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Abstract

We investigate connections between a well known multidimensional continued fraction

algorithm, the so-called fully subtractive algorithm, the finiteness property for β-numeration,

and the connectedness of arithmetic discrete hyperplanes. A discrete hyperplane is said to

be critical if its thickness is equal to the infimum of the set of thicknesses for which discrete

hyperplanes with the same normal vector are connected. We focus on particular planes the

parameters of which belong to the cubic extension generated by the Tribonacci number, we

prove connectedness in the critical case, and we exhibit an intriguing tree structure rooted at

the origin.

§ 1. Introduction

Discrete geometry attempts to provide a rigorous approach to the investigation of

discrete objects of Rd. In the present paper, we deal with a common class of discrete

objects, namely the class of discrete hyperplanes which are, in some sense, the discrete

analogues of Euclidean hyperplanes. Discrete hyperplanes are the most basic primitives

in discrete geometry, and are defined as sets of integral points which satisfy a double

Diophantine inequality expressed in terms of an underlying Euclidean plane. Since

discrete hyperplanes depend on a thickness parameter (see Definition 2.1 below), it

becomes natural to study the behaviour of the topology of theses objects when this
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parameter changes. This study has been initiated in [3], see also [8]. It has been proved

in [4, 9, 10] that the computation of the infimum of the set of thicknesses for which

a discrete hyperplane remains connected is provided by a multidimensional continued

fraction algorithm, namely, the fully subtractive algorithm (for more details, see for

instance [14]).

When reducing the thickness of a discrete hyperplane, we loose connectedness. We

focus here on the transition case, that is, when the thickness is equal to the infimum of

the set of thicknesses for which discrete hyperplanes with the same normal vector are

connected. We call this thickness critical. The fully subtractive algorithm (see Section

2) acts as a (piecewise) linear map on a vector. In this paper, we thoroughly investigate

Tribonacci planes, which is a special case where the normal vector is an eigenvector

of the linear map, so that its direction is unchanged throughout the process. More

precisely, the normal vector of the discrete plane is (α, α+α2, 1), where α is the inverse

of the Tribonacci number, i.e., α+ α2 + α3 = 1 and α ∈ R. This corresponds to one of

the simplest periodic orbits of the fully subtractive algorithm.

Our approach relies on a generation method for the discrete planes under study. To

this aim, we build an increasing sequence (Pn)n>0 of subsets of Z3, and we show that

Pn is connected for all n. The key point relies on the proof of the fact that their limit

P∞ is actually equal to the full discrete plane with critical thickness. For this purpose,

we introduce a suitable representation for the points of P∞ closely related to the β-

numeration associated with the Tribonacci number (for more details on β-numeration,

see e.g. [2]). The fact that limPn = P∞ is proved to be a consequence of the so-called

finiteness property for the Tribonacci numeration [7].

The ergodic properties of the fully subtractive algorithm have been thoroughly

investigated (see [11, 12, 6]) motivated by considerations issued from percolation theory.

In particular, in [12], a dependent percolation model on Z2 is considered closely related

to the connectedness problem we investigated in the present paper. Given the same

double Diophantine inequalities as the ones of discrete hyperplanes, the number of

infinite clusters, that is, the number of infinite connected components of this set, is

shown to be equal to zero, one or infinity. Furthermore, it is also shown that for almost

all choices of parameters, the critical value, that is the value for which there exists at

least one infinite cluster, can be calculated in a finite number of iterations of the fully

subtractive algorithm.

Tijdeman and Zamboni [15] applied a very similar algorithm to a generalisation

of Fine and Wilf’s theorem. The fully subtractive algorithm is used to compute words

of maximal length with given periods p1, . . . , pr and such that gcd(p1, . . . , pr) is not a

period.

The contents of this paper can be sketched as follows. After recalling basic notions
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and definitions in Section 2, we focus on the Tribonacci case in Section 3. Topological

properties of the Tribonacci discrete plane with critical thickness are investigated in

Section 4: it has exactly 3 connected components when deprived of the origin, and is

proved to be a tree rooted at 0. It is shown in Section 5 that the connectedness for the

critical thickness depends on the shift parameter of the plane.

§ 2. Basic notions and preliminaries

Given an integer d > 1, (e1, . . . , ed) is the canonical basis of Rd. The standard

scalar product in Rd is denoted by 〈 . , . 〉. Given x ∈ Rd, xi denotes 〈x, ei〉. Let us now

introduce the main definition of the present work.

Definition 2.1 ([1, 13]). Given a non-zero vector v ∈ Rd and µ, ω ∈ R, the

discrete hyperplane with normal vector v, shift µ and thickness ω, denoted by P(v, µ, ω),

is the subset of Zd defined by:

P(v, µ, ω) = {x ∈ Zd | 0 6 〈v,x〉+ µ < ω}

If d = 2 (resp. d = 3), one refers to the hyperplane P(v, µ, ω) as a discrete line (resp. a

discrete plane).

One commonly represents in discrete/digital geometry integer points x ∈ Zd ⊂ Rd

as voxels, that is, as unit cubes centred at x (see Figure 2 and 3). One can define several

notions of connectivity, each of them being linked to some neighbourhood relation. In

practice, in the literature, the most used ones are vertex and facet connectivity, that is,

the ones where unit cubes share respectively, at least, one vertex or one facet. In the

present paper, we deal only with the latter: two points x and y in Zd are facet neighbours

(or neighbours for short) if
∑d
i=1 |xi − yi| = 1 or, equivalently, if x− y = ±ei for some

i ∈ {1, . . . , d}.
A path in Zd is a sequence (u1, . . . ,un) where ui and ui+1 are neighbours for all

i = 1, . . . , n − 1. A subset S of Zd is connected if it is not empty, and for each pair

(x,y) ∈ S2, there exists in S a path (u1, . . . ,un) such that u1 = x and un = y. Two

subsets S and S′ of Zd are adjacent if they are disjoint, and there exist x ∈ S and

x′ ∈ S′ such that x and x′ are neighbours.

