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Abstract. Sturmian words are infinite words that have exactly
n + 1 factors of length n for every positive integer n. A Sturmian
word sα,ρ is also defined as a coding over a two-letter alphabet
of the orbit of point ρ under the action of the irrational rotation
Rα : x 7→ x + α (mod 1). A substitution fixes a Sturmian word if
and only if it is invertible. The main object of the present paper is
to investigate Rauzy fractals associated with two-letter invertible
substitutions. As an application, we give an alternative geometric
proof of Yasutomi’s characterization of all pairs (α, ρ) such that
sα,ρ is a fixed point of some non-trivial substitution.

1. Introduction

1.1. Sturmian words and substitution invariance. Sturmian words
are infinite words over a binary alphabet, say, {1, 2}, that have exactly
n + 1 factors of length n for every positive integer n. Sturmian words
can also be defined in a constructive way as follows. Let 0 < α < 1.
Let T1 = R/Z denote the one-dimensional torus. The rotation of angle
α of T1 is defined by Rα : T1 → T1, x 7→ x + α. For a given real
number α, we introduce the following two partitions of T1:

I1 = [0, 1 − α), I2 = [1 − α, 1); I1 = (0, 1 − α], I2 = (1 − α, 1].

Tracing the orbit of Rn
α(ρ), we define two infinite words for ρ ∈ T1:

sα,ρ(n) =

{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2,

sα,ρ(n) =

{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2.

It is well known ([13, 25]) that an infinite word is a Sturmian word
if and only if it is equal either to sα,ρ or to sα,ρ for some irrational
number α. The word sα,ρ is called lower Sturmian word whereas the
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word sα,ρ is called upper Sturmian word. The notation sα,ρ stands in
all that follows indifferently for sα,ρ or for sα,ρ when there is no need to
distinguish between the two. A detailed description of Sturmian words
can be found in Chapter 2 of [23], see also [28].

Let {1, 2}∗ be the free monoid over {1, 2} endowed with the concate-
nation operation. A non-erasing homomorphism σ of the free monoid
{1, 2}∗ is called a substitution. An infinite word s ∈ {1, 2}N is a fixed
point of the substitution σ if σ(s) = s.

It is well known that the famous Fibonacci word, i.e., the fixed point
of the Fibonacci substitution 1 7→ 12, 2 7→ 1, is a Sturmian word. It
is thus natural to ask when a Sturmian word is a fixed point of some
non-trivial substitution. More precisely, we want to know

Question 1. For which α and ρ is the Sturmian word sα,ρ (resp. sα,ρ)
a fixed point of some non-trivial substitution?

By non-trivial substitution, we mean here a substitution that is dis-
tinct from the identity. In all that follows, we say that a Sturmian
word is substitution invariant if it is a fixed point of a non-trivial sub-
stitution.

There is a substantial literature devoted to Question 1. The first
step has been made in [14] (Theorem 1 below). When ρ = α, we have
sα,α = sα,α since α is an irrational number. We thus denote this word
by sα,α. It is usually called the characteristic word of α. For a number
x in a quadratic field, we denote by x′ the conjugate of x in this field.

Theorem 1 (Crisp et al. [14]). Let 0 < α < 1 be an irrational number.
Then the following two conditions are equivalent:

(i) the characteristic word sα,α is substitution invariant;
(ii) α is a quadratic irrational with α′ 6∈ [0, 1].

A quadratic number α with 0 < α < 1 and α′ 6∈ [0, 1] is called a
Sturm number according to [2]. Let us note that the simplification of
Condition (ii) in Theorem 1 to its present form is due to [2]. Further-
more, the expression of substitutions which fix sα,α can be explicitly
obtained from the continued fraction expansion of α (see [14]).

For more results on the homogeneous case (i.e., the case ρ = {nα} for
n ∈ Z, where {x} stands for the fractional part of x), see for instance
[8, 7, 11, 16, 21, 23]; for results in the non-homogeneous case, see
[22, 26, 6]. Some variants of Question 1 are also considered in [27, 10].

