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Abstract

This paper surveys different constructions and properties of some multiple tilings (that
is, finite-to-one coverings) of the space that can be associated with beta-numeration and
substitutions. It is indeed possible, generalizing Rauzy’s and Thurston’s constructions,
to associate in a natural way either with a Pisot number β (of degree d) or with a Pisot
substitution σ (on d letters) some compact basic tiles that are the closure of their interior,
that have non-zero measure and a fractal boundary; they are attractors of some graph-
directed Iterated Function System. We know that some translates of these prototiles
under a Delone set Γ (provided by β or σ) cover Rd−1; it is conjectured that this multiple
tiling is indeed a tiling (which might be either periodic or self-replicating according to
the translation set Γ). This conjecture is known as the Pisot conjecture and can also
be reformulated in spectral terms: the associated dynamical systems have pure discrete
spectrum. We detail here the known constructions for these tilings, their main properties,
some applications, and focus on some equivalent formulations of the Pisot conjecture, in
the theory of quasicrystals for instance. We state in particular for Pisot substitutions a
finiteness property analogous to the well-known (F) property in beta-numeration, which
is a sufficient condition to get a tiling.

1Both authors are partially supported
by ACI NIM 04 “Numération”.
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Introduction

Substitutions in numeration Substitutions are combinatorial objects (one replaces
a letter by a word) which produce sequences by iteration and generate simple symbolic
dynamical systems with zero entropy. These systems, produced by this elementary al-
gorithmic process, have a highly ordered self-similar structure. Substitutions occur in
many mathematical fields (combinatorics on words [Lot02], ergodic theory and spec-
tral theory [Que87, Fog02, Sol92, Sol97, DHS99], geometry of tilings [Ken96, Rob04],
Diophantineapproximation and transcendence [ABF04, Roy04, AS02]), as well as in the-
oretical computer science [BP97, Lot05] or physics [BT86, LGJJ93, VM00, VM01].

The connections with numeration systems are numerous (see for instance [Dur98a,
Dur98b, Fab95]) and natural: one can define a numeration system based on finite factors
of an infinite word generated by a primitive substitution σ, known as the Dumont-
Thomas numeration [DT89, DT93, Rau90]; this numeration system provides generalized
radix expansions of real numbers with digits in a finite subset of the number field Q(β),
β being the Perron-Frobenius eigenvalue of σ. The analogy between substitutions and
beta-numeration is highlighted by the work of Thurston [Thu89], where tilings associated
with beta-substitutions are introduced; a characteristic example is given by the Fibonacci
substitution 1 !→ 12, 2 !→ 1 and by the Fibonacci numeration, where nonnegative integers
are represented thanks to the usual Fibonacci recurrence with digits in {0, 1} and no two
one’s in a row allowed; in this case, the Perron-Frobenius eigenvalue is equal to the golden

ratio 1/
√

5
2 .

Tribonacci substitution In the so-called Tribonacci substitution case 1 !→ 12, 2 !→
13, 3 !→ 1, nonnegative integers are expanded thanks to the Tribonacci recurrence Tn+3 =
Tn+2+Tn+1+Tn with digits in {0, 1} and no three consecutive one’s; this numeration called
the Tribonacci numeration belongs to the family of beta-numerations [Rén57, Par60]
(more details are to be found in Section 1.1).

Let β be the root larger than 1 of the polynomial X3 − X2 − X − 1, and let α be
one of the two complex conjugate roots; one has |α| < 1. The algebraic integer β is a
Pisot number, that is, all its algebraic conjugates have modulus less than one. The set
of complex numbers of the form

Tβ = {
∑

i≥0

wiα
i; ∀i, wi ∈ {0, 1}, wiwi+1wi+2 = 0} (1)

is a compact subset of C called the central tile or the Rauzy fractal. This set was
introduced in [Rau82, Rau88], see also [IK91, Mes98, Mes00]. It is shown in Fig. 1 with
its division into three basic tiles Tβ(i), i = 1, 2, 3, indicated by different shades. They
correspond respectively to the sequences (wi)i≥0 such that either w0 = 0, or w0w1 = 10,
or w0w1 = 11. One interesting feature of the central tile is that it can tile the plane in
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Figure 1: Tribonacci substitution: the central tile divided into its basic tiles.

two different ways. These two tilings are depicted in Fig. 2. The first one corresponds
to a periodic tiling (a lattice tiling), and the second one to a self-replicating tiling.

Figure 2: Lattice and self-replicating Tribonacci tilings.

By tiling, we mean here tilings by translation having finitely many tiles up to trans-
lation (a tile is assumed to be the closure of its interior): there exists a finite set of tiles
Ti and a finite number of translation sets Γi such that Rd = ∪i ∪γi∈Γi Ti +γi, and distinct
translates of tiles have non-intersecting interiors; we assume furthermore that each com-
pact set in Rd intersects a finite number of tiles; the sets Γi of translation vectors are thus
assumed to be Delaunay sets. See for instance [Ken90, Ken96, Ken99, Rad95, Rob96].
By multiple tiling, we mean according for instance to [LW03], arrangements of tiles in Rd

such that almost all points in Rd are covered exactly p times for some positive integer p.

The basic tiles are attractors for a graph-directed Iterated Function System (IFS), in
the flavor of [LW96, MW88, Vin00]: indeed one has






Tβ(1) = α(Tβ(1) ∪ Tβ(2) ∪ Tβ(3))
Tβ(2) = α(Tβ(1)) + 1
Tβ(3) = α(Tβ(2)) + 1.

Hence each basic tile can be mapped onto a finite union of translates of basic tiles,
when multiplied by the parameter α−1. The maps in the IFS are contractive, hence the
compact non-empty sets satisfying this equation are uniquely determined [MW88]; they
have non-zero measure and are the closure of their interior [SW02]. By using this IFS,
that is, by expanding each basic tile by α−1 and subdividing the result, one generates the
self-replicating multiple tiling (in the sense of [KV98]), that is proved to be aperiodic and
repetitive, i.e., any finite collection of tiles up to translation reoccurs in the tiling at a
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bounded distance from any point of the tiling. Repetitivity, also called quasiperiodicity,
or uniform recurrence, is equivalent with the minimality of the tiling dynamical system
[Sol97]. For more details, we refer the reader to Section 1.4, 1.5 and 2.5. Let us note
that the subdivision rule in the IFS is closely connected to the substitution σ: indeed the

subdivision matrix is the transpose of the incidence matrix




1 1 1
1 0 0
0 1 0



, which counts

the number of occurrences of letters in the images of the letters of the substitution.

The Tribonacci lattice tiling has been widely studied and presents many interesting
features. One interpretation of this tiling is that the symbolic dynamical system generated
by the Tribonacci substitution (or equivalently the β-shift endowed with the odometer
map, with β > 1 root of X3 − X2 − X − 1) is measure-theoretically isomorphic to a
translation of the torus T2, the isomorphism being a continuous onto map [Rau82]: the
symbolic dynamical system has thus pure discrete spectrum. Furthermore, the Tribonacci
central tile has a “nice” topological behavior (0 is an inner point and it is shown to be
connected with simply connected interior [Rau82]), which leads to interesting applications
in Diophantine approximation [CHM01]. For more details, see Chap. 10 in [Lot05].

Central tiles More generally, it is possible to associate a central tile with any Pisot
unimodular substitution [AI01, CS01a] or to beta-shifts with β Pisot unit [Aki98, Aki99,
AS98, Aki00, Aki02, AN04b]. A substitution is said Pisot unimodular if its incidence
matrix admits as characteristic polynomial the minimal polynomial of a Pisot unit. Let
us note that not all central tiles associated with Pisot numbers need to satisfy the same
topological properties as the Tribonacci tile does: they might be not connected or not
simply connected, and 0 is not always an inner point of the central tile; see for instance,
the examples given in [Aki02].

There are mainly two methods of construction for central tiles, as illustrated above
with the Tribonacci substitution. The first one is based on formal power series seen
as digit expansions such as (1), and is inspired by the seminal paper [Rau82]; see e.g.,
[Aki99, Aki98, Aki02, CS01a, CS01b, Sie03, Mes98, Mes00]. The second approach via
Iterated Function Systems and generalized substitutions has been developed following
ideas from [Thu89, IK91], and [AI01, SAI01]: central tiles are described as attractors of
some graph-directed IFS, as developed in [HZ98, Sir00a, Sir00b, SW02]. For more details
on both approaches, see Chap. 7 and 8 in [Fog02]. We try as best as possible to give a
combination of both approaches in the present paper.

The Pisot conjecture Several multiple tilings can be associated with the central tile.
In the beta-numeration case, a first multiple tiling can be defined from which one can
recover a self-replicating tiling, up to a division of its tiles into basic tiles (see Section 1).
Both a self-replicating (see Section 2) and a lattice multiple tiling (see Section 3) with
analogous tiles can also be introduced for Pisot substitution dynamical systems. These
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multiple tilings are in particular proved to be tilings in the Tribonacci case. Furthermore,
as soon as one of those multiple tilings can be proved to be a tiling, then all the other
multiple tilings are also indeed tilings [IR06]. Hence the Pisot conjecture states that as
soon as β is a Pisot number, then all the multiple tilings are tilings.

Let us note that in each case sufficient conditions for tilings exist; for more details, see
Section 1.6 and 5. The most simple one is the (F) condition, the so-called finiteness con-
dition: all the nonnegative elements of Z[1/β] are assumed to have a finite β-expansion.
One of the main purpose of this paper is to provide a property analogous to the (F)
condition stated for Pisot unimodular substitutions.

Contents of the paper We have chosen to handle both the beta-numeration and the
substitutive cases for the following reasons. First, the literature on both subjects is often
scattered among several series of papers, some of them dealing with beta-numeration
(or analogously with Canonical Number systems, and Shift Radix Systems), other ones
with symbolic dynamics and substitutions; a third group also deals with the interplay
between the Pisot conjecture and spectral properties of tilings and quasicrystals. Second,
the beta-shift is a rather natural framework for the introduction and motivation of the
required algebraic formalism which is somehow heavier in the substitutive case. Lastly,
the methods and motivations are very close and bring mutually insight on the subject.

We introduce in Section 1 the tiles and the multiple tiling associated with the beta-
numeration when β is assumed to be a unit Pisot number. The basic tiles are shown to
satisfy an IFS, the subdivision matrix of which is equal to the transpose of the adjacency
matrix of the minimal automaton which recognizes the language of the beta-numeration;
this is the core of Theorem 2. We then generalize this situation to substitutions. Although
the lattice multiple tiling has been more often considered in the literature for substitutive
dynamical systems, we then chose to focus in Section 2 on the self-replicating multiple
tiling by following the same scheme and formalism as in the beta-numeration case, in order
to unify both approaches. We introduce for that purpose in Section 2.4 a numeration
system, the Dumont-Thomas numeration system [DT89, DT93, Rau90], based on the
substitution, which allows us to expand real numbers. The lattice multiple tiling has
an interesting dynamical and spectral interpretation that we develop in Section 3. We
focus on the connections with mathematical quasicrystals and model sets in Section
3.4. Section 4 is devoted to the links between the self-replicating multiple tiling and
discrete geometry, more precisely, standard discrete planes. The point of view on the
substitution self-replicating multiple tiling developed in Section 2 (that does not appear
to our knowledge stated as such in the literature), allows us to introduce in Section 4.2
the substitutive counter-part to the well-known (F) property [FS92], which is a useful
sufficient condition for tiling. We then discuss the Pisot conjecture and formulate several
equivalent statements as well as sufficient conditions for tiling in Section 5.
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1. Beta-numeration

Let us define now the central tile associated with the beta-numeration; we recall all the
required background on the beta-shift in Section 1.1; we then introduce the definition
of the central tile and of its translation vectors set in Section 1.2 and 1.3; the multiple
self-replicating tiling is defined in Section 1.4; we then work out the Tribonacci example
in Section 1.5., and conclude this section by evoking some particular finiteness properties
that imply that the multiple tiling is indeed a tiling. We mainly follow here [Thu89] and
[Aki98, Aki99, Aki02].

1.1. Beta-shift

Let β > 1 be a real number. The (Renyi) β-expansion [Rén57, Par60] of a real number
x ∈ [0, 1] is defined as the sequence (xi)i≥1 with values in Aβ := {0, 1, . . . , 'β( − 1}
produced by the β-transformation Tβ : x !→ βx (mod 1) as follows

∀i ≥ 1, ui = *βT i−1
β (x)+, and thus x =

∑

i≥1

uiβ
−i.

We denote the β-expansion of 1 by dβ(1) = (ti)i≥1. Numbers β such that dβ(1) is
ultimately periodic are called Parry numbers and those such that dβ(1) is finite are
called simple Parry numbers (in this latter case, we omit the ending zero’s when writing
dβ(1)).