Given a non-zero vector v ∈ Rd and a shift µ ∈ R, our first interest is in the values

of ω for which P(v, µ, ω) is connected.

Lemma 2.2 ([5]). Let v ∈ Rd be a non-zero vector and let µ ∈ R. The set

{ω ∈ R | P(v, µ, ω) is connected} is a right-unbounded interval.
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Definition 2.3 (Connecting thickness). Given a non-zero vector v ∈ Rd and

µ ∈ R, the connecting thickness of v with shift µ, denoted by Ω(v, µ), is the infimum

of the values ω for which P(v, µ, ω) is connected:

Ω(v, µ) = inf{ω ∈ R | P(v, µ, ω) is connected}

We may note that for any λ 6= 0, we have P(λv, µ, ω) = sign(λ)P(v, µ/|λ|, ω/|λ|).
Hence P(λv, µ, ω) is connected if and only if so is P(v, µ/|λ|, ω/|λ|). Therefore, Ω(λv, µ)

= |λ|Ω(v, µ/|λ|). In order to compute Ω(v, µ), we may assume without loss of generality

that 0 6 v1 6 · · · 6 vd. Indeed, given a signed permutation Mσ,u:

Mσ,u : Zd→Zd

x 7→ ((−1)u1xσ(1), . . . , (−1)udxσ(d)),

where u ∈ {1, 2}d and σ is a permutation of {1, . . . , d}, one checks that Ω(v, µ) =

Ω(Mσ,u(v), µ). More precisely, P(Mσ,u(v), µ, ω) = tM−1
σ,u(v) (P(v, µ, ω)) and P(v, µ, ω)

is connected if and only if so is P(Mσ,u(v), µ, ω). In particular, P(v, µ,Ω(v, µ)) is

connected if and only if so is P(Mσ,u(v), µ,Ω(v, µ)).

Therefore, in the sequel, we restrict ourselves to the set of parameters

O+
d =

{
v ∈ Rd | 0 6 v1 6 · · · 6 vd and vd > 0

}
.

It is shown in [4, 10] how to compute Ω(v, µ) from the expansion of the vector v

according to the ordered fully subtractive algorithm [14]: F : O+
d → O

+
d defined by

F(v) = sort(v1, v2 − v1, . . . , vd − v1)

where sort(v) orders the coordinates of v in non-decreasing order.

Theorem 2.4 ([4, 10]). Let v ∈ O+
d and µ ∈ R. The discrete hyperplane

P(v, µ, ω) is connected if and only if so is P(F(v), µ, ω − v1). Consequently, Ω(v, µ) =

Ω(F(v), µ) + v1.

Given a non-zero vector v ∈ O+
d and a shift µ ∈ R, we reduce the computation of

Ω(v, µ) to the computation of Ω(v, 0) thanks to the following equalities [5]:

Ω(v, µ) =

Ω(v, 0) + (µ mod gcd(v1, . . . , vd)) if dimQ(v1, . . . , vd) = 1,

Ω(v, 0) if dimQ(v1, . . . , vd) > 1,

where gcd(v1, . . . , vn) = max{α ∈ R | ∀i ∈ {1, . . . , d}, vi/α ∈ Z}.
We are then left to compute Ω(v, 0) that we simply write as Ω(v). Note that the

case d = 1 correspond to a halting condition for this algorithm. One has:

(1) Ω(v) =


0 if d = 1

Ω((v2, . . . , vd)) if d > 2 and v1 = 0

v1 + Ω(F(v)) if d > 2 and v1 > 0
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From these equations, one deduces an algorithm to compute Ω(v) (see Algorithm 1).

This algorithm is derived from the ordered fully subtractive algorithm.

Input: a vector v ∈
d⋃
i=1

O+
d

Output: Ω(v)

begin
ω ← 0;

while #{i | vi 6= 0} > 2 do

if v1 = 0 then

/* projection step */

v← (v2, . . . , vd);

else
ω ← ω + v1;

/* reduction step */

v← F(v) ;

end

end

return ω;

end

Algorithm 1: Computation of Ω(v)

Let v ∈ O+
d and let (v(n))n>0 be the sequence of elements of

⋃d
i=1O

+
i defined as

follows: v(0) = v and, for n > 1,

v(n+1) =

π1(v(n)), if v1 = 0 /* projection step */

F(v(n)), otherwise /* reduction step */

where π1 : Zd −→ Zd−1 is the orthogonal projection onto the coordinate plane with

normal vector e1 of Zd.
For any v ∈ O+

d , the projection step applies finitely many times. Moreover,

Algorithm 1 terminates if and only if dimQ(v1, . . . , vd) = 1. If dimQ(v1, . . . , vd) > 2, the

algorithm does not terminate and after a finite number of steps, only the reduction

step applies. Hence, with no loss of generality, in the sequel, we deal with vectors

v ∈ O+
d for which only the reduction step applies, that is, such that v

(n)
1 6= 0 for all

n > 0. Thus v(n+1) = F(v(n)) for all n. Then, for all n ∈ N, one has:

(2) Ω(v) =
n−1∑
i=0

v
(i)
1 + Ω(v(n)).
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Proposition 2.5 ([1]). Let v ∈ Rd be a non-zero vector, µ ∈ R and ω ∈ R. One

has ‖v‖∞ 6 Ω(v) 6 ‖v‖1.

