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Abstract. The aim of this paper is to study local configurations for
discrete rotations. The algorithm of discrete rotation we consider is the
following: a discretized rotation is defined as the composition of a Eu-
clidean rotation with a rounding operation, as studied in [NRO5] and
[NRO4]. It is possible to encode all the information concerning a discrete
rotation as two multidimensional words C, and C!, that we call config-
urations. We introduce here two discrete dynamical systems defined by
a Z*-action on the two-dimensional torus that allow us via a suitable
symbolic coding to describe the configurations C, and C}, and to deduce
the densities of occurrence of the symbols in the configurations.

1 Introduction

Symbolic dynamics and more generally, discrete dynamical systems have natural
and deep interactions with combinatorics on words. This interaction is partic-
ularly well-illustrated in the Sturmian case, see e.g. [Lot02,Fog02]. The combi-
natorial objects involved are the Sturmian words, while the dynamical systems
are the irrational rotations of the torus T* = R/Z. A Sturmian word is indeed a
coding with respect to a particular two-interval partition of the one-dimensional
torus T' of the orbit of a point under the action of an irrational rotation. This
point of view allows one to deduce many combinatorial properties of Sturmian
words, such as for instance the densities of occurrences of factors that can be
computed thanks to the equidistribution properties of irrational rotations.

Several attempts of generalization of this fruitful interaction have been pro-
posed. One of the first idea which comes to mind is a rotation of T2. As an
example, the Tribonacci word, that is, the fixed point of the substitution 1 +—
12, 2 — 13, 3 — 1 codes the orbit of a point of the torus T? under the action
of a translation in T? with respect to a partition of T? into three pieces with
fractal boundary [Rau82,Lot05].

A second approach, which is dual to the previous one, consists in working
with two rotations of T!. It is indeed convenient to describe discrete planes
by use of the coding with respect to a three-interval partition of a Z2?-action
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by two irrational rotations on T!. One thus gets two-dimensional words over a
three-letter alphabet that can be considered as two-dimensional Sturmian words
[BV0O].

We consider here a further generalization. Indeed, we study configurations
associated with a discrete rotation, defined as the composition of a Euclidean
rotation with a rounding operation. It is possible to encode all the information
concerning a discrete rotation as two multidimensional words C,, and C/, that
we call configurations. The main purpose of the present paper is to prove that
both configurations are codings of a ZZ2-action by two rotations on T? with
respect to a partition into a finite number of rectangles. We then deduce results
concerning the density of each symbol in C,, and C’,. As a motivation for this
study, let note that we plan to use these results in a next future for an algorithm
of randomization of discrete rotations.

2 Conventions

We work in the discrete plane Z?. For each point v, =, denotes its horizontal
coordinate and y, its vertical coordinate.

Let x be a real number. We recall that the floor function x — [z is defined
as the greatest integer less or equal to x. The rounding function is defined as
[z] := |z + 0.5] and {z} := x — [z]- These applications can be extended to
vectors, by independent application on each component of the vector.

The discretization cell of the point v € Z? is defined as the set of elements w
in R? which have the same image by discretization as v, i.e., [v] = [w]. Hence
the discretization cell of v is defined as the half-opened unit square centered in
[v].

We use the canonical bijection between the torus T? = (R/Z)? and the
square {v € R%z, € [-1 1[and y, € [-3,1[}, i.e., the discretization cell of
0. By abuse of notation, we also denote by {v} the image under the canonical
projection from R? onto T? of a point v € R2. Hence let us stress the fact that
the map x — {z} is an additive morphism from R? onto T?.

Without loss of generality, we assume throughout this paper that « € [0, 7/4]:
the arguments used here can be easily extended to the case of any other octant.
We denote by r, the Euclidean rotation of angle «a:

o B, v [S0) )]

The discrete rotation [r,] is defined as
[roa] : 2> — 72, v [ro(v)].
By {r.} we mean the map {ro}: Z* — T2, v — {ro(v)}.

We denote by (i, j) the canonical basis of the Euclidean space R?. We similarly
use the notation i, := r, (i) and j, := ro.(j)-



Let @ be a finite set called alphabet. A two-dimensional word in QZ2 is called
a configuration over (). An application from {0,1,---,n—1} x {0,1,---,m —1}
to @ is called a pattern of size [m, n]. Let C be a configuration in QZZ. A pattern
x of size [m,n] occurs at position p in C if C(p + v) = x(v), for all v with
Ty, Yy € {0,1,---,n—1}x{0,1,---,m—1}. We define C!"" as the configuration
with values in the finite alphabet consisting of the patterns of size [m,n] over
Q, that is defined as the application that returns the pattern of size [m, n| that
occurs at the specified position in the configuration.

