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10.0. Introduction

This chapter shows some examples of applications of combinatorics on words
to number theory with a brief incursion into physics. These examples have a
common feature: the notion of morphism of the free monoid. Such morphisms
have been widely studied in combinatorics on words; they generate infinite words
which can be considered as highly ordered, and which occur in an ubiquitous
way in mathematics, theoretical computer science, and theoretical physics.

The first part of this chapter is devoted to the notion of automatic sequences
and uniform morphisms, in connection with transcendence of formal power series
with coefficients in a finite field. Namely it is possible to characterize algebraicity
of these series in a simple way: a formal power series is algebraic if and only if
the sequence of its coefficients is automatic, i.e., if it is the image by a letter-
to-letter map of a fixed point of a uniform morphism. This criterion is known
as Christol’s theorem. A central tool in the study of automatic sequences is
the notion of kernel of an infinite word (sequence) over a finite alphabet: this
is the set of subsequences obtained by certain decimations. A rephrasing of
Christol’s theorem is that transcendence of a formal power series over a finite
field is equivalent to infiniteness of the kernel of the sequence of its coefficients:
this will be illustrated in this chapter.

Examples of applications of the properties of automatic sequences to tran-
scendence results for power series over the rationals, and for real numbers whose
base b-expansion is automatic are also given.

Then, in a second part, this chapter uses a famous infinite word, the Tri-
bonacci word as a guideline to introduce various applications in Diophantine
approximation and in simultaneous approximation. The Tribonacci word was
introduced as a generalization of the celebrated Fibonacci word. It is defined
as the fixed point of a non-uniform primitive morphism, called the Tribonacci
morphism. We first associate in a natural way a numeration system with this
morphism, that leads us to the definition of a compact subset of the plane with
fractal boundary, called the Rauzy fractal. By closely studying its topological
properties, we show that this compact set can be considered as a fundamental
domain for a lattice of the plane, and that a particular geometric transforma-
tion, namely an exchange of pieces, can be performed on it. This transformation
can furthermore be factored as a translation on the two-dimensional torus. The
goal of this chapter is then to show how to deduce arithmetic properties of this
translation from combinatorial properties of the Tribonacci word. In particular,
it is shown how to associate with some prefixes of this infinite word best approx-
imations for a given norm of the corresponding vector of translation. Relations
to tilings and quasicrystals via the cut and project method are also mentioned.
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10.1. Morphic and automatic sequences: definitions and
generalities

In this section we define morphisms, uniform morphisms, morphic sequences
and automatic sequences.

10.1.1. Topology and distance on the set of finite and infinite words

Let A be a finite alphabet. The set A is equipped with the discrete topology (i.e.,
every subset is open), and the set Aω of infinite words (that we also call here
infinite sequences) on A is equipped with the corresponding product topology.
It is well-known and not hard to prove that the product topology can also be
defined by the following distance:

d((un)n≥0, (vn)n≥0) := 2−min{j∈N, uj $=vj}.

The topology on Aω can be extended to the set A∗∪Aω of all finite and infinite
words on A as follows: let ! be a symbol not in A. The set A ∪ {!} is equipped
with the discrete topology and the set (A ∪ {!})ω is equipped with the product
topology. Finally the set A∗ is naturally embedded in (A∪ {!})ω by identifying
the word u0u1 · · ·ud in A∗ and the infinite word u0u1 · · ·ud(!)ω in (A ∪ {!})ω

(where (!)ω stands for the infinite word whose terms are all equal to !).

Remark 10.1.1. Note that the distance defined above can be informally de-
scribed by saying that two words are close to each other if they coincide on their
first letters. Also note that the set Aω is a compact set.

10.1.2. Morphisms and uniform morphisms

Let A and B be two alphabets. Let us recall that a morphism h : A∗ → B∗ is a
map from A∗ to B∗ such that for all u, v ∈ A∗, the relation h(uv) = h(u)h(v)
holds. (In other words h is a homomorphism of monoids.)

Remark 10.1.2.
• A morphism h : A∗ → B∗ is defined by its values on the elements of A.
• The iterates of a morphism h : A∗ → A∗ are denoted hj , j ≥ 0, and

defined by h0(a) = a for all a ∈ A and hj+1 := h ◦ hj.

The morphism h : A∗ → B∗ is called uniform if all the words h(a), a ∈ A,
have the same length. Let d be this common length, the morphism is called a
morphism of length d or a d-uniform morphism or a d-morphism.

10.1.3. Fixed points of morphisms, morphic sequences and auto-
matic sequences

Proposition 10.1.3. Let A be an alphabet. Let h : A∗ → A∗ be a morphism
such that there exists a ∈ A and x ∈ A∗ with the properties:
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(i) h(a) = ax,
(ii) ∀j ≥ 0, hj(x) '= ε.

Then, the sequence of words a, h(a), h2(a), . . . , hn(a), . . . converges to an
infinite word denoted hω(a). This infinite word is a fixed point of the extension
of h by continuity to infinite words.

Proof. The hypotheses easily imply that hj+1(a) = axh(x)h2(x) · · · hj(x), for
j ≥ 0. Hence the word hj(a) is a nontrivial prefix of the word hj+1(a), which
gives the convergence of the sequence of words hj(a) to an infinite word hω(a).
Since hj+1(a) = h(hj(a)), letting j go to infinity establishes the claim.

Remark 10.1.4. In the sequel we will say that an infinite word u on the al-
phabet A is a fixed point of a morphism h : A∗ → A∗ if and only if it can be
obtained as in Proposition 10.1.3 above. One thus has h(u) = u.

The fixed points (in the sense of Remark 10.1.4) of a uniform morphism have
a simple property that we give now.

Proposition 10.1.5. An infinite word (un)n≥0 on the alphabet A is a fixed
point of the d-morphism h : A∗ → A∗ (in the sense of Remark 10.1.4) if and
only if there exist d maps hr : A → A, r ∈ [0, d − 1], such that

∀n ≥ 0, ∀r ∈ [0, d − 1], udn+r = hr(un).

Proof. Suppose that the infinite word (un)n≥0 is a fixed point of the d-morphism
h : A∗ → A∗, i.e., the limit when j goes to infinity of the sequence of words a,
h(a), h2(a), ..., hk(a) ..., with a ∈ A and h(a) = ax, with x ∈ A∗ and hj(x) '= ε
for all j ≥ 0. Since h is d-uniform, for each letter e ∈ A, the word h(e) can
be written as h(e) = αe,0αe,1 · · ·αe,d−1. We define the maps hr : A → A,
r ∈ [0, d− 1], by: for each e ∈ A, hr(e) := αe,r. Now, for each k ≥ 0, the length
of the word hk(a) is equal to dk hence

hk(a) = u0u1 · · ·udk−1.

We thus have

u0u1 · · ·udk+1−1 = hk+1(a) = h(hk(a))
= h(u0u1 · · ·udk−1)
= h(u0)h(u1) · · ·h(udk−1).

This thus gives:

∀n ∈ [0, dk − 1], ∀r ∈ [0, d − 1], udn+r = hr(un).

Since this holds for all k ≥ 0, we thus have

∀n ≥ 0, ∀r ∈ [0, d − 1], udn+r = hr(un).
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Conversely suppose that there exist d maps hr : A → A, r ∈ [0, d − 1], such
that

∀n ≥ 0, ∀r ∈ [0, d − 1], udn+r = hr(un).

Taking n = r = 0, we get u0 = h0(u0). Define the morphism h : A∗ → A∗, by

∀e ∈ A, h(e) := h0(e)h1(e) · · ·hd−1(e).

Furthermore let a := u0. The morphism h is clearly uniform. We have

h(a) = h(u0) = h0(u0)h1(u0) · · ·hd−1(u0) = u0h1(u0) · · ·hd−1(u0) = ax,

where x := h1(u0) · · ·hd−1(u0). For all j ≥ 0 we clearly have |hj(x)| = dj(d−1),
hence hj(x) '= ε. Thus Conditions (i) and (ii) of Proposition 10.1.3 are satisfied.
It is then easy to check that hω(a) is precisely the word (un)n≥0.

A word (un)n≥0 on the alphabet A is called a morphic sequence (or substi-
tutive sequence) if there exists an alphabet C, a word (vn)n≥0 on C, a morphism
h : C∗ → C∗, and a map ϕ : C → A such that

(i) word (vn)n≥0 is a fixed point of the morphism h (see Remark 10.1.4),
(ii) for all n ≥ 0, one has un = ϕ(vn).

A word (un)n≥0 on the alphabet A is called an automatic sequence if there
exists an alphabet C, a word (vn)n≥0 on C, a uniform morphism h : C∗ → C∗,
and a map ϕ : C → A such that

(i) the word (vn)n≥0 is a fixed point of the uniform morphism h (see Re-
mark 10.1.4),

(ii) for all n ≥ 0, one has un = ϕ(vn).
If the morphism h has length d, the word (un)n≥0 is called d-automatic.

Remark 10.1.6. An automatic sequence is in particular morphic. The de-
nomination “automatic” comes from the fact that such an infinite word can be
generated by a finite automaton.

10.1.4. Examples of morphic and automatic sequences

10.1.4.1. The Fibonacci word

The (binary) Fibonacci word is defined as the fixed point (in the sense of Re-
mark 10.1.4) of the morphism 0 → 01, 1 → 0, on the alphabet {0, 1}. The first
few terms of this word are

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 · · ·

The name of this word comes from the fact that iterating the morphism start-
ing from 0 gives words whose lengths are equal to the Fibonacci numbers
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1, 2, 3, 5, 8, · · ·:
0
0 1
0 1 0
0 1 0 0 1
0 1 0 0 1 0 1 0
. . .

It can be shown that this word is a Sturmian word, i.e., that the number of
blocks of consecutive letters of length n occurring in the word is equal to n + 1
for each n ≥ 1 (see Problem 10.7.1).

10.1.4.2. The Tribonacci word

The Tribonacci word is defined as the fixed point (in the sense of Remark 10.1.4)
of the morphism 1 → 12, 2 → 13, 3 → 1 on the alphabet {1, 2, 3}. The first few
terms of this word are

1 2 1 3 1 2 1 1 2 1 3 1 2 1 2 1 · · ·

Both words share many properties and the Tribonacci word can be considered
as a generalization of the Fibonacci word, hence the terminology. We study in
more details the Tribonacci word in Section 10.7–10.9.

10.1.4.3. The Thue–Morse word

Let us recall (see Example 1.8.4) that the (Prouhet)-Thue–Morse word is defined
as the fixed point (in the sense of Remark 10.1.4) beginning with 0 of the
morphism 0 → 01, 1 → 10. The first few terms of this word are

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 · · ·

The n-th term (starting from index 0) of this word is 0 if the sum of the binary
digits of n is even, and 1 if this sum is odd. This property can easily been
deduced from the results of Section 10.2.3.

10.1.4.4. The Rudin-Shapiro word

We consider on the alphabet {a, b, c, d} the morphism

a → ab
b → ac
c → db
d → dc

Iterating this morphism starting from a gives the following fixed point

a b a c a b d b a b a c d c · · ·
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The image of this infinite word by the map a → 1, b → 1, c → −1, d → −1, is
called the Rudin-Shapiro word. This word begins as follows

+1 + 1 + 1 − 1 + 1 + 1 − 1 + 1 + 1 + 1 + 1 − 1 − 1 − 1 . . .

Denoting by a(n) the number of (possibly overlapping) blocks 11 in the binary
expansion of n, it can be shown that the n-th term of the Rudin-Shapiro word
is equal to (−1)a(n). Here again, this property can easily been deduced from
the results of Section 10.2.3.

10.1.4.5. The regular paperfolding word

We consider on the alphabet {a, b, c, d} the morphism

a → ab
b → cb
c → ad
d → cd

Iterating this morphism starting from a gives the following fixed point

a b c b a d c b a b c d a d c b . . .

The image of this infinite word by the map a → 0, b → 0, c → 1, d → 1, is
called the (regular) paperfolding word. This word begins as follows

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 · · ·

Denoting this word by (zn)n≥0, it is easy to show that

z4n = 0, z4n+2 = 1, z2n+1 = zn

(which gives an alternative definition of the paperfolding word).
The proof of the following property of the paperfolding word is left to

the reader. For any word w on the alphabet {0, 1}, define the word wR as
the word obtained by reading w backwards (in other words (w0w1 · · ·w")R :=
w"w"−1 · · ·w0). Also define the word w as the word obtaining from w by replac-
ing 0’s by 1’s and 1’s by 0’s (in other words w := (1 − w0)(1 − w1) · · · (1 − w").
Define the map P on {0, 1}∗ by P (w) := w0wR. (The map P is called perturbed
symmetry.) Then the paperfolding word is equal to limj→∞ P j(0).

10.2. d-Kernels and properties of automatic sequences

10.2.1. d-Kernels

Let (un)n≥0 be an infinite word defined on the alphabet A. Let d ≥ 2 be an
integer. The d-kernel of the word (un)n≥0, denoted K(d, (un)n), is the set of
subsequences of the word (un)n≥0 defined by

K(d, (un)n) := {(udkn+r)n≥0, k ≥ 0, r ∈ [0, dk − 1]}.
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Remark 10.2.1. It is easy to prove that the d-kernel of an infite sequence
(un)n≥0 is stable under the maps Dj , j ∈ [0, d − 1], defined on the set of
sequences on A by

∀(zn)n≥0 ∈ Aω , Dj((zn)n≥0) := (zdn+j)n≥0.

Furthermore K(d, (un)n) is the smallest set that contains the sequence (un)n≥0

and is stable by the maps Dj, j ∈ [0, d − 1].

10.2.2. Combinatorial characterization of automatic sequences

The notion of d-kernel permits to give a simple combinatorial characterization
of automatic sequences.

Proposition 10.2.2. Let (un)n≥0 be an infinite sequence defined on the al-
phabet A. Let d ≥ 2 be an integer. Then, the following properties are equiva-
lent:

(i) the sequence (un)n≥0 is d-automatic,

(ii) the d-kernel K(d, (un)n) is a finite set,

(iii) there exists a finite set of sequences F that contains the sequence (un)n≥0

and such that, if the sequence (vn)n≥0 belongs to F then, for every j ∈
[0, d − 1], the sequence Dj((vn)n≥0) := (vdn+j)n≥0 belongs to F .

Proof. (i) ⇒ (ii). We suppose that the sequence (un)n≥0 is d-automatic. Then
there exists an alphabet C, a sequence (vn)n≥0 on C, a uniform morphism h :
C∗ → C∗, and a map ϕ : C → A such that the sequence (vn)n≥0 is a fixed point
of the uniform morphism h and for all n ≥ 0, one has un = ϕ(vn).
In order to prove that the set K(d, (un)n) is finite, it thus suffices to prove that
K(d, (vn)n) is finite. We know from Proposition 10.1.5 that there exist d maps
hr : A → A, r ∈ [0, d − 1], such that

∀n ≥ 0, ∀r ∈ [0, d − 1], vdn+r = hr(vn).

An easy induction on k shows the following: let t ∈ [0, dk − 1]; write its base d
expansion (possibly with leading zeros) as tk−1 . . . t0; then

∀n ≥ 0, vdkn+t = ht0((ht1 . . . (htk−1(vn))) . . .).

In other words there exists a map ft from A into itself such that ∀n ≥ 0, we
have vdkn+t = ft(vn). The set A is finite, hence the set of maps from A to
itself is also finite. This implies that there are only finitely many sequences
(vdkn+t)n≥0, with k ≥ 0, t ∈ [0, dk − 1].

(ii) ⇒ (iii). This is an easy consequence of Remark 10.2.1.
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(iii) ⇒ (i). Let F = {(u(1)
n )n≥0, (u

(2)
n )n≥0, · · · , (u(t)

n )n≥0} be a finite set of
sequences, with (u(1)

n )n≥0 = (un)n≥0 such that F is stable by the maps Dj , for
j ∈ [0, d − 1]. Define the vector V (n) by

V (n) :=





u(1)
n

u(2)
n

...
u(t)

n





Let C ⊂ At be the (finite) set of values of V (n). The fact that the set F is
stable under the maps Dj for j ∈ [0, d − 1] implies that for each j ∈ [0, d − 1]
there exists a matrix Θj of 0’s and 1’s, having exactly one 1 on each row, such
that

∀n ≥ 0, V (dn + j) = ΘjV (n).

