
Implementation of Hopcroft’s Algorithm

Hang Zhou

ENS

7 January 2009

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 1 / 24

1 Introduction

2 Data Structures

3 Analysis of Time Complexity

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 2 / 24

Introduction

Definition

Let P be a partition of Q. The number of classes in P is bounded by
N . Hence every class of P can be entitled with a unique name between
1 and N .

Definition

Let A be a deterministic finite automaton (Q,A,E, I, F) and let a ∈ A
and B,C ⊆ Q. Then B is split by (C, a), if B · a * C and B · a ∩C 6= ∅
with B · a = {x · a|x ∈ B}.

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 3 / 24

Hopcroft’s Algorithm - First Version

Algorithm1()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S
5 while S 6= ∅
6 do Delete (C, a) from S
7 T ← {B | B is split by (C, a)}
8 for each B ∈ T
9 do B′, B′′ ← Split(B,C, a)

10 Replace B by B′ and B′′ in P
11 for b ∈ A
12 do if (B, b) ∈ S
13 then Replace (B, b) by (B′, b) and (B′′, b) in S
14 else Insert (min(B′, B′′), b) to S

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 4 / 24

Extreme Condition

1 2 3 4 55

Partition in this moment : 1234 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 555

Partition in this moment : 1234 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 554 5

Partition in this moment : 123- 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 554 54

Partition in this moment : 123- 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 5543 54

Partition in this moment : 12 - 3 - 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 5543 543

Partition in this moment : 12 - 3 - 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 55432 543

Partition in this moment : 1 - 2 - 3 - 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 55432 5432

Partition in this moment : 1 - 2 - 3 - 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

Extreme Condition

1 2 3 4 55432 5432

Partition in this moment : 1 - 2 - 3 - 4 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 / 24

The Question Throughout the Writing

What’s the execution time of the while loop if it is carried out
efficiently?

Idea:

define Inverse = a−1C

wish to prove O(|Inverse|) complexity of while loop

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 6 / 24

Difficulty

We cannot directly obtain T in O(|Inverse|), what to do?

Solution:
Instead, we calculate its approximate substitute T ′ :

T ′ = {B | B
⋂

Inverse 6= ∅}
O(1) time to check whether an element in T ′ is also in T

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 7 / 24

Hopcroft’s Algorithm - Second Version

Algorithm2()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S
5 while S 6= ∅
6 do Delete (C, a) from S
7 Inverse← a−1C
8 T ′ ← {B | B

⋂
Inverse 6= ∅}

9 for each B ∈ T ′

10 do if B · a * C
11 then B′, B′′ ← Split(B,C, a)
12 Replace B by B′ and B′′ in P
13 for b ∈ A
14 do if (B, b) ∈ S
15 then Replace (B, b) by (B′, b) and (B′′, b) in S
16 else Insert (min(B′, B′′), b) to S

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 8 / 24

Calculate Inverse efficiently

By definition, Inverse = a−1C.

We use a two-dimensional array Inv :

Inv[x,a] :
a pointer to the linked list of all states y, such that y · a=x

So we have :
for all x ∈ Inverse

m
for all y ∈ C and all x ∈ Inv[y, a]

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 9 / 24

Support list operations efficiently

List operations includes:
search an element
insert an element
delete an arbitrary element
test whether the list is empty

We use a linked list S and an array InList together, s.t.

InList[C,a] =

{
a pointer to the position of (C,a) in S if (C, a) ∈ S

Null if (C, a) /∈ S

O(1) time of all operations above

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 10 / 24

Characterize a Partition

Class[x] : the name of the class which contains state x;

Part [i] : a pointer to the doubly linked list with all states
in class i;

Card [i] : the size of class i;

Place[x] : a pointer to the position of state x in the linked list
Part[p], where p=Class[x].

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 11 / 24

Example: Q={1, .., 6} and P : 35-1-246

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 12 / 24

Split the Classes

Involved : a linked list of the names of classes in T ′;

Size[i] : the size of B
⋂

a−1C, where B is the class i;

Twin[i] : the name of the newly created class while
splitting the class i.

Noting: They should be cleared every time the while loop is executed.