By (2), the sequence
(∑n−1

i=1 v
(i)
1

)
n>0

is bounded, and since it is also increasing, it

tends to a finite limit as n tends to infinity. Thus, we get

Ω(v) =

∞∑
n=0

v
(i)
1 + lim

n→∞
Ω(v(n)).

Moreover,
(
v(n)

)
n>0

is a bounded componentwise decreasing sequence which thus tends

to a finite limit v(∞) as n tends to infinity; one has v
(∞)
i < v

(n)
i for all n and all i. The

map Ω : Rd −→ R is not continuous and, in general, we have:

Ω(v) 6=
∞∑
n=0

v
(i)
1 + Ω( lim

n→∞
v(n)) =

∞∑
n=0

v
(i)
1 + Ω(v(∞)).

Theorem 2.6 ([5]). Given a non-zero vector v ∈ Od+ such that v
(n)
1 6= 0 for all

n > 0, we have:

Ω(v) =
‖v‖1 − ‖v(∞)‖1

d− 1
+ ‖v(∞)‖∞.

Theorem 2.6 shows that one can possibly provide a close formula for Ω(v), as soon

as one can explicitly compute v(∞). A priori, it would seem to be natural to expect

limn→∞ v(n) = 0. Nevertheless, by taking triples for which v1 + · · ·+ vd−1 < (d− 2) vd,

one obtains vectors for which limn→∞ v(n) 6= 0. More precisely, given v ∈ O+
d , two

cases occur:

∃n0 ∈ N,∀n > n0, v
(n)
1 + · · ·+ v

(n)
d−1 6 (d− 2) v

(n)
d(3)

∀n ∈ N, v(n)1 + · · ·+ v
(n)
d−1 > (d− 2) v

(n)
d .(4)

It has been shown in [11] that the set of vectors satisfying ∀n ∈ N, v(n)1 + · · ·+ v
(n)
d−1 >

(d−2) v
(n)
d coincides with the set of totally irrational vectors for which limn→∞ v(n) = 0,

and that this subset is Lebesgue-negligible (see Figure 1). Consequently, for almost all

vectors of O+
d , Condition (3) is satisfied and limn→∞ v(n) 6= 0. When Condition (4) is

satisfied, we get Ω(v) = ‖v‖1
d−1 .

§ 3. The critical case

By definition of Ω(v), the hyperplane P(v, µ, ω) is not connected for any ω <

Ω(v, µ) while it is connected for any ω > Ω(v, µ). The question which arises natu-

rally is whether P(v, µ,Ω(v, µ)) is connected or not, or equivalently, whether the set

{ω ∈ R | P(v, µ, ω) is connected} is an open or closed interval.

This question may be answered in most cases.



Fully Subtractive Algorithm, Tribonacci numeration and connectedness. . . 7

Figure 1. Pairs (v1/v3, v2/v3) for vectors v = (v1, v2, v3) with 0 < v1 6 v2 6 v3,

satisfying Condition (4).

Theorem 3.1 ([5]).

• If d = 2 then P(v, µ,Ω(v, µ)) is connected if and only if dimQ{v1, v2} = 2, whatever

µ.

• If d > 3 and Condition (3) holds, then P(v, µ,Ω(v, µ)) is not connected, whatever

µ.

The remaining cases are the ones where d > 3 and Condition (3) does not hold.

§ 3.1. A generation process

An archetype of these vectors is the vector v = (α, α+α2, . . . , α+α2+· · ·+αd−1, 1)

where α is the positive real root of X+X2 + · · ·+Xd = 1. When d = 3, α is the inverse

of the Tribonacci number. For all d > 3, we have α > 1/2 so that 1 − α < α. Thus,

applying Algorithm (1) with v as input, we get:

Ω(v) = Ω(α, α+ α2, . . . , α+ α2 + · · ·+ αd−1, 1)

= α+ Ω(α+ α2 − α, . . . , α+ α2 + · · ·+ αd−1 − α, 1− α, α)

= α+ Ω(α2, α2 + α3, α2 + · · ·+ αd, α)

= α+ Ω(αv) = α+ αΩ(v)

Hence, Ω(v) = α
1−α and v(n) = αn−1 v. Since dimQ(v1, . . . , vd) > 1, we have Ω(v, µ) =

Ω(v) for all µ ∈ R. Note also that F(v) = αv.
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Let us now deal with the three-dimensional case. In the sequel, we show that for

v = (α, α + α2, 1), where α is the inverse of the Tribonacci number, P(v, 0,Ω(v)) is

connected and P(v, µ,Ω(v, µ)) may be connected or not, depending on the value of µ.

To this aim, we build an increasing sequence (Pn)n>0 of subsets of Z3, and we show

that Pn is connected for all n (see Lemma 3.4 below). Then, it will be shown in Section

3.2 that its limit P∞ = limn→∞ Pn is actually equal to the whole plane P(v, 0,Ω(v)).

This proves that P(v, 0,Ω(v)) is connected (Theorem 3.8). We also exhibit in Section

5 a value of µ for which P(v, µ,Ω(v)) is not connected.

Let (tn)n>1 be the sequence of vectors of Z3 defined by t1 = e1, t2 = e2 − e1,

t3 = e3 − e2 and, for n > 3

(5) tn = tn−3 − tn−2 − tn−1.

An easy induction shows that 〈v, tn〉 = αn for all n > 1. Now we define a sequence

(Pn)n>0 of subsets of Z3 by P0 = {0} and Pn = Pn−1∪(Pn−1 +tn) for n > 1 (see Figure

2). Since (Pn)n>0 is an increasing sequence, it makes sense to consider its limit P∞ as

n tends to ∞.

Figure 2. The sets P0 through P5. Points of Z3 are depicted as unit cubes (voxels).