Using Proposition 10.1.5 we see that the sequence (V (n))n≥0 is a fixed point of
the d-morphism h of A∗ defined by

∀α ∈ C∗, h(α) := (Θ1α) (Θ2α) ... (Θtα).

Now the sequence (un)n≥0 = (u(1)
n )n≥0 is the (point wise) image of the sequence

(V (n))n≥0 by the restriction to C of the first projection At → A.

Remark 10.2.3. We have spoken in the proof of Proposition 10.2.2 (iii) above
of vectors and matrices, although there is no vector space (nor module): the
reader will be easily convinced that this is only a practical terminology (recall
the special form of the matrices Θj).

10.2.3. Examples of kernels of automatic sequences

The Thue–Morse word, the Rudin-Shapiro word, and the paperfolding word are
2-automatic (see their definitions in Section 10.1.4). Namely their 2-kernels are
finite:

– the definition of the Thue–Morse word (un)n≥0 shows that u2n = un and
u2n+1 = 1 + un for every n ≥ 0; hence the 2-kernel of the Thue–Morse word is

K(2, (un)n) = {(un)n≥0, (1 + un)n≥0};

one deduces that the n-th term (starting from index 0) of the Thue–Morse word
is 0 if the sum of the binary digits of n is even, and 1 if this sum is odd;

– the property of the Rudin-Shapiro word (vn)n≥0 that vn = (−1)a(n), where
a(n) counts the number of possibly overlapping blocks 11 in the binary expansion
of the integer n, shows that v2n = vn, v4n+1 = vn, v4n+3 = −v2n+1, for every
n ≥ 0; hence the 2-kernel of the Rudin-Shapiro word is

K(2, (vn)n) = {(vn)n≥0, (v2n+1)n≥0, (−vn)n≥0, (−v2n+1)n≥0};
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denoting by a(n) the number of (possibly overlapping) blocks 11 in the binary
expansion of n, one deduces that the n-th term of the Rudin-Shapiro word is
equal to (−1)a(n);

– since the regular paperfolding word (zn)n≥0 satisfies z4n = 0, z4n+2 = 1,
z2n+1 = zn for every n ≥ 0, its 2-kernel is

K(2, (zn)n) = {0, 1, (zn)n≥0, (z2n)n≥0}.

10.2.4. Properties of automatic sequences

We give below some properties, in particular closure properties, of automatic
sequences.

Proposition 10.2.4. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence on the alphabet A. Then the sequences (uqn)n≥0 and (uqn−1)n≥0 are
periodic from some point on.

Proof. We prove only the second assertion, the first one is proved analogously.
Since the d-kernel of the sequence (un)n≥0 is finite (Proposition 10.2.2), the set of
subsequences {(uqkn+qk−1)n≥0, k ≥ 0}, is finite. In particular there exist k ≥ 0
and j ≥ 1 such that the sequences (uqkn+qk−1)n≥0 and (uqk+jn+qk+j−1)n≥0

are equal. In other words, the sequences (uqkn−1)n≥1 and (uqk+jn−1)n≥1 are
equal. Replacing n by qjn, q2jn, ..., shows that the sequences (uqkn−1)n≥1 and
(uqk+αjn−1)n≥1 are equal for all α ≥ 0. Taking n = 1 concludes the proof.

Proposition 10.2.5.
Let d ≥ 2 be an integer. Let (un)n≥0 and (vn)n≥0 be two d-automatic

sequences defined respectively on the alphabets A and B. Then the sequence
(un, vn)n≥0 defined on the alphabet A× B is d-automatic.

Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic sequence defined on
the alphabet A. Let B be an alphabet and f be a map f : A → B. Then the
sequence (f(un))n≥0 is d-automatic.

Proof. The proofs of both assertions are straightforward using the characteriza-
tion of automatic sequences given in Proposition 10.2.2.

Proposition 10.2.6. Let (un)n≥0 be a sequence on the alphabet A that is
ultimately periodic (i.e., periodic from some point on). Then, the sequence
(un)n≥0 is d-automatic for every d ≥ 1.

Proof. Since the sequence (un)n≥0 is ultimately periodic, there exist two integers
n0 ≥ 0 and T > 1, such that ∀n ≥ n0, un+T = un. Now, for d ≥ 2, take a
sequence in the d-kernel of (un)n≥0, say (udkn+")n≥0, with k ≥ 0 and % ∈
[0, dk − 1]. We have for all n ≥ n0

udk(n+T )+" = udkn+"+dkT = udkn+".
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In other words all sequences (vn)n≥0 in K(d, (un)n) satisfy ∀n ≥ n0, vn+T = vn.
Hence the d-kernel of (un)n≥0 is finite with at most (CardA)n0+T elements.

Proposition 10.2.7. Let (un)n≥0 be a d-automatic sequence defined on the
alphabet A. Then

(i) for all a, b ∈ N, the sequence (uan+b)n≥0 is d-automatic;
(ii) the sequence (vn)n≥0 defined by v0 = a ∈ A and vn = un−1 for all n ≥ 1,

is d-automatic.

Proof. (i) We may assume, from Proposition 10.2.6, that a ≥ 1. The d-kernel
K(d, (un)n) of the sequence (un)n≥0 is finite. Let

K(d, (un)n) := {(u(1)
n )n≥0, (u(2)

n )n≥0, . . . , (u(t)
n )n≥0},

with (u(1)
n )n≥0 = (un)n≥0. Let us then define the set L of sequences by

L := {(u(i)
an+b′)n≥0, i ∈ [1, t], b′ ∈ [0, a + b − 1]}.

The set L is clearly finite with at most t(a + b) elements. It thus suffices
to prove that the d-kernel of the sequence (uan+b)n≥0 is a subset of L. Let
(ua(dkn+")+b)n≥0 be a sequence in the d-kernel of (uan+b)n≥0, where k ≥ 0 and
% ∈ [0, dk − 1]. We write a% + b = xdk + y, with y ∈ [0, dk − 1]. Thus,

ua(dkn+")+b = udk(an+x)+y = u(i)
an+x

for some i that does not depend on n. Furthermore we have

xdk ≤ xdk + y = a% + b ≤ a(dk − 1) + b < adk + b ≤ (a + b)dk.

Hence x < a + b, and the sequence (ua(dkn+")+b)n≥0 belongs to L.

(ii) Let us write, as above, the (finite) d-kernel of the sequence (un)n≥0 as

K(d, (un)n) := {(u(1)
n )n≥0, (u(2)

n )n≥0, . . . , (u(t)
n )n≥0},

with (u(1)
n )n≥0 = (un)n≥0. Let us then define t sequences (v(i)

n )n≥0, i ∈ [1, t], by:
v(i)
0 := a and v(i)

n := u(i)
n−1 for n ≥ 1. Note that (v(1)

n )n≥0 = (vn)n≥0. Consider
the (finite) set M defined by

M := {(u(1)
n )n≥0, (u(2)

n )n≥0, . . . , (u(t)
n )n≥0, (v(1)

n )n≥0, (v(2)
n )n≥0, . . . , (v(t)

n )n≥0}.

It suffices to prove that K(d, (vn)n) ⊂ M. Let (vdkn+")n≥0 with k ≥ 0 and
% ∈ [0, dk − 1] be an element of K(d, (vn)n).

• If % ≥ 1, then, vdkn+" = udkn+("−1). Since (%−1) ∈ [0, dk−1], the sequence
(udkn+("−1))n≥0 is equal to (u(i)

n )n≥0 for some i ∈ [1, t] hence it belongs to M.

Version June 23, 2004



492 Words in Number Theory

• If % = 0, then (vdkn+")n≥0 = (vdkn)n≥0. If n ≥ 1, let m = n − 1 ≥ 0. We
have:

vdkn = udkn−1 = udkm+dk−1 = u(i)
m = u(i)

n−1

for some i that does not depend on n. Hence

vdkn =
{

a if n = 0
u(i)

n−1 if n ≥ 1

}
= v(i)

n .

Remark 10.2.8. This proposition implies in particular, using (i), that shifting
a d-automatic sequence gives a d-automatic sequence. Using this remark and
(ii) shows that finite modifications of a d-automatic sequence give a d-automatic
sequence.

Proposition 10.2.9. Let d ≥ 2 be an integer. Let (un)n≥0 be a sequence on
an alphabet A, such that there exists a ∈ N \ {0} for which all subsequences
(uan+b)n≥0 are d-automatic, for b ∈ [0, a − 1]. Then the sequence (un)n≥0 is
d-automatic.

Proof. In order to prove that the d-kernel of the sequence (un)n≥0 is finite, it
suffices to prove that the set of sequences of the form (udk(an+b)+")n≥0 for k ≥ 0,
% ∈ [0, dk − 1] and b ∈ [0, a − 1] is finite: namely interspersing these sequences
produces the sequences (udkn+")n≥0 for k ≥ 0, % ∈ [0, dk − 1].

Now, for k ≥ 0, % ∈ [0, dk − 1], and b ∈ [0, a − 1], let dkb + % = ar + s with
s ∈ [0, a − 1]. This implies

ar ≤ ar + s = dkb + % ≤ dkb + dk − 1 < dk(b + 1) ≤ dka

hence r ∈ [0, dk − 1]. Then, for n ≥ 0,

udk(an+b)+" = ua(dkn+r)+s.

This shows that the sequence (udk(an+b)+")n≥0 belongs to the d-kernel of the
sequence (uan+s)n≥0, hence to the (finite) set

⋃

s∈[0,a−1]

K(d, (uan+s)n).

Corollary 10.2.10. Let (un)n≥0 be a sequence defined on the alphabet A.
Let d ≥ 2 be an integer. Then the following properties are equivalent:

(i) the sequence (un)n≥0 is d-automatic;

(ii) there exists an integer α ≥ 1 such that the sequence (un)n≥0 is dα-
automatic;

(iii) for every integer α ≥ 1 the sequence (un)n≥0 is dα-automatic.
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Proof. The implication (iii) ⇒ (ii) is trivial. Furthermore, we clearly have, for
any integer α ≥ 1, the inclusion K(dα, (un)n) ⊂ K(d, (un)n), which shows that
(i) ⇒ (iii).

It remains to prove that (ii) ⇒ (i). Suppose that the sequence (un)n≥0 is
dα-automatic, for some α ≥ 1. If α = 1 we are done. Hence we can suppose
that α ≥ 2. Define d′ := dα−1. Fix j ∈ [0, d′ − 1], and define the sequence
(vn)n≥0 by: vn := ud′n+j . This sequence (vn)n≥0 is d-automatic: namely for
each i ∈ [0, d−1] we have vdn+i = ud′dn+d′i+j = udαn+d′i+j , hence the sequence
(vdn+i)n≥0 belongs to the finite set K(dα, (un)n) (note that d′i + j ≤ dα − 1).
Applying now Proposition 10.2.9 with a = d′ − 1 ends the proof.

Corollary 10.2.11. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence defined on the alphabet A. Let B be an alphabet and let h be a
uniform morphism h : A∗ → B∗. Then the sequence (h(un))n≥0 is d-automatic.

Proof. We recall that the morphism h is extended by continuity to infinite
sequences. Let suppose that the length of the morphism h is d′. Hence, for each
letter e ∈ A, the word h(e) can be written as h(e) = αe,0αe,1 · · ·αe,d′−1. We
define the maps hi : A → A, i ∈ [0, d′ − 1], by: for each e ∈ A, hi(e) := αe,i.

We thus can write the sequence (h(un))n≥0 as

h0(u0)h1(u0) . . . hd′(u0)h0(u1)h1(u1) . . . hd′(u1) . . .

In other words we have, for all n ≥ 0 and for all i ∈ [0, d′ − 1],

ud′n+i = hi(un).

But the sequences (hi(un))n≥0, for i ∈ [0, d′−1] are d-automatic, from Proposi-
tion 10.2.5, hence the sequence (un)n≥0 is d-automatic from Proposition 10.2.9.

Proposition 10.2.12. Let d ≥ 2 be an integer. Let (un)n≥0 and (vn)n≥0 be
two d-automatic sequences defined on the alphabet A.

(i) If A is a module over a commutative ring R, then the sequences ((u +
v)n)n≥0 := (un + vn)n≥0 and ((xu)n)n≥0 := (xun)n≥0, where x ∈ R, are d-
automatic.

(ii) If A is a finite commutative ring, then the (ordinary) product of the
sequences (un)n≥0 and (vn)n≥0, i.e., the sequence ((uv)n)n≥0 := (unvn)n≥0 is
d-automatic.

(iii) If A is a finite commutative ring, then the Cauchy product of the
sequences (un)n≥0 and (vn)n≥0, i.e., the sequence (

∑
0≤j≤n ujvn−j)n≥0, is d-

automatic.
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Proof. Assertions in (i) and (ii) are easy consequences of Propositions 10.2.5 and
10.2.6. Let us prove assertion (iii). Let k ≥ 0 and % ∈ [0, dk − 1]. We first note
that, for n ≥ 1, writing any i ∈ [0, dkn + %] as i = dkm + j, with j ∈ [0, dk − 1],
we have

dkm ≤ dkm + j = i ≤ dkn + % ≤ dkn + dk − 1 < dk(n + 1).

This implies m < n + 1, hence m ≤ n. Hence the inclusion

[0, dkn + %] ⊂ {dkm + j, m ≤ n − 1, 0 ≤ j ≤ dk − 1} ∪ {dkn + j, j ∈ [0, %]}.

The reverse inclusion is clear, hence

[0, dkn + %] = {dkm + j, m ≤ n − 1, 0 ≤ j ≤ dk − 1} ∪ {dkn + j, j ∈ [0, %]}.

This equality clearly implies

[0, dkn+%] = {dkm+j, m ≤ n−1, % ≤ j ≤ dk−1}∪{dkm+j, m ≤ n, j ∈ [0, %]}.

Now let us consider our two d-automatic sequences and let us take an element
in the d-kernel of the sequence (

∑
0≤i≤n uivn−j)n≥0, i.e., let k ≥ 0 and % ∈

[0, dk − 1], then ∑

0≤i≤dkn+"

uivdkn+"−i = S1(n) + S2(n)

where

S1(n) :=
∑

"<j≤dk−1




∑

0≤m≤n−1

udkm+jvdkn+"−dkm−j





and

S2(n) :=
∑

0≤j≤"




∑

0≤m≤n

udkm+jvdkn+"−dkm−j



 .

Writing S1(n), for n ≥ 1, as

S1(n) :=
∑

"<j≤dk−1




∑

0≤m≤n−1

udkm+jvdk(n−1−m)+dk+"−j





we see that, for n ≥ 1, S1(n) is a finite sum of sequences of the type
∑

0≤m≤n−1

u(r)
m v(s)

n−1−m

where the sequence (u(r)
n )n≥0 (resp. (v(s)

n )n≥0) belongs to the d-kernel of the
sequence (un)n≥0 (resp. to the d-kernel of the sequence (vn)n≥0).
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We also see that S2(n) is a finite sum of sequences of the type
∑

0≤m≤n

u(r)
m v(s)

n−m

where the sequence (u(r)
n )n≥0 (resp. (v(s)

n )n≥0) belongs to the d-kernel of the
sequence (un)n≥0 (resp. to the d-kernel of the sequence (vn)n≥0).

Hence the sequence (S1(n) + S2(n))n≥1 belongs to a finite set of sequences.
Since S1(0) + S2(0) can take only finitely many values, we are done.

10.2.5. A density property for “automatic” sets of integers

This section is devoted to proving a density property of sets of integers defined
by automatic sequences. Before stating it we need two definitions and a lemma.

A subset M of the integers is said to have a density if the limit

lim
x→∞

1
x

Card{n ≤ x, n ∈ M}

exists. The value of this limit is called the density of the set M.
A factor w of an infinite word x is said to have a density if the set of indices

of occurrence of this factor in x admits a density, that is, if the limit of the
number of occurrences of this factor in the first k terms of the word divided by
k exists. The value of this limit, that we denote by π(w), is called the probability
(or the frequency) of occurrence of the factor w in x.