We assume throughout this paper that β is an algebraic number. The algebraic
integer β is said to be a Pisot number if all its algebraic conjugates have modulus less
than 1: under this assumption, then β is either a Parry number or a simple Parry
number [BM86]; more generally, every element in Q(β) ∩ [0, 1] has eventually periodic
β-expansion according to [BM86, Sch80]. But conversely, if β is a Parry number we
can only say that β is a Perron number, that is, an algebraic integer greater than 1 all
conjugates of which have absolute value less than that number [Lin84, DCK76]. Indeed,
as quoted in [Bla89], there exist Parry numbers which are neither Pisot nor even Salem;
consider e.g., β4 = 3β3 +2β2 +3 with dβ(1) = 3203; a Salem number is a Perron number,
all conjugates of which have absolute value less than or equal to 1, and at least one has
modulus 1. It is conjectured in [Sch80] that every Salem number is a Parry number.
This conjecture is sustained by the fact that if each rational in [0, 1) has an ultimately
periodic β-expansion, then β is either a Pisot or a Salem number. In particular, it is
proved in [Boy89] that if β is a Salem number of degree 4, then β is a Parry number; see
[Boy96] for the case of Salem numbers of degree 6. Note that the algebraic conjugates of

a Parry number β > 1 are smaller than 1+
√

5
2 in modulus, this upper bound being sharp

[FLP94, Sol94].

Combinatorial characterization of β-expansions. We suppose that β is a Parry
number. Let d∗

β(1) = dβ(1), if dβ(1) is infinite, and d∗
β(1) = (t1 . . . tn−1(tn − 1))∞, if
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dβ(1) = t1 . . . tn−1tn is finite (tn -= 0). The set of β-expansions of real numbers in [0, 1)
is exactly the set of sequences (ui)i≥1 in AN+

β (where N+ stands for the set of positive
integers) such that

∀k ≥ 1, (ui)i≥k <lex d∗
β(1). (2)

For more details on the β-numeration, see for instance [Bla89, Fro00, Fro02].

The β-shift. It is natural to introduce the following symbolic dynamical system known
as the (right one-sided) β-shift (Xr

β, S) which is defined as the closure in AN+

β of the set
of β-expansions of real numbers in [0, 1) on which the shift map S acts; let us recall that
S maps the sequence (yi)i∈N+ onto (yi+1)i∈N+. Hence Xr

β is equal to the set of sequences

(ui)i≥1 ∈ AN+

β which satisfy

∀k ≥ 1, (ui)i≥k ≤lex d∗
β(1). (3)

We can easily extend this admissibility condition to two-sided sequences and introduce
the two-sided symbolic β-shift (Xβ, S) (the shift map S maps now the sequence (yi)i∈Z
onto (yi+1)i∈Z). The set Xβ is then defined as the set of two-sided sequences (yi)i∈Z
in AZ

β such that each left truncated sequence is less than or equal to d∗
β(1), that is,

∀k ∈ Z, (yi)i≥k ≤lex d∗
β(1).

We will use the following notation for the elements of Xβ: if y = (yi)i∈Z ∈ Xβ, we set
u = (ui)i≥1 = (yi)i≥1 and w = (wi)i≥0 = (y−i)i≥0. One thus gets a two-sided sequence of
the form

. . . w3w2w1w0, u1u2u3 . . .

and write it as y = ((wi)i≥0, (ui)i≥1) = (w, u). In other words, we will use the letters
(wi) for denoting the “past” and (ui) for the “future” of the element y = (w, u) of the
two-sided shift Xβ.

One similarly defines X l
β as the set of one-sided sequences w = (wi)i≥0 such that there

exists u = (ui)i≥1 with (w, u) ∈ Xβ. We call it the left one-sided β-shift.

Sofic shift and language Fβ. The β-shifts associated with Parry numbers have inter-
esting combinatorial properties: indeed, (Xβ, S) is sofic (that is, the set of finite factors
of the sequences in Xβ can be recognized by a finite automaton) if and only if β is a
Parry number (simple or not) [BM86].

The minimal automaton Mβ recognizing the language Fβ, defined as the set of finite
factors of the sequences in Xβ, can easily be constructed (see Figure 3). The number of
states n of this automaton is equal to the length of the period n of d∗

β(1) if β is a simple
Parry number with dβ(1) = t1 . . . tn−1tn, tn -= 0, and to the sum n of its preperiod m
plus its period p, if β is a non-simple Parry number with dβ(1) = t1 . . . tm(tm+1 . . . tm+p)∞

(tm -= tm+p, tm+1 · · · tm+p -= 0p).
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. . . 
n

t2t1 tn−1

1 2 3

0, · · · ,
t2 − 1

0, · · · , tn − 1

0, · · · , t3 − 1

0, · · · , t1 − 1

. . . . . . 

t1 tm+p−1tm+1

tm+p

tm−1 tm

0, · · · , tm − 1

0, · · · , tm+2 − 1

0, · · · , tm−1

0, · · · ,
t2 − 1

0, · · · , tm+1 − 1

0, · · · , t1 − 1
m + 2 m + pm + 1m1 2

Figure 3: The automata Mβ for β simple Parry number (dβ(1) = t1 . . . tn−1tn) and for β
non-simple Parry number (dβ(1) = t1 . . . tm(tm+1 . . . tm+p)∞).

1.2. A tiling of the line

We can define the β-expansion of a real number x greater than 1 as follows: let k ∈ N such
βk ≤ x < βk+1; one has 0 ≤ x

βk+1 < 1; we denote the β-expansion of x
βk+1 by u = (ui)i≥1;

the β-expansion of x is then defined as the sequence (. . . 000u1u2 . . . uk+1, uk+2uk+3 . . . ).
We thus can associate with any positive real number a two-sided sequence in Xβ which
corresponds to its β-expansion (the converse being obviously untrue).

The sets Fin(β) and Z+
β . The β-fractional part of the positive real number x with β-

expansion (w, u) ∈ Xβ is defined as the sequence u; it is said to be finite if the sequence
u takes ultimately only zero values.

We denote the set of positive real numbers having a finite β-fractional part by Fin(β),
and the set of positive real numbers which have a zero fractional part in their β-expansion
by Z+

β ⊂ Fin(β), that is,

Fin(β) = {wMβM + · · ·+ w0 + u1β−1 + · · · + uLβ−L;
M ∈ N, (wM · · ·w0u1 . . . uL) ∈ Fβ},

Z+
β = {wMβM + · · ·+ w0; M ∈ N, (wM · · ·w0) ∈ Fβ} ⊂ Fin(β).

A tiling of the line. There is a tiling of the line that can be naturally associated with
the β-numeration: let us place on the nonnegative half line the points of Z+

β ; under the
assumption that β is a Parry number, one gets a tiling by intervals that take a finite
number of lengths. Indeed we define the successor map Succ : Z+

β → Z+
β as the map

which sends to an element x of Z+
β the smallest element of Z+

β strictly larger than x.
When β is a Parry number, the set of values taken by Succ(x) − x on Z+

β is finite and
equal to 1, β − t1, β2 − t1β − t2, . . . , βn−1 − t1βn−2 − · · · − tn−1, if dβ(1) = t1 . . . tn−1tn
is finite (tn -= 0), and 1, β − t1, β2 − t1β − t2, · · · , βm+p−1 − t1βm+p−2 − · · · − tm+p−1 if
dβ(1) = t1 . . . tm(tm+1 . . . tm+p)∞, tm -= tm+p, tm+1 . . . tm+p -= 0, according to [Thu89],
that is, to {T i(β); 0 ≤ i ≤ n− 1}, where n = m + p. We indeed divide Z+

β according to
the state reached in the automaton Mβ when feeding the automaton by the digits of the
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elements of Z+
β read from left to right, that is, the most significant digit first. This tiling

of the line has many interesting features when β is furthermore assumed to be Pisot. Let
us first recall a few definitions issued from the mathematical theory of quasicrystals.

Definition 1 A set X ⊂ Rn is said to be uniformly discrete if there exists a positive
real number r such that for any x ∈ X, the open ball located at x of radius r contains at
most one point of X; a set X ⊂ Rn is said relatively dense it there exists a positive real
number R such that for any x in Rn, the open ball located at x of radius R contains at
least one point of X.

A subset of Rn is a Delaunay set if it is uniformly discrete and relatively dense. A
Delaunay set is a Meyer set if X −X is also a Delaunay set.

We deduce from the above results that if β is a Parry number, then ±Z+
β is a Delaunay

set. More can be said when β is a Pisot number.

Proposition 1 ([BFGK98, VGG04]) When β is a Pisot number, then ±Z+
β is a

Meyer set.

Proof. Since ±Z+
β is relatively dense, we first deduce that (±Z+

β )−(±Z+
β ) is also relatively

dense. Now if S is a finite subset of Z, then {P (β); P ∈ S[X]} is easily seen to be a
discrete set ([Sol97], Lemma 6.6): indeed P (β) is an algebraic integer for any polynomial
P with coefficients in Z; furthermore, since β is assumed to be Pisot, there exists C such
that |P1(β(i))− P2(β(i))| ≤ C for any algebraic conjugate β(i) (distinct from β), and for
P1, P2 ∈ S[X]; since

∏
i(P1−P2)(β(i))(P1−P2)(β) ∈ Z and is non-zero for P1, P2 ∈ S[X]

with P1(β) -= P2(β), we deduce a positive uniform lower bound for P1(β) − P2(β) with
P1(β) -= P2(β), which is sufficient to conclude that {P (β); P ∈ S[X]} is a discrete set.

A Meyer set [Mey92, Mey95] is a mathematical model for quasicrystals [Moo97,
BM00]; indeed a Meyer set is also equivalently defined as a Delaunay set for which there
exists a finite set F such that X − X ⊂ X + F [Mey92, Moo97]; this endows a Meyer
set with a structure of “quasi-lattice”: Meyer sets play indeed the role of the lattices
in the theory of crystalline structure. For some families of β (mainly Pisot quadratic
units), an internal law can even be produced formalizing this quasi-stability under sub-
traction and multiplication [BFGK98]. Beta-numeration reveals itself as a very efficient
and promising tool for the modeling of families of quasicrystals thanks to beta-grids
[BFGK98, BFGK00, VGG04].

Let us note that that Proposition 1 is proved in [VGG04] by exhibiting a cut-and-
project scheme. A cut and project scheme consists of a direct product Rk × H , k ≥ 1,
where H is a locally compact abelian group, and a lattice D in Rk ×H , such that with
respect to the natural projections p0 : Rk ×H → H and p1 : Rk ×H → Rk:
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1. p0(D) is dense in H ;

2. p1 restricted to D is one-to-one onto its image p1(D).

This cut and project scheme is denoted by (Rk ×H, D). A subset Γ of Rk is a model set
if there exists a cut and project scheme (Rk ×H, D) and a relatively compact set (i.e., a
set the closure of which is compact) Ω of H with non-empty interior such that

Γ = {p1(P ); P ∈ D, p0(P ) ∈ Ω}.

The set Γ is called the acceptance window of the cut and project sheme. Meyer sets are
proved to be the subsets of model set of Rk, for some k ≥ 1, that are relatively dense
[Mey92, Mey95, Moo97]. For more details, see for instance [BM00, LW03, Sen95]. We
detail in Section 3.4 connections between such a generation process for quasicrystals and
lattice tilings.

An important issue is to characterize those β for which ±Z+
β is uniformly discrete or

even a Meyer set. Observe that Z+
β is at least always a discrete set. It can easily be seen

that ±Z+
β is uniformly discrete if and only if the β-shift Xβ is specified, that is, if the

strings of zeros in dβ(1) have bounded lengths; let us observe that the set of specified real
numbers β > 1 with a noneventually periodic dβ(1) has Hausdorff dimension 1 according
to [Sch97]; for more details, see for instance [Bla89] and the discussion in [VGG04]. Let
us note that if ±Z+

β is a Meyer set, then β is a Pisot or a Salem number [Mey95].

1.3. Geometric representation

The right one-sided shift Xr
β admits the interval [0, 1] as a natural geometric representa-

tion; namely, one associates with a sequence (ui)i≥1 ∈ Xr
β its real value

∑
i≥1 uiβ−i. We

even have a measure-theoretical isomorphism between Xr
β endowed with the shift, and

[0, 1] endowed with the map Tβ. We want now to give a similar geometric interpretation
of the set X l

β as the central tile (defined as an explicit compact set in the product of
Euclidean spaces) of a self-replicating multiple tiling. We first need to introduce some
algebraic formalism in order to embed Z+

β in a hyperplane spanned by the algebraic con-
jugates of β; the closure of the “projected” points will be defined as the central tile. Let
us note that we shall give a geometric interpretation of this projection process in Section
3, and a geometric representation of the whole two-sided shift Xβ in Section 5.1.

