, a), there must be some pair
(C ′, a) which is generated by k Replace operations starting from pair (C, a)
(k ≥ 0), such that (C ′′, a) is a result of Split (C ′, a). So Card(C ′) ≤ Card(C)
and Card(C ′′) ≤ Card(C ′)/2. Now we take (C ′′, a) as (C, a) and repeat in

4

the same way until no such Delete operation occurs. So the number of such
Delete operations is not more than log2n for a �xed pair of p and a.

Corollary 5. The sum of |Inverse| in all execution of the while loop is bounded
by MNlog2N .

Proof. Let (x, a, y) be a �xed triplet satisfying y = x · a. The number of times
that x is read in the list Inverse satisfying y = x · a is exactly the same as
the number of pairs (C, a) deleted from the list S, such that y ∈ C. From
Proposition 4, this number is bounded by log2N , hence we prove the corollary.

In order to show that the global execution time of line 7 to line 12 is
O(

∑
|Inverse|), we carry out this part of algorithm in the following way, by

traversing the linked list Inverse twice:

Hopcroft's-Minimization-2nd-version-Bottleneck()
1 create an empty list Involved

2 for all y ∈ C and all x ∈ Inv[y, a]
3 do i← Class[x]
4 if Size[i] = 0
5 then Size[i]← 1
6 insert i to Involved

7 else Size[i]← Size[i] + 1
8 for all y ∈ C and all x ∈ Inv[y, a]
9 do i← Class[x]
10 if Size[i] < Card[i]
11 then if Twin[i] = 0
12 then Counter← Counter + 1
13 Twin[i]← Counter

14 delete x from class i and insert x into class Twin[i]
15
16 for all j ∈ Involved

17 do Size[j]← 0
18 Twin[j]← 0

From above, it is clear that the execution time of this part in a single while
loop is O(|Inverse|), so the global execution time of this part is O(

∑
|Inverse|).

Theorem 6. Let A be an alphabet of M letters and A be a DFA on this alphabet
with N states, then Hopcroft's algorithm using the data structures in the previous
section is in time O(MNlog2N) in the worst case.

Remark: This complexity is also tight, which is proved in [2] in detail.

5

References

[1] D. Beauquier, J. Berstel, and P. Chrétienne. Éléments d'algorithmique.
Masson, 1992.

[2] J. Berstel and O. Carton. On the complexity of hopcroft's state minimiza-
tion algorithm. CIAA, 2004.

[3] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

6