The following lemma is a direct consequence of the Perron–Frobenius theo-
rem (for more details, see Section 1.7.2).

Lemma 10.2.13. Let M be a positive stochastic matrix, i.e., such that all its
entries are nonnegative and all the entries in any column sum up to 1. Then the
sequence of matrices Mn converges and all the entries in the limit are rational
numbers.

Let h be a morphism on the alphabet C := {c1, c2, · · · ct}. The incidence
matrix (also called the transition matrix or substitution matrix) of h is the
t × t-matrix M = (Mij)i,j defined by

Mij = |h(cj)|ci := number of occurrences of ci in h(cj).

Remark 10.2.14. The incidence matrix is the transpose of the matrix intro-
duced in Section 1.8.6. If the incidence matrix of h is M , it is easy to see that
the incidence matrix for hn is Mn. If h is a d-morphism, it is clear that the
entries in any column of its incidence matrix M sum up to d. We introduce
this matrix also in this chapter in order to deduce probabilities of occurrence of
letters.
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Proposition 10.2.15. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence on the set A. Let a belongs to A. If the set {n ≥ 0, un = a} has a
density, this density (which is the probability π(a) of occurrence of the letter a)
must be a rational number.

Proof. Since the sequence (un)n≥0 is d-automatic, there exists an alphabet C,
a sequence (vn)n≥0 on C, a d-morphism h : C∗ → C∗, and a map ϕ : C → A
such that: the sequence (vn)n≥0 is a fixed point of the d-morphism h, and for
all n ≥ 0, one has un = ϕ(vn).

We first note that, for each letter c ∈ C the limit

lim
n→∞

1
dn

Card{m ≤ dn − 1, vm = c}

exists. Namely, let M = (Mij)i,j be the incidence matrix of the d-morphism h,
and let Mn = (M (n)

ij )i,j . Then

1
dn

Card{m ≤ dn − 1, vn = c} =
1
dn

|hn(v0)|c =
M (n)

ij

dn
for some i, j.

Since the matrix M/d is clearly positive and stochastic, Proposition 10.2.15

shows that limn→∞
M

(n)
ij

dn exists and is rational. Hence, if C′ = ϕ−1(a) is the
subset of C consisting of the elements of C whose image by ϕ is equal to a, the
limit

lim
n→∞

1
dn

Card{m ≤ dn − 1, um = a}

is the sum over C′ of rational numbers, hence a rational number itself. Since
the density of the set {m, um = a} exists, it must be equal to the previous
quantity, hence rational.

10.3. Christol’s algebraic characterization of automatic se-
quences

10.3.1. Formal power series

We recall that the ring K[[X ]] of formal power series with coefficients in a field
K is defined by

K[[X ]] :=





∑

n≥0

unXn, un ∈ K




 ,

where addition and multiplication of the series F :=
∑

n≥0 unXn and G :=∑
n≥0 bnXn are defined by

F + G :=
∑

n≥0

(un + bn)Xn, FG :=
∑

n≥0




∑

i+j=n

uibj



Xn.
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The ring K[[X ]] is a subring of the field K((X)) of formal Laurent series

K((X)) :=





∑

n≥−n0

unXn, n0 ∈ Z, un ∈ K




 ,

where addition and multiplication are defined analogously.

Note that the field of rational functions K(X) is a subfield of K((X)). Hence
we can define algebraicity over K(X) for an element belonging to K((X)).

The formal power series F = F (X) =
∑

n≥−n0
unXn is said to be algebraic

(over the field K(X)), if there exist an integer d ≥ 1 and polynomials A0(X),
A1(X), . . ., Ad(X), with coefficients in K and not all zero, such that

A0 + A1F + A2F
2 + · · · + AdF

d = 0.

Remark 10.3.1.

• Any element of K(X) is algebraic over K(X).

• The sum and product of algebraic elements are algebraic.

• Let F =
∑

n≥−n0
unXn be an algebraic power series. Its derivative F ′ :=∑

n≥−n0
nunXn−1 is also algebraic. Namely take an equation as above

with minimal degree d.

A0 + A1F + A2F
2 + · · · + AdF

d = 0.

Taking the derivative gives

A′
0 + A′

1F + A′
2F

2 + · · · + A′
dF

d + F ′(A1 + 2A2F + · · · + dAdF
d−1).

The coefficient of F ′ cannot be zero (d is minimal and the Aj ’s are not
all zero). Hence F ′ is the quotient of two elements that are algebraic over
K(X), thus it is algebraic over K(X).

10.3.2. A simple example

Let F (X) :=
∑

n≥0 unXn where (un)n≥0 is the Thue–Morse sequence. We have

F (X) =
∑

n≥0

u2nX2n +
∑

n≥0

u2n+1X
2n+1 =

∑

n≥0

unX2n + X
∑

n≥0

(un + 1)X2n

= F (X2) + XF (X2) + X
1

1 − X2
.

Hence we have, over the two-element field F2,

(1 + X)3F (X)2 + (1 + X)2F (X) + X = 0.

In other words the series F (X) is algebraic (actually quadratic) over the field
F2(X).
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10.3.3. Christol’s theorem

The example given in Section 10.3.2 above is actually a particular case of a
general property of algebraic formal power series over a finite field Fq(X), which
is a characterization of these series. We begin with a definition and a lemma.

Let q = pt be a positive power of a prime integer p. Let Fq be the finite
field of cardinality q (the characteristic of Fq is p). For 0 ≤ r < q, we define the
linear map λr on Fq[[X ]] by

if F = F (X) =
∑

i≥0

uiX
i, then λr(F ) :=

∑

i≥0

uqi+rX
i.

Lemma 10.3.2. Let A = A(X) and B = B(X) be two formal power series in

Fq[[X ]]. Then A =
∑

0≤r<q

Xrλr(A)q, and λr(AqB) = Aλr(B).

Proof. The proof is left to the reader who might want to remember that we
have in Fq[[X ]] the equality

(
∑

n≥0

unXn)q =
∑

n≥0

unXqn.

We will also need a proposition proving that, in positive characteristic, any
algebraic formal power series satisfies a “special” algebraic equation.

Proposition 10.3.3. Let p be a prime number, let α ≥ 1 be an integer, and
q := pt. Let F (X) be a formal power series with coefficients in Fq. Then F is
algebraic over Fq(X) if and only if there exist polynomials B0(X), . . . , Bt(X) in
Fq[X ] not all equal to zero, such that

B0F + B1F
q + B2F

q2
+ · · · + BtF

qt

= 0.

Furthermore we can suppose that B0 '= 0.

Proof. If the formal power series F (X) satisfies

B0F + B1F
q + B2F

q2
+ · · · + BtF

qt

= 0,

where the polynomials Bj(X) are not all equal to zero, then F is clearly algebraic
over Fq(X). Now, if F is algebraic, the series F , F q, F q2

, . . ., cannot be all
linearly independent. Hence there exists a nontrivial linear relation

B0F + B1F
q + B2F

q2
+ · · · + BtF

qt

= 0.

Let us prove that there exists such a relation with B0 '= 0. Suppose that

B0F + B1F
q + B2F

q2
+ · · · + BtF

qt

= 0
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with t minimal, and let j be the smallest non-negative integer such that Bj '= 0.
We will prove that j = 0. Since

Bj =
∑

0≤r<q

Xr(λr(Bj))q

by Lemma 10.3.2, it follows that there exists r with λr(Bj) '= 0. Now, since∑
j≤i≤t BiF (X)qi

= 0, we have

∑

j≤i≤t

λr(BiF
qi

) = 0

and, using (10.3.2), we see that, if j '= 0, then
∑

j≤i≤t

λr(Bi)F qi−1
= 0,

which gives a new relation with the coefficient of F qj−1 '= 0, a contradiction,
hence j = 0. We thus have the relation

∑

0≤i≤t

BiF
qi

= 0,

with B0 '= 0.

We now state Christol’s theorem.

Theorem 10.3.4. Let A be a non-empty alphabet, and let (un)n≥0 be a se-
quence of elements of A. Let p be a prime number. Then the sequence (un)n≥0

is p-automatic if and only if there exists an integer α ≥ 1 and an injective map
ι : A → Fpα such that the formal power series

∑
n≥0 ι(un)Xn is algebraic over

Fpα(X).

Proof. Let us first suppose that the sequence (un)n≥0 is p-automatic. Choose
α such that |A| ≤ pα, and choose an injective map ι : A → Fpα . Up to
notations we may suppose that A ⊂ Fpα and that ι is the identity map. We
thus want to prove that the formal power series

∑
n≥0 unXn is algebraic over

Fpα [X ]. Since the sequence (un)n≥0 is p-automatic, it is also pα-automatic from
Corollary 10.2.10. Hence K(pα, (un)n) is finite, say

K(pα, (un)n) = {(u(1)
n )n≥0, (u(2)

n )n≥0, · · · , (u(t)
n )n≥0}

with (u(1)
n )n≥0 = (un)n≥0. Let us define

Fj(X) :=
∑

n≥0

u(j)
n Xn for j in [1, t].
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Then, for j such that 1 ≤ j ≤ t, we have

Fj(X) =
∑

0≤r≤pα−1




∑

m≥0

u(j)
pαm+rX

pαm+r



 =
∑

0≤r≤pα−1

Xr
∑

m≥0

u(j)
pαm+rX

pαm.

But the sequence (u(j)
pαm+r)m≥0 is one of the sequences (u(i)(m))m≥0, hence

Fj(X) is a linear combination, with coefficients in the field Fpα(X), of the
power series Fi(Xpα

). In other words, for all j ∈ [1, t], the formal power series
Fj(X) belongs to the Fpα(X)-vector space generated by the t series Fi(Xpα

),
i ∈ [1, t]:

Fj(X) ∈ 〈F1(Xpα

), F2(Xpα

), . . . , Ft(Xpα

)〉.
This implies that for all j ∈ [1, t]

Fj(Xpα

) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉,

and thus that for all j ∈ [1, t]

Fj(X) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉.

Hence, for all j ∈ [1, t],

Fj(X) and Fj(Xpα

) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉.

This implies that, for all j ∈ [1, t],

Fj(Xpα

) and Fj(Xp2α

) ∈ 〈F1(Xp3α

), F2(Xp3α

), . . . , Ft(Xp3α

)〉.

Hence, for all j ∈ [1, t],

Fj(X), Fj(Xpα

) and Fj(Xp2α

) ∈ 〈F1(Xp3α

), F2(Xp3α

), . . . , Ft(Xp3α

)〉.

Iterating, we have, for all j ∈ [1, t] and for all k ∈ [0, t],

Fj(Xpkα

) ∈ 〈F1(Xp(t+1)α
), F2(Xp(t+1)α

), . . . , Ft(Xp(t+1)α
)〉.

But the dimension of a finitely generated vector space is at most the number of
its generators. Hence the dimension of the Fpα(X)-vector space

〈F1(Xp(t+1)α
), F2(Xp(t+1)α

), . . . , Ft(Xp(t+1)α
)〉

is at most t. Hence for any j ∈ [1, t], there must exist a nontrivial linear relation
between the formal power series

Fj(X), Fj(Xpα

), . . . , Fj(Xptα

)

over Fpα(X). Taking j = 1, and remembering that Fj(Xpkα
) = F pkα

j (X) (the
ground field is Fpα) this gives that F (X) = F1(X) =

∑
n≥0 u(1)

n Xn is algebraic
over Fpα(X).
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Let us now suppose that there exist an integer α ≥ 1 and an injective map
ι : A → Fpα such that the formal power series

∑
n≥0 ι(un)Xn is algebraic

over Fpα(X). The sequence (un)n≥0 is p-automatic if and only if the sequence
(ι(un))n≥0 is p-automatic. Up to renaming we can suppose that A ⊂ Fpα and
that the formal power series F :=

∑
n≥0 unXn is algebraic over Fpα(X). Then,

from Proposition 10.3.3, there exist polynomials B0(X), . . . , Bt(X) with B0 '= 0
such that ∑

0≤i≤t

Bi(X)F (X)qi

= 0.

Define G = G(X) := F (X)
B0(X) . Then

∑

0≤i≤t

Bi(X)B0(X)qi

G(X)qi

= 0,

i.e.,

G(X) =
∑

1≤i≤t

Ci(X)G(X)qi

where Ci(X) := −Bi(X)Bqi−2
0 (X).

Now let N = max(deg B0, max{deg Ci}), and define H by

H :=




H ∈ Fpα [[X ]], H =
∑

0≤i≤t

DiG
qi

with Di ∈ Fpα [X ] and deg Di ≤ N




 .

It is clear that H is a finite set and that F = B0G belongs to H. We now prove
that H is mapped into itself by λr. Let H ∈ H. Then

λr(H) = λr



D0G +
∑

1≤i≤t

DiG
qi



 = λr




∑

1≤i≤t

(D0Ci + Di)Gqi





=
∑

1≤i≤t

λr(D0Ci + Di)Gqi−1
.

Since deg D0, deg Di, deg Ci ≤ N , we have deg(D0Ci + Di) ≤ 2N , and hence

deg(λr(D0Ci + Di)) ≤
2N

q
≤ N.

Hence H is a finite set that contains F and that is stable under the maps
λr for r ∈ [0, pα − 1]. This clearly implies that the pα-kernel of the sequence
(un)n≥0 is finite. The sequence (un)n≥0 is thus pα-automatic, hence p-automatic
(Corollary 10.2.10).
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10.4. An application to transcendence in positive charac-
teristic

The Christol theorem is a combinatorial criterion that can be used as a tool to
prove the transcendence of formal power series over a finite field. We give here
an automata-based proof of transcendence for the Carlitz formal power series
Π.

Let p be a prime number. Let α be an integer ≥ 1 and let q := pα. The
Carlitz formal power series Πq is defined by

Πq :=
∏

k≥1

(
1 − Xqk − X

Xqk+1 − X

)
.

Remark 10.4.1. Note that Πq belongs to Fq((X−1)).

Theorem 10.4.2. The formal power series Πq is transcendental over the field
Fq(X).

Proof. We first compute Π′
q/Πq, where Π′

q is the derivative of Πq (with respect
to X). It is easy to obtain:

Π′
q

Πq
=




∑

k≥1

1
Xqk − X



− 1
Xq − X

.

If Πq were algebraic over Fq(X), then Π′
q would also be algebraic in view of

Remark 10.3.1. Hence Π′
q/Πq would be algebraic. Since 1/(Xq −X) is rational,

this would imply that
∑

k≥1
1

Xqk−X
would be algebraic over Fq(X). We then

write

∑

k≥1

1
Xqk − X

=
1
X

∑

k≥1

1
Xqk−1

∑

n≥0

(
1
X

)n(qk−1)

=
1
X

∑

k≥1
n≥0

(
1
X

)(n+1)(qk−1)

=
1
X

∑

k≥1
n≥1

(
1
X

)n(qk−1)

=
1
X

∑

m≥1

(
1
X

)m

c(m),

where
c(m) :=

∑

k,n≥1
n(qk−1)=m

1 =
∑

k≥1
qk−1|m

1 =
∑

k≥1
qk−1|m

1.

We then note that Fq(X) = Fq(X−1). Hence, replacing X by X−1 in Christol’s
theorem, we see that the algebraicity of Πq would imply the q-automaticity of
the sequence (c(m))m≥1.
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Now, if the sequence (c(m))m≥1 were q-automatic, then the subsequence
(c(qn − 1))n≥0 would be ultimately periodic by Proposition 10.2.4. But

c(qn − 1) =
∑

k≥1
qk−1|qn−1

1 =
∑

k≥1
k|n

1 = d(n)

by Problem 10.4.1, where d(n) is the number of positive integral divisors of n.
Since q = pk for some k ≥ 1, where p is a prime, we would have that

(d(n) mod p)n≥1 is ultimately periodic. Hence there would exist integers t ≥
1, n0 ≥ 0 such that, for all n ≥ n0 and k ≥ 1,

d(n + kt) ≡ d(n) (mod p).