Canonical embedding. We denote the real conjugates of β by β(2), . . . , β(r), and its
complex conjugates by β(r+1), β(r+1), . . . , β(r+s), β(r+s). Let d be the degree of β. One
has d = r + 2s. We set β(1) = β. Let K(k) be equal to R if 1 ≤ k ≤ r, and to C, if k > r.
We furthermore denote by Kβ the representation space

Kβ := Rr−1 × Cs 1 Rd−1.

For x ∈ Q(β) and 1 ≤ i ≤ r, let x(i) be the conjugate of x in K(i). Let us consider now
the following algebraic embeddings:
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• The canonical embedding on Q(β) maps a polynomial to all its conjugates
Φβ : Q(β) → Kβ, P (β) !→ (P (β(2)), . . . , P (β(r)), P (β(r+1)), . . . , P (βr+s)).

• The series limn→+∞Φβ(
∑n

i=0 wiβi) =
∑

i≥0 wiΦβ(βi) are convergent in Kβ for every
(wi)i≥0 ∈ X l

β. The representation map of X l
β is then defined as

ϕβ : X l
β → Kβ , (wi)i≥0 !→ limn→+∞Φβ(

∑n
i=0 wiβi).

Note that the map ϕβ is continuous, hence the image of a closed set in X l
β, which thus

is compact, is again a compact set. In particular, Φβ(Z+
β ) = ϕβ(X l

β).

Definition 2 We define the central tile Tβ as

Tβ = Φβ(Z+
β ) = ϕβ(X

l
β).

There is a natural decomposition of Z+
β according to the values taken by the function

x !→ Succ(x)− x. By definition, a sequence w = (wj)j∈N ∈ X l
β is the label of an infinite

left-sided path in Mβ, that is, there exists an infinite sequence of states (qj)j∈N of the
automaton Mβ such that for all j, wj is the label of an edge from state qj+1 to qj; it
is said to arrive at state i if q0 = i. Let n be the number of states in the minimal
automaton Mβ. For any 1 ≤ i ≤ n, then Succ(x) − x = T i−1

β (1) if and only if the last
state read is the state i, as labeled on the graphs depicted in Figure 3. Hence the central
tile can be naturally divided into n pieces, called basic tiles, as follows for 1 ≤ i ≤ n:

Tβ(i) = Φβ

(
{x ∈ Z+

β ; Succ(x)− x = T i−1(β)}
)

= ϕβ({w ∈ X l
β; w is the label of an infinite left-sided path in Mβ

arriving at state i}).

1.4. The self-replicating multiple tiling

We assume in the remaining of this section that β is a Pisot number. In order to be
able to cover Kβ by translates of the basic tiles according to a Delaunay translation
set, we would like to consider a set the image of which by Φβ is dense in Kβ, without
being too large: a good candidate is the set Z[β]≥0 of nonnegative real numbers in Z[β].
Indeed it is proved in [Aki99] (Proposition 1) that Φβ(Z[β]≥0) is dense in Kβ , the proof
being based on Kronecker’s approximation theorem. According to [Aki02], we introduce
the (countable) set Frac(β) ⊂ Xr

β defined as the set of β-expansions of real numbers in
Z[β] ∩ [0, 1),

Frac(β) = {dβ(x), x ∈ Z[β] ∩ [0, 1)} ⊂ Xr
β.

Let u = (ui)i≥1 ∈ Frac(β). By definition of Frac(β), we have
∑

i≥1 uiβ−i ∈ Q(β); hence
we can apply Φβ to

∑
i≥1 uiβ−i. We define the tile Tu as

Tu : = Φβ({WMβM + · · ·+ W0 + u1β−1 + · · ·+ ulβ−L + · · · ;
(· · · 000WM · · ·W0, u) ∈ Xβ}).
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An immediate consequence is

Tu = Φβ(
∑

i≥1 uiβ−i) + ϕβ({w ∈ X l
β; (w, u) ∈ Xβ}).

Hence the tiles Tu are finite unions of translates of the basic tiles Tβ(i) for 1 ≤ i ≤ n by
considering the minimal automaton Mβ; furthermore, it is proved in [Aki02] that there
are precisely n such tiles up to translation.

Theorem 1 ([Aki02, Aki99]) We assume that β is a Pisot unit. The set

Γβ := Φβ

({∑
i≥1 uiβ−i; u ∈ Frac(β)

})
= Φβ (Z[β] ∩ [0, 1))

is a Delaunay set. The (up to translation finite) set of tiles Tu, for u ∈ Frac(β), covers
Kβ, that is,

Kβ =
⋃

u∈Frac(β)

Tu =
⋃

1≤i≤n

⋃

u = (uj)j∈N ∈ Frac(β),
γ = Φβ(

∑
j≥1 ujβ−j),

u is the label of an infinite
left-sided path in Mβ arriving at state i

Tβ(i) + γ. (4)

For each u, the tile Tu has a non-empty interior; hence it has non-zero measure.

Proof. We follow here mainly [Aki99]. Let us prove that the set of translation vectors Γβ

is uniformly discrete. For that purpose, it is sufficient to prove that for a given norm || ||
in Kβ , and for any constant C > 0, there are only finitely many differences of elements
γ, γ′ in Γβ such that ||Φβ(γ − γ′)(x)|| < C. This latter statement is a direct consequence
of the fact that if x ∈ Z[β], then x is an algebraic integer, and that there exist only
finitely many algebraic integers x in Q(β) such that |x| < 1 and ||Φβ(x)|| < C ′, since β
is assumed to be a Pisot unit.

We now use the fact that Φβ(Z[β]≥0) is dense in Kβ ([Aki99], Proposition 1). We first
deduce that Γβ is relatively dense. We then prove that one has the covering (4). Indeed,
let x ∈ Kβ . There exists a sequence (Pn)n∈N of polynomials in Z[X] with Pn(β) ≥ 0, for
all n, such that (Φβ(Pn(β)))n tends towards x. For all n, Φβ(Pn(β)) ∈ Tu(n) , where u(n) is
the β-fractional part of Pn(β). By uniform discreteness of Γβ, there exist infinitely many
n such that u(n) takes the same value, say, u. Since the tiles are closed, x ∈ Tu. We now
deduce from Baire’s theorem that each tile has a non-empty interior.

IFS structure. Let us prove now that our basic tiles are graph-directed attractors
for a graph-directed self-affine Iterated Function System, according to the formalism of
[MW88, LW96].

We denote the set of states of the minimal automaton Mβ by Sβ := {1, . . . , n}. The
notation a !→i b stands for the fact that there exists an arrow labeled by i (in Aβ) from
a to b (with a, b ∈ Sβ) in the minimal automaton Mβ. We denote by hβ : Kβ → Kβ the
β-multiplication map that multiplies the coordinate of index i by β(i), for 2 ≤ i ≤ d.
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Theorem 2 Let β be a Parry number. The basic tiles of the central tile Tβ are solutions
of the following graph-directed self-affine Iterated Function System:

∀a ∈ Sβ , Tβ(a) =
⋃

b∈Sβ , i, b*→ia

hβ(Tβ(b)) + Φβ(i). (5)

If β is assumed to be a Pisot unit, then the basic tiles have disjoint interiors and each
basic tile is the closure of its interior. Furthermore, there exists an integer k ≥ 1 such
that the covering (4) is almost everywhere k-to-one. This multiple tiling is repetitive:
any finite collection of tiles up to translation reoccurs in the tiling at a bounded distance
from any point of the tiling.

Let us observe that the subdivision matrix of the IFS is the transpose of the adjacency
matrix of Mβ, the entry (a, b) of which is equal to the number of edges i such that a !→i b.
Let us note that this matrix is primitive, that is, it admits a power with only positive
entries; indeed, Mβ is both strongly connected and aperiodic, that is, the lengths of its
cycles are relatively prime since there exists a cycle of length 1 at state 1, as labeled on
Fig. 3.

Proof. The proof of (5) as well as the proof of the fact that the basic tiles are the closure
of their interior is an adaption of [SW02] concerned with Pisot substitution dynamical
systems. The disjointness of the interiors of the basic tiles follows [Hos92, AI01].

Let a ∈ Sβ be given. Let w = (wk)k≥0 ∈ X l
β such that w is the label of an infinite

left-sided path in the automaton Mβ arriving at state a. One has:

Φβ(w) = Φβ

(∑
k≥1 wkβk

)
+ Φβ(w0) = hβ ◦ Φβ

(∑
k≥1 wkβk−1

)
+ Φβ(w0)

= hβ ◦ ϕβ((wk)k≥1) + Φβ(w0).

One deduces (5) by noticing that (wk)k≥1 is the label of an infinite left-sided path in Mβ

arriving at state b with b !→w0 a in Mβ.

We assume that β is a Pisot unit. According to Theorem 1, each basic tile has a
non-empty interior. The same reasoning as above shows that the interiors of the pieces
satisfy the same IFS equation. We deduce from the uniqueness of the solution of the IFS
[MW88] that each basic tile is the closure of its interior.

Take two distinct basic tiles, say, Tβ(c) and Tβ(c), with c -= d. We denote the state 1
by a as labeled on Fig. 3. From the shape of Mβ, one deduces that c !→0 a, and d !→0 a.
Hence both basic tiles Tβ(c) and Tβ(d) occur in (5) applied to the letter a, with the same
translation term which is equal to 0 = Φβ(0). Let µKβ

stand for the Lebesgue measure on
Kβ : for every Borel set B of Kβ , µKβ

(hβ(B)) = 1
βµKβ

(B), following for instance [Sie03].
One has, according to (5)

µKβ
(Tβ(a)) ≤

∑
b,b*→ia

µKβ
(hβ(Tβ(b)))

≤ 1/β
∑

b,b*→ia
µKβ

(Tβ(b)).
(6)
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Let m = (µKβ
(Tβ(a)))a∈Sβ

be the vector with nonnegative entries in Rn of measures in
Kβ of the basic tiles; we know from Theorem 1 that m is a non-zero vector. According
to Perron-Frobenius theorem, the previous inequality implies that m is a left eigenvector
of the adjacency matrix of Mβ which is primitive. We thus have equality in (6) which
implies that the union in (5) applied to the letter a is a disjoint union up to sets of zero
measure. We thus have proved that the n basic tiles have disjoint interiors.

Obviously it follows from Lemma 1 below that there exists an integer k such that this
covering is almost everywhere k-to-one.

Lemma 1 Let (Ωi)i∈I be a collection of open sets in Rk such that i) ∪i∈IΩi = Rk,
ii) for any compact set K, Ik := {i ∈ I; Ωi ∩ K -= ∅} is finite. For x ∈ Rk, let
f(x) := Card{i ∈ I; x ∈ Ωi}. Let Ω = Rk \ ∪i∈Iδ(ωi), where δ(Ωi) stands for the
boundary of Ωi. Then f is locally constant on Ω.

Let us prove the repetitivity of the covering (4). For any positive real number r, we
define the r-patch centered at the point γ0 ∈ Γβ as

Pγ0(r) := {(γ, i) ∈ Γβ × {1, · · · , n}; γ ∈ B(γ0, r), Tβ(i) + γ occurs in (4)},

where B(γ0, r) stands for the closed ball in Kβ of a radius r centered at γ0. The r-local
configuration centered at the point γ0 ∈ Γβ is then defined as

LCγ0(r) := {(γ − γ0, i); (γ, i) ∈ Pγ0(r)}.

Given a local configuration LCγ0(r), we want to prove the existence of a positive number R
such that for any γ ∈ Γβ, there exists γ1 ∈ B(γ, R)∩Γβ such that LCγ1(r) = LCγ0(r). We
first notice that if (γ, i) ∈ Γβ×{1, · · · , n}, then Tβ(i)+γ occurs in (4) if and only if there
exists (x, i) ∈ (Z[β] ∩ [0, 1)) such that γ = Φβ(x) and x ∈ [0, T i−1(β)). Hence for a given
γ1 = Φβ(x1) ∈ Γβ and (x, i) ∈ (Z[β]∩[0, 1))×{0, 1, · · ·n}, we have Φβ(x+x1, i) ∈ LCγ1(r)
if and only if Φβ(x) ∈ B(0, r) and x+x1 ∈ [0, T i−1

β (1)). In other words, LCγ1(r) = LCγ0(r)

if and only if x1 belongs to the interval Iγ0 := ∩(x,i)∈LCγ0 (r) (−x+[0, T i−1
β (1))). According

to [Sla50], there exists a finite set K ⊂ N+×Z of return times to Iγ0 , such that for all x ∈
[0, 1), there exists (k, () ∈ K such that x+ k

β +( ∈ Iγ0 . Let R = max(k,#)∈K ||Φβ(k/β+()||.
Let γ = Φβ(x) ∈ Γβ where x ∈ Z[β] ∩ [0, 1); there exists (k, () ∈ K such that x1 :=
x + k

β + ( ∈ Iγ0 . Let γ1 := Φβ(x1). One has γ1 ∈ B(γ, R) and LCγ1(r) = LCγ0(r).

