Implementation of Hopcroft’s Algorithm

Hang Zhou

(ENS)

Hang Zhou
ENS

7 January 2009

Hopcroft

7 January 2009



@ Introduction

© Data Structures

© Analysis of Time Complexity

Hang Zhou (ENS)



Introduction

Definition

Let P be a partition of ). The number of classes in P is bounded by
N. Hence every class of P can be entitled with a unique name between
1 and N.

Let A be a deterministic finite automaton (@, A, E,I, F) and let a € A
and B,C C Q. Then B is split by (C,a), if B-a ¢ C and B-anNC # 0
with B-a = {z - alz € B}.

Hang Zhou (ENS) Hopcroft’s X 7 January 2009 3/ 24



Hopcroft’s Algorithm - First Version

ALGORITHM()
1 P {F F
2 S0

3 forac A

4 do INSERT (min(F,F°),a) to S

5 while S #0

6 do DELETE (C,a) from S

7 T — {B | Bissplit by (C,a)}

8 for each BeT

9 do B, B” « SpLiT(B,C,a)

10 REPLACE B by B’ and B” in P

11 for be A

12 do if (B,b) € S

13 then REPLACE (B,b) by (B',b) and (B”,b) in S
14 else INSERT (min(B’, B"),b) to S

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009



Extreme Condition

Partition in this moment : 1234 - 5



reme Condition

Partition in this moment : 1234 - 5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5/ 24



reme Condition

Partition in this moment : 123- 4 -5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5/ 24



reme Condition

Partition in this moment : 123- 4 -5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5/ 24



reme Condition

Partition in this moment : 12-3-4-5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5/ 24



reme Condition

Partition in this moment : 12-3-4-5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5/ 24



reme Condition

Partition in this moment : 1-2-3-4-5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 /24



reme Condition

Partition in this moment : 1-2-3-4-5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 /24



reme Condition

Partition in this moment : 1-2-3-4-5

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 5 /24



The Question Throughout the Writing

What’s the execution time of the while loop if it is carried out
efficiently?

Idea:

@ define INVERSE = a~1C

e wish to prove O(|INVERSE|) complexity of while loop

INVERSE
B3 B2

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 6 /24



Difficulty

We cannot directly obtain 7 in O(|INVERSE|), what to do?

Solution:

o Instead, we calculate its approximate substitute 77 :
7' = {B | B[ INVERSE # 0}

e O(1) time to check whether an element in 7" is also in 7

INVERSE
B3 B2

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 7/ 24



Hopcroft’s Algorithm - Second Version

ALGORITHM2()
1 P {F F
2 S0

3 forac A

4 do INSERT (min(F,F°),a) to S

5 while S # 0

6 do DELETE (C,a) from S

7 INVERSE « a~!C

8 T' — {B | B(\INVERSE # (0}
9 for each Be 7T’

10 doifB-agC

11 then B’ B” « SpLIT(B,C,a)

12 REPLACE B by B’ and B” in P

13 forbe A

14 do if (B,b) € S

15 then REPLACE (B,b) by (B',b) and (B”,b) in S
16 else INSERT (min(B’,B"),b) to S

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 8 /24



Calculate INVERSE efficiently

By definition, INVERSE = a~1C.

We use a two-dimensional array Inv :

e Inv(x,al :
a pointer to the linked list of all states y, such that y - a=x

@ So we have :
for all x € INVERSE

)

for all y € C and all x € Inv|y,al

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 9/ 24



Support list operations efficiently

List operations includes:
e search an element
e insert an element

e delete an arbitrary element

test whether the list is empty

We use a linked list S and an array InList together, s.t.
InList[C,a] — a pointer to the position of (C,a) in S if (C,a) € S
Nl if (C,a) ¢ 5

O(1) time of all operations above

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 10 / 24



Characterize a Partition

Class[x] : the name of the class which contains state x;

e Part [i] : a pointer to the doubly linked list with all states
in class i;

Card [i] : the size of class i;

Place[x] : a pointer to the position of state x in the linked list
Part [p], where p=Class[x].

Hang Zhou (ENS) Hopcroft ith 7 January 2009 11 / 24



Example: Q={1, ..

Hang Zhou

CLASSE

CaRD

PART

PLACE

(ENS)

,6} and P: 35-1-246

?

o [I$HT= IS [ —

Hopcroft’s Algorithm

7 January 2009

12 / 24



Split the Classes

e Involved : a linked list of the names of classes in 7';
o Size[i] : the size of B(a~'C, where B is the class i;

o Twin[i] : the name of the newly created class while
splitting the class i.

Noting: They should be cleared every time the while loop is executed.