Take k = nk′. Then

d(n(1 + k′t)) ≡ d(n) (mod p)

for all k′ ≥ 1. Now by Dirichlet’s theorem we can find k′ ≥ 1 such that
p′ = 1 + k′t is a prime. Take n = p′. We get

d(p′2) ≡ d(p′) (mod p)

and hence 3 ≡ 2 (mod p), hence the desired contradiction.

10.5. An application to transcendental power series over
the rationals

We recall the following definition.
A word w on the alphabet A is called primitive if it cannot be written as

w = vα for some word v in A and some integer α ≥ 2.

Proposition 10.5.1. Let ψk(n) be the number of primitive words of length
n over the alphabet A with CardA = k ≥ 2. Then the formal power series
R(X) =

∑
k≥1 ψk(n)Xn is transcendental over Q(X).

Proof. We recall that ψk(n) =
∑

d|n µ(d)kn/d, where µ is the Möbius function
(see Problem 10.5.1). If the series R(X) =

∑
k≥1 ψk(n)Xn were algebraic over

Q(X), then the series R̃(X) :=
∑

n≥1
ψk(n)

k Xn would also be algebraic over
Q(X). Thus (note that the number ψk(n)

k is an integer for every n ≥ 1) for any
prime number p the series

R̃p(X) =
∑

n≥1

(
ψk(n)

k
mod p)Xn
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would be algebraic over the field Fp(X) from Problem 10.5.2. Take any prime
number p dividing k (recall that k ≥ 2). We see that ψk(n)/k ≡ µ(n) mod p.
Hence the series ∑

n≥1

(µ(n) mod p)Xn

would be algebraic over Fp(X). It follows, using Theorem 10.3.4. that the
sequence (µ(n) mod p)n≥0 would be p-automatic. From Proposition 10.2.15
this implies that, if the set

{n ≥ 1, µ(n) ≡ 0 mod p} = {n ≥ 1, µ(n) = 0}

has a density, this density would be rational. But this set has a density equal
to 1 − 6/π2 (see Problem 10.5.1), which gives the desired contradiction.

Remark 10.5.2. Proposition 10.5.1 and the Chomsky-Schützenberger theo-
rem imply the following result: if the language of primitive words over an al-
phabet of size ≥ 2 is context-free, it must be inherently ambiguous.

10.6. An application to transcendence of real numbers

We will prove in this section a theorem of transcendence (over the rationals) of
real numbers whose base b-expansion is the fixed point of a morphism satisfying
some extra hypotheses. This theorem is a consequence of a combinatorial version
of a theorem of Ridout. We first give Ridout’s theorem without proof.

Theorem 10.6.1. Let ξ '= 0 be a real algebraic number. Let ρ, c1, c2, c3

be positive constants, and let λ and µ satisfy 0 ≤ λ, µ ≤ 1. Let r′, r′′ ≥ 0
be integers, and suppose ω1, ω2, . . . , ωr′+r′′ are finitely many distinct primes.
Assume there exist infinitely many fractions pn/qn such that

∣∣∣∣
pn

qn
− ξ

∣∣∣∣ ≤ c1 |qn|−ρ .

Furthermore, suppose that pn and qn are not zero and can be written in the
form

pn = p′n

r′∏

j=1

ω
ej

j , qn = q′n

r′+r′′∏

j=r′+1

ω
ej

j ,

where the ei are non-negative integers that may depend on n, and the (p′n)’s
and (q′n)’s are positive integers that may depend on n. Finally, suppose that

0 < |p′n| ≤ c2 |pn|λ , 0 < |q′n| ≤ c3 |qn|µ .

for all n ≥ 0. Then
ρ ≤ λ + µ.
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Corollary 10.6.2. Let ξ be an irrational number. Suppose that, for every
integer n ≥ 0, the base-k expansion of ξ begins by 0.UnVnVnV ′

n, where Un

belongs to {0, 1, · · · , k − 1}∗, Vn belongs to {0, 1, · · · , k − 1}+, and the word V ′
n

is a prefix of Vn. Furthermore suppose that limn→∞ |Vn| = ∞, and that there
exist real numbers 0 ≤ α < ∞ and β > 0 such that for all n ≥ 0 we have
|Un| ≤ α|Vn| and |V ′

n| ≥ β|Vn|. Then ξ is a transcendental number.

Proof. Let rn = |Un|, sn = |Vn|, and s′n = |V ′
n|, so, for all n ≥ 0, we have

rn ≤ αsn and s′n ≥ βsn. Define tn to be the rational number whose base-k
expansion is tn = 0.UnVnVnVn · · ·. Hence tn =

pn

krn(ksn − 1)
, for some integer

pn. Note that

|ξ − tn| <
1

krn+2sn+s′
n
.

Now,
sn

rn + sn
≥ 1

1 + α

and
rn + 2sn + s′n

rn + sn
≥ 1 +

1 + β

1 + α
.

Hence there exist two positive real numbers µ, ρ such that

1 +
sn

rn + sn
< 1 + µ < ρ <

rn + 2sn + s′n
rn + sn

for infinitely many n. With this choice of µ and ρ, let us take p′n = pn, λ = 1,
c2 = 1, q′n = ksn − 1. Let us choose the primes ωr′+1, · · · , ωr′+r′′ to be the
prime divisors of k. Finally, defining er′+1, · · · , er′+r′′ by krn =

∏r′+r′′

i=r′+1 ω
ej

j ,
we can apply Ridout’s theorem if ξ were algebraic irrational, and deduce that
ρ ≤ λ + µ, which gives a contradiction. Hence ξ is transcendental. (Note that
the tn’s are not necessarily in their irreducible forms, but there is an infinite
number of them, since the sequence (tn)n converges to ξ, which is irrational
from the hypothesis.)

We deduce a theorem on transcendence of certain “automatic” real numbers.
By abuse of notation with respect to Section 1.2.2, we define here an overlap
as a word of the form wwa where a is the first letter of w (in other words an
overlap is the beginning of a cube just longer than a square).

Theorem 10.6.3. If the expansion of the real number ξ ∈ (0, 1) in some in-
teger base b ≥ 2 is a non-ultimately periodic fixed point of a d-morphism h for
some d ≥ 2, and if furthermore this expansion contains an overlap, then the
number ξ is transcendental.

Proof. We write the base-k expansion of ξ as ξ = 0.UV V a · · ·, where U and
V are finite words, and a is the first letter of V . Since the expansion of ξ

Version June 23, 2004



506 Words in Number Theory

is a fixed point of the d-morphism h, then this expansion also begins with
hn(U)hn(V )hn(V )hn(a) for every n ≥ 1. We can apply the previous corollary
with Un = hn(U), Vn = hn(V ), and V ′

n = hn(a): namely |hn(U)| = dn|U |,
|hn(V )| = dn|V |, and |hn(a)| = dn.

10.7. The Tribonacci word

The aim of this section is to use the Tribonacci word as a guideline to intro-
duce various applications of combinatorics on words and symbolic dynamics to
arithmetics.

10.7.1. Definitions and notation

Let us recall that the Tribonacci word is defined as the fixed point (in the sense
of Remark 10.1.4) of the Tribonacci morphism σ : {1, 2, 3}∗ → {1, 2, 3}∗ defined
on the letters of the alphabet {1, 2, 3} as follows: σ : 1 1→ 12, 2 1→ 13, 3 1→ 1.
Let us observe that the Tribonacci morphism admits a unique one-sided fixed
point u in {1, 2, 3}ω.

The incidence matrix of the Tribonacci morphism σ is Mσ =




1 1 1
1 0 0
0 1 0



. This

matrix is easily seen to be primitive. Hence the Perron–Frobenius theorem
applies (for more details, see Section 1.7.2).

Indeed the characteristic polynomial of Mσ is X3−X2−X−1; this polyno-
mial admits one positive root β > 1 (the dominant eigenvalue) and two complex
conjugates α and α, with |α| < 1; in particular, one has 1/β = αα. Hence β is
a Pisot number, that is, an algebraic integer with all Galois conjugates having
modulus less than 1.

In particular, the incidence matrix Mσ admits as eigenspaces in R3 one
expanding eigenline (generated by the eigenvector with positive coordinates vβ =
(1/β, 1/β2, 1/β3) associated with the eigenvalue β) and a contracting eigenplane
P ; we denote by vα and vα the eigenvectors in C3 associated with α and α,
normalized in such a way that the sum of their coordinates equals 1.

One associates with the Tribonacci word u = (un)n≥0 a broken line starting
from 0 in Z3 and approximating the expanding line vβ as follows. Let us first
introduce the abelianization map f of the free monoid {1, 2, 3}∗ defined by

f : {1, 2, 3}∗ → Z3, f(w) = |w|1e1 + |w|2e2 + |w|3e3,

where |w|i denotes the number of occurrences of the letter i in the word w, and
(e1, e2, e3) denotes the canonical basis of R3. Note that for every finite word w,
we have

f(σ(w)) = Mσf(w).

The Tribonacci broken line is defined as the broken line which joins with seg-
ments of length 1 the points f(u0u1 · · ·uN−1), N ∈ N (see Figure 10.1). In
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other words we describe this broken line by starting from the origin, and then
by reading successively the letters of the Tribonacci word u, going one step in
direction ei if one reads the letter i.

We will see in Section 10.7.3 that the vectors f(u0u1 . . . uN), N ∈ N, stay
within bounded distance of the expanding line, which is exactly the direction
given by the vector of probabilities of occurrence (π(1), π(2), π(3)) of the letters
1, 2, 3 in u. It is then natural to try to represent these points by projecting them
along the expanding direction onto a transverse plane, that we chose here to be
the plane x+y+z = 0. The closure of the set of projected vertices of the broken
line is called the Rauzy fractal and is represented on Figure 10.2. We detail this
construction in Section 10.8.1. We then study the arithmetic and topological
properties of the Rauzy fractal in Section 10.8.2 and 10.8.4, respectively, which
leads to the proof of the main theorem of this section: Theorem 10.8.16 states
that the Tribonacci word codes the orbit of the point 0 under the action of
the toral translation in T2: x 1→ x + ( 1

β , 1
β2 ). We discuss in Section 10.9 some

applications of this theorem to simultaneous approximations: it is proved that
the points of the broken line corresponding to σn(1), n ∈ N, produce best
approximations for the vector ( 1

β , 1
β2 ) for a given norm associated with the

matrix Mσ.

Figure 10.1. The Rauzy broken line.

10.7.2. Numeration in Tribonacci base

We now introduce two numeration systems which will be used to expand here
either natural integers or finite factors of the Tribonacci word.

The sequence of lengths T = (Tn)n≥0 of the words σn(1) is called the se-
quence of Tribonacci numbers. One has T0 = 1, T1 = 2, T2 = 4 and for all
n ∈ N, Tn+3 = Tn+2 + Tn+1 + Tn. Indeed, one has for n ∈ N

σn+3(1) = σn+2(12) = σn+2(1)σn+1(13) = σn+2(1)σn+1(1)σn(1).

Let us observe that this sequence is increasing, and thus tends to infinity.
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Figure 10.2. The Rauzy fractal.

A greedy or normal representation in the system T of a nonnegative integer N
is a finite sequence of digits (εi)0≤i≤k where for all i, εi ∈ {0, 1} and εi+2εi+1εi =
0, εk '= 0 such that

N =
k∑

i=0

εiTi.

Lemma 10.7.1. Every nonnegative integer admits a unique normal T -repre-
sentation.

Proof. Let us first prove the existence of the decomposition by induction. We
consider the following induction property: for any integer 0 ≤ N < Tk (with
k ≥ 1), there exists a decomposition N =

∑k−1
i=0 εiTi, where for all i, εi ∈ {0, 1}

and εi+2εi+1εi = 0. This property holds for k = 1, 2.
Suppose that the induction hypothesis holds for the integer k ≥ 2. Let

Tk ≤ N < Tk+1 = Tk + Tk−1 + Tk−2; we have N − Tk < Tk and by hypothesis,
N −Tk =

∑k−1
i=0 εiTi , hence N = Tk +

∑k−1
i=0 εiTi. Assume that εk−1 = 1. Since

N < Tk+1 = Tk +Tk−1 +Tk−2, then εk−2 = 0, and the property holds for k +1.
The unicity of a normal T -expansion is a direct consequence of the follow-

ing observation: one has
∑k

i=0 εiTi < Tk+1, where for all i, εi ∈ {0, 1} and
εi+2εi+1εi = 0.

This can be easily be proved by induction. Indeed if εk = εk−1 = 1, then
εk−2 = 0 and

∑k
i=0 εiTi = Tk + Tk−1 +

∑k−3
i=0 εiTi. By induction hypothesis,∑k−2

i=0 εiTi < Tk−2 , hence we get that
∑k

i=0 εiTi < Tk + Tk−1 + Tk−2 = Tk+1.

Lemma 10.7.2. Every prefix w of the Tribonacci word u can be uniquely ex-
panded as

w = σn(pn)σn−1(pn−1) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter 1,
pn '= ε, and if pi = pi−1 = 1, then pi−2 = ε; furthermore, |w| admits as normal
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T -representation |w| =
∑k

i=0 εiTi, with εi = 1 if pi = 1, and εi = 0, otherwise.
Conversely every finite word that can be decomposed under this form is a prefix
of the Tribonacci word.

Such a representation is called normal Tribonacci representation.

Proof. The proof works exactly in the same way as the proof of Lemma 10.7.1.
Let us prove by induction on n ≥ 1 that every prefix w of length |w| < |σn(1)|
can be decomposed as

w = σn−1(pn−1)σn−2(pn−2) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn−1 '= ε, and if pi = pi−1 = 1, then pi−2 = 0. The induction property holds
for n = 1, 2.

Let w be a prefix of length at least 4 of the Tribonacci word. Then there
exists a positive integer n ≥ 2 such that |σn(1)| ≤ |w| < |σn+1(1)|. One
has σn+1(1) = σn(1)σn−1(1)σn−2(1). Put pn = 1; put pn−1 = 1, if |w| ≥
|σn(1)| + |σn−1(1)|, and pn−1 = ε, otherwise.

Let v be such that w = σn(pn)σn−1(pn−1)v (v may be equal to the empty
word); v is a prefix either of σn−1(1) or of σn−2(1). If pn−1 = 1, then |v| <
|σn−2(1)|. We conclude by applying the induction hypothesis on v.

The unicity of such an expansion, as well as the corresponding normal T -
representation for |w|, is a direct consequence of the fact that |σn(1)| = Tn and
of the unicity of normal T -representations (Lemma 10.7.1).

Let us prove by induction on n that every finite word of the form

σn−1(pn−1)σn−2(pn−2) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn '= ε, and if pi = pi−1 = 1, then pi−2 = 0, is a prefix of the word σn+1(1).
This property holds for n = 0, 1. Assume that the hypothesis holds for every
integer k ≤ n− 1. Let w = σn(pn)σn−1(pn−1) · · · p0, with the above mentioned
conditions on the “digits” pi (and in particular pn = 1).

One has

σn+1(1) = σn(1)σn(2) = σn(1)σn−1(1)σn−1(3)
= σn(1)σn−1(1)σn−2(1).

Assume pn−1 = 1, then one has pn−2 = ε. By induction hypothesis the
word σn−3(pn−3) · · · p0 is a prefix of σn−2(1), which implies that w is a prefix
of σn(1)σn−1(1)σn−2(1) and thus of σn+1(1).

Assume now pn−1 = ε. Then σn−2(pn−2) · · · p0 is a prefix of σn−1(1), and
w is a prefix of σn+1(1), which ends the proof.

Remark 10.7.3. Such a numeration system on finite factors of the Tribonacci
word can similarly be introduced for fixed points of morphisms in the sense of
Remark 10.1.4 (see Problem 10.7.3).
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10.7.3. Density properties: statistics on letters

Since the Tribonacci morphism is primitive, we know from Section 1.7.2 and
1.8.6 that, by applying the Perron–Frobenius theorem, the letters admit densi-
ties in the Tribonacci word and the vector of probabilities of occurrence of letters
is equal to the normalized positive (right) eigenvector vβ = (1/β, 1/β2, 1/β3)
associated with the dominant eigenvalue β (let us recall that the incidence ma-
trix is the transpose of the matrix introduced in Section 1.8.6). We give below
a direct proof of this result and prove even a stronger result of convergence
towards the probabilities of letters.