The following lemma directly follows by induction from the definitions of the se-

quences (Pn)n>0 and (tn)n>0. The notation N? stands below for the set of positive

integers.

Lemma 3.2. One has

Pn =

{∑
i∈I

ti | I ⊂ {1, . . . , n}

}
and P∞ =

{∑
i∈I

ti | I ⊂ N?, |I| <∞

}
.

We need a first technical lemma.

Lemma 3.3. For each r ∈ {1, 2, 3} and all q > 0, we have

er =
r−1∑
i=1

ti +

q∑
k=1

(t3k+r−2 + t3k+r−1) + t3q+r .
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Proof. The proof works by induction. It is easily checked that the formula is valid

for q = 0, i.e., er = t1 + · · · + tr. Let q > 1, and assume that the formula is valid for

q − 1. From the definition of tn, we get

er =
r−1∑
i=1

ti +

q−1∑
k=1

(t3k+r−2 + t3k+r−1) + t3q−3+r

=
r−1∑
i=1

ti +

q−1∑
k=1

(t3k+r−2 + t3k+r−1) + t3q−2+r + t3q−1+r + t3q+r

=
r−1∑
i=1

ti +

q∑
k=1

(t3k+r−2 + t3k+r−1) + t3q+r,

which ends the proof.

Lemma 3.4. The sets Pn, for n ∈ N, and P∞ are connected.

Proof. The proof works again by induction. One checks that P0, P1, P2 and P3 are

connected (see Figure 2). Let n > 4, and assume that Pn−1 is connected. This implies

that Pn−1 + tn is also connected. Let us write n = 3m+ r, with r ∈ {1, 2, 3}, and let us

first prove that er ∈ Pn−1∩(Pn−1+tn). As soon as n > 3, we have {e1, e2, e3} ⊂ Pn. It

thus remains to prove that er ∈ Pn−1+tn or, equivalently, er−tn ∈ Pn−1. According to

Lemma 3.3, we have er−tn = er−t3m+r =
∑r−1
i=1 ti +

∑m
k=1(t3k+r−2 +t3k+r−1) which

belongs to P3m+r−1 = Pn−1 by Lemma 3.2, hence er ∈ Pn−1∩(Pn−1+tn). The sets Pn−1
and Pn−1 + tn are both connected, and they have a non-empty intersection (namely, it

contains at least er). One deduces that Pn = Pn−1 ∪ (Pn−1 + tn) is connected, which

ends the induction proof. This immediately implies that P∞ is also connected.

Lemma 3.5. One has P∞ ⊂ P(v, 0,Ω(v)).

Proof. We recall that Ω(v) = α
1−α . From Lemma 3.2, any x ∈ P∞ may be written

as x =
∑
i∈I ti where I is a finite subset of N?. Then 〈v,x〉 =

∑
i∈I〈v, ti〉 =

∑
i∈I α

i ∈
[0; α

1−α [. Therefore x ∈ P(v, 0,Ω(v)).

§ 3.2. Finite β-expansions and connectedness of P(v, 0,Ω(v))

In order to prove that P(v, 0,Ω(v)) is connected, we first prove that P(v, 0,Ω(v)) =

P∞. Since we already obtained P∞ ⊂ P(v, 0,Ω(v)), it remains to prove P(v, 0,Ω(v)) ⊂
P∞.

Given an element x ∈ P(v, 0,Ω(v)), we have 〈v,x〉 ∈ Z[α] ∩ [0; α
1−α [. Moreover,

since α is an algebraic number of degree 3, we have dimQ(v1, v2, v3) = 3, so that 〈v,x〉 =

〈v,y〉 ⇐⇒ x = y for all x,y ∈ Zd.
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If we are able to write 〈v,x〉 as
∑
i∈I α

i, where I is a finite subset of N?, then we

have 〈v,x〉 =
∑
i∈I〈v, ti〉 = 〈v,

∑
i∈I ti〉. Hence x =

∑
i∈I ti ∈ Pmax(I) ⊆ P∞. This

type of representation (namely, as
∑
i∈I α

i) is natural in the framework of the Tribonacci

numeration, that is, when considering β-expansions in β-numeration, with β = 1/α, by

noticing that
∑
i∈I α

i =
∑
i∈I β

−i (the set I is finite). In fact, the following finiteness

property (see Theorem 3.6 below) that is known to hold for the Tribonacci numeration

will prove to be crucial for the following: the finiteness property states indeed that the

set of real numbers having a finite β-expansion coincides with Z[β−1]∩R+ = Z[α]∩R+.

For more details on β-numeration, the reader is referred for instance to [2].

Theorem 3.6 ([7]). Let β be an algebraic integer with minimal polynomial Xd−
ad−1X

d−1 − · · · − a1X − a0, and assume that ad−1 > ad−2 > · · · > a1 > a0 > 0. Then,{∑
i∈I

xi β
i
∣∣∣ I ⊂ Z, |I| <∞, ∀i xi ∈ {0, . . . , dβe − 1}

}
= Z[β−1] ∩ R+.

The minimal polynomial of 1/α is X3 −X2 −X − 1 and satisfies the conditions of

Theorem 3.6. Since α ∈ ]1/2; 1[, we have d1/αe − 1 = 1, that is, the digits belong here

to {0, 1}. Let

F̃in(1/α) =

{∑
i∈I

αi
∣∣∣ I ⊂ Z, |I| <∞

}
.

Thus one has F̃in(1/α) = Z[α] ∩ R+. Note that β-expansions correspond to sequences

of digits where no three 1’s in a row are allowed. Here, we do not have to consider any

such restriction. Note also that the sets Pn provide approximations of Rauzy fractals

(see Figure 3 below for an illustration). For more on Rauzy fractals, see for instance [2].