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 13 / 24

Time Complexity - Part 1

Algorithm2()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S O(M)
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 14 / 24

Time Complexity - Part 2

Algorithm2()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S O(M)
5
6 while S 6= ∅
7 do Delete (C, a) from S O(MN)?
8
9

10
11
12
13
14
15
16
17
18
19

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 15 / 24

Time Complexity - Part 3

Algorithm2()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S O(M)
5
6 while S 6= ∅
7 do Delete (C, a) from S O(MN)?
8
9 Inverse← a−1C

10 T ′ ← {B | B
⋂

Inverse 6= ∅}
11 for each B ∈ T ′

12 do if B · a * C
13 then B′, B′′ ← Split(B,C, a)
14 Replace B by B′ and B′′ in P O(MNlogN)?
15
16
17
18
19

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 16 / 24

Time Complexity - Part 4

Algorithm2()
1 P ← {F, F c}
2 S ← ∅
3 for a ∈ A
4 do Insert (min(F, F c), a) to S O(M)
5
6 while S 6= ∅
7 do Delete (C, a) from S O(MN)?
8
9 Inverse← a−1C

10 T ′ ← {B | B
⋂

Inverse 6= ∅}
11 for each B ∈ T ′

12 do if B · a * C
13 then B′, B′′ ← Split(B,C, a)
14 Replace B by B′ and B′′ in P O(MNlogN)?
15
16 for b ∈ A
17 do if (B, b) ∈ S
18 then Replace (B, b) by (B′, b) and (B′′, b) in S
19 else Insert (min(B′, B′′), b) to S O(MN)?

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 17 / 24

Analysis of Time Complexity

Proposition

The number of pairs (C, a) inserted into S is at most 2MN .

Lemma

The number of classes created during the execution is at most 2N − 1.

Corollary

The number of iterations of the while loop is at most 2MN .

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 18 / 24

Analysis of Time Complexity

Why does Part 3(i.e. bottleneck) have global execution time
O(MNlog2N)?

We take the following two steps:

Evaluate
∑
|Inverse|

(i.e. the sum of |Inverse| in all executions of the while loop)

Ensure the global execution time to be O(
∑
|Inverse|)

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 19 / 24

Bottleneck Analysis - Evaluation of
∑
|Inverse|

Proposition

When a ∈ A and p ∈ Q are fixed, the number of (C, a) being deleted
from list S, such that p ∈ C, is bounded by log2N .

Corollary∑
|Inverse| is bounded by MNlog2N .

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 20 / 24

Bottleneck Analysis - Implementation - Part 3.1

Algorithm3()
1 create an empty list Involved
2 for all y ∈ C and all x ∈ Inv[y, a]
3 do i← Class[x]
4 if Size[i] = 0
5 then Size[i]← 1
6 insert i to Involved
7 else Size[i]← Size[i] + 1
8
9

10
11
12
13
14
15
16
17
18
19

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 21 / 24

Bottleneck Analysis - Implementation - Part 3.2

Algorithm3()
1 create an empty list Involved
2 for all y ∈ C and all x ∈ Inv[y, a]
3 do i← Class[x]
4 if Size[i] = 0
5 then Size[i]← 1
6 insert i to Involved
7 else Size[i]← Size[i] + 1
8
9 for all y ∈ C and all x ∈ Inv[y, a]

10 do i← Class[x]
11 if Size[i] < Card[i]
12 then if Twin[i] = 0
13 then Counter← Counter + 1
14 Twin[i]← Counter
15 delete x from class i and insert x into class Twin[i]
16
17
18
19

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 22 / 24

Bottleneck Analysis - Implementation - Part 3.3

Algorithm3()
1 create an empty list Involved
2 for all y ∈ C and all x ∈ Inv[y, a]
3 do i← Class[x]
4 if Size[i] = 0
5 then Size[i]← 1
6 insert i to Involved
7 else Size[i]← Size[i] + 1
8
9 for all y ∈ C and all x ∈ Inv[y, a]

10 do i← Class[x]
11 if Size[i] < Card[i]
12 then if Twin[i] = 0
13 then Counter← Counter + 1
14 Twin[i]← Counter
15 delete x from class i and insert x into class Twin[i]
16
17 for all j ∈ Involved
18 do Size[j]← 0
19 Twin[j]← 0

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 23 / 24

Conclusion

The global execution time of Part 3 is O(MNlog2N).

So we have:

Theorem

Let A be an alphabet of M letters and let A be a DFA on this alphabet
with N states, then Hopcroft’s algorithm using previous data structures
is in time O(MNlog2N) in the worst case.

Remark: This bound can also be proved to be tight.

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 24 / 24

	Introduction
	Data Structures