Proposition 10.7.4. Each of the letters 1, 2, 3 admits a density in the Tri-
bonacci word. The probabilities of letters are positive. More precisely, the vector
of probabilities (π(1), π(2), π(3)) is equal to the normalized positive eigenvector
vβ = (1/β, 1/β2, 1/β3) associated with the dominant eigenvalue β of the inci-
dence matrice of the Tribonacci morphism. Furthermore, there exists C > 0
such that

∀N, | |u0u1 · · ·uN−1|i − π(i)N | ≤ C.

Proof. Let u0u1 · · ·uN−1 be a prefix of the Tribonacci word; according to Lemma
10.7.2, let us decompose it as

u0 · · ·uN−1 = σn(pn)σn−1(pn−1) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn '= ε, and if pk = pk−1 = 1, then pk−2 = 0. Then for i = 1, 2, 3

|u0 · · ·uN−1|i =< f(u0 · · ·uN−1), ei >,

where < > denotes the Hermitian scalar product in C3.
Let us write e1 = aβvβ + aαvα + aαvα, where aβ, aα, aα ∈ C. We have

f(σk(1)) = Mk
σe1 = aββkvβ + aααkvα + aααkvα.

Furthermore,

f(u0 · · ·uN−1) =
n∑

k=0

f(σk(pk)),

which implies for i = 1, 2, 3

|u0 · · ·uN−1|i = aβ(
∑n

k=0 |pn|βk) < vβ , ei > +aα(
∑n

k=0 |pn|αk) < vα, ei > +
+aα(

∑n
k=0 |pn|αk) < vα, ei > .

Let us recall that |α| < 1. We have proved that the vectors f(σk(1)) converge
exponentially fast to the expanding line, whereas the vectors f(u0 · · ·uN−1) stay
within bounded distance of this line (Figure 10.1).

One has

N =
∑

i=1,2,3 |u0 · · ·uN−1|i
= aβ

∑n
k=0 |pn|βk + aα

∑n
k=0 |pn|αk + aα

∑n
k=0 |pn|αk,
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since < vβ , e1 + e2 + e3 >=< vα, e1 + e2 + e3 >=< vα, e1 + e2 + e3 >= 1,
according to our conventions of normalization.

Hence there exists C > 0 such that

∀i = 1, 2, 3, | < f(u0 · · ·uN−1), ei > −N < vβ , ei > | ≤ C,

which implies in particular that < vβ , ei >= π(i) = 1/βi, i = 1, 2, 3.

Remark 10.7.5. Proposition 10.7.4 holds more generally for Pisot morphisms
(Problem 10.7.4) and is strongly connected to the balance properties of their
fixed points (Problem 10.7.5). Let us observe that the statement in Proposition
10.7.4 is stronger than Assertion 5 of the Perron–Frobenius theorem.

10.8. The Rauzy fractal

10.8.1. A discrete approximation of the line

The Tribonacci broken line stays within a bounded distance of the expanding line
(Proposition 10.7.4 and Figure 10.1). Let us project its vertices f(u0 · · ·uN−1)
along the expanding direction vβ , in order to obtain in particular some infor-
mation on the quality of approximation of the expanding line by the points
f(σk(1)), k ∈ N. We thus choose here to project onto the plane x + y + z = 0;
this allows us to express the coordinates of the projected points in the basis
(e3 − e1, e2 − e1) of the plane x + y + z = 0 in terms of the convergence to-
wards the probabilities of occurrence of the letters, as explained below (Equation
(10.8.1)).

Let π0 denote the projection in R3 onto the plane P0 of equation x+y+z = 0
along the expanding line generated by the vector vβ . One has

∀P = (x, y, z) ∈ R3, π0(P ) = (x, y, z)− < (x, y, z), (1, 1, 1) > vβ ,

that is,

π0(P ) = (
1
β

(x + y + z) − x)(e3 − e1) + (
1
β2

(x + y + z) − y)(e3 − e2).

In particular, if P = f(u0 · · ·uN−1), for some N ∈ N, then

π0(P ) = (
N

β
− |u0 · · ·uN−1|1)(e3−e1)+(

N

β2
− |u0 · · ·uN−1|2)(e3−e2). (10.8.1)

We define the set R as the closure of the projections of the vertices of the
Tribonacci broken line:

R := {π0(f(u0 . . . uN−1)); N ∈ N},

where u0 . . . uN−1 stands for the empty word when N = 0. The set R is called
the Rauzy fractal associated with the Tribonacci morphism σ (see Figure 10.2).

We now introduce a lattice in the plane P0 which will play a key rôle in the
following. Let L0 := Z3 ∩P0; L0 is equal to the lattice Z(e3 − e1) + Z(e3 − e2).
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Proposition 10.8.1. The set R is compact. The translates of the Rauzy
fractal by the vectors of the lattice L0 cover the contracting plane P0, that is,

∪γ∈L0(R + γ) = P0. (10.8.2)

The interior of R is not empty.

Proof. We first deduce from (10.8.1) and Proposition 10.7.4 that the Rauzy
fractal is bounded, and hence compact.

We then need the following lemma to prove that one has a covering of the
plane P0 by the translates of the Rauzy fractal.

Lemma 10.8.2. The translates along the lattice L0 of the vertices of the broken
line f(u0u1 . . . uN−1), N ∈ N, cover the following upper half space:

{f(u0u1 . . . uN−1) + γ; N ∈ N, γ ∈ L0} = {(x, y, z) ∈ Z3; x + y + z ≥ 0}.

Let (x, y, z) ∈ Z3 with x + y + z ≥ 0; let N = x + y + z; one has N =
|u0u1 . . . uN−1|1 + |u0u1 . . . uN−1|2 + |u0u1 . . . uN−1|3. Let

γ = (x − |u0u1 . . . uN−1|1, y − |u0u1 . . . uN−1|2, z − |u0u1 . . . uN−1|3);

then γ ∈ Z(e1 − e3) + Z(e2 − e3) = L0.

Let us end the proof of Proposition 10.8.1. We need the following theorem
known as Kronecker’s theorem that we recall here without a proof (a proof of
this theorem can be found for instance in Cassels 1957).

Theorem 10.8.3 (Kronecker’s theorem). Let r ≥ 1 and let α1, · · · , αr be r
real numbers such that 1, α1, · · · , αr are rationally independent. For every η > 0
and for every (x1, · · · , xr) ∈ Rr, there exist N ∈ N, (p1, · · · , pr) ∈ Zr such that

∀i = 1, · · · , r, |Nαi − pi − xi| < η.

Let us apply Kronecker’s theorem to 1, 1
β , 1

β2 (which are rationally independent).
Let us fix η > 0 and let P be given in P0 with coordinates (x, y) say, in the
basis (e3 − e1, e3 − e2). There exist p, q ∈ Z, N ∈ N such that |N 1

β − p− x| < η

and |N 1
β2 − q− y| < η. Take r = N − (p+ q). Then the coordinates in the basis

(e3 − e1, e3 − e2) of π0(p, q, r) and P differ by at most η. We thus have proved
that π0({(p, q, r) ∈ Z3, p + q + r ≥ 0}) is dense in P0. Consequently, given any
point P of P0, there exists a sequence of points (π0(f(u0u1 . . . uNk−1)) + γk)k

with γk in the lattice L0 which converges to P in P0. Since R is bounded,
there are infinitely many k for which the points γk of the lattice L0 take the
same value, say γ; we thus get P ∈ R + γ, which implies (10.8.2). Since L0 is
countable, we deduce from Baire’s theorem that the interior of R is not empty.
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Remark 10.8.4. In fact, we have more than a covering by translates of the
Rauzy fractal. We have in fact a periodic tiling of the plane up to sets of zero
Lebesgue measure, that is, the union in (10.8.2) is disjoint up to sets of zero
measure, as illustrated in Figure 10.8.3. We prove it in Section 10.8.5.

10.8.2. Arithmetic expression

In order to study more carefully the topological properties of the Rauzy fractal,
which is the aim of Section 10.8.4, we introduce some more notation to express
the coordinates of the vectors f(u0 · · ·uN−1) in the basis (e3 − e1, e3 − e2) of
the plane P0.

Let δ : N → R2, N 1→ δ(N), where δ(N) denotes the vector of coordinates
of π0(f(u0u1 · · ·uN−1)) in the basis (e3 − e1, e3 − e2) of the plane x+ y + z = 0.
One has according to (10.8.1), for N ∈ N,

δ(N) = N · (1/β, 1/β2) − (|u0u1 · · ·uN−1|1, |u0u1 · · ·uN−1|2). (10.8.3)

Let B =
[
−1/β −1/β
1 − (1/β)2 −(1/β)2

]
. One easily checks that for every word w ∈

{1, 2, 3}∗, then the vector of coordinates of π0(f(σ(w))) in the basis (e3−e1, e3−
e2) is equal to the matrix B applied to the vector of coordinates of π0(f(w))
in the same basis. We thus get that if N has for normal T -representation,

N =
n∑

i=0

εiTi, that is, u0 · · ·uN−1 = σn(pn)σn−1(pn−1) · · · p0, with |pi| = εi,

then

δ(N) =
k∑

i=0

εiB
iz, where we set z = δ(1) = (1/β − 1, 1/β2).

The eigenvalues of the matrix B are of modulus smaller than 1, hence the
series

∑∞
i=0 εiBiz are convergent in R2. The following proposition is thus an

immediate consequence of this:

Proposition 10.8.5. The Rauzy fractal is the set of points of the plane P0

with coordinates in the basis (e3 − e1, e3 − e2) in

R := {
∞∑

i=0

εiB
iz; (εi)i≥0 ∈ {0, 1}ω, ∀i εiεi+1εi+2 = 0}.

Remark 10.8.6. We will mostly study the set R to deduce topological prop-
erties of the Rauzy fractal R; indeed both sets are by definition in one-to-one
correspondence, this bijection being the restriction of a topological isomorphism.
Let us observe that similarly, the Rauzy fractal and

{
∞∑

i=0

εiα
i ∈ C; (εi)i≥0 ∈ {0, 1}ω, ∀i εiεi+1εi+2 = 0}
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are also easily seen to be in one-to-one correspondence. Indeed the matrix B
admits as characteristic polynomial (X − α)(X − α), and it is thus similar in

C2 to the matrix
[

α 0
0 α

]
.

10.8.3. An exchange of pieces

Let us introduce the following division of the Rauzy fractal into three sets ac-
cording to which letter was lastly read before projecting. For i ∈ {1, 2, 3} let

Ri = {π0(f(u0 . . . uN−1)); N ∈ N, uN = i}.

We similarly define the subsets Ri of R2, i = 1, 2, 3, as, respectively, the sets of
coordinates of elements of Ri (in the basis (e3 − e1, e3 − e2)).

Lemma 10.8.7. One has

R1 =
{∑

i≥0 εiBiz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0 = 0
}

,

R2 =
{∑

i≥0 εiBiz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0ε1 = 10
}

,

R3 =
{∑

i≥0 εiBiz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0ε1 = 11
}

,

and
R1 = BR, R2 = z + B2R, R3 = z + Bz + B3R,

that is,

R1 = B(R1 + R2 + R3), R2 = z + BR1, R3 = z + BR2.

Proof. It is sufficient to check that if u0 · · ·uN−1 admits for normal Tribonacci
representation σn(pn) · · ·σ0(p0), then






p0 = ε implies uN = 1,
p0 = 1, p1 = ε implies uN = 2,
p0 = 1, p1 = 1 implies uN = 3.

• Assume that p0 = ε. Then u0 · · ·uN−1 = σn(pn) · · ·σ(p1), and u0 · · ·uN =
σn(pn) · · ·σ(p1)uN . Hence uN needs to be equal to 1, since the images of
letters under σ begin with 1, and u is fixed under σ.

• Assume that p0 = 1 and p1 = ε. One has u0 · · ·uN−1 = σn(pn) · · ·σ2(p2)1.
The word σn(pn) · · ·σ2(p2)σ(1) has length N +1. If either p2 or p3 equals
ε, then this expansion is a normal Tribonacci representation, and thus a
prefix of the Tribonacci word (according to Lemma 10.7.2), which gives
uN = 2. Otherwise it can also be represented as σn(pn) · · ·σ2(1) =
σn(pn) · · ·σ4(1). One shows by induction that the last term of the nor-
mal Tribonacci representation of this expansion is of the form σ3k+1(1),
which admits as last letter 2.
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• Assume that p0 = 1 and p1 = 1, and thus p2 = ε. Then u0 · · ·uN−1 =
σn(pn) · · ·σ3(p3)σ(1)1. The word σn(pn) · · ·σ2(1) has length N + 1. If
either p3 or p4 equals ε, then this expansion is a normal Tribonacci repre-
sentation, and thus a prefix of the Tribonacci word (according to Lemma
10.7.2), which gives uN = 3. Otherwise it can also be represented as
σn(pn) · · ·σ2(1) = σn(pn) · · ·σ5(1). One shows by induction that the last
term of the normal Tribonacci representation of this expansion is of the
form σ3k+2(1), which admits as last letter 3.

The sets Ri, i = 1, 2, 3 are represented in Figure 10.2. Figure 10.8.3 illus-
trates Lemma 10.8.8 below, that is, one can reorganize the division of R into
these three pieces up to translations.

Lemma 10.8.8. The following exchange of pieces E is well-defined

E : Int R1 ∪ Int R2 ∪ Int R3 → R, x 1→ x + π0(ei), when x ∈ Int Ri.

Figure 10.3. The exchange map E.

Figure 10.4. A piece of a periodic tiling by the Rauzy fractal.

Proof. Let us first prove that the sets Ri, for i = 1, 2, 3, are two-by-two disjoint
in measure, and hence that their interiors Int Ri are two-by-two disjoint.
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Since R is compact, then it is measurable for the Lebesgue measure and
its Lebesgue measure µ(R) is finite and nonzero since its interior is not empty
according to Proposition 10.8.1.

One has µ(R) ≤
∑3

i=1 µ(Ri). Since the determinant of the matrix B equals
1/β, then according to Lemma 10.8.7

µ(R1) = 1/β µ(R), µ(R2) = (1/β)2µ(R), µ(R3) = (1/β)3µ(R).

Hence one gets µ(R) =
∑3

i=1 µ(Ri). This implies in particular that µ(Ri∩Rj) =
0 for i '= j. The same holds for their interiors Int Ri, that is, µ(Int Ri ∩
Int Rj) = 0 for i '= j, which implies that they are two-by-two disjoint.

One easily sees that for i = 1, 2, 3, Ri + π0(ei) = {π(f(u0 . . . uN )); uN = i},
which implies Ri +π0(ei) ⊂ R. We thus deduce that the map E is well-defined.

Remark 10.8.9. The sets Ri, i = 1, 2, 3 are not disjoint. Indeed a vector with
coordinates in the basis (e3−e1, e3−e2) having several expansions as

∑∞
i=0 εiBiz,

(with (εi)i≥0 ∈ {0, 1}ω and ∀i, εiεi+1εi+2 = 0) can belong simultaneously to
several of these sets. This is the case in particular of the vector with coordinates∑∞

i=1 B3iz. Since B3 = B2 +B +1, then
∑∞

i=1 B3iz =
∑∞

i=0 Biz, and it admits
the following three admissible expansions

∞∑

i=1

B3iz = z +
∞∑

i=0

B3i+1z = Z + Bz +
∞∑

i=0

B3i+2z.

10.8.4. Some topological properties

We need now to introduce a suitable norm on R2 associated with the matrix
B that will be crucial for the statement of the first topological properties of
the Rauzy fractal, from which the arithmetic properties of Section 10.9 will be
deduced.

Let us recall that the matrix B is similar in C2 to the matrix
[

α 0
0 α

]
. Let

M =
[

α + 1/β 1/β
−(α + 1/β) −1/β

]
.

One easily checks that MBM−1 =
[

α 0
0 α

]
.

The Rauzy norm || || is defined for x ∈ R2 as the Euclidean norm of Mx.
Hence, for every x ∈ R2

||Bx|| = |α|||x|| =
√

1/β||x||.