We are left to prove the following lemma:

Lemma 3.7. One has

F̃in(1/α) ∩
[
0;

α

1− α

[
=

{∑
i∈I

αi
∣∣∣ I ⊂ N?, |I| <∞

}
.

Proof. Let λ ∈ Fin(1/α) ∩
[
0; α

1−α

[
. We have λ =

∑n
i=−m λi α

i where λi ∈ {0, 1}
for all i ∈ {−m, . . . , n}. Since 1/α > α

1−α we must have λi = 0 for all i 6 −1.

Thus λ =
∑n
i=0 λi α

i. If λ0 = 0 then we are done. Otherwise, we may always write

λ = 1 +
∑k
j=1 α

3j +
∑n
i=3k+1 λi α

i for some k > 0. Consider the largest possible such

k. Then λ = 1−α3k+3

1−α3 +
∑n
i=3k+1 λi α

i. Since α3k+1 > α3k+2 and 1−α3k+3

1−α3 + α3k+2 =

(1 +α3k+4) α
1−α >

α
1−α , we must have λ3k+1 = λ3k+2 = 0. Then we have also λ3k+3 = 0

otherwise k is not maximal. Finally, we get

λ =
1− α3k+3

1− α3
+

n∑
i=3k+4

λi α
i = α

1− α3k+3

1− α
+

n∑
i=3k+4

λi α
i =

3k+3∑
i=1

αi +
n∑

i=3k+4

λi α
i.
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We can now state the main result of the present section:

Theorem 3.8. Let v = (α, α+α2, 1), where α is the real root of X3+X2+X−1.

The discrete plane P(v, 0,Ω(v)) is connected.

§ 4. On topological properties of P(v, 0,Ω(v))

In the present section, we investigate two topological properties of P(v, 0,Ω(v)),

with v = (α, α + α2, 1), where α is the real root of X3 + X2 + X − 1. We first show

that P(v, 0,Ω(v)) \ {0} has exactly 3 connected components, and then, we deduce that

P(v, 0,Ω(v)) is a tree rooted at 0.

For r ∈ {1, 2, 3} and n > 0, let us set:

K(r)
n =

{∑
i∈I

ti ∈ Zd
∣∣ I ⊂ {1, . . . , n}, I 6= ∅, max(I) ≡ r (mod 3)

}
.

For each r ∈ {1, 2, 3}, the sequence (K(r)
n )n>0 is non-decreasing. Let K(r)

∞ =⋃∞
n=0 K

(r)
n be the limit of the sequence (K(r)

n )n>0. From the definition of K(r)
n and

from Lemma 3.2, we get:

Lemma 4.1.

• For all n > 0, Pn = {0} ∪K(1)
n ∪K(2)

n ∪K(3)
n .

• Furthermore, P∞ = {0} ∪K(1)
∞ ∪K(2)

∞ ∪K(3)
∞ .

Figure 3 depicts Pn, K(1)
n , K(2)

n and K(3)
n for n = 11.

Lemma 4.2.

1. For each r ∈ {1, 2, 3} and all n > 0, K(r)
n is either empty, or connected and adjacent

to {0}.

2. For each r ∈ {1, 2, 3}, K(r)
∞ is connected and adjacent to {0}.

Proof. We first prove, for n > 1, that if n 6≡ r (mod 3), then K(r)
n = K(r)

n−1, and

if n ≡ r (mod 3), then K(r)
n = Pn−1 + tn. Let us assume that n 6≡ r (mod 3). We

obviously have K(r)
n−1 ⊂ K(r)

n . Conversely, let x ∈ K(r)
n . One has x =

∑
i∈I ti for some

non-empty I ⊂ {1, . . . , n} such that max(I) ≡ r (mod 3). Since n 6≡ r (mod 3), we

have max(I) < n, so that I ⊂ {1, . . . , n− 1}, and x ∈ K(r)
n−1. Hence K(r)

n ⊂ K(r)
n−1.
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K(1)
11

K(2)
11

K(3)
11

K(1)
11

K(2)
11

K(3)
11

Figure 3. P11 = {0} ∪K(1)
11 ∪K

(2)
11 ∪K

(3)
11 . The voxel which connects K(1)

11 , K(2)
11 and K(3)

11

is the origin.

Assume now that n ≡ r (mod 3). Let us prove that K(r)
n = Pn−1+tn. Let x ∈ K(r)

n .

We have x =
∑
i∈I ti for some non-empty I ⊂ {1, . . . , n} such that max(I) ≡ r ≡ n

(mod 3). Hence max(I) = n−3p for some p > 0, and we may write x =
∑n−3p−1
i=1 εi ti+

tn−3p, where εi ∈ {0, 1} for all i. According to (5), we get tn−3p =
∑p−1
k=0(tn−3p+3k+1+

tn−3p+3k+2) + tn. Thus x = x′ + tn where x′ =
∑n−3p−1
i=1 εi ti +

∑p−1
k=0(tn−3p+3k+1 +

tn−3p+3k+2) ∈ Pn−1. Hence K(r)
n ⊂ Pn−1 + tn. Now, let x ∈ Pn−1 + tn. We have

x =
∑
i∈I ti + tn for some I ⊂ {1, . . . , n − 1}. Thus x =

∑
i∈I′ ti where I ′ = I ∪ {n}.

We have I ′ ⊂ {1, . . . , n}, I ′ 6= ∅ and max(I ′) = n ≡ r (mod 3). Hence x ∈ K(r)
n , which

concludes the proof of K(r)
n = Pn−1 + tn.