It only remains to prove Lemma 1.

Proof of Lemma 1. According to ii), one deduces that Ω is an open set in Rk. By i),
for all x one has f(x) ≥ 1, and by ii), f takes bounded values.

For every fixed ( ∈ N, the set J# := {x ∈ Rk; f(x) ≥ (} is a closed set of Rk. Indeed,
let (xn)n∈N be a convergent sequence of elements in J#; we denote its limit by x. There

exist (i(n)
1 )n∈N, . . . , (i(n)

# )n∈N such that for all n, xn ∈ Ωi(n)
j

, for 1 ≤ j ≤ (. By using ii),
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there exist i1, . . . , i# such that for infinitely many n, xn ∈ Ωij , for 1 ≤ j ≤ (, hence
x ∈ ∩1≤j≤#Ωij and f(x) ≥ (.

Let us introduce now for x ∈ Rk, g(x) := Card{i ∈ I; x ∈ Ωi}. Let us note that f
and g do coincide over Ω. We similarly prove that any fixed ( ∈ N, {x ∈ Rk; g(x) ≥ (} is
an open set of Rk.

Now let x ∈ Ω; let r > 0 such that the open ball B(x, r) of center x and radius
r is included in Ω; such a ball exists since Ω is an open set. For all (, B# := {y ∈
B(x, r); f(y) ≥ (} is both an open and a closed set of B(x, r), from what preceeds.
Hence it is either equal to the empty set or to B(x, r), by connectedness of B(x, r). We
have

. . . B# ⊂ B#−1 ⊂ · · · ⊂ B1 ⊂ B0 = B(x, r).

Now from ii), one cannot get for all (, B# = B(x, r). Let (0 = max{(; B# = B(x, r)}. For
all y ∈ B(x, r), one has f(y) ≥ (0, but B#0+1 = ∅, hence f(y) < (0 + 1; this thus implies
that f(y) = (0, for all y ∈ B(x, r).

1.5. An example: The Tribonacci number.

Let β be the Tribonacci number, that is, the Pisot root of the polynomial X3−X2−X−1.
One has dβ(1) = 111 (β is a simple Parry number) and d∗

β(1) = (110)∞. Hence Xβ is the
set of sequences in {0, 1}Z in which there are no three consecutive 1’s. One has Kβ = C;
the canonical embedding is reduced to the Q-isomorphism τα which maps β on α, where
α is one of the complex roots of X3 −X2 −X − 1. The set Tβ which satisfies

Tβ = {
∑

i≥0

wiα
i; ∀i, wi ∈ {0, 1}, wiwi+1wi+2 = 0}

is a compact subset of C called the Rauzy fractal [Rau82]. It is shown in Fig. 4 with its
division into the three basic tiles T (i), i = 1, 2, 3, indicated by different shades. They
correspond respectively to the sequences (wi)i≥0 such that either w0 = 0, or w0w1 = 10,
or w0w1 = 11; this is easily seen thanks to the automaton Mβ shown in Fig. 4. One has






Tβ(1) = α(Tβ(1) ∪ Tβ(2) ∪ Tβ(3))
Tβ(2) = α(Tβ(1)) + 1
Tβ(3) = α(Tβ(2)) + 1.

One interesting property in this numeration is that the β-fractional parts of the elements
of Z[β]≥0 are all finite [FS92], as detailed in Section 1.6: this implies that the self-
replicating multiple tiling is a tiling.

If U is a finite word which is a β-fractional part, and which begins with the letter
0, then TU = T = Tβ(1) ∪ Tβ(2) ∪ Tβ(3); if U begins with the factor 10, then TU =
Tβ(1) ∪ Tβ(2); if U begins with the factor 11, then TU = Tβ(1). The corresponding self-
replicating tiling is shown in Fig. 5: the different shades indicate its division into tiles
Tu (right figure), whereas the division into basic tiles Tβ(i) is depicted in the left figure.
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Figure 4: Tribonacci number: the minimal automaton Mβ, the central tile divided into
its basic tiles; the self-replicating multiple tiling.

Figure 5: The Tribonacci self-replicating multiple tiling: its division into basic tiles Tβ(i)
(left) and into tiles TU (right).

1.6. Finiteness conditions

Let us recall that the tiles in the covering (4) are labeled by the fractional parts of
elements in Z[β]≥0. When the elements of Z[β]≥0 all have a finite fractional part, as
in the Tribonacci case, then much more can be said. This finiteness condition is called
the (F) property, finiteness property, and has been introduced by C. Frougny and B.
Solomyak [FS92]: an algebraic integer β > 1 is said to satisfy the (F) property if

Fin(β) = Z[1/β]≥0. (F)

Property (F) implies that β is both a Pisot number and a simple Parry number; hence
not all Pisot numbers have property (F). A sufficient condition for β to satisfy the (F)
property is the following: if β > 1 is the dominant root (that is, if it has the maximal
modulus along all the roots) of the polynomial Xd − t1Xd−1 − · · · − td, with ti ∈ N,
t1 ≥ t2 ≥ · · · ≥ td ≥ 1, then β satisfies (F) [FS92]; the same conclusion holds if more
generally t1 > t2 + · · ·+ td [Hol96]. A complete characterization of some families of Pisot
numbers with property (F) exists: the quadratic case is studied in [FS92], the case of
cubic units has been treated in [Aki00].

The so-called (W) condition or weak finiteness condition has first been introduced by
M. Hollander [Hol96]. He has proved that the (W) property implies the pure discreteness
of the spectrum of the beta-shift. The (W) condition can be stated for Pisot number β
as follows:

∀z ∈ Z[β−1] ∩ [0, 1), ∀ε > 0, ∃x, y ∈ Fin(β) such that z = x− y and y < ε. (W)
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Note that if β has property (W), then it must be a Pisot or a Salem number [ARS04]. All
the quadratic units [FS92] and all the cubic units [ARS04] are known to satisfy (W). The
(W) property has been proved in [Aki02] to be equivalent with the fact that the multiple
tiling (4) is in fact a tiling. Hence the Pisot conjecture is equivalenty reformulated as:

Conjecture ([Aki02], [Sid03b]) The (W) condition holds for every Pisot number β.

An algorithm which can tell whether a given Pisot β has property (F) or (W) is
described in [ARS04]. It is also proved in [ARS04] that (W) holds for all the cubic units
and, in higher degree, for each dominant root of a polynomial Xd − t1Xd−1 − · · · − td
with ti ∈ N, t1 > |t2| + · · ·+ |td|, and (t1, t2) -= (2,−1). See also [BK05].

The (F) and (W) properties can be reformulated in topological terms: (F) is equivalent
with the fact that the origin is an inner exclusive point of the central tile [Aki99, Aki02];
an inner point in a tile Tu is said exclusive if it is contained in no other tile Tv with u -= v;
(W) is equivalent to the fact that there exists an exclusive inner point in the central tile
[Aki02].

More generally, the study of the topological properties of the central tile is an im-
portant issue of the field. The connectedness of the central tile in the Pisot unit case
is studied in [AN04b]: it is proved that when β is a Pisot number of degree 3, then
each central tile is arcwise connected, but examples of Pisot numbers of degree 4 with
a disconnected central tile have been produced. In particular it is proved in [AN04a]
that each tile corresponding to a Pisot unit is arcwise connected if dβ(1) is finite and
terminates with 1. A complete description of the β-expansion of 1 is also given for cubic
and quartic Pisot units; for the general case of cubic Pisot numbers, see [Bas02].

These results are inspired by techniques used for some particular generalized radix
representations, the so-called Canonical Number System case. Let us quote the recent
attempt through the notion of Radix Number Systems [ABB+05] to embrace both ap-
proaches, that is, beta-numeration and Canonical Number Systems: in both cases tiling
properties can be ensured by similar finiteness properties, that can be expressed in terms
of the orbit of a certain dynamical system.

2. Substitution numeration systems and Rauzy fractals

The first example of a central tile associated with a substitution is the Tribonacci tile
(also known as Rauzy fractal), which is due to Rauzy [Rau82]. (Let us note that the
central tile is usually called Rauzy fractal when associated with a substitution, but for
the sake of consistency, we call it here again central tile, and introduce the term Rauzy
fractal in Section 3.1 for its geometric representation.) The associated tiling is a lattice
tiling having some deep dynamical interpretation. We discuss it in Section 3. One
natural question is to figure out what structure can play the role of Z[β]≥0. We thus
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introduce for that purpose the so-called Dumont-Thomas numeration system based on
the substitution, that allows one to expand real numbers: the only difference is that the
digits will not only belong to Z but to some finite subset of Z[β].

We recall in Section 2.1 basic definitions on substitutive dynamical systems; we work
out the notion of desubstitution in Section 2.2; a family of substitutions, the so-called
β-substitutions, which allows us to recover the beta-numeration developed in Section 1,
is described in Section 2.3, in order to introduce in Section 2.4 the Dumont-Thomas
numeration; we then consider the self-replicating multiple tiling in Section 2.5. Let us
note that we need an extra combinatorial assumption, the so-called strong coincidence
condition, so that the basic tiles have distinct interiors. This property always holds for
all β-substitutions.

The main assumption made in this section is the following: the substitution σ is
supposed to be primitive and to have a Perron-Frobenius dominant eigenvalue β which
is a Pisot unit; the characteristic polynomial of the substitution may thus be reducible.

2.1. Substitutions

A substitution σ is an endomorphism of the free monoid A∗ such that the image of
any letter of A never equals the empty word ε, and for at least one letter a, we have
|σn(a)|→ +∞. A substitution naturally extends to the set of bi-infinite words AZ:

σ(. . . w−2w−1.w0w1 . . . ) = . . .σ(w−2)σ(w−1).σ(w0)σ(w1) . . .

The two assumptions above guarantee the existence of bi-infinite words generated by
iterating the substitution. To be more precise, a periodic point of σ is a bi-infinite word
u = (ui)i∈Z ∈ AZ that satifies σn(u) = u for some n > 0; if σ(u) = u, then u is a fixed
point of σ. Every substitution has at least one periodic point [Que87]. The substitution
is said shift-periodic when there exists a bi-infinite word that is periodic for both the
shift map S and the substitution σ.

A substitution σ is called primitive if there exists an integer n (independent of the
letters) such that σn(a) contains at least one occurrence of the letter b for every pair
(a, b) ∈ A2. In that case, if u is a periodic point for σ, then the closure in AZ of the
shift orbit of u does not depend on u. We thus denote it by Xσ. The symbolic dynamical
system generated by σ is defined as (Xσ, S). The system (Xσ, S) is minimal (every non-
empty closed shift-invariant subset equals the whole set) and uniquely ergodic (there
exists a unique shift-invariant probability measure µXσ on Xσ [Que87]); it is made of all
the bi-infinite words, the set of factors of which coincides with the set of factors Fσ of u
(which does not depend on the choice of u by primitivity).

Incidence matrix. Let l : A∗ → Nn be the natural homomorphism obtained by abelian-
ization of the free monoid. In the sequel, we assume that A = {1, . . . , n}. If |W |a stands
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for the number of occurrences of the letter a ∈ A in a finite word W , then we have
l(W ) = (|W |k)k=1,...,n ∈ Nn. A abelianization linear map is canonically associated with
each substitution σ on A. Its matrix Mσ = (mi,j)1≤i,j≤n (called incidence matrix of σ) is
defined by mi,j = |σ(j)|i, so that we have l(σ(W )) = Mσl(W ) for every W ∈ A∗. If σ is
primitive, the Perron-Frobenius theorem says that the incidence matrix Mσ has a simple
real positive dominant eigenvalue β.

A substitution σ is called unimodular if det Mσ = ±1. A substitution σ is said to
be Pisot if its incidence matrix Mσ has a dominant eigenvalue β such that for every
other eigenvalue λ, one gets: 0 < λ < 1 < β. The characteristic polynomial of the
incidence matrix of such a substitution is irreducible over Q. We deduce [Fog02] that
the dominant eigenvalue β is a Pisot number, Pisot substitutions are primitive, and that
Pisot substitutions are not shift-periodic. For this last point, it is easy to recognize
whether a substitution is not shift-periodic: indeed, if σ is a primitive substitution the
matrix of which has a non-zero eigenvalue of modulus less that 1, then no fixed point of
σ is shift-periodic, according to [HZ98]. Hence, if a substitution is a Pisot substitution
then its characteristic polynomial is irreducible, whereas when the dominant eigenvalue
of a primitive substitution is assumed to be a Pisot number, it may be reducible. In all
that follows, by the reducible (resp. irreducible) case, we mean that the characteristic
polynomial of the incidence matrix of the substitution is reducible (resp. irreducible).
We do not need any irreducibility assumption in all this section. This assumption will
be required during Section 3 and in Section 4.