We denote by ||| ||| the distance to the nearest point with integer coordinates.
One checks that

||z|| = ||δ(1)| = |α|4 = 1/β2 and ||δ(Tn)|| = |α|n||z|| = |α|n+4.
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We will mainly work in this section with the set of coordinates R, rather
than with R itself. The following lemma states that if one takes an element in
R of sufficiently small norm which is equal modulo Z2 to the coordinates δ(N) of
π0(f(u0 · · ·uN−1)), then it has to be exactly equal to δ(N). The proof is based
on the fact that the set R is contained in the square {(x, y) ∈ R2; |x|, |y| < 1}
located at the origin. In particular, 0 is the only element with integer coordinates
contained in R. This lemma is fundamental and is a first step toward the fact
that if two points of R differ by a vector with integer coordinates, then these
two points do coincide.

Lemma 10.8.10. There exists C > 0 such that

∀N ≥ 1, ∀v ∈ Z2, ||N · (1/β, 1/β2) − v|| < C =⇒ v = N · (1/β, 1/β2) − δ(N).

Remark 10.8.11. This lemma implies in particular that if the norm of δ(N)
is smaller than C, then (|u0 · · ·uN−1|1, u0 · · ·uN−1|2) is the nearest point with
integer coordinates to N · (1/β, 1/β2). For instance, for n large enough,

|||Tn · (1/β, 1/β2)||| = ||δ(Tn)||,

since ||δ(Tn)|| = |α|n+4 < C. In other words, the projections of the points
f(σn(1)) approximate very well the points with coordinates Tn · (1/β, 1/β2).

Proof. Let N ≥ 1 with normal T -representation N =
∑k

i=0 εiTi. One can write
δ(N) =

∑k
i=0 εiBiz as δ(N) =

∑
i≥0 ε3iB3iyi, where yi belongs to the following

set F :
F := {0, z, Bz, B2z, z + Bz, z + B2z, Bz + B2z}.

Hence
||δ(N)|| ≤

∑

i≥0

|α|3i max
y∈F

||y||.

One checks that maxy∈F ||y|| = ||z|| = 1/β2. We thus get

||δ(N)|| ≤ 1
β2(1 − |α3|) < 1/2. (10.8.4)

One also checks that the set of points x ∈ R2 such that ||x|| < 0, 53 is a domain
delimited by an ellipse strictly included in the square {(x, y) ∈ R2; |x|, |y| < 1}.
Hence R is also included in this square, following (10.8.4).

Let v ∈ Z2. Take C = 0, 03 for instance. Let N ≥ 1 such that

||N · (1/β, 1/β2) − v|| < C.

Hence according to (10.8.3)

||(|u0 · · ·uN−1|0, |u0 · · ·uN−1|1) − v|| ≤ ||δ(N)|| + ||N · (1/β, 1/β2) − v|| < 0, 53,

which implies that (|u0 · · ·uN−1|0, |u0 · · ·uN−1|1) − v belongs to the square
{(x, y) ∈ R2; |x|, |y| < 1} and thus v = (|u0 · · ·uN−1|0, |u0 · · ·uN−1|1), since
both vectors have integer coordinates.
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Proposition 10.8.12. The point 0 belongs to the interior of the Rauzy fractal
R. Furthermore, for all N ∈ N, δ(N) belongs to the interior of RuN . Conse-
quently, the Rauzy fractal is the closure of its interior.

Proof. Let us prove that 0 is an interior point of the set R. Let C be the constant
of Lemma 10.8.13. The sequence (N · (1/β, 1/β2))N≥0 is dense in R2 modulo
Z2 by Kronecker’s theorem (Theorem 10.8.3), since 1, 1/β, 1/β2 are linearly
independent over Q. In particular, it is dense in the set {x ∈ R2; ||x|| < C}.
This implies, according to Lemma 10.8.10, that the points δ(N) are also dense
in this same set. Hence {x ∈ R2; ||x|| < C} is included in the closure R of
{δ(N); N ∈ N}. This proves that 0 is an interior point.

One easily deduces that for every N ∈ N, δ(N) belongs to the interior of
RuN . Indeed let us consider a given N with normal T -representation

∑k
i=0 εiTi;

by definition, δ(N) ∈ RuN ; for any (εi)i≥k+2 ∈ {0, 1}ω, with the admissibility
condition that no three consecutive 1’s occur in this sequence, then δ(N) +∑

i≥k+2 εlTl ∈ RuN , which implies that δ(N) + Bk+2R is still included in RuN ,
and thus δ(N) belongs to the interior of RuN , since 0 belongs to the interior of
R. This easily implies that R is the closure of its interior.

One can even get more information on the first coefficients of N in its nor-
mal T -representation if the distance between N · (1/β, 1/β2) and Z2 is small
enough; this provides some knowledge on the repartition of the sequence (N ·
(1/β, 1/β2))N≥0.

Lemma 10.8.13. Let N ≥ 1 with normal T -representation N =
∑

i≥0 εiTi.
Then

∀v ∈ Z2, ∀m ∈ N,
(
||N · (1/β, 1/β2) − v|| < Cβ−m/2 ⇒ ∀i < m, εi = 0

)
.

Proof. Let N ≥ 1 with normal T -representation N =
∑

i≥0 εiTi and let v ∈ Z2

such that there exists m ≥ 1 with ||N · (1/β, 1/β2) − v|| < Cβ−m/2. Since
||N · (1/β, 1/β2) − v|| < C, and according to Lemma 10.8.10, then δ(N) =
N · (1/β, 1/β2)−v. Furthermore one has B−mδ(N) ∈ R; indeed ||B−mδ(N)|| =
βm/2||δ(N)|| < C, and we have seen in the proof of Proposition 10.8.12 that
{x; ||x|| < C} is included in R.

It remains to prove that if N satisfies δ(N) ∈ BmR, then its normal T -
representation verifies N =

∑
i≥m εi. For that purpose, we introduce the fol-

lowing notation in order to refine the partition of R into the three pieces Ri,
i = 1, 2, 3. Let us consider the three following three maps ψi : R2 → R2,
i = 1, 2, 3, as follows (recall that z = δ(1)):

ψ1 : v 1→ Bv, ψ2 : v 1→ z + B2v, ψ3 : v 1→ z + Bz + B3v.

For a1 · · · ar ∈ {1, 2, 3}r, let Ra1···ar = ψa0 ◦ · · · ◦ ψar (R). Let us observe that
Ra1···ar ⊂ R.

One proves by induction that for all N , and for all r, there exists a1 · · · ar

such that δ(N) belongs to Ra1···ar . Indeed, let v =
∑k

i=0 εiBiz ∈ R; if v ∈ Ri,

Version June 23, 2004



10.8. The Rauzy fractal 519

then there exists w ∈ R such that v = ψi(w). Furthermore, the same argument
as in the proof of Proposition 10.8.12 implies that δ(N) belongs to the interior
of Ra1···ar .

Let us prove by induction on r that the interiors of the sets Ra1···ar are two-
by-two disjoint. The induction property holds for r = 1 according to Lemma
10.8.8. Assume it is true for k ≤ r, with r ≥ 1. Let a1 · · · ar ∈ {1, 2, 3}r. One
has µ(Ra1···ari) = (1/β)iµ(Ra1···ar), which implies similarly as in the proof of
Lemma 10.8.8 that the interiors of the sets Ra1···ari, i = 1, 2, 3, are two-by-two
disjoint in measure, as well as the interiors of the sets Ra1···ari, for i = 1, 2, 3,
and a1 · · · ar ∈ {1, 2, 3}r.

Hence for every N , and for every r, there exists a unique a1 · · · ar such
that δ(N) belongs to the interior of Ra1···ar . Furthermore it is easily seen
that if there exists k such that ak '= 1, then there exists a coefficient εi equal
to 1, with i < r, in the normal T -representation of N . This implies that if
δ(N) ∈ BmR = ψm

1 (R), then all the coefficients εi for i < m are equal to 0 in
its normal T -representation.

10.8.5. Tiling and Tribonacci translation

We are now able to prove that the covering of the plane P0 stated in Proposition
10.8.1, that is, ∪γ∈L0R+γ, is in fact a periodic tiling (up to sets of zero measure).

Lemma 10.8.14. The sets Int R + γ, for γ ∈ L0, are disjoint, that is,

if x, y ∈ Int R, with x − y ∈ Z2, then x = y.

Proof. Let x, y ∈ Int R with x− y ∈ Z2. By density of the sequence (δ(N))N≥0,
there exists a point δ(M) close enough to x so that δ(M)+y−x is close enough
to y, and thus, still belongs to R.

Let us choose an integer m large enough so that the coefficients εi in the nor-
mal T -representation of M are equal to 0 for i ≥ m. One gets M =

∑m
i=0 εiTi.

By density of the sequence (δ(N))N , there exists N > M such that

||δ(N) − (δ(M) + y − x)|| < C

(
1
β

)(m+2)/2

.

There exists h ∈ Z2 such that δ(N)−(δ(M)+y−x) = (N −M) ·(1/β, 1/β2)−h.
We thus can apply Lemma 10.8.13, and get that the normal T -representation∑k

i=0 ε′iTi of N − M satisfies ε′i = 0 for i ≤ m + 1. This implies that N admits
as normal T -representation

∑m
i=0 εiTi +

∑

i≥m+2

ε′iTi, and hence δ(N) − δ(M) =

δ(N − M). Since ||(N − M) · (1/β, 1/β2) − h|| < C
(

1
β

)(m+2)/2
< C, it follows

from Lemma 10.8.10 that

δ(N −M) = (N −M) · (1/β, 1/β2)− h = δ(N)− δ(M) = δ(N)− δ(M) + x− y,

which implies y = x.
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Remark 10.8.15. The domain R is thus a fundamental domain of the torus
T2 = R2/Z2, that is,

R2 = ∪v∈Z2R + v, P0 = ∪γ∈Z2R + γ,

both unions being disjoint up to sets of zero measure.

This tiling property has the following arithmetic formulation: the translation
by (1/β, 1/β2) in R2/Z2 = T2, which is the quotient map of the exchange map
E defined in Lemma 10.8.8 with respect to the lattice L0, is coded by the
Tribonacci word:

Theorem 10.8.16. The Tribonacci word codes the orbit of the point 0 under
the action of the translation

Rβ : T2 → T2, x 1→ x + (1/β, 1/β2)

with respect to the partition of the fundamental domain R of T2 by the sets
(R1, R2, R3), that is,

∀N ∈ N, ∀i = 1, 2, 3, uN = i ⇐⇒ RN
β (0) ∈ Ri.

Proof. According to Proposition 10.8.12, for every N , there exists i = 1, 2, 3
such that δ(N) belongs to the interior of Ri; hence RN

β (0) (which is congruent
modulo Z2 to δ(N)) also belongs modulo Z2 to Ri. Furthermore, such an integer
i is unique according to Lemma 10.8.14. This implies that the coding of the
orbit of 0 under Rβ is well-defined.

Let E be the exchange of pieces introduced in Lemma 10.8.8. Let us prove
by induction on N that EN (0) = π0(f(u0 · · ·uN−1)). The induction property
holds for N = 0. Suppose that the induction property holds for N . One has
π0(f(u0 · · ·uN−1)) ∈ Int RuN . Hence EN+1(0) = E(π0(f(u0 · · ·uN−1))) =
π0(f(u0 · · ·uN−1)) + π0(euN ) = π0(f(u0 · · ·uN )), which ends the induction
proof.

One thus deduces that for all N ∈ N, for all i = 1, 2, 3, EN (0) = π0(f(u0

· · ·uN−1)) ∈ Ri if and only if uN = i. In other words, we have proved that the
Tribonacci word codes the orbit of 0 under the action of the map E with respect
to the partition (R1,R2,R3), that is,

∀N ∈ N, ∀i = 1, 2, 3, uN = i ⇐⇒ EN (0) = i.

It remains to check that for all N ∈ N, for all i = 1, 2, 3, EN (0) ∈ Ri if
and only if RN

β (0) ∈ Ri. By definition, the coordinates of EN (0) in the basis
(e3 − e1, e3 − e2) are equal to δ(N), which is congruent to RN

β (0) modulo Z2,
which ends the proof.
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10.8.6. A cut and project scheme

The aim of this section is to reformulate the previous reults in terms of “cut
and project scheme”: Theorem 10.8.18 below states that the vertices of the
broken line are exactly the points of Z3 selected by shifting the Rauzy fractal
(considered as an “acceptance window”), along the eigendirection vβ .

A cut and project scheme consists of a direct product Rk ×H , k ≥ 1, where
H is a locally compact Abelian group, and a lattice D in Rk×H , such that with
respect to the natural projections p0 : Rk × H → H and p1 : Rk × H → Rk:

1. p0(D) is dense in H ;

2. p1 restricted to D is one-to-one onto its image p1(D).

This cut and project scheme is denoted (Rk × H, D).
A subset Γ of Rk is a model set if there exists a cut and project scheme

(Rk × H, D) and a relatively compact set (i.e., a set such that its closure is
compact) Ω of H with nonempty interior such that

Γ = {p1(P ); P ∈ D, p0(P ) ∈ Ω}.

The set Γ is called the acceptance window of the cut and project scheme.
A Meyer set S is a subset of some model set of Rk, for some k ≥ 1, which

is relatively dense, that is, there exists R > 0 such that for all P ∈ Rk, there
exists M ∈ S such that the ball of radius R located at P contains M .

Remark 10.8.17. The locally abelian compact group which usually occur in
the previous definition are either Euclidean or p-adic spaces.

Let π1 denote the projection in R3 on the expanding line generated by vβ along
the plane P0. Let us recall that π0 denotes the projection on the plane P0 along
the expanding line.

Theorem 10.8.18. The subset π1({f(u0 · · ·uN−1); N ∈ N}) of the expanding
eigenline obtained by projecting under π1 the vertices of the Tribonacci broken
line is a Meyer set associated with the cut and project scheme (R × R2, Z3),
with acceptance window the interior of the set R of coordinates of the Rauzy
fractal. In other words,

{f(u0 · · ·uN−1); N ∈ N} = {P = (x, y, z) ∈ Z3; x + y + z ≥ 0; π0(P ) ∈ IntR}.
(10.8.5)

Proof. Let H = R2, D = Z3, k = 1. The set H = R2 is in one-to-one correspon-
dence with the plane P0, whereas R is in one-to-one correspondence with the
expanding eigenline. Up to these two bijections, the natural projections become
respectively π0 and π1 and are easily seen to satisfy the required conditions (the
density has been proved in the proof of Proposition 10.8.1). It remains to prove
(10.8.5) to conclude.
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According to Lemma 10.8.12, for every N , π0(f(u0 · · ·uN−1)) ∈ Int R.
Conversely, let P = (x, y, z) ∈ Z3 with x + y + z ≥ 0 such that π0(P ) ∈ Int R.
Let N = x + y + z. According to Lemma 10.8.2, there exists γ ∈ L0 such
that P = f(u0 · · ·uN−1) + γ. Since π0(P ) = π0(f(u0 · · ·uN−1)) + π0(γ) =
π0(f(u0 · · ·uN−1)) + γ, one gets P = f(u0 · · ·uN−1), following Lemma 10.8.14.

Remark 10.8.19. Cut and project schemes are used to modelize quasicrystals
and to generate aperiodic tilings, as illustrated in Problem 10.8.6.

10.9. An application to simultaneous approximation

We end this chapter with a section devoted to the study of some Diophantine
approximation properties of the vector of translation (1/β, 1/β2) of the Tri-
bonacci translation. In particular, the sequence of Tribonacci numbers is shown
to be the sequence of best approximations of this vector for the Rauzy norm.
Indeed, the vertices of the broken line of the form f(σn(1)), n ∈ N, provide (af-
ter projection) very good approximations of the vector (1/β, 1/β2), and even,
the best approximations for the Rauzy norm.

Let v be vector and || ||0 a norm in R2. The increasing sequence of positive
integers (qn) is said to be the sequence of best approximations of the vector v
for the norm || ||0 if there exists a sequence of vectors (vn) such that for each
integer n and for every w ∈ Z2

||qn+1v − vn+1||0 < ||qnv − w||0,

and for every q < qn+1, q '= qn, and for every w ∈ Z2 then

||qnv − vn||0 < ||qv − w||0.