We now prove by induction on n the connectedness of K(r)
n . The result holds for

n = 0. Let n > 1 and assume that the induction property holds for K(r)
n−1. If n 6≡ r

(mod 3), then K(r)
n = K(r)

n−1, and the property holds for n by induction. If n ≡ r

(mod 3), then K(r)
n = Pn−1 + tn. Since Pn−1 is connected, so is Pn−1 + tn, and the

property holds again for n by induction.

As an immediate consequence we get the connectedness of K(r)
∞ .

Let us prove now that the K(r)
n are adjacent to {0}. We first show that 0 /∈ K(r)

∞ .
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Let x ∈ K(r)
∞ . We have x =

∑
i∈I ti for some finite non-empty I ⊂ N?. Then 〈v,x〉 =∑

i∈I〈v, ti〉 =
∑
i∈I α

i > 0. Thus x 6= 0 which implies 0 /∈ K(r)
n for all n.

We already proved in the proof of Lemma 3.4 that er ∈ Pn−1 + tn if n > 1 and

n ≡ r (mod 3). Since er is a neighbour of 0, K(r)
n is adjacent to {0} as soon as it is

non-empty. As a consequence, K(r)
∞ is adjacent to {0}.

It remains to prove that, given n, the sets K(r)
n , with r ∈ {1, 2, 3}, are pairwise

disjoint and non-adjacent (see Lemma 4.4 below). The disjointness will be provided

by the following characterization: x ∈ K(r)
n if and only if there exists p ∈ B[X], with

B = {0, 1}, such that p(α) = 〈x,v〉 and d◦ p ≡ r mod 3, while the non-adjacency will

be given by the following fact: for x ∈ K(r)
n , if x ± ei ∈ K(r′)

n with r′ ∈ {1, 2, 3}, then

r = r′.

Thus, we need the following technical lemma.

Lemma 4.3. Let B = {0, 1} and p, q ∈ B[X]. If p(α) = q(α) then either p =

q = 0 or p 6= 0, q 6= 0 and d◦ p ≡ d◦ q (mod 3).

Proof. If p = 0 or q = 0, then obviously p = q = 0. Otherwise, we cannot have

p(α) = q(α).

Now, let us assume p 6= 0 and q 6= 0. We prove the result by induction on

max(d◦ p, d◦ q).

If p(0) = q(0) then p(α) = q(α) ⇐⇒ p′(α) = q′(α) where p′ = (p − p(0))/X

and q′ = (q − q(0))/X. By the induction hypothesis, we have either p′ = q′ = 0,

in which case p = q = 1, or d◦ p′ ≡ d◦ q′ (mod 3), hence d◦ p ≡ d◦ q (mod 3) since

d◦ p− d◦ q = d◦ p′ − d◦ q′.

We assume now p(0) 6= q(0). By symmetry, we may assume p(0) = 1 and q(0) = 0.

Let p = 1 + δ1X + δ2X
2 + δ3X

3 + X4 p0 and q = ε1X + ε2X
2 + ε3X

3 + X4 q0

where δ1, δ2, δ3, ε1, ε2, ε3 ∈ B and p0, q0 ∈ B[X]. Then p(α) > 1 + δ1 α + δ2 α
2 + δ3 α

3

while q(α) < ε1 α + ε2 α
2 + ε3 α

3 + α4/(1 − α). Since p(α) = q(α), we must have

ε1 α + ε2 α
2 + ε3 α

3 + α4/(1 − α) > 1 + δ1 α + δ2 α
2 + δ33 α

3, which is equivalent to

(δ1 +1−ε1)+(δ2 +1−ε2)α+(δ3 +1−ε3)α2 < α3/(1−α). This implies δ1 +1−ε1 = 0,

δ2 + 1 − ε2 = 0 and δ3 + 1 − ε3 6 1. Therefore, δ1 = δ2 = 0, ε1 = ε2 = 1 and δ3 6 ε3.

Thus p = 1 + δ3X
3 +X4 p0 and q = X +X2 + ε3X

3 +X4 q0. Now

p(α) = q(α) ⇐⇒ 1 + δ3 α
3 + α4 p0(α) = α+ α2 + ε3 α

3 + α4 q0(α)

⇐⇒ α+ α2 + α3 + δ3 α
3 + α4 p0(α) = α+ α2 + ε3 α

3 + α4 q0(α)

⇐⇒ (1 + δ3 − ε3) + αp0(α) = α q0(α).

Let p′ = (1+δ3−ε3)+X p0 and q′ = X q0. We have p′, q′ ∈ B[X], d◦ q > 2, d◦ q′ < d◦ q

and either d◦ p′ = d◦ p = 0 or d◦ p′ < d◦ p. In all cases, we have max(d◦ p′,d◦ q′) <
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max(d◦ p, d◦ q). By the induction hypothesis, either p′ = q′ = 0, or p′ 6= 0, q′ 6= 0 and

d◦ p′ ≡ d◦ q′ (mod 3).

If p′ = q′ = 0, then δ3 = 0, ε3 = 1 and p0 = q0 = 0. Therefore p = 1 and

q = X +X2 +X3, so that d◦ q = d◦ p+ 3 and d◦ p ≡ d◦ q (mod 3).