2.2. Combinatorial numeration system: desubstitution

We need to be able to desubstitute, that is, to define a notion of inverse map for the
action of the substitution σ on Xσ. For that purpose, we decompose any w ∈ Xσ as a
combinatorial power series. Hence a combinatorial expansion defined on Xσ plays the
role of an exotic numeration system acting on the bi-infinite words w.

Desubstitution: a combinatorial division by σ. We follow here the approach and
notation of [CS01a, CS01b]. Every bi-infinite word w ∈ Xσ has a unique decomposition
w = Sν(σ(v)), with v ∈ Xσ and 0 ≤ ν < |σ(v0)|, where v0 is the 0-th coordinate of v
[Mos92]. This means that any word of the dynamical system can be uniquely written in
the following form for some . . . v−n . . . v−1.v0v1 . . . vn · · · ∈ Xσ:

w = . . . | . . .︸︷︷︸
σ(v−1)

| w−ν . . . w−1.w0 . . . wν′︸ ︷︷ ︸
σ(v0)

| . . .︸︷︷︸
σ(v1)

| . . .︸︷︷︸
σ(v2)

| . . .

Here, the doubly infinite word v can be considered as the “quotient” of w after the
“division” by σ. The “rest” of this division consists in the the triple (p, w0, s), where
p = w−ν . . . w−1 (prefix) and s = w1 . . . wν′ (suffix). The word w is completely determined
by the quotient v and the rest (p, w0, s).
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(1, 2, ε)

(ε, 1, 2)

(ε, 1, ε)

(1, 3, ε)

(ε, 1, 3)
0 1 2

Figure 6: Prefix-suffix automaton for the Tribonacci substitution.

Let P be the finite set of all rests or digits associated with σ:

P = {(p, a, s) ∈ A∗ ×A×A∗; ∃ b ∈ A, σ(b) = pas} .

The desubstitution map θ : Xσ → Xσ maps a bi-infinite word w to its quotient v. The
decomposition of σ(v0) of the form pw0s is denoted as γ : Xσ → P (mapping w to
(p, w0, s)).

Prefix-suffix expansion. We denote by X l
P the set of infinite left-sided sequences with

values in P (pi, ai, si)i≥0 that satisfy σ(ai+1) = piaisi, for all i ≥ 0. The prefix-suffix
expansion is the map EP : Xσ → X l

P which maps a word w ∈ Xσ to the sequence
(γ ( θiw) )i≥0, that is, the orbits of w through the desubstitution map according to the
partition defined by γ.

Let w ∈ Xσ and EP(w) = (pi, ai, si)i≥0 be its prefix-suffix expansion. If there are
infinitely many prefixes and suffixes that are non-empty, then w and EP(w) satisfy:

w = lim
n→+∞

σn(pn) . . .σ(p1)p0.a0s0σ(s1) . . .σn(sn).

Hence, the prefix-suffix expansion can be considered as an expansion of the points of
Xσ in a “combinatorial” power series. The triples (pi, ai, si) play the role of digits in
this combinatorial expansion. Let us observe that any element in X l

P is the expansion
of a bi-infinite word in Xσ, since the map EP is continuous and onto XP , according to
[CS01a]. Furthermore a countable number of bi-infinite words is not characterized by
their prefix-suffix expansions: EP is one-to-one except on the orbit of periodic points of
σ, where it is n-to-one with n > 1 (see the proofs in [CS01a, HZ01]). Observe that the
prefix-suffix expansion of periodic points for σ has only empty prefixes.

Prefix-suffix automaton. Any prefix-suffix expansion is the label of an infinite path
in the so-called prefix-suffix automaton Mσ of σ which is defined as follows. Its set of
vertices is the alphabet A and its edges satisfy the following: there exists an edge labeled
by (p, a, s) ∈ P from b toward a if pas = σ(b); we set b !→(p,a,s) a. The automaton for the
Tribonacci substitution 1 !→ 12, 2 !→ 13, 3 !→ 1 is given in Figure 6.

Let us note that the adjacency matrix of the prefix-suffix automaton is the transpose
of the incidence matrix of the substitution.

A subshift of finite type. The set X l
P consists of labels of infinite left-sided paths

(pi, ai, si)i≥0 in the prefix-suffix automaton. Similarly as in Section 1, let Xr
P be the
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set of labels of infinite right-sided paths in the prefix-suffix automaton; we denote its
elements as sequences (qi, bi, ri)i≥1 ∈ PN+

. Lastly we define XP as the set of labels
of two-sided paths in the prefix-suffix automaton; we denote its elements as sequences
((pi, ai, si)i≥0, (qi, bi, ri)i≥1) ∈ PZ. These sets are the support of a subshift of finite type.
We denote by FP the set of factors of XP .

2.3. A specific case: β-substitution

Let β > 1 be a Parry number as defined in Section 1. As introduced for instance in
[Thu89] and in [Fab95], one can associate in a natural way with (Xβ, S) a substitution
σβ over the alphabet {1, · · · , n}, called β-substitution, where n stands for the number of
states of the automaton Mβ (see Fig. 3): j is the k-th letter occurring in σβ(i) (that is,
σβ(i) = pjs, where p, s ∈ {1, · · · , n}∗ and |p| = k − 1) if and only if there is an arrow in
Mβ from the state i to the state j labeled by k−1. One easily checks that this definition
is consistent.

An explicit formula for σβ can be computed by considering the two different cases, β
simple and β non-simple.

• Assume dβ(1) = t1 . . . tn−1tn is finite, with tn -= 0. Thus d∗
β(1) = (t1 . . . tn−1(tn −

1))∞. One defines σβ over the alphabet {1, 2, . . . , n} as shown in (7).

• Assume dβ(1) is infinite. Then it cannot be purely periodic (according to Remark
7.2.5 [Fro02]). Hence dβ(1) = d∗

β(1) = t1 . . . tm(tm+1 . . . tm+p)∞, with m ≥ 1, tm -=
tm+p and tm+1 . . . tm+p -= 0p. One defines σβ over the alphabet {1, 2, . . . , m + p} as
shown in (7).

σβ :






1 !→ 1t12
2 !→ 1t23
...

...
n− 1 !→ 1tn−1n
n !→ 1tn .

σβ :






1 !→ 1t12
2 !→ 1t23
...

...
m + p− 1 !→ 1tm+p−1(m + p)
m + p !→ 1tm+p(m + 1).

Substitution associated with Substitution associated with
a simple Parry number a non-simple Parry number

(7)

If the number of letters n equals the degree of β, then σβ is a Pisot substitution.
Otherwise the characteristic polynomial of the incidence matrix of σβ may be reducible.
In the latter case we cannot apply directly the substitutive formalism to the substitution
σβ . The dominant eigenvalue of σβ is anyway a Pisot number but other eigenvalues ≥ 1
may occur, as in the smallest Pisot case: let β be the Pisot root of X3 −X − 1; one has
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dβ(1) = 10001 (β is a simple Parry number) and d∗
β(1) = (10000)∞; we have σβ : 1 !→ 12,

2 !→ 3, 3 !→ 4, 4 !→ 5, 5 !→ 1; the characteristic polynomial of its incidence matrix is
(X3−X−1)(X2−X +1), hence σβ is not a Pisot substitution. Furthermore, some extra
roots may be outside the unit circle: consider for instance, as quoted in [Boy89, Boy96],
the dominant root β of P (X) = X7−2X5−2X4−X−1; then the complementary factor
Q(X) (such that P (X)Q(X) is the characteristic polynomial of the incidence matrix of
σβ) is non-reciprocal, so that there exist roots outside the unit circle.

The prefix-suffix automaton of the substitution σβ is strongly connected with the
finite automaton Mβ recognizing the set Fβ of finite factors of the β-shift Xβ (compare
for instance Fig. 3 and 4). Let us first note that the proper prefixes of the images of
letters contain only the letter 1; it is thus natural to code a proper prefix by its length:
if (p, a, s) ∈ P, then p = 1|p|, where the notation 1|p| stands for the fact that p consists
of exactly |p| occurrences of the letter 1. Hence it is easily seen that one recovers the
automaton Mβ by replacing in the prefix-suffix automaton the set of labeled edges

P = {(p, a, s) ∈ A∗ ×A×A∗; ∃ b ∈ A, σ(b) = pas}

by the following set of labeled edges

{|p|; ∃b ∈ A : σ(b) = pas with (p, a, s) ∈ A∗ ×A×A∗} .

Hence, the following relation holds between the set Fβ of finite factors of the β-shift
Xβ and the set FP of factors of XP , that is, the set of finite words recognized by the
prefix-suffix automaton:

wM . . . w0 ∈ Fβ ⇐⇒ ∃ a0 . . . aM ∈ A, s0 . . . sM ∈ A' (1wM , aM , sM) . . . (1w0 , a0, s0) ∈ FP .
(8)

From this relation, one can interpret any point wMβM + · · · + w0 in Z+
β as the real

value of the combinatorial expansion (1wM , aM , sM) . . . (1w0, a0, s0) associated with the
β-substitution. We formalize this interpretation in the next section.

2.4. Dumont-Thomas numeration

The Dumont-Thomas numeration system [DT89, DT93, Rau90] generalizes the approach
given above to any primitive substitution, the dominant eigenvalue of which is a Pisot
number.

Let us first define the Dumont-Thomas numeration on N. Let v be a one-sided fixed
point of σ; we denote its first letter by v0. This numeration depends on this particular
choice of a fixed point, and more precisely on the letter v0. One checks ([DT89] Theorem
1.5) that every finite prefix of v can be uniquely expanded as

σn(pn)σ
n−1(pn−1) · · ·p0,
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where pn -= ε, σ(v0) = pnansn, and (pn, an, sn) · · · (p0, a0, s0) ∈ FP is the sequence of
labels of a path in the prefix-suffix automaton Mσ starting from the state v0; one has
for all i, σ(pi) = pi−1ai−1si−1, that is,

v0 !→(an,pn,sn) an !→(pn−1an−1sn−1) an−1 · · · !→(p0,a0,s0) a0.

Conversely, any path in Mσ starting from v0 generates a finite prefix of v. This nu-
meration works a priori on finite words but we can expand the nonnegative natural
integer N as N = |σn(pn)| + · · · + |p0|, where N stands for the length of the prefix
σn(pn)σn−1(pn−1) · · ·p0 of v. The expansions of prefixes of fixed points of σ play here the
role of Z+

β in the beta-numeration case.

Let us now expand real numbers. We denote by β the dominant eigenvalue of the
incidence matrix Mσ of the primitive substitution σ. We assume that β is a Pisot
number. We want to expand real numbers in base β, with digits which may not belong
to Z anymore, but do belong to a finite subset of Q(β). Let FP stand for the set
of finite words recognized by the prefix-suffix automaton Mσ. We want to define a
map δσ : A∗ → Q(β) such that one can associate with a combinatorial expansion
(pn, an, sn) . . . (p0, a0, a0) ∈ FP the real value δσ(pn)βn + · · · + δσ(p0) ∈ Q[β]. A natural
and suitable choice is given by

δσ : A∗ → Q(β), δσ(p) !→< l(p),vβ >, (9)

where vβ is a (simple) dominant eigenvector for the transpose of the matrix Mσ, i.e.,
vβ is a left eigenvector associated with β. To recover the β-expansion in case of a β-
substitution, vβ has to be normalized so that its first coordinate is equal to 1: the
coordinates of vβ are then equal to T i−1

β (1), for 1 ≤ i ≤ n, where n denotes the number
of states in the automaton Mβ. In the substitutive case, we just normalize vβ so that
its coordinates belong to Q(β). The map δσ sends the letter a to the corresponding
coordinate of the left eigenvector vβ. We now get the following representation:

Theorem 3 ([DT89]) Let σ be a primitive substitution on the alphabet A, the dominant
eigenvalue of which is a Pisot number. Let us fix a ∈ A. Every real number x ∈ [0, δσ(a))
can be uniquely expanded as

x =
∑

i≥1

δσ(qi)β
−i,

where the sequence of digits (qi)i≥1 is the projection on the first component of an element
(qi, bi, ri)i≥1 in Xr

P with σ(a) = q1b1r1, and with the extra condition that there exist
infinitely non-empty suffixes in the sequence (ri)i≥1. We call this expansion the (σ, a)-
expansion of x and denote it by d(σ,a)(x).

This theorem provides an analogue of the Parry condition (2), the proof being also based
on the greedy algorithm. The underlying dynamics depends of each interval [0, δσ(a)),
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and is defined as follows:

Tσ :
⋃

a∈A[0, δσ(a))× {a} →
⋃

a∈A[0, δσ(a))× {a}

(x, b) !→ (βx− δσ(p), c) with

{
σ(b) = pcs
βx− δσ(p) ∈ [0, δσ(c)).

Theorem 3 states that this map is well defined, meaning that for every (x, b) there exists
a unique (y, c) satisfying the above conditions.