Theorem 10.9.1. 1. The vector (1/β, 1/β2) is badly approximable by the
rational numbers, that is, there exists K > 0 such that for every positive
integer N , then √

N |||N · (1/β, 1/β2)||| ≥ K.

2. For every norm, the sequence ( qn+1
qn

) is bounded, where (qn) denotes the

sequence of best approximations of the vector (1/β, 1/β2).

3. The Tribonacci sequence (Tn) is the sequence of best approximations of
the vector (1/β, 1/β2) for the Rauzy norm.

4. Furthermore

lim
n→∞

√
Tn |||Tn · (1/β, 1/β2)||| =

1√
β2 + 2β + 3

.

Proof.
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1. Let n ≥ 1 and let m ≥ 1 such that Tm−1 ≤ N < Tm. Hence the normal T -
representation of N =

∑
i≥0 εiTi satisfies εm−1 = 1. According to Lemma

10.8.13, then |||N · (1/β, 1/β2)||| ≥ C(1/β)m/2. There exist two constants
C1, C2 such that the Tribonacci sequence satisfies: ∀N ∈ N, C1βn ≤ Tn ≤
C2βn. Hence

|||N · (1/β, 1/β2)||| ≥ C

√
C1

Tm
≥ CC1√

C2βN
,

which ends the proof of the first assertion. Let us observe that such a
statement (up to the choice of the positive constant K) also holds for
every norm, by equivalence of the norms.

2. Let || ||0 be a norm in R2 and let (qn) be the sequence of best approxima-
tions of (1/β, 1/β2) associated with this norm.
Let n and m such that Tm ≤ qn < Tm+1. For all q < qn+1, one has by
definition |||q · (1/β, 1/β2)|||0 ≥ |||qn · (1/β, 1/β2)|||0, where ||| |||0 denotes
the distance to the nearest integer for the norm ||| |||0. We just have seen
(proof of Assertion 1) that |||qn · (1/β, 1/β2)||| ≥ Kq−1/2

n . Hence

|||qn · (1/β, 1/β2)||| > KT−1/2
m+1 .

On the other hand, one has for l large enough, according to Lemma 10.8.10,
that |||Tm+1+l · (1/β, 1/β2)||| = ||δ(Tm+1+l)||. Since the norms || ||0 and
|| || are equivalent, then |||Tm+1+l · (1/β, 1/β2)|||0 = ||δ(Tm+1+l)||0 also
holds for l large enough, still following Lemma 10.8.10. By equivalence of
the norms, there exists a constant C3 such that for l large enough

|||Tm+1+l · (1/β, 1/β2)|||0 = ||δ(Tm+1+l)||0 ≤ C3||δ(Tm+1+l)||
= C3|α|m+l+5 ≤ C3

√
C2|α|l+4T−1/2

m+1 .

Hence there exists l0 large enough such that

|||Tm+1+l0 · (1/β, 1/β2)|||0 < |||qn · (1/β, 1/β2)|||0,

which implies that Tm+1+l0 ≥ qn+1. Hence one has

qn+1

qn
≤ Tm + 1 + l0

Tm
≤ C2/C1β

l0+1.

3. The sequence (δ(Tn))n which satisfies δ(Tn) = |α|n+4 is a decreasing se-
quence. Furthermore, for n ≥ 8, ||δ(Tn)|| ≤ |α|12 < C, which implies that
|||Tn · (1/β, 1/β2)||| = ||δ(Tn)||. One checks by considering a finite number
of cases that when n < T8, then the properties of good approximation
hold for the Tribonacci sequence.
Let us assume from now on that N ≥ T8. We want to prove that if
N < Tn+1 and N '= Tn, then for every v ∈ Z2

||δ(Tn)|| < ||N · (1/β, 1/β2) − v||.
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Since ||N · (1/β, 1/β2) − v|| < C implies that N · (1/β, 1/β2) − v = δ(N),
it is sufficient to check that ||δ(Tn)|| < ||δ(N)||.
Let n ∈ N and let N < Tn+1, N '= Tn, with normal T -representation
N =

∑
0≤i≤k εiTi. Let i0 = min{i| εi '= 0} (i0 '= n since N '= Tn); hence

N =
∑

i0≤n εiTi. One has

||δ(N)|| = ||
∑

i0≤i≤n

εiB
iz|| ≥ ||Bi0z + εi0+1B

i0+1z||− ||
∑

i0+2≤i≤n

εiB
iz||.

Let us prove that ||Bi0z + εi0+1Bi0+1z||− ||
∑

i0+2≤i≤n εiBiz|| > |α|12+i0 .

• Assume first that εi0+1 = 0. Then

||
n∑

i≥i0+2

εiB
iz|| ≤ ||Bi0+2

∑

i≥0

εi0+2+iB
iz|| ≤ |α|i0+2||z||

1 − |α|3 =
|α|i0+6

1 − |α|3 .

Hence ||δ(N)|| ≥ |α|i0+4
(

1−|α|2−|α|3
1−|α3|

)
> 0.

• Assume now that εi0+1 = 1, and thus εi0+2 = 0. One has

||δ(N)|| ≥ |α|i0(||z + Bz||− |α|7

1 − |α|3 ).

It remains to check that |α|4
(

1−|α|2−|α|3
1−|α3|

)
, ||z+Bz||− |α|7

1−|α|3 > |α|12

to conclude.

If n − i0 ≥ 8, then δ(N) > |α|i0+12 ≥ |α|n+4 = ||δ(Tn)||.
In the case where n− i0 ≤ 7, one checks by considering a finite number of
cases that ||

∑m
i=0 εiBiz|| > |α|m+4, for 0 ≤ m ≤ 7, which implies

δ(N) = |α|i0 ||
n−i0∑

i=0

εiB
iz|| > |α|i0 |α|n−i0+4 ≥ ||δ(Tn)||.

4. Let K0 be defined as the smallest real number such that there exist in-
finitely many integers N satisfying

√
N |||N · (1/β, 1/β2)||| < K0.

¿From Assertion 1, one deduces that K0 is finite. In fact, K0 is the smallest
real number such that there exist infinitely many integers N satisfying√

Tn ||δ(Tn)|| < K0, since (Tn) is the sequence of best approximations of
(1/β, 1/β2). The following limit exists and equals:

lim
n→+∞

√
Tn ||δ(Tn)|| =

1√
β2 + 2β + 3

,

hence the result.
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Problems

Section 10.4

10.4.1 (gcd). Let q ≥ 2 be an integer. Prove that for all integers m, n ≥ 1

gcd(qm − 1, qn − 1) = gcd(m, n).

(Hint. If m ≥ n and m = αn + β with β ∈ [0, n − 1], prove that an
integer divides both qm−1 and qn−1 if and only if it divides both qm−1
and qβ − 1. Then use the Euclidean algorithm to compute gcd’s).
Deduce that qm − 1 divides qn − 1 if and only if m divides n.

Section 10.5

10.5.1 (Möbius function). Define the Möbius function µ on the integers ≥ 1
by

µ(n) :=






1 if n = 1,
0 if there exists k ≥ 2 such that k2 divides n,
(−1)r if n = p1p2 · · · pr, where the p′is are distinct primes.

a. Prove that, for every n ≥ 1,

∑

d|n

µ(d) =
{

1 if n = 1,
0 if n ≥ 2.

(Hint. Note that, if n =
∏

1≤j≤r p
αj

j is the decomposition of n ≥ 2
into primes, then

∑

d|n

µ(d) =
∑

d|p1···pr

µ(d) =
∑

0≤j≤r

(
r

j

)
(−1)j = (1 − 1)r = 0.)

b. Prove the Möbius inversion formula: if f and g are two maps
defined on the positive integers, then

∀n ≥ 1, g(n) =
∑

d|n

f(d) ⇒ ∀n ≥ 1, f(n) =
∑

d|n

µ(d)g(n/d).

c. Prove that, if F and G are two maps defined on the real numbers,
then (summing over n ≤ x means that the summation is over the
integers n such that n ≤ x)

∀x ≥ 0, G(x) =
∑

n≤x

F (n) ⇒ ∀x ≥ 0, F (x) =
∑

n≤x

µ(n)G(
x

n
).
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d. Define a square-free number as an integer that is not divisible by
any square of an integer ≥ 2. Prove that for each integer n ≥ 1
there exists a unique square-free number q and a unique integer a
such that n = a2q.

e. Let 5x6 be the integral part of the real x. Let Q(x) be the number
of square-free numbers smaller than x. Prove that, for each real
number x ≥ 0,

Q(x) =
∑

n≤
√

x

µ(n)5 x

n2
6.

(Hint. Start from

5x6 =
∑

n≤x

1 =
∑

a2q≤x
a≥1

q squarefree

1 =
∑

a≤
√

x

Q(
x

a2
).

Deduce that
5x26 =

∑

n≤x

Q(
x2

n2
)

and use Part b. above.)
f. Prove that the density of the square-free numbers exists and is

equal to
∑

n≥1 µ(n)/n2.
(Hint. Write

Q(x) =
∑

n≤
√

x µ(n)5 x
n2 6 = x

∑
n≤

√
x

µ(n)
n2 + O(

√
x)

= x
∑

n≥1
µ(n)
n2 + O(

√
x).)

g. Prove that
∑

n≥1 µ(n)/n2 = 6/π2.
(Hint. Write

∑

m≥1

µ(m)
m2

∑

n≥1

1
n2

=
∑

"≥1

1
%2

∑

m|"

µ(m)

and use that
∑

n≥1 1/n2 = π2/6.)
h. Let ψk(n) denote the number of primitive words of length n over

an alphabet of size k. Prove that

kn =
∑

d|n

ψk(d).

(Hint. Every word w can be written in a unique way as w = vd,
where v is a primitive word, and d is an integer ≥ 1. Of course d
must divide the length of w.)
Using the inversion formula b. above deduce that

ψk(n) =
∑

d|n

µ(d)kn/d.
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10.5.2 (Algebraicity). Prove that, if the formal power series
∑

anXn has in-
tegral coefficients and is algebraic over the field Q(X), then the formal
power series

∑
(an mod p)Xn is algebraic over Fp(X).

Section 10.7

10.7.1 (Complexity function of the Tribonacci word). First observe that the
letters 2 and 3 are only followed or preceded by the letter 1 in the
Tribonacci word u. Second, prove that every factor w distinct from
the empty word ε of the Tribonacci word u can be uniquely written as
follows: w = r1σ(v)r2, where v is a factor of u, r1 ∈ {ε, 2, 3}, and r2 = 1
if the last letter of w is 1, and r2 is the empty word, otherwise. Deduce
from this the following combinatorial properties:
a. Prove that the Tribonacci word u is not ultimately periodic, that

is, periodic from some rank on.
b. A factor w of a word x is said right special if there exist two distinct

letters a and b such that both wa and wb are factors of x. Prove
that the Tribonacci word admits exactly one right special factor of
each length.

c. The complexity function of an infinite word s is defined as the
function P (s, n) which counts the number of distinct factors of
length n of s. Deduce that the complexity function P (u, n) of the
Tribonacci word satisfies: ∀n ∈ N, P (u, n) = 2n + 1.

d. Prove that the Tribonacci word is uniformly recurrent, i.e., every
factor appears infinitely often with bounded gaps.

e. Use the same method to prove that the Fibonacci word (defined
in Section 10.1.4) admits exactly n + 1 factors of length n.

f. Prove that the topological entropy (as defined in Section 1.8.3) of
the set of factors of the Tribonacci word as well as the topological
entropy of the set of factors of the Fibonacci word are equal to 0.

10.7.2 Prove that the Tribonacci word is not an automatic sequence, by consid-
ering the probabilities of occurrence of the letters. Deduce from Problem
1.8.1 and Section 1.8.6 the values of the probabilities of occurrence of
the factors of length 2 of the Tribonacci word.

10.7.3 (Dumont-Thomas numeration system on words). The aim of this prob-
lem is to extend the statement of Lemma 10.7.2 to more general mor-
phisms following Dumont and Thomas 1989, 1993, and Rauzy 1990.
Let τ be a morphism on the alphabet A satisfying the assumptions of
Proposition 10.1.3. The prefix automaton of τ is defined as follows: its
edges are the letters of A; there is an edge from a to b labeled by p ∈ A∗

if τ(a) = pas, where s ∈ A∗. For instance the prefix automaton of the
Fibonacci morphism : 0 → 01, b → 0 is the Golden mean automaton as
defined in Example 1.3.5, where the label a has to be replaced by 1 and
b by 0. Let v be the fixed point of τ having a as first letter, in the sense
of Remark 10.1.4. Prove that every finite prefix of v can be uniquely
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expanded as
τn(pn)τn−1(pn−1) · · · p0,

where pn '= ε, and pn · · · p0 is the sequence of labels of a path in the
prefix automaton starting from the letter a. Conversely, prove that any
such sequence of labels generates a finite prefix of v.

10.7.4 (Statistics on letters for Pisot morphisms). A morphism τ : A∗ → A∗

is said of Pisot type if first it satisfies the assumptions of Proposition
10.1.3, and second, the eigenvalues of its incidence matrix satisfy the
following: there exists a dominant eigenvalue α such that for every other
eigenvalue λ, one gets α > 1 > |λ| > 0. Deduce from Problem 10.7.3
that the results of Proposition 10.7.4 hold for any fixed point of a Pisot
type morphism.

10.7.5 (Uniform balance). An infinite word v ∈ Aω is said uniformly balanced
if there exists C > 0 such that for any two factors w, w′ of the same
length of v, and for any letter i ∈ A, then

| |w|i − |w′|i| ≤ C.

An infinite word v ∈ Aω is said to have bounded remainder letters if
first, for every letter i, its probability of occurrence π(i) in v exists, and
second, there exists C′ such that

∀N, | |v0v1 · · · vN−1|i − π(i)N | ≤ C′.

Prove that a sequence is uniformly balanced if and only if it has bounded
remainder letters. Deduce from Problem 10.7.4 that a fixed point of a
Pisot morphism is uniformly balanced.
For more results on the balance properties of fixed points of morphisms,
see Adamczewski 2003.

Section 10.8

10.8.1 (Bounded remainder sets). A measurable set X with respect to the
Lebesgue measure µ( ) in T2 is said to be a bounded remainder set for
the translation Rβ if there exists C > 0 such that

∀N, |Card{i; 0 ≤ i ≤ N, Rn
β(0) ∈ X}− µ(X)| ≤ C.

Deduce from Proposition 10.7.4 and Theorem 10.8.16 that the sets Ri,
i = 1, 2, 3, are bounded remainder sets.
Bounded remainder sets have been widely studied, see for instance Fer-
enczi 1992.

10.8.2 (Generalized Rauzy fractal and self-similarity). Let τ be a primitive
morphism of Pisot type over the alphabet {1, · · · , d}. Define similarly
as in Section 10.8.1 a generalized Rauzy fractal R(τ) as well as its
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division into the pieces Ri(τ), i = 1, · · · , d. Prove that the statement of
Proposition 10.8.1 still holds.
Prove that for i = 1, · · · , d, that

M−1
τ (Ri(τ)) = ∪1≤j≤d ∪pis, τ(j)=pis (Rj(τ) + M−1

τ (π0 ◦ f(p))).

(Hint. Apply Mσ to this equality.) This equality means that the pieces
Ri(τ) of the Rauzy fractal are self-similar (and more precisely self-
affine), that is, they can be inflated under the expanding action of M−1

τ ,
the image of each piece Ri(τ), i = 1, · · · , d being redivided into trans-
lates of the sets Rj(τ). This result is a generalization of the statement
of Lemma 10.8.7. This self-similarity property is considered for instance
in Holton and Zamboni 1998, Arnoux and Ito 2001, Sirvent and Wang
2002.

10.8.3 Deduce from the proof of Proposition 10.8.1 an upper bound on the
diameter of the Rauzy fractal R.

10.8.4 (β-numeration). Prove that every positive real number can be expanded
as

x =
+∞∑

i=−d

εiβ
−i, where d ∈ Z, ∀i, εi ∈ {0, 1}, εiεi+1εi+2 = 0,

(10.10.1)
by introducing the β- transformation map Tβ : [0, 1[→ [0, 1[, x 1→ {βx};
such an expansion (with the above admissibility conditions (10.10.1)) is
called a β-expansion; is there unicity of such an expansion? For more
details on the β-numeration, see for instance Lothaire 2002.