In the second case, we have q0 6= 0 so that d◦ q′ = d◦ q0 + 1 and d◦ q = d◦ q0 + 4 =

d◦ q′ + 3 ≡ d◦ q′ (mod 3). If p0 6= 0, then d◦ p′ = d◦ p0 + 1 and d◦ p = d◦ p0 + 4,

hence d◦ p ≡ d◦ p′ (mod 3). If p0 = 0 and δ3 = 1, then ε3 = 1. Thus p = 1 + X3

and p′ = 1. Again, we have d◦ p ≡ d◦ p′ (mod 3). At last, if p0 = 0 and δ3 = 0, then

p = 1 and p′ = 1 − ε3. We must have ε3 = 0 because otherwise we would have p = 1,

q = X + X2 + X3 + X4 q0 and q(α) = 1 + α4 q0(α) > 1 = p(α), since q0 6= 0. Hence

p′ = 1 and d◦ p = d◦ p′. In all cases, we have d◦ p ≡ d◦ p′ (mod 3) and d◦ q ≡ d◦ q′

(mod 3), so that d◦ p ≡ d◦ q (mod 3) by the induction hypothesis.

Lemma 4.4.

1. For all n > 0, the sets K(1)
n , K(2)

n and K(3)
n are pairwise disjoint and non-adjacent.

2. The sets K(1)
∞ , K(2)

∞ and K(3)
∞ are pairwise disjoint and non-adjacent.

Proof. It is sufficient to prove the second assertion. The first one is an immediate

consequence.

Since 〈v, ti〉 = αi for all i > 1, from the definition of K(r)
n , if x ∈ K(r)

n then

〈v,x〉 = p(α) where p ∈ B[X], p 6= 0, p(0) = 0 and d◦ p ≡ r (mod 3). The fact that

K(1)
∞ , K(2)

∞ and K(3)
∞ are pairwise disjoint is an immediate consequence of Lemma 4.3.

Now, we want to prove that K(1)
∞ , K(2)

∞ and K(3)
∞ are non-adjacent, that is, if

x ∈ K(r)
∞ , then x has no neighbour in K(r′)

∞ with r′ 6= r. The neighbours of x are x± ei

for i = 1, 2, 3. By symmetry, we may consider only neighbours of the form x + ei. We

prove that x ∈ K(r)
∞ and x + ei ∈ P(v, 0, α

1−α ) implies x + ei ∈ K(r)
∞ .

If x ∈ K(r)
∞ , then 〈v,x〉 = p(α) for some p ∈ B[X] such that p 6= 0, p(0) = 0 and

d◦ p ≡ r (mod 3). If x + ei ∈ P(v, 0, α
1−α ) then 〈v,x + ei〉 = p(α) + 〈v, ei〉 < α

1−α .

From Lemma 3.3, we have ei =
∑i
j=1 tj so that 〈v, ei〉 =

∑i
j=1 α

j = α 1−αi

1−α . Hence

p(α) < α
1−α−α

1−αi

1−α = αi+1

1−α . Let p = ε1X+· · ·+εiXi+Xi+1 p′ where ε1, . . . , εi ∈ B and

p′ ∈ B[X]. Since αi−1 > αi+1

1−α we must have εj = 0 for j < i. Thus p = εiX
i +Xi+1 p′.

If εi = 0, then we are done. Indeed, 〈v,x + ei〉 = q(α) where q = X + · · · +
Xi + Xi+1 p′. Since p 6= 0, we have p′ 6= 0 and d◦ q = d◦ p ≡ r (mod 3). Therefore,

x + ei ∈ K(r)
∞ .

If εi = 1, then let us write p as p = Xi (
∑k
j=0X

3j+δ0X
3k+1+δ1X

3k+2+δ2X
3k+3+

X3k+4p′′) for some k > 0, δ0, δ1, δ2 ∈ B and p′′ ∈ B[X]. Consider the maximum suitable

k. We get

p(α) <
αi+1

1− α
⇐⇒ δ0 + δ1 α+ δ2 α

2 + α3p′′(α) <
α3

1− α
,
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which implies δ0 = δ1 = 0. We must also have δ2 = 0 because otherwise k is not

maximal. Finally, we have

〈v,x + ei〉= αi
( k∑
j=0

α3j + α3k+4 p′′(α)

)
+ α

1− αi

1− α

= α
1− αi

1− α
+ αi

(
1− α3k+3

1− α3
+ α3k+4 p′′(α)

)
= α

1− αi

1− α
+ αi

(
α

1− α3k+3

1− α
+ α3k+4 p′′(α)

)
= α

1− α3k+i+3

1− α
+ α3k+i+4 p′′(α)

= q(α),

where q =
∑3k+i+3
j=1 Xj +X3k+i+4 p′′. If p′′ = 0 then d◦ p = 3k+ i and d◦ q = 3k+ i+3.

If p′′ 6= 0 then d◦ p = d◦ q = d◦ p′′ + 3k + i+ 4. In all cases, we have

d◦ q ≡ d◦ p ≡ r (mod 3),

so that x + ei ∈ K(r)
∞ .

Hence we deduce that

Theorem 4.5. The set P∞ \ {0} has exactly 3 connected components.

From Theorem 4.5, one also deduces the following corollary which is illustrated by

Figure 4.

Corollary 4.6. The set P∞ is a tree rooted at 0, i.e., P∞ is cycle-free.

Proof. The proof works by contradiction. Assume that P∞ contains a cycle. Let

C be such a cycle of minimal length, and n be the smallest index such that C appears

in Pn.

The cycle C cannot be contained in some K(r)
n . Indeed, if n 6≡ r (mod 3) then

K(r)
n = K(r)

n−1 ⊂ Pn−1. This implies that C is contained in Pn−1, which contradicts the

minimality of n. Thus we have n ≡ r (mod 3), and K(r)
n = Pn−1 + tn, according to the

proof of Lemma 4.2. Hence, C − tn is contained in Pn−1, which again contradicts the

minimality of n.

Since C cannot be contained in some K(r)
n it must go at least twice through some

er which is the unique neighbour of 0 in K(r)
∞ . Then a shortest cycle exists, which

contradicts the minimality of the length of C.
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K(1)
11

K(2)
11

K(3)
11

Figure 4. The set P11. In order to enlight the tree structure the point 0 is shown in

black and adjacent points are connected.