Let us note that one may obtain a different type of numeration for each letter. Nev-
ertheless, one easily checks that for a β-substitution all the associated numerations are
consistent with the β-numeration: in particular vβ is normalized, so that δσ(1) = 1, and
the numeration associated with the letter 1 is exactly the β-numeration.

The Dumont-Thomas numeration shares many properties with the β-numeration. In
particular, when β is a Pisot number, then for every a ∈ A, every element of Q(β) ∩
[0, δσ(a)) admits an eventually periodic expansion. The proof can be conducted exactly
in the same way as in [Sch80]. See also [RS05] for a similar result in the framework of
Pisot abstract numeration systems.

2.5. The self-replicating substitution multiple tiling

We now have gathered all the required tools to be able to define the central tile as the
image under a suitable representation map of the one-dimensional prefix-suffix expan-
sions.

Let σ be a primitive unimodular substitution, the dominant eigenvalue β of which
is a Pisot unit. The cardinality of the alphabet on which σ is defined is denoted by n
whereas d stands for the algebraic degree of β. We use the same notation as in Section
1.5 concerning the canonical embedding and the representation space denoted respectively
by Φσ and Kσ (one has Kσ 1 Rd−1). We define the representation map as

ϕσ : X l
P → Kβ, (pi, ai, si)i≥0 !→ lim

n→+∞
Φσ

(
n∑

i≥0

δσ(pi)β
i

)

.

We define similarly as in the beta-numeration case:

Z+
σ = {δσ(pM)βM + · · · + δσ(p0); M ∈ N, (pM , aM , sM) . . . (p0, a0, s0) ∈ FP}

Definition 3 We define the central tile Tσ as

Tσ = Φσ(Z+
σ ) = ϕσ(X

l
P).
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Recall that n stands for the number of letters in the alphabet A on which σ is defined.
The central tile is here again divided into n pieces, called basic tiles, as follows: for a ∈ A,

Tσ(a) = ϕσ({(pi, ai, si)i≥0 ∈ X l
P ; (pi, ai, si)i≥0 is the label of an infinite

left-sided path in Mσ arriving at state a0 = a}).

To fit with the formalism and the proofs developed for the β-numeration, we intend, for
each a ∈ A, to introduce a set Frac(σ, a) defined as the set of fractional (σ, a)-expansions
of a suitable set (analogous to Frac(β)) the image of which under Φσ has to be relatively
dense and uniformly discrete. We thus introduce the following countable sets:

∀a ∈ A, Frac(σ, a) = d(σ,a) (Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(a))) .

Frac(σ) =
⋃

a∈A

Frac(σ, a).

In Section 4 we shall see a motivation for the introduction of this notion.

Notice that for a β-substitution, we have Z[δσ(1), · · · , δσ(n)] = Z[β], and Frac(σ) =
Frac(β) as introduced in Section 1. Indeed, one checks that the coordinates δσ(i) of the
left eigenvector vβ satisfy δσ(i) = T i−1(β) ∈ Z[β], for 1 ≤ i ≤ n.

Let u = (qi, bi, ri)i≥1 ∈ Frac(σ). Then
∑

i≥1 δσ(qi)(β−i) ∈ Q(β). We define the tile Tu

as
Tu = Φσ(

∑
i≥1 δσ(qi)β−i) + ϕσ({(pi, ai, si) ∈ X l

P ;
((pi, ai, ri)i≥0, (qi, bi, ri)i≥1) ∈ XP}.

Coincidence. In order to get basic tiles with disjoint interiors we need here an extra
condition, called the strong coincidence condition, that is satisfied by β-substitutions in
particular. The condition of coincidence was introduced in [Dek78] for substitutions of
constant length. It was generalized to non-constant length substitutions by Host in un-
published manuscripts. A formal and precise definition appears in [AI01]: a substitution
is said to satisfy the strong coincidence condition if for any pair of letters (i, j), there exist
two integers k, n such that σn(i) and σn(i) have the same k-th letter, and the prefixes of
length k− 1 of σn(i) and σn(j) have the same image under the abelianization map. It is
conjectured that every Pisot substitution satisfies the strong coincidence condition; the
conjecture holds for two-letter substitutions [BD02].

The following theorem can be proved similarly as Theorem 1 and 2, thanks to the
appropriate choice of Frac(σ).

Theorem 4 ([SW02, IR06]) We assume that σ is a primitive substitution, the domi-
nant eigenvalue β of which is a Pisot unit. Then the set

Γσ := Φσ

(∑
i≥1 δσ(pi)β−1; (qi, bi, ri)i≥1 ∈ Frac(σ)

)

= Φσ (∪a∈AZ[δσ(1), · · · , δσ(n)] ∩ [0, δσ(a))).
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is a Delaunay set. The (up to translation finite) set of tiles Tu, for u ∈ Frac(σ), covers
Kσ:

Kσ =
⋃

u∈Frac(σ)

Tu =
⋃

a∈A

⋃

u = (qj , bj, rj)j≥1 ∈ Frac(σ, a),
γ = Φσ(

∑
j≥1 δσ(qj)β−j),

Tσ(a) + γ. (10)

For each u, the tile Tu has a non-empty interior, hence it has non-zero measure. The
basic tiles of the central tile Tσ are solutions of the following graph-directed self-affine
Iterated Function System:

∀a ∈ A, Tσ(a) =
⋃

b ∈ A,
b !→(p,a,s) a

hβ(Tσ(b)) + Φσ(δσ(p)).

Each basic tile is the closure of its interior. We assume furthermore that σ satisfies the
strong coincidence condition. Then the basic tiles have disjoint interiors. Furthermore,
there exists an integer k ≥ 1 such that the covering (10) is almost everywhere k-to-one.
This multiple tiling is repetitive.

It can be proved that it is dense for Φσ (Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(a))) in Kσ similarly as
for Ψσ(Z[β]≥0) ([Aki99], Proposition 1). In Section 3.1 we give an elementary proof of this
result (Lemma 2) by introducing a suitable basis of the representation space Kσ 1 Rd−1.

3. The lattice multiple tiling: a dynamical point of view

In this section, we give a geometric and dynamical interpretation of the central tile of
a substitution; for that purpose, we introduce a lattice multiple tiling that provides a
geometric representation of the substitutive dynamical system; the shift is thus proved
to be measure-theoretically isomorphic to an exchange of domains acting on the basic
tiles.

3.1. Geometric construction of the Rauzy fractal

In all that follows σ is a primitive substitution the dominant eigenvalue of which is a unit
Pisot number on the alphabet A = {1, · · · , n}. Let u be a two-sided periodic point of
σ. This bi-infinite word u is embedded as a broken line in Rn by replacing each letter in
the periodic point by the corresponding vector in the canonical basis (e1, · · · , en) in Rn.
More precisely, the broken line is defined as follows (see Fig. 7):

{l(u0 · · ·uN−1); N ∈ N}. (11)

Notice that the following notations where introduced in Section 2.1.
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Algebraic normalized eigenbasis. We need now to introduce a suitable decompo-
sition of the representation space Kσ with respect to eigenspaces associated with the
substitution σ and its (simple) dominant eigenvalue β. We denote by d the algebraic de-
gree of β; we recall that n stands for the cardinality of the alphabet on which σ is defined;
one has d ≤ n, the characteristic polynomial of Mσ may be reducible. Let vβ ∈ Q(β)n be
an expanding left eigenvector of the incidence matrix Mσ. Let uβ ∈ Q(β)d be the unique
right eigenvector of Mσ associated with β, normalized so that 〈uβ,vβ〉 = 1, where 〈 〉
stands for the usual Hermitian scalar product. An eigenvector uβ(k) for each eigenvalue
β(k) (1 ≤ k ≤ d) is obtained by replacing β by β(k) in uβ (we set β(1) = β). Similarly, a
left eigenvector vβ(k) for each eigenvalue β(k) (1 ≤ k ≤ d) is obtained by replacing β by
β(k) in vβ .

Let us recall that β(2), . . . , β(r) are the real conjugates of β, and that β(r+1), β(r+1), , . . . ,
β(r+s), β(r+s) are its complex conjugates. Let Hc stand for the subspace of Rn gen-
erated by the vectors uβ(2) , . . . , uβ(d), that is, Hc = {

∑r
i=2 xiuβ(i) +

∑r+s
i=r+1 xiuβ(i) +

xi uβ(i) ; (x1, · · · , xr) ∈ Rr, (xr+1 · · ·xr+s) ∈ Cs}; we call it the β-contracting plane. We
denote by He the real expanding line generated by uβ , similarly called the β-expanding
line. Let Hr be a complement subspace in Rn of Hc⊕He. Let π : Rn → Hc be the projec-
tion onto Hc along He⊕Hr, according to the natural decomposition Rn = Hc⊕He⊕Hr,
and π′ the projection onto the expanding line He along Hc ⊕ Hr. Then π and π′ can
easily be expressed with respect to the algebraic normalized eigenbasis uβ(1) , · · · ,uβ(d) of
Hc ⊕He : for any x ∈ Rn, one has

π(x) =
∑

2≤k≤d

〈x,vβ(k)〉uβ(k) and π′(x) = 〈x,vβ〉uβ. (12)

Indeed 〈uβ(i),vβ(j)〉 = 0 for every i, j with i -= j and 1 ≤ i, j ≤ d. As a consequence, the
projections π(x) and π′(x) of a rational vector x ∈ Qn are completely determined by the
algebraic conjuguates of 〈x,vβ〉.

Rauzy fractal and projection of the broken line. An interesting property of the
broken line (11) is that after projection by π one obtains a bounded set in Hc (Fig. 7).
It appears that the closure of this set is exactly the central tile, after identification of
Hc and Kσ. More precisely, we denote by Ψσ the one-to-one identification map from Kσ

to Hc that gives a geometric representation in Hc of points with coordinates in the right
eigenvector basis of Hc which belong to Kσ:

Ψσ : (x2, . . . , xr, xr+1, . . . , xr+s) ∈ Kσ !→ x2uβ(2) + · · ·+ xruβ(r) + xr+1uβ(r+1)

+xr+1 uβ(r+1) + . . . xr+suβ(r+s) + xr+s uβ(r+s) ∈ Hc.

Let us observe that
∀x ∈ Zn, π(x) = Ψσ ◦ Φσ(〈x,vβ〉). (13)

In particular
∀a ∈ A, Ψσ ◦ Φσ ◦ δσ(a) = π(ea).

We now can easily prove the following density result mentioned after the proof of Theorem
4.
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Lemma 2 The set Φσ(Z[δσ(1), · · · , δσ(n)]) is dense in Kσ.

Proof. Let us prove that the rank r of the subgroup generated by Φσ◦δσ(1), · · · ,Φσ◦δσ(n)
in Kσ satisfies r ≥ d. We first observe that the rank of the subgroup of R×Kσ generated
by (δσ(1),Φσ ◦ δσ(1)), · · · , (δσ(1),Φσ ◦ δσ(1)) is equal to r (we use here the canonical
morphisms Q(β) → K(i), x !→ x(i)), which yields that the rank of the subgroup G
generated by (π + π′)(e1), · · · , (π + π′)(en) also equals r. For all 1 ≤ j ≤ n, there exists
fj in Hr such that ej =

∑d
k=1〈ej ,vβ(k)〉uβ(k) + fj. Hence Zn is included in the direct sum

of G with the group of rank at most n − d generated by the vectors fj , for 1 ≤ j ≤ n,
which yields d ≤ r.

Theorem 5 Let σ be a primitive substitution the dominant eigenvalue of which is a Pisot
unit. Let u = (ui)i∈Z be a periodic point of σ. Then one has

Rσ := Ψσ(Tσ) = π ({l(u0 · · ·uN−1); N ∈ N}), (14)

and for a ∈ A

Rσ(a) := Ψσ(Tσ(a)) = π ({l(u0 · · ·uN−1); N ∈ N, uN = a}).

The embedding of the central tile in the contracting hyperplane is called the Rauzy fractal
and is denoted by Rσ.

Proof. We first observe that the central tiles Tσ and Tσ$ coincide for any positive integer
(; we deduce this result from the uniqueness of the solution of (10) [MW88], when this
equation is applied to σ#. We thus assume in the present proof w.l.o.g. that u is a fixed
point of σ and that the incidence matrix of σ has positive entries.

Let N be fixed. Let us use the Dumont-Thomas numeration system to expand
u0 . . . uN−1 as σn(pn) . . . p0, with (pn, an, sn) . . . (p0, a0, s0) ∈ FP , where σ(u0) = pnansn.
One has according to (12)

π(l(u0 . . . uN−1)) =
∑

2≤j≤d

〈l(σn(pn) . . .σ(p1)p0),vβ(j)〉uβ(j)

=
∑

2≤j≤d

(
(β(j))n〈l(pn),vβ(j)〉+ · · ·+ 〈l(p0),vβ(j)〉

)
uβ(j)

= Ψσ

[
(β(j))n〈l(pn),vβ(j)〉+ · · ·+ 〈l(p0),vβ(j)〉

]
2≤j≤r+s

= Ψσ ◦ Φσ(δσ(pn)βn + · · · + δσ(p0)) ∈ Ψσ ◦ Φσ(Z+
σ ),

which implies that Rσ ⊂ Ψσ(Tσ).