10.8.5 (F-property). The aim of this problem is to prove that the set Fin(β) of
positive real numbers having a finite β-expansion (see Problem 10.8.4)
coincides with the set (Z[β−1])+ of positive polynomials in 1/β with
integer coefficients. This property is called the F -property and has been
introduced in Frougny and Solomyak 1992, see also Akiyama 1999.
a. Let Z+[β−1] denote the set of polynomials in 1/β with non-negative

integer coefficients. Prove that Fin(β) is included in Z+[β−1]. (Use
the fact that 1 = β3 + β2 + β.)

b. The aim of this question is to prove that Z+[β−1] = (Z[β−1])+. Let
x ∈ (Z[β−1])+. Prove that there exists s ∈ N and (x0, x1, x2) ∈ Z3

such that

x =
1
βs

(x0 + x1β
−1 + x2β

−2) =
1

βs+1
< (x0, x1, x2), vβ >,

(we consider here the Euclidean scalar product in R3). Deduce
that for all n ∈ N, x = 1

βs+n <tMn
σ (x0, x1, x2), vβ > . Apply the

Perron Frobenius theorem to conclude.
c. The aim of this question is to prove that Z+[β−1]∩[0, 1[ is included

in Fin(β). For that purpose we introduce an algorithm consisting in
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the repetition of the action of two steps A1 and A2, that transforms
a finite β-representation of x (with digits not necessarily satisfying
the admissible conditions (10.10.1)) into the β-expansion of x.
Let x =

∑d
i=1 xiβ−i ∈ Z+[β−1] ∩ [0, 1[, where ∀i, xi ∈ N.

Step A1. Assume that there exists an integer k ≥ 1 such that
xk+1 ≥ 1, xk+2 ≥ 1, and xk+3 ≥ 1. Let A1 be the algorithm which
maps (xi)i≥1 (where we set xi = 0 for i > d) to

(x′
i) = x1 · · · (xk + 1)(xk+1 − 1)(xk+2 − 1)(xk+3 − 1)xk+4 · · ·

Prove that
∑

i x′
i <

∑
i xi and that

∑
i xiβ−i =

∑
i x′

iβ
−i.

Step A2. Assume that there exists an index k such that xk ≥ 2.
Prove that k ≥ 2. Let l be the smallest integer such that xl ≥ 2.
Let A2 be the algorithm which sends (xi)i≥1 to

(x′
i) = x1 · · · (xl − 1)(xl+1 + 1)(xl+2 + 1)(xl+3 + 1) · · ·

Let k ≥ 1 be the largest integer such that k ≤ l and x′
k+1 ≥ 1,

x′
k+2 ≥ 1, x′

k+3 ≥ 1. Then, the algorithm A2 sends (x′
i) to

(x′′
i ) = x′

1 · · · (x′
k + 1)(x′

k+1 − 1)(x′
k+2 − 1)(x′

k+3 − 1).

The sequence (x′′
i ) is the image of (xi) under the action of A2.

Prove that
∑

i x′′
i =

∑
i xi and that

∑
i xiβ−i =

∑
i x′′

i β−i.
We now apply repeatedly steps A1 and A2 to x, defining a sequence
(x(j)) such that for all j, x(j) takes finitely but all zero values. If for
some value j0, x(j0) satisfies the admissibility conditions (10.10.1),
then we set x(j) = x(j0), for j ≥ j0, and we apply no step anymore.
Prove that for j large enough, step A1 cannot be performed any
more.
Let us assume that A2 can be applied indefinitely. Let J be such
that for j > J , step A1 cannot be performed any more. Let lj
denote, for j > J , the smallest index l such that x(j)

l ≥ 2. Prove
that (lj) tends to infinity and that the sequence (x(j)) is convergent.
Find a contradiction.

d. Conclude.
We have followed here the proof of Frougny and Solomyak 1992.

10.8.6 (A tiling of the line). We have seen that π1({f(u0 · · ·uN−1; N ∈ N}))
is a Meyer set in Section 10.8.6. We associate here in a natural way to
this set of points a tiling of the line.
Prove that π1({f(u0 · · ·uN−1; N ∈ N})) defines a tiling T of the half-
line generated by vβ in the positive octant {(x, y, z); x, y, z > 0} by seg-
ments of three distinct lengths, say l1, l2, l3, In other words, prove that
the distance between two successive points of π1({f(u0 · · ·uN−1; N ∈
N})) (with respect to the orientation on the half-line provided by vβ)
equals either l1, l2 or l3.
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Prove that under a suitable choice of a unit vector on the half-line, then
π1({f(u0 · · ·uN−1; N ∈ N})) is in one-to-one correspondence with the
set of β-integers

Z+
β = {

d∑

i=0

εiβ
i; d ∈ N, ∀i, εi ∈ {0, 1}, εiεi+1εi+2 = 0}.

Let (tn)n≥0 denote the set of elements of π1({f(u0 · · ·uN−1; N ∈ N}))
ordered in increasing order (still with respect to the orientation on the
half-line provided by vβ). One can code the tiling T as follows: for
n ≥ 0, for i = 1, 2, 3, then vn = i if and only if tn+1 − tn = li. Prove
that (vn)n≥0 is equal to the Tribonacci word.

Notes

For general references on substitutive sequences and substitutive dynamical sys-
tems, see for instance Queffélec 1987 and Fogg 2002.

The examples in Section 10.1.4 are famous. For more on Sturmian words, one
can read for example Lothaire 2002 and Fogg 2002. For more on the Thue–Morse
word, its history, and its many occurrences in the literature, see for example
Allouche and Shallit 1999. The Rudin-Shapiro word was first introduced in
Shapiro 1952. For all these words and for the paperfolding word one can read
the notes of Allouche and Shallit 2003.

In Section 10.2.5, Lemma 10.2.13 is a classical result in Perron–Frobenius
theory (see for example Gantmacher 1959). The main theorem of Section 10.2.5
(Theorem 10.2.15) is due to Cobham 1972.

The main theorem of Section 10.3.3 (Theorem 10.3.4) was proved in Chris-
tol 1979, see also Christol, Kamae, Mendès France, and Rauzy 1980. More
generally, it is also possible to give a simple combinatorial characterization of
primitive substitutive sequences (see Durand 1998, Holton and Zamboni 1999).

The first proof of Theorem 10.4.2 in Section 10.4 is due to Wade 1941. The
proof we give here is adapted from a proof given in Allouche 1990.

The proof of Proposition 10.5.1 that we give in Section 10.5 comes from Al-
louche 1997. The first proof was given in Petersen 1994 and Petersen 1996.
For a proof of the theorem of Chomsky-Schützenberger, see Chomsky and
Schützenberger 1963.

The theorem of Ridout given without proof in Section 10.6 was given in
Ridout 1957. Corollary 10.6.2 is due to Ferenczi and Mauduit 1997. Theo-
rem 10.6.3 is also due to Ferenczi and Mauduit 1997 under a more general form.
A slightly more precise result in the case of binary alphabets is given in Allouche
and Zamboni 1998. For more results on the transcendence of “automatic” real
numbers, see for example Allouche and Shallit 2003.

We do not claim here for exhaustivity in our choice of applications of the
Rauzy fractal in number theory. We have chosen the more representative prop-
erties which also motivated G. Rauzy in its study of the Tribonacci word in
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Rauzy 1982. All the results of Section 10.8 follow carefully the approach of
the seminal paper Rauzy 1982, from which come the proofs of Theorem 10.8.16,
Lemma 10.8.10 and 10.8.13, as well as the introduction of the matrix B, whereas
the proof of Theorem 10.9.1 is due to Chekhova, Hubert, and Messaoudi 2001.
The fact that the vector (1/β, 1/β2) is badly approximable by the rationals (As-
sertion 1 of Theorem 10.9.1) is a classical statement for elements of a totally
real field number (see for instance Cassels 1957).

Arnoux–Rauzy words. The Tribonacci translation first occurred in Arnoux 1988,
where the Tribonacci morphism was used to model an interval exchange map of 6
intervals and to build explicitly a continuous and surjective conjugacy between
this interval exchange map and the Rauzy translation (see also Arnoux and
Yoccoz 1981); these results have led to the introduction of the family of Arnoux–
Rauzy words in Arnoux and Rauzy 1991, to which the Tribonacci word belongs,
as a generalization of the family of Sturmian words.

Arnoux–Rauzy words are defined as the one-sided words x with complexity
P (x, n) = 2n+1 for all n which are recurrent and which have for every length a
unique right special factor and a unique left special factor, each of these special
factors being extendable in three different ways. Let us note that they can be
similarly defined over any alphabet of larger size, say d; one thus obtains infinite
words of complexity (d−1)n+1. Contrary to the Sturmian case, these words are
not characterized by their complexity function any more. For instance, codings
of non-degenerated three-interval exchanges have also complexity 2n+1. Let us
observe that Arnoux–Rauzy words can be described as exchanges of six intervals
of the unit circle (Arnoux and Rauzy 1991).

The combinatorial properties of the Arnoux–Rauzy words are well-under-
stood and are perfectly described by a two-dimensional continued fraction algo-
rithm defined over a subset of zero measure of the simplex introduced in Arnoux
and Rauzy 1991, Risley and Zamboni 2000, Zamboni 1998 and in Chekhova
2000. By using this algorithm, one can express in an explicit way the probabil-
ities of occurrence of factors of given length (Wozny and Zamboni 2001), one
can count the number of all the factors of the Arnoux–Rauzy words (Mignosi
and Zamboni 2002), or prove that the associated dynamical system has always
simple spectrum (Chekhova 2000). See also Castelli, Mignosi, and Restivo 1999,
and Justin 2000 for the connections with a generalization of the Fine and Wilf’s
theorem for three periods. The family of Arnoux–Rauzy words has been itself
extended to the family of episturmian words (Justin and Pirillo 2002b, 2002a).

Rauzy fractal. The study of the topological properties of the Rauzy fractal is
mainly due to Rauzy 1982, 1988, where the Rauzy fractal R is shown to be
connected with simply connected interior (and so do the three pieces of the
Rauzy fractal Ri, i = 1, 2, 3). See also Messaoudi 1998 and Messaoudi 2000a
for a parametrisation of its boundary, the points which have several expansions
being studied in details (see also Remark 10.8.9). For a study of its fractal
boundary, see Ito and Kimura 1991, where it is proved to be a Jordan curve
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generated by Dekking’s fractal generation method (Dekking 1982), from which
a computation of its Hausdorff dimension is deduced.

Theorem 10.8.16 states that the translation v 1→ v+(1/β, 1/β2) on T2 can be
coded using the Tribonacci morphism. In dynamical terms, this theorem extends
to the fact that the symbolic dynamical system generated by the Tribonacci
word is measure-theoretically isomorphic to a translation of the torus T2, the
isomorphism being a continuous onto map. Furthermore it is also possible to
construct a Markov partition for the toral automorphism of T3 of matrix given
by the incidence matrix of the Tribonacci morphism, this construction being
based on the Rauzy fractal.

More generally, it is possible to associate a generalized Rauzy fractal to any
Pisot unimodular morphism (see Problem 10.8.2). (A morphism is said unimod-
ular if the determinant of its incidence matrix equals ±1.) There are several
definitions associated with several methods of construction for such Rauzy frac-
tals. We have given here a definition based on formal power series inspired by
the seminal paper Rauzy 1982, by Messaoudi 1998, 2000a, and by Canterini
and Siegel 2001a, 2001b. A different approach via iterated function systems
and generalized substitutions has been developed following ideas from Ito and
Kimura 1991, and Arnoux and Ito 2001, Sano, Arnoux, and Ito 2001. Indeed,
Rauzy fractals can be described as the attractor of some graph iterated function
system (IFS), as in Holton and Zamboni 1998 where one can find a study of
the Hausdorff dimension of various sets related to Rauzy fractals, and as in Sir-
vent 2000a, 2000b, Sirvent and Wang 2002 with special focus on the self-similar
properties of Rauzy fractals (see Lemma 10.8.7 and Problem 10.8.2). For more
details on both approaches, see Chap. 7 and 8 of Fogg 2002. Both methods
apply to unimodular morphisms of Pisot type.

More generally, for any unimodular morphism of Pisot type the measure-
theoretical isomorphism with a translation on the torus (or equivalently the
existence of a periodic tiling of the plane by the Rauzy fractal) is conjectured
to hold. A large literature is devoted to this question, which is surveyed in Fogg
2002, Chap.7. Inspired by Bedford 1986, Ito and Ohtsuki 1993 extends Rauzy’s
approach in order to produce Markov partitions for toral automorphisms pro-
duced by the modified Jacobi-Perron algorithm. See also Praggastis 1999.

In particular, Arnoux–Rauzy words which are fixed points of primitive mor-
phisms (which are thus unimodular and of Pisot type following Arnoux and Ito
2001) also generate symbolic dynamical systems which are measure-theoretically
isomorphic to toral translations. It was believed that all Arnoux–Rauzy words
originated from toral translations, and more precisely, that they were natural
codings of translations over T2. This conjecture was disproved in Cassaigne,
Ferenczi, and Zamboni 2000.

Tribonacci numeration system. The Tribonacci numeration system is the canon-
ical numeration system associated with the positive root β of X3 = X2 +X +1.
More generally, for a given β > 1, one can expand real numbers in [0, 1[ as
powers of the number β using the greedy algorithm: x =

∑∞
k=1 bkβ−k, with

some conditions on the nonnegative integers bk (see also Problem 10.8.4); such
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expansions are called β-expansions and are generated by the β-transformation
x 1→ βx − [βx] which also generates as a dynamical system the β-shift (for
more details, see for instance Lothaire 2002). One can also represent natural
integers in a base given by an infinite sequence of integers (which generalizes
Lemma 10.7.1) canonically associated with the β-numeration: the set of fac-
tors of greedy representations of natural integers in this base and the factors
of the β-shift are the same. Similar compact sets with fractal boundary are
considered as geometrical representations of the β-shift when β is a Pisot unit,
in Thurston 1989, in Akiyama 1999 and in Praggastis 1999, where topological
or tiling properties such as Proposition 10.8.12 or Lemma 10.8.14 are studied
in connection with the so-called F -property (Frougny and Solomyak 1992) (see
also Problem 10.8.5). Generalized Rauzy fractals issued from the β-numeration
are also closely related to canonical number systems (see for instance Akiyama
and Pethö 2002).

There are also some close connections between the dynamical properties of
the Rauzy fractal and the extension of the Fibonacci multiplication (introduced
in Knuth 1988) to the Tribonacci recurrence relation, as studied for instance in
Arnoux 1989 and Messaoudi 2000b, 2002.

Rauzy fractals can be used to characterize the numbers that have a purely
periodic β-expansion, producing a kind of generalized Galois’ theorem on clas-
sical continuous fractions. It is known following Schmidt 1980 and Bertrand
1977 that elements of Q(β) have a ultimately periodic expansion when β is a
Pisot number. A characterization of those points having an immediately peri-
odic expansion is given in Sano 2002, see also Ito and Sano 2001, by introducing
a realization of the natural extension of the β-transformation acting on the as-
sociated generalized Rauzy fractal for β being a Pisot unit which is a simple
β-number. See also Ito 2000 (and more generally Gambaudo et al. 2000) for
closely related results for elements of cubic fields. Let us observe furthermore
that the results of Section 10.9 can be extended following the same ideas to
other cubic numbers (Ito 1996, Ito, Fujii, and Yasutomi 2003). Such results can
also be proved using algebraic geometry following Adams 1969.

Rauzy tilings have also been studied in theoretical physics and quasycristal
theory in Vidal and Mosseri 2000, 2001 as outlined in Section 10.8.6, where we
have followed the terminology of Moody 1997. For more on mathematical qua-
sicrystals, see for instance Baake and Moody 2000. See also Burd́ık et al. 1998,
2000, Verger Gaugry and Gazeau 2004 for connected results in the framework
of beta-numeration.
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