§ 5. Discrete planes with non-zero shift

Until now, in the present paper, we have only considered discrete planes with shift

µ = 0. In particular, we have shown that if v = (α, α2 +α, 1), where α is the (positive)

real root of X + X2 + X3 = 1, then the discrete plane P(v, 0,Ω(v)) is connected.

The following question arises naturally: given µ 6= 0, what about the connectedness of

P(v, µ,Ω(v))?

If µ = 〈v, t〉 with t ∈ Z3, then P(v, µ,Ω(v)) is connected since P(v, µ,Ω(v)) =

P(v, 0,Ω(v))−t. The following theorem shows that P(v, µ,Ω(v)) may be not connected

for some µ.

Theorem 5.1. Let v = (α, α+α2, 1), where α is the real root of X3+X2+X−1,

and let µ = α
1−α . Then, the discrete plane P(v, µ,Ω(v)) is not connected.
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Proof. We have

P(v, µ,Ω(v)) =

{
x ∈ Z3 | 0 6 〈v,x〉+

α

1− α
<

α

1− α

}
=

{
x ∈ Z3 | − α

1− α
6 〈v,x〉 < 0

}
=−

{
x ∈ Z3 | 0 < 〈v,x〉 6 α

1− α

}
.

We have already seen (see Section 3.1) that Ω(v) =
α

1− α
. According to Theo-

rem 2.6, we have Ω(α) =
‖v‖1

2
. Hence, since dimQ(v1, v2, v3) = 3, we deduce Ω(v) /∈

{〈x,v〉 | x ∈ Z3}.
Hence

P(v, µ,Ω(v)) = −
{
x ∈ Z3 | 0 < 〈v,x〉 < α

1− α

}
= −(P(v, 0,Ω(v)) \ {0})

and P(v, 0,Ω(v)) \ {0} is not connected by Corollary 4.6.

Conjecture 5.2. Let v = (α, α+ α2, 1) ∈ R3 where α is the (positive) real root

of X+X2 +X3 = 1. Then, P(v, µ,Ω(v)) is connected if and only if µ = 〈v, t〉 for some

t ∈ Z3, that is, v ∈ α2Z + αZ + Z.

§ 6. Conclusion

In the present paper, we have considered discrete planes with critical thickness,

that is, the thickness that corresponds to the limit case between connectedness and

non-connectedness. For almost all parameters in dimension d = 3, critical planes are

known to be not connected. We have focused here on a non-generic case, namely the

Tribonacci case. We have shown that in the case of the Tribonacci discrete plane,

depending on the value of the shift, the plane is connected or not. Moreover, we have

shown that when the shift is zero, the neighbouring relation on the points of such a

plane forms a tree.

This tree structure implies that there exists a unique path connecting any pair of

points in this critical plane. Since this tree is formed by the three connected components

of the plane deprived of the origin meeting at 0, all paths going from a connected

component to another one must pass through the origin 0. As a consequence, the

length of such a path may not be bounded by a function of the distance between its two

ends.

Finally, throughout this work we have considered the connectedness of discrete

planes with respect to one particular type of neighbourhood relation. It appears that
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the ordered fully subtractive continued fraction algorithm is an appropriate tool for

this study. A natural question that arises is whether another choice of neighbourhood

relation leads to similar results using another multidimensional continued fraction al-

gorithm. Reversely, given a multidimensional continued fraction algorithms, does there

exist a corresponding neighbourhood relation such that the critical thickness of discrete

planes may be studied via this algorithm?
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[2] Berthé, V. and Rigo, M., editors, Combinatorics, Automata and Number Theory, Number

135 in Encyclopedia of Mathematics and Its Applications, Cambridge University Press,

2010.

[3] Brimkov, V. E. and Barneva, R. P., Connectivity of discrete planes, Theor. Comput. Sci.

319(1-3) (2004), 203–227.

[4] Domenjoud, E., Jamet, D. and Toutant, J.-L., On the connecting thickness of arithmetical

discrete planes, Proceedings of Discrete Geometry for Computer Imagery, Lecture Notes

in Computer Science, Springer, 5810 (2009), 362–372.

[5] Domenjoud, E., Jamet, D. and Toutant, J.-L., On the connecting thickness of arithmetical

discrete planes – extended version, Technical report, Loria, Upcoming 2013.

[6] Fokkink, R., Kraaikamp, C., and Nakada, H., On Schweiger’s problems on fully subtractive

algorithms, Israel J. Math., 186 (2011), 285–296.

[7] Frougny, C. and Solomyak, B., Finite beta-expansions. Ergodic Theory and Dynamical

Systems, 12(04) (1992), 713–723.

[8] Gérard, Y., Periodic graphs and connectivity of the rational digital hyperplanes, Theor.

Comput. Sci., 283(1) (2002), 171–182.

[9] Jamet, D. and Toutant, J.-L., On the connectedness of rational arithmetic discrete hy-

perplanes, Proceedings of Discrete Geometry for Computer Imagery, Lecture Notes in

Computer Science, Springer, 4245 (2006), 223–234.

[10] Jamet, D. and Toutant, J.-L., Minimal arithmetic thickness connecting discrete planes,

Discrete Applied Mathematics, 157(3) (2009), 500–509.

[11] Kraaikamp, C. and Meester, R., Ergodic properties of a dynamical system arising from

percolation theory, Ergodic Theory and Dynamical Systems, 15(04) (1995), 653–661.

[12] Meester, R.W.J. and Nowicki, T., Infinite clusters and critical values in two-dimensional

circle percolation, Israel J. Math., 68 (1989), 63–81.
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