The density of the symbol p € @ in the configuration C' € QZ2 is defined as
the following limit (if it exists):

2 —_ .. —
ne(p) = lim #{v eZ* xy,yp € {—n, 2,n} and C(v) p}-

A dynamical system (X, T) is defined as the action of a continuous and onto
map T on a compact space X. Given two continuous and onto maps T and 15
acting on X and satisfying T, o T, = Ty o T}, the Z?-action by Ty and T, on X,
that we denote (X, T1,7T3), is defined by

V(m,n) € 22, Vo € X, (m,n)-x =17 o Ty (x).

It is natural to associate a two-dimensional symbolic dynamical system to the
triple (X, T1,T») by coding the orbits of the points of X under the Z2-action as
follows: given xo € X and given a labelling function | defined on X with values
in a finite set () that takes constant values on the atoms of a finite partition of
X, the configuration C' defined by

Y(m,n) € Z%, C(m,n) = I(T}" o T3 (x0))

is called the coding of the orbit of o under the Z?-action (X, Ty, T») with respect
to the labelling function I.

3 Dynamical System Associated to C,

According to [NRO5], we associate a first configuration C,, to the discrete rotation
[ro] that encodes all the information concerning the discrete rotation (there
exists indeed a planar transducer that uses the configuration C, as input and
gradually computes the action of the discrete rotation). For a given v € Z2, let
V, denote the set of 4-neighbours of v, that is, V4 = {v+1i, v+j, v—1i, v—j}.
The configuration C,, maps each point v of Z? to the set [ro](Vi) — [ro][V], that
is,

Cu(v) :=={ap,a1,az,as} with (ax = [ra(v+rfr/2(i))]f[ra(v)] for k=0,---,3).

Let us note that C, contains 3 or 4 non-zero elements, according to [NR03].
Let @, denote the finite set of values taken by C,.

We define a frame of the torus T? = [—1, 1[ x [-1, [ as a rectangle of the
form [a,b[x[c,d[, with —3 < a <b < } and —1 < ¢ < b < 1. The interpretation
of C, as a coding a Z?-action is based on the following result:



Fig. 1. A progressive construction of the configuration C,: we represent the set of
vectors that leads to the relative position of the 4-neighbors of v after the action of
the discrete rotation.

(0,0) =0 (1,0) =7 (2,0) =0 (3,0) =0 (4,0) —2 (5,0) —*F
0,1) =%  (1,D)=¥ 2% 3BD=% @48 (5,1)
0,2) —H:  (1,2) —%  (2,2) — 1 (3,2) 8 (4,2) —. %

(0,3) 5! (1,3) —o  (2,3) et (3,3) = (4,3) ok (5,3) 0%
(0,4) = (1,4) =51 (2,4) a1 (3,4) et (4,4) —uw (5,4) —EE
(0,5) —1  (1,5) =& (3,5) =& (4,5)— & (5,5) -

Fig. 2. Table describing the action of ¢.. The symbols represent the all the vectors of
the set.

Theorem 1 ([NRO5]). There exists a partition P, of the torus T? into a finite
number of frames such that for each p € Q, there exists a frame I, such that
for all v € 72, then C,(v) = p if and only if {ro(v)} € I,.

Consider the following two actions T;_ : T? — T2, z — z + {in}, T} : T? —
T2,  — = 4 {ja}. One has for every v € ZZ>, {ro(v)} = T{"¥ o T (0). Let
us define [, as the labelling function associated to the partition P, defined by
lo, i T? = Qa, v ¢c(fo,(Va), fo. (vy)) with fc, defined as follows:

if a € [0,7/6]: if « € [w/6,m/4]:
(=33 — cos(a)] —0 (1,1 —cos(a)] — 0
[ — cos(a),sin(a) — [ — 1 [ — cos(a), 3 —sin(a)[ — 1
[sin(a) — 3, 3 —sin(a)[ — 2 [3 —sin(a),sin(a) — [ — 5
[ — sin(a), cos(a) — [ — 3 [sin(a) — %, cos(a) — 2[— 3
[cos(a) — 5, 5] — 4 [cos(ar) — £, 3] — 4

where ¢. is described in Figure 2. The values taken by C,, that is, the
elements of (), are represented in Figure 2 as sets of vectors.