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 13 / 24



Time Complexity - Part 1

ALGORITHM2()
1 P—{FF%
2 S0
3 forac A
4 do INSERT (min(F,F€),a) to S O(M)

o 3 & Ut

11
12
13
14
15
16
17
18
19

7 January 2009 14 / 24



Time Complexity - Part 2

ALGORITHM2()
1 P—{FF%
S—0
for a e A
do INSERT (min(F, F°),a) to S O(M)

while S # ()
do DELETE (C,a) from S O(MN)?

7 January 2009 15 / 24



Time Complexity - Part 3

ALGORITHM2()
1 P—{FF%
S—0
for a e A
do INSERT (min(F, F°),a) to S O(M)

while S # ()
do DELETE (C,a) from S O(MN)?

9 INVERSE < a~1C

10 T'— {B | B[\ INVERSE # 0}

11 for each B € T’

12 doifB-ag¢C

13 then B’, B” «— SrLIT(B,C,a)

14 REPLACE B by B and B” in P O(MNlogN)?

7 January 2009 16 / 24



Time Complexity - Part 4

ALGORITHM2()
1 P—{FF%
S—0
for a e A
do INSERT (min(F, F°),a) to S O(M)

while S # ()
do DELETE (C,a) from S O(MN)?

9 INVERSE < a~1C

10 T'— {B | B[\ INVERSE # 0}
11 for each Be T’

12 doifB-a¢C

13 then B’, B” «— SrLIT(B,C,a)

14 REPLACE B by B’ and B” in P O(MNlogN)?
15

16 for be A

17 do if (B,b) € S

18 then REPLACE (B,b) by (B',b) and (B”,b) in S

19 else INSERT (min(B’, B”),b) to S O(MN)?

Hang Zhou (ENS) OpCro rith 7 January 2009



Analysis of Time Complexity

Proposition

The number of pairs (C,a) inserted into S is at most 2M N .

The number of classes created during the execution is at most 2N — 1. \
The number of iterations of the while loop is at most 2M N . \

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 18 / 24



Analysis of Time Complexity

Why does Part 3(i.e. bottleneck) have global execution time
O(MNlogsN)?

We take the following two steps:

e Evaluate ) |INVERSE|
(i.e. the sum of |INVERSE| in all executions of the while loop)

o Ensure the global execution time to be O()_ |[INVERSE|)

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 19 / 24



Bottleneck Analysis - Evaluation of ) |[INVERSE|

When a € A and p € Q are fized, the number of (C,a) being deleted
from list S, such that p € C, is bounded by logaN .

> |INVERSE| is bounded by M NlogaN. \

Hang Zhou (ENS) Hopcroft’ gorithm 7 January 2009 20 / 24



Bottleneck Analysis - Implementation - Part

ALGORITHM3()
1 create an empty list Involved
2 for ally e C and all z € Invy,d]
3 do i« Class[z]
4 ifsizeli] =0
5 then Size[i] «— 1
6 insert ¢ to Involved
7 else Size[i] — Size[i] +1
8

7 January 2009



Bottleneck Analysis - Implementation - Part

ALGORITHM3()
1 create an empty list Involved
2 for ally e C and all z € Invy,d]
3 do i« Class[z]
4 if Sizeli] =0
5 then Size[i] «— 1
6 insert ¢ to Involved
7 else Size[i] — Size[i] +1
8

9 for ally € C and all z € Inv[y,aq]

10 do i < Class|z]

11 if Size[i] < Cardli]

12 then if Twin[i] =0

13 then Counter «+ Counter + 1
14 Twin[i] < Counter

15 delete z from class i and insert x into class Twin][i]
16

17

18

19

Hang Zhou (ENS) OpCro rith 7 January 2009



Bottleneck Analysis - Implementation - Part 3.3

ALGORITHM3()
1 create an empty list Involved
2 for ally e C and all z € Invy,d]
3 do i« Class[z]
4 ifSizeli] =0
5 then Size[i] «— 1
6 insert 7 to Involved
7 else Size[i] — Size[i] +1
8
9 for ally € C and all z € Inv[y,aq]
10 do i < Class|z]
11 if Size[i] < Cardli]
12 then if Twin[i] =0
13 then Counter «+ Counter + 1
14 Twin[i] < Counter
15 delete z from class i and insert x into class Twin][i]
16
17 for all j € Involved
18 do Size[j] 0
19 Twin[j] < 0

Hang Zhou (ENS) OpCro rith 7 January 2009



Conclusion

The global execution time of Part 3 is O(M NlogaN).

So we have:

Let A be an alphabet of M letters and let A be a DFA on this alphabet
with N states, then Hopcroft’s algorithm using previous data structures
is in time O(M NlogaN) in the worst case.

Remark: 'This bound can also be proved to be tight.

Hang Zhou (ENS) Hopcroft’s Algorithm 7 January 2009 24 / 24



	Introduction
	Data Structures