Conversely, let (pn, an, sn) . . . (p0, a0, s0) ∈ FP ; by positivity of the incidence matrix
of σ, σ(u0) contains the letter an+1 defined by σ(an+1) = pnansn; there thus exists
(pn+1, an+1, sn+1) ∈ P with σ(u0) = pn+1an+1sn+1 such that

(pn+1, an+1, sn+1) . . . (p0, a0, s0) ∈ FP .
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Figure 7: The projection method to get the Rauzy fractal for the Tribonacci substitution.

Hence σn+1(pn+1) . . . p0 is a prefix of u, and we deduce Ψσ(Tσ) ⊂ Rσ from

Φσ(Z+
σ ) = Φσ{

M∑

i=0

δσ(pi)βi; M ∈ N, (pM , aM , sM) . . . (p0, a0, s0) ∈ FP , σ(u0) = pMaMsM}.

One similarly proves that Rσ(a) = Ψσ(Tσ(a)), for a ∈ A, by noticing that if one
expands u0 . . . uN−1 as σn(pn) . . . p0 in the Dumont-Thomas numeration system with
(pn, an, sn) . . . (p0, a0, s0) ∈ FP , then uN = a0.

3.2. Domain exchange dynamical system

In Section 3.1 we give a geometric interpretation of the combinatorial expansions of finite
prefixes as projections on the contracting space Hc of the vertices of the broken line (11).
This allows us to introduce a dynamics on the central tile as a domain exchange. Indeed,
from (14) one deduces that one can translate any point of a tile Rσ(a) by the projection
of the a-th canonical vector ea without exiting from the Rauzy fractal:

Rσ(a) + π(ea) = π ({l(u0 · · ·uk−1a); k ∈ N, uk = a})
⊂ π ({l(u0 · · ·uk−1uk); k ∈ N}) = Rσ.

Since π(ea) = Ψσ ◦ Φσ ◦ δσ(a), one gets in Kσ

∀a ∈ A, Tσ(a) + Φσ ◦ δσ(a) ⊂ Tσ. (15)

If furthermore, the substitution σ satisfies the strong coincidence condition, the basic tiles
are almost everywhere disjoint according to Theorem 4, so that (15) defines a domain
exchange on the central tile as

Eσ : Tσ → Tσ, x ∈ Tσ(a) !→ x + Φσ ◦ δσ(a) ∈ Tσ.

It is natural to code, up to the partition provided by the n basic tiles, the action of
the domain exchange over the central tile Tσ. Theorem 6 below says that the codings of
the orbits of the points in the central tile under the action of this domain exchange are
described by the substitutive dynamical system, that is, the coding map, from Tσ onto the
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−→

Figure 8: Domain exchange over the Rauzy fractal; lattice substitution multiple tiling

n-letter full shift {1, . . . , n}Z is almost everywhere one-to-one, and onto the substitutive
dynamical system (Xσ, S). We thus have given an interpretation of the action of the shift
map on Xσ as an exchange of domains acting on the basic tiles.

Theorem 6 ([AI01, CS01b]) Let σ be a primitive substitution that satisfies the strong
coincidence condition, and that has a dominant eigenvalue which is a Pisot unit. Then
the domain exchange Eσ : Tσ → Tσ, x ∈ Tσ(a) !→ x + Φσ ◦ δσ(a) ∈ Tσ is defined almost
everywhere on the central tile. The substitutive dynamical system (Xσ, S) is measure-
theoretically isomorphic to (Tσ, Eσ), that is, the representation map µσ : Xσ → Tσ of the
substitutive dynamical system (Xσ, S) is continuous, onto and almost everywhere one-to-
one, and satisfies µσ ◦ S = Eσ ◦ µσ.

The Dumont-Thomas expansion appears as a realization of the isomorphism between the
set of trajectories under Eσ and the central tile. Indeed, recall that

∀(pi, ai, si)i≥0 ∈ X l
P , ϕσ((pi, ai, si)i≥0) = lim

n→+∞
Φσ(

∑

i≥0

δσ(pi)β
i) ∈ Tσ

where (pi, ai, si)i≥0 is the combinatorial prefix-suffix expansion of w ∈ Xσ, that is,

w = lim
n→+∞

σn(pn) . . .σ(p1)p0.a0s0σ(s1) . . .σn(sn).

3.3. The lattice substitution multiple tiling

We want now to associate with the substitution σ a lattice covering of Kσ. This will also
allow us to associate with a beta-numeration a lattice tiling by considering the associated
β-substitution.

The domain exchange Eσ is defined almost everywhere, but not everywhere, which
prevents us from defining a continuous dynamics on the full central tile. A solution to
this problem consists of factorizing the central tile Tσ by the smallest possible lattice
so that the translation vectors Φσ ◦ δσ(a) for a ∈ A do coincide: we thus consider the
subgroup

n−1∑

i=1

ZΦσ(δσ(i)− δσ(n))
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of Kσ. In the case where this group is discrete, the quotient is a compact group and the
domain exchange factorizes into a minimal translation on a compact group. This group
is discrete if and only if (δσ(i)− δσ(n)), for i = 1, · · · , n− 1, are rationally independent
with 1 in Z[β]. A sufficient condition is thus that n equals the degree d of β, that is,
that every eigenvalue of the substitution is a conjugate of the dominant eigenvalue β.
We thus assume that we are in the irreducible case, that is, that σ is a unimodular Pisot
substitution. Let us note that this implies severe restrictions for the beta-numeration:
the cardinality of the alphabet of the β-substitution is equal to the degree of β.

Theorem 7 ([AI01, CS01b]) Let σ be a unimodular Pisot substitution on the alphabet
A = {1, 2, · · · , n}. Then the central tile generates a lattice multiple tiling of Kσ:

Tσ +
n−1∑

i=1

ZΦσ(δσ(i)− δσ(d)) = Kσ. (16)

This multiple tiling is classical for substitutions but it is rarely associated with a
beta-numeration, although it has a nice spectral interpretation in the irreducible case:
the multiple tiling is a tiling if and only if the beta-shift has pure discrete spectrum
([BK04, Sie04]).

Proof. An intuitive approach of the proof is given by its interpretation in the full space
Rn. It is equivalent to prove ∪γ∈LRσ + γ = Hc, where L := Zπ(e1) + · · · + Zπ(en).
Indeed, the Pisot hypothesis and the fact that d = n imply that L is a lattice (the proof
is similar to that of Lemma 2).

The translates along the lattice L0 =
∑n−1

i=1 Z(ei − ed) of the vertices of the broken
line l(u0u1 . . . uN−1), N ∈ N, cover the following upper half-space:

{l(u0u1 . . . uN−1) + γ; N ∈ N, γ ∈ L0} = {x ∈ Zn; 〈x,vβ〉 ≥ 0}. (17)

As an application of the Kronecker theorem, the projection by π of the upper half-
space is dense in the contracting plane Hc. By definition, the lattice L is a Delau-
nay set. Consequently, given any point P of Hc, there exists a sequence of points
(π(l(u0u1 . . . uNk−1)) + γk)k with γk in the lattice L which converges to P in Hc. Since
Rσ is a bounded set, there are infinitely many k for which the points γk of the lattice L0

take the same value, say, γ; we thus get P ∈ Rσ + γ, which implies (16).

In some specific situations in the reducible case d < n, some of the numbers δσ(i) are
equal, so that a factorization can be performed even if the substitution is not a Pisot
substitution. See for instance [EI05] for a detailed study of the β-substitution associated
with the smallest Pisot number.
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3.4. Model sets

The aim of this section is to reformulate some of the previous results in terms of a cut
and project scheme, as defined in Section 1.2. We assume here that σ is a unimodular
Pisot substitution. We recall that π′ stands for the projection in Rd on the expanding
line generated by uβ along the plane Hc, whereas we denote by π the projection on the
plane Hc along the expanding line. Theorem 8 states that the vertices of the broken line
are exactly the points of Zn selected by shifting the central tile Rσ (considered as an
acceptance window), along the expanding eigendirection uβ .

Theorem 8 Let σ be a unimodular Pisot substitution over an n-letter alphabet such that
the lattice multiple tiling is indeed a tiling. We are in particular in the irreducible case
d = n. We assume furthermore that the projections by π of the vertices of the broken
line belong to the interior of the Rauzy fractal. The subset π′({l(u0 · · ·uN−1); N ∈ N})
of the expanding eigenline obtained by projecting the vertices of the broken line given by
a periodic point of the substitution σ is a Meyer set associated with the cut and project
scheme (R × Rn−1, Zn), whose acceptance window is the interior of the Rauzy fractal
Rσ = Ψσ(Tσ). In other words,

{l(u0 · · ·uN−1); N ∈ N} = {P = (x1, · · · , xn)) ∈ Zn;
∑

1≤i≤n

xi ≥ 0; π(P ) ∈ Int(Rσ)}.

(18)

Proof. Let H = Rn−1, D = Zn, k = 1. The set H = Rn−1 is in one-to-one correspon-
dence with the plane Hc, whereas R is in one-to-one correspondence with the expanding
eigenline. Up to these two isomorphisms, the natural projections p0 and p1 become re-
spectively π and π′ and are easily seen to satisfy the required conditions. It remains to
prove (18).

By assumption, for every N , π(l(u0 · · ·uN−1)) ∈ Int(Rσ). Conversely, let P =
(x1, . . . , xn) ∈ Zn with

∑
xi ≥ 0 such that π(P ) ∈ Int(Rσ). Let N = x1 + . . . xn.

According to (17), there exists γ ∈ L0 such that P = l(u0 · · ·uN−1) + γ. Since π(P ) =
π(l(u0 · · ·uN−1)) + π(γ) ∈ Int(Rσ), one gets γ = 0 (we have assumed that we have a
tiling) and P = l(u0 · · ·uN−1).

4. Discrete planes and Z2-actions

The aim of this section is to present an alternative construction and interpretation of the
self-replicating multiple tiling associated with a primitive Pisot unimodular substitution
as described in Section 2. This construction is based on the notion of a geometric gener-
alized substitution due to [AI01], see also [IR06]. We respectively introduce the notion
of a discrete plane in Section 4.1, of a substitution acting on it in Section 4.2, and end
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this section by giving a substitutive version of the finiteness condition (F) introduced in
Section 1.6.

4.1 Discrete planes and discrete multiple tilings

We assume that σ is a unimodular Pisot substitution on the alphabet A = {1, 2, · · · , n}.
The algebraic degree d of the dominant eigenvalue β of σ satisfies d = n (irreducible
case).

Let us first consider a discretisation of the contracting hyperplane Hc = {x ∈
Zn; 〈x,vβ〉 = 0} corresponding to the notion of an arithmetic plane introduced in
[Rev91]; this notion consists in approximating the plane Hc by selecting points with
integral coordinates above and within a bounded distance of the plane. More generally,
given v ∈ Rn, µ,ω ∈ R, the lower (resp. upper) discrete hyperplane P(v, µ,ω) is the set
of points x ∈ Zd satisfying 0 ≤ 〈x,v〉+ µ < ω (resp. 0 < 〈x,v〉 + µ ≤ ω). The param-
eter µ is called the translation parameter whereas ω is called the thickness. Moreover, if
ω = max{vi} = |v|∞ (resp. ω =

∑
vi = |v|1) then P(v, µ,ω) is said to be naive (resp.

standard). For more details, see for instance the survey [BCK04].

We consider only standard discrete planes in this paper, hence we call them dis-
crete planes, for the sake of simplicity. We consider more precisely the standard lower
arithmetic discrete plane with parameter µ = 0 associated with vβ that we denote for
short by Pσ. We now associate with Pσ ⊂ Zn the stepped plane Sσ ⊂ Rn defined
as the union of faces of integral cubes that connect the points points of Pσ, as de-
picted in Fig. 9, an integral cube being any translate of the fundamental unit cube
C = {

∑
1≤i≤n λiei; λi ∈ [0, 1], for all i} with integral vertices. The stepped surface Sσ

is thus defined as the boundary of the set of integral cubes that intersect the lower open
half-space {x ∈ Zn; 〈x,vβ〉 < 0}. The vertices of Sσ (that is, the points with integer
coordinates of Sσ) are exactly the points of the arithmetic discrete plane Pσ, according
for instance to [BV00, AI01, ABI02, ABS04].