Theorem 1 can then be reformulated as follows: C,, is the coding of the orbit
of 0 under the Z2-action (T2, T}, ,T;,) with respect to the labelling function Ic,, .



4 Distribution of Symbols in C,

We can now deduce from the Z2-action introduced in Section 3 results concerning
the densities of symbols in C, by using classical tools from symbolic dynamics
and ergodic theory.

Let G, C T? denote the orbit of 0 under the Z2-action (T?,T;_,T;,) with
respect to the labelling function /¢, : this very orbit is the orbit coded by the
configuration C,. In other words, G, is the image by the canonical projection
x — {x} onto T? of the lattice L, := Zi, + Zja; G has a group structure, and
is invariant by rotation by /2.

Let us recall that an angle « is said Pythagorean if cos « and sin « are both
rational. Let us distinguish two cases according to the fact that « is Pythagorean
or not, that is, according to the density of G, in T?.

The Dense Case

Lemma 1. We assume that o is not Pythagorean. For every symbol p € Q,,, its
density nc.,, (p) exists and is equal to the area of the frame I, defined in Theorem
1.

Proof (Sketch). If either cos(«) or sin(«) is irrational, then one cannot have
simultaneously pcos(a) + ¢sin(a) € Z and —psin(a) + gcos(a) € Z, for any
(p,q) € Z*. Hence one concludes by using a classical argument on Weyl sums.[J

The Pythagorean Case

If « is a Pythagorean angle then G, is not dense in the torus T?: indeed, G, is
a finite cyclic group. It has order ¢ where (a, b, c) € N? is the prime Pythagorean
triple satisfying 1 < b < a < ¢, a®>+b? = 2, gcd(a, b, c) = 1 and cexp(ia) = a+ib
that generates the angle a. More information on Pythagorean angles can be
found in [NRO4].

Lemma 2. Let « € [0,...7/4[ be a Pythagorean angle. Let ¢ denote the order of
the cyclic group G,,. The density nc,, (p) of the symbol p in C,, satisfies
~ Card (G,N1},)

Vp € Qa, e, (p) - .

Proof (Sketch). By definition,
nea () = lim ({ra({=n, -} N 1)/ (20 +1)%
One first checks that
ne. (p) = lim ({ra}({—cln/c), ...c[n/c|}*) N L)/ (2n +1)?).
But as G, is cyclic and of order ¢, then

ne. (p) = {r“}({o""";’ 1)) N1, _ Card ((C?’a Nly)

c



5 Distribution of Symbols in C/,
Let us define now C/:

Vv e Z2, C'(v) := U Co(W).

w such that [ra (w)]:v

Let @, denote the set of values taken by C/,. We want to state a result analogous
to Theorem 1 in order, first, to interpret the configuration C?, as a coding of a
symbolic dynamical system, and second, to compute the densities of the symbols
in C/,. Let us note that Corollary 1 in [NR05] does not directly yield a dynamical
interpretation of C,.

Our strategy in order to describe C, as a coding of a Z?-action is the follow-
ing. We first create a “block configuration” by working with patterns of size [2, 2]
that occur in C’,. We then introduce a particular domain of R? that is a fun-
damental domain for the lattice Zi,, + Zj., such that if we know the projection
of a point p € Zi,, + Zj, in that domain, then we can recover the symbols that
appear in the block configuration; therefore we find out what are the symbols
that appear in C/,. We thus deduce a symbolic dynamical system for the block
configuration. Finally, we use this dynamical system, in order to get the density
of the symbols both in the block configuration and in CY,.

5.1 Dynamical System for Cp_
Let Cj_(v) be defined as the following 2 x 2-block configuration:

Vv € 22, C} (v) = CI22(2v).

Since C_(v) is an application that returns patterns of size [2, 2], then C,(v) =
(CB, (l2v/2], lyv/2])) (ve mod 2,v, mod 2). For any v € Z2, one sets

1 3 1 3
Fp(v) = [zv — §;l'v =+ E[X[yv - §,yv + 5[
The introduction of this block configuration is natural, since the intersection
between F(v) and 7, (Z?) = Zi, + Zj. is nonempty for every v € Z?; this is a
direct consequence of the fact that two holes (a hole is an element v € Z? that
has no antecedent by [r,]) can never be adjacent (see [NRO4]). An example of a
hole is depicted in Figure 4 below. Let

1 1)° 1 1.1 1
Fp, = ([—5,00504— 5[) U ([cosa— §,cosa+sina— §[><[—§,sina— —[)

The set Fp, is a fundamental domain for the lattice L, = Ziy + Zjo (see
Figure 3). Hence for any v € Z2, there exists a unique w € Z? such that
To(W) € v+ Fp, . Therefore for all v € Z2, we first define

0 : 7% — Lo, V= 7a(W),



Fig. 3. An exchange of pieces between Fp_, and the canonical representation of R?/Ly,.
This exchange of pieces only requires translations of the form kin +&'jo, with k, k' € Z.
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Fig. 4. From a point po = 6'(2v) € Zia + Zj. that falls into the domain Fp,(2v) (in
dark gray), we can recover all the symbols of C}, that contribute to the block of size
[2, 2] whose associated domain is Fp(2v) in light gray.
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Fig. 5. A partition of the domain Fp,, for «

~
~

0.464705 rad. This partition gives

according to the position of 6(2v) inside that domain the pattern of size [2,2] that

1

in Fp,. For readability reasons, the scale is monotone but not linear.

where w is the unique point such that ro(w) € v + Fp_, and then

0: 7* - Fp,, v 0(v)—v.

Theorem 2. There exists a partition of Fp, into a finite number of frames J,,
for p pattern of size [2,2] that occurs in C!,, such that for all v € 72, 0(2v) € J
if and only if C_(v) =p'.

Proof (Sketch). The proof is based on the following idea: from the location of
0(2v) in Fp,, it is possible to deduce the value of C; (v). We notice that, for
all the points w of Z? that have their image by r, in Fg(2v) we can compute
Co(w). Indeed we show that if zgoy) < 1, [0(2v)] = 0, else [#(2v)] = 1; we thus
deduce C,(w) from {6'(2v)}, according to Theorem 1. The same argument
applies for all the points w = ro(w) of Z;, + Z;,, that are inside Fp(2v); note
that w' = 0(2v) + ki + k'ja, with k, k' € Z. We thus similarly localize the

position in (2v + {0, 1}?) of all the images of points in Zi, + Zj, N Fp(2v). This

is sufficient to conclude that we can infer the pattern C;(v) from 6(2v). O

appears in Cp_(v). On the axis the positions are labeled by expressions of the form
kc+ k's + k", meaning that the corresponding line is located at k cos(a) + k' sin(a) +
k” _ 5



Let lcy, be the labeling function given by the partition of Theorem 2 that

associates to a frame in Fp, the corresponding pattern of size [2,2].
From Theorem 2, we deduce that

Vv eZ? Cq (v) = ley, (0(2v))

Now, let T2 = R?/(Zi, + Zjo); we denote as v — {v}, the canonical
projection on T2, that is in one-to-correspondence with Fp_. One has

vv e 72, 0(v) = —{v}, modulo L,.

Finally, the configuration C'; is a coding of the orbit 0 under the 7Z2-action
(T2,v — v +{i},, v — v +{j},) with respect to the labelling function l¢, .

5.2 Application

We assume that o is not a Pythagorean angle. Similarly as in the study of C,,
the orbit of 0 under the Z2-action is dense and uniformly distributed in T?. We
thus deduce that

Vp e QL men ()= > n@.p)pfy),

p/EQE’m

where Q2% is the set of patterns of size [2,2] that occur in C’), n(p’,p) is the
function that returns the number of occurrences of p in the pattern p’ of size [2, 2],
and p(Jp ) denotes the area of frame J, associated to the symbol p’ according
to Theorem 2.

However practically, the computations for these symbolic maps are quite
tedious. For each symbol p, there exist 40 patterns p’ of size [2,2] to compute.
This leads to approximatively 360 inequations... and there are approximatively
25 symbols p to consider! See [BNO5] for a program that handles these symbolical
expressions. The results describing the densities of the symbols in C/, have been
summarized in Figure 6.

Let us note that in the Pythagorean case, the theory is also similar to the
one developed for C,,.

Remark Let us observe that all the results we have given here for symbols are
extendable without major difficulty to patterns of a given size [m,n]. Actually,
a frame is associated to each pattern, and the same theory can be used.
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