Theorem 9 ([BV00, AI01, ABI02, ABS04]) Let σ be a unimodular Pisot substitu-
tion. The stepped surface Sσ is spanned by:

Sσ =
⋃

(x,i)∈Zn×A, 0≤〈x,vβ〉<〈ei,vβ〉

(x, i), (19)

where for x ∈ Zn and for 1 ≤ i ≤ n:

(x, i) := {x +
∑

j .=i

λjej ; 0 ≤ λj ≤ 1, for 1 ≤ j ≤ n, j -= i}.

This union is a disjoint union up to the boundaries of the faces.
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Figure 9: Stepped surface; pointed faces in the stepped surface; discrete multiple tiling.

Let us project now the discrete plane Pσ on the contracting space Hc and replace
each face (x, i) by the corresponding basic piece of the Rauzy fractal Rσ(i). The tiling
(19) becomes

Hc =
⋃

(x,i)∈Zn×A, 0≤〈x,vβ〉<〈ei,vβ〉

π(x) + Rσ(i). (20)

It is shown in [IR05] that the covering (20) provides a multiple tiling of the contracting
hyperplane, and that the translation vector set π({x ∈ Zn; ∃i ∈ A, (x, i) ∈ Sσ)} is a
Delaunay set. The aim of the present section is to give a simple proof of this result.

Theorem 10 Let σ be a Pisot unimodular substitution. The projection by π of the
discrete plane Pσ associated with the contracting space Hc generates a covering of the
contracting hyperplane, called the discrete multiple tiling of the substitution:

Hc 1 Rn−1 =
⋃

(x,i)∈Zn×A, 0≤〈x,vβ〉<〈ei,vβ〉

π(x) + Rσ(i).

The discrete multiple tiling is the embedding under the action of Ψσ of the self-replicating
multiple tiling, that is,

Kσ =
⋃

x∈Zn×A, 0≤〈x,vβ〉<〈ei,vβ〉

Φσ(< x,vβ >) + Tσ(i). (21)

Proof. The proof becomes easy in our context by noticing that (20) becomes under the
action of Ψ−1

σ

Kσ =
⋃

(x,i)∈Zn×A, 0≤〈x,vβ〉<〈ei,vβ〉

Φσ(< x,vβ >) + Tσ(i).

We thus deduce (21) from (10) and from the following lemma.

Lemma 3 One has for every i ∈ A = {1, · · · , n}

Ψσ ◦ Φσ (Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(i))) = π({x ∈ Zn; 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉}).
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Proof. Let x ∈ Zn such that 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉 = δσ(i). By definition z :=
〈x,vβ〉 ∈ Z[δσ(1), · · · , δσ(n)]∩ [0, δσ(i)). Since x has rational coordinates, its coordinates
in the algebraic normalized eigenbasis are conjugate according to (12), so that x =
zuβ +Ψσ ◦ Φσ(z) and π(x) = Ψσ ◦ Φσ(z) ∈ Ψσ ◦ Φσ (Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(i)).

Conversely, let z ∈ Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(i)). There exists x ∈ Zn such that
z = 〈x,vβ〉 according to (9). Since x has rational coordinates, π(x) = Ψσ ◦ Φσ(z), and
the conclusion follows.

One interest of this approach is that it establishes a correspondence between two
multiple tilings that a priori have nothing in common, a multiple tiling provided on the
one hand by a discrete approximation of the contracting plane of the substitution, and
on the other hand, a multiple tiling obtained via the Dumont-Thomas numeration as a
generalization of the β-numeration.

4.2. Substitutive construction of the discrete plane and extended (F) property

Substitution rule. We define F∗ as the R-vector space generated by {(x, i); x ∈ Zn, i ∈
{1, 2, · · · , n}}. We define the following generation process which can be considered as a
geometric realization of the substitution σ on the geometric set F∗ consisting of finite
sums of faces:

∀(x, a) ∈ Zn ×A, E∗
1(σ)(x, a) =

⋃

σ(b)=pas

(M−1
σ (x + l(p)), b).

Proposition 2 [AI01] The stepped surface Sσ is stable under the action of E1(σ)∗ and
contains the faces (0, 1), . . . , (0, n).

Theorem 11 Let σ be a unimodular Pisot substitution. Let (F) be the following extended
(F)-property:

(F) ∀a ∈ A = {1 . . . n}, ∀z ∈ Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(a)), d(σ,a)(z) is finite.

The extended (F)-property is satisfied if and only if the images of the unit cube located
at the origin C = ∪1≤i≤n(0, i) under the iterated action of E∗

1(σ) cover the full stepped
plane, that is,

Sσ =
⋃

k∈N
E∗

1(σ)
k((0, 1) ∪ · · · ∪ (0, n)).

If the extended (F)-property is satisfied and if the substitution satisfies the strong coinci-
dence property, then the self-replicating substitution multiple tiling, which coincides with
the discrete multiple tiling, is indeed a tiling.
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Proof. Let us assume that the extended (F) property holds. Let (x, a) ∈ Sσ. From
Lemma 3, z :=< x,vβ >∈ Z[δσ(1), · · · , δσ(n)] ∩ [0, δσ(a)). Let dσ,a(z) = (q1, b1, r1)
· · · (qk, bk, rk) ∈ FP stand for its finite (σ, a)-expansion, according to the extended (F )-
property. The face (0, bk) belongs to Sσ following Proposition 2. Let y := M−kl(qk) +
M−k+1l(qk−1) · · · + M−1l(q1). One checks that (y, a) belongs to E∗

1(σ)
k(0, bk). By con-

struction,

〈y,vβ〉 =
k∑

i=1

δσ(qi)β
−i = z =< x,vβ >

so that y = x (both are integral points with the same projection on the discrete plane).
We deduce that (x, a) ∈ Sσ. The converse follows similarly.

Let us assume that both the strong coincidence condition and the extended (F) prop-
erty hold. Let k be fixed. According to Theorem 4 applied to σk, for every pair of
faces (x, i), (y, j) ∈ E∗

1(σ)
k((0, 1)∪ · · ·∪ (0, n)), the tiles π(x) +Rσ(i) and π(y) +Rσ(j)

are measurably disjoint. Since according the extended (F) property every point in the
self-replicating substitution multiple tiling belongs to such an iterate, all the tiles are
measurably disjoint and the multiple tiling is indeed a tiling.

5. Equivalent tilings

Let us conclude this survey by alluding to the connections between the various multiple
tilings that have been introduced in this paper and by reviewing some sufficient tiling
conditions.

Different multiple tilings associated with unimodular primitive substitutions that have
a Pisot dominant eigenvalue where introduced in the previous sections, namely, a self-
replicating multiple tiling based on the Dumont-Thomas numeration system, a lattice
multiple tiling, and lastly, a discrete multiple tiling; these two latter tilings are both
defined in the irreducible case, that is, when the substitution satisfies the extra hypothesis
to be a Pisot substitution. In this latter case, the discrete and the self-replicating multiple
tilings coincide.

In the irreducible case, Ito and Rao prove in [IR06] that the lattice multiple tiling and
the self-replicating multiple tiling are simultaneously tilings. The proof is based on the
following construction: from the Rauzy fractal associated to a substitution on a d-letter
alphabet, that is, a compact set in a (d− 1)-dimensional space, one builds a compact set
R̃σ with nonempty interior in Rd; this set is defined as the union of d cylinders with a
transverse component along the expanding direction, based on each piece of the Rauzy
fractal Rσ(a)(living in the contracting space Hc), of height equal to the size of the interval
[0, δσ(a)) in R:

R̃σ =
d⋃

a=1

(Rσ(a) + [0, δσ(a))uβ) .
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This set is called the Markov Rauzy fractal; it is depicted in Fig. 10 in the Tribonacci case.
According to Theorem 4, if the substitution σ satisfies the strong coincidence condition,
then the pieces Rσ(a) are disjoint in measure in Hc; this implies that the cylinders are
also almost everywhere disjoint in measure in Rd. One recovers in a natural way from
the Markov multiple tiling the lattice and the self-replicating ones by intersecting it with
a suitable hyperplane (see Fig. 11 in the Fibonacci case 1 !→ 12, 2 !→ 1). Consequently,
as soon as one of those multiple tilings can be proved to be a tiling, then all the other
multiple tilings are also indeed tilings [IR06].

Figure 10: Markov Rauzy fractal; Markov multiple tiling.

Figure 11: The Fibonacci Markov tiling: the self-replicating tiling lies in the intersection
of the Markov tiling with the contracting direction; the lattice tiling is given by the
projection on the contracting line of the pieces that cross the anti-diagonal line x+y = 0.

Central tiles associated with Pisot beta-shifts and substitutive dynamical systems
provide efficient geometric representations of the corresponding dynamical systems, as
illustrated in Section 3. One gets in particular a combinatorial necessary and sufficient
condition for a substitutive unimodular system of Pisot type to be measure-theoretically
isomorphic to its maximal translation factor [Sie04]. This has also consequences for the
effective construction of Markov partitions for toral automorphisms, the main eigenvalue
of which is a Pisot number [IO93, IO94, Pra99, Sie00]. Based on the approach of [KV98,
VS93, SV98, Sid03a], an algebraic construction of symbolic representations of hyperbolic
toral automorphisms as Markov partitions is similarly given in [Sch00, LS04], where
homoclinic points are shown to play an essential role.
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Further essential facts about this Markov Rauzy fractal are proved in [IR06]:

• The Markov Rauzy fractal provides a lattice multiple tiling of Rd:
⋃

z∈Zd

R̃σ + z = Rd.

• If one intersects the contracting hyperplane Hc with the lattice multiple tiling of
Rd, one recovers the discrete multiple tiling:

⋃

z∈Zd

π(R̃σ + z) ∩Hc =
⋃

a∈{1,...d}, z∈Zd, 〈z,vβ〉∈[0,δσ(a))

Rσ(a) + π(z).

• The projections onto Hc of the pieces that cross the anti-diagonal hyperplane pro-
vide the lattice multiple tiling:

⋃

z∈Zd, 〈z,(1,...1)〉=0

π(R̃σ + z) = Rσ +
d−1∑

1

Zπ(ei − ed).

Theorem 12 ([IR06]) Let σ be a unimodular Pisot substitution. The thickness of a
multiple tiling is defined as the integer k such that this covering is almost everywhere k-
to-one. The self-replicating multiple tiling, the lattice multiple tiling, the discrete multiple
tiling and the Markov multiple tiling have the same thickness. In particular, one of them
is a tiling if and only if all the other ones are tilings.

For each of these multiple tilings, some tiling conditions can be expressed according to
the context in which the multiple tiling is defined (numeration, substitution, discrete
geometry, symbolic dynamics...) Some of them are necessary and sufficient conditions,
whereas the others are only sufficient conditions, but effective. We do not have space
enough in the present paper to introduce all the formalism that is necessary to detail
each of these conditions. Hence, the reader will find as a conclusion a small description
of each of these conditions with the corresponding references.

• Super coincidence condition [IR06, BK04]: the discrete multiple tiling is a tiling
if and only if the substitution satisfies a combinatorial condition called the super
coincidence condition, which can be seen as a geometric generalization of the strong
coincidence property.

• Balanced pairs [BR05]: the super coincidence condition is satisfied if and only if
the balanced pair algorithm terminates.

• Geometry [IR06]: the discrete multiple tiling is a tiling if and only if the measure
of at least one basic tile Rσ(i) is equal to the measure of the rhombus π(0, i).
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• Discrete geometry [IR06]: the discrete multiple tiling is a tiling if and only if for ev-
ery i ∈ A, the sequence of the boundaries of the polygonals Xn(i) := π(E∗

1(σ)
n(0, i))

tends to the boundary of the i-th basic tile Rσ(i) for the Hausdorff metric.

• Spectral theory [BK04, Sie04]: the lattice multiple tiling is a tiling if and only if
the substitutive dynamical system (Xσ, S) has a purely discrete spectrum.

• Contact graphs [Sie04, Thu04]: the lattice multiple tiling [Sie04], respectively dis-
crete multiple tiling [Thu04], is a tiling if and only if a finite graph describing the
intersection of the pieces in the tiling is “small enough”, that is, if it does not rec-
ognize the same language as the prefix-suffix automaton. Both conditions provide
algorithms that are rather long but allow one to test whether a multiple tiling is a
tiling (which is not the case for the balanced pair algorithm).

Let us stress the fact that most of the results mentioned in the present paper were
obtained under the assumption that β is a Pisot unit. It is one of the main challenges
to try to relax the Pisot unit hypothesis, and to be able to prepare the playground for
the non-Pisot case on the one hand, in the flavor of [KV98, LS04] and for the non-unit
case, on the other hand, according to the p-adic approach developed in [Sie03, BS05].
Let us mention [AFHI05], where a simple example of an automorphism of the free group
on 4 generators, with an associated matrix that has 4 distinct complex eigenvalues, two
of them of modulus larger than 1, and the other 2 of modulus smaller than 1 (non-Pisot
case) is handled in details. Let us recall that substitutions are particular cases of free
group morphisms, the main simplification being that we have no problem of cancellations.
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