Yasutomi has given a complete answer to Question 1 in [35]. Its
characterization involves the conjugate of the quadratic real number
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x and can be compared to Galois’ theorem for simple continued frac-
tions describing numbers having a purely periodic continued fraction
expansion.

Theorem 2 (Yasutomi [35]). Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Then sα,ρ

is substitution invariant if and only if the following two conditions are
satisfied:

(i) α is an irrational quadratic number and ρ ∈ Q(α);
(ii) α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ or α′ < 0, α′ ≤ ρ′ ≤ 1 − α′.

Remark 1. Let us note the symmetry between both cases in Assertion
(ii) of Theorem 2. Indeed, let E : 1 7→ 2, 2 7→ 1 be the substitution
exchanging letters; then sα,ρ (resp. sα,ρ) is substitution invariant if
and only if s1−α,1−ρ (resp. s1−α,1−ρ) which is equal to E(sα,ρ) (resp.
E(s1−α,1−ρ)); furthermore, (α, ρ) satisfies α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ if
and only if (1 − α, 1 − ρ) satisfies 1 − α′ < 0, α′ ≤ 1 − ρ′ ≤ 1 − α′.

As a corollary of Theorem 2, we easily obtain:

Corollary 1. Let α be a Sturm number. Then
(i) for any ρ ∈ Q ∩ (0, 1), sα,ρ = sα,ρ is substitution invariant.
(ii) Let ρ ∈ [0, 1). The Sturmian word sα,{nα} (resp. sα,{nα}) is

substitution invariant if and only if n = −1, 0, 1. In total we obtain
exactly five substitution invariant Sturmian words

{21sα,α, 12sα,α, 2sα,α, 1sα,α, sα,α}
in the homogeneous case.

Note that (ii) is also proven in [35] and in [16].

Proof. (i) Since ρ is a rational number, we have ρ′ = ρ. Hence condition
(ii) of Theorem 2 is fulfilled if α′ > 1 or α′ < 0.

(ii) Let us first assume that α′ > 1. Let n, p ∈ Z such that ρ =
{nα} = nα − p. One has p = [nα].

For n = −1, 0, 1, we have ρ = 1−α, 0, α, respectively, so that ρ′ = 1−
α′, 0, α′. Hence ρ′ ∈ [1−α′, α′]. Therefore sα,ρ and sα,ρ are substitution
invariant.

For n ≥ 2, ρ′ = nα′ − p > α′ since p = [nα] ≤ n − 1; for n ≤ −2,
one has p = [nα] > nα − 1 ≥ n − 1. Hence p + 1 ≥ n + 1 and
ρ′ = nα′ − p < 1 − α′. Therefore, sα,ρ and sα,ρ are not substitution
invariant.

We deduce the case α′ < 0 by applying Remark 1. �

1.2. Invertible substitutions. Let σ be a substitution over {1, 2}
and let Mσ = (mij) be its incidence matrix, where mij counts the
number of occurrences of the letter i in σ(j). We assume that det Mσ =
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±1 (the substitution is said to be unimodular) and Mσ is primitive (Mn
σ

has only positive entries for some non-negative integer n).
A substitution is said to be invertible if it is an automorphism of

the free group generated by the alphabet {1, 2}. Note that if σ is an
invertible substitution, then its incidence matrix is unimodular.

Theorem 3 (Wen-Wen [34]). Every invertible substitution over {1, 2}
is a composition of the following three invertible substitutions:

(1) 1 7→ 2, 2 7→ 1; 1 7→ 12, 2 7→ 1; 1 7→ 21, 2 7→ 1.

Question 1 is related to invertible substitutions according to the fol-
lowing well-known result (see for instance [23]).

Theorem 4. A word is a Sturmian substitution invariant word if and
only if it is a fixed point of some primitive and invertible substitution.

Let us illustrate the main idea of the proof of Theorem 2 in [35]. Ac-
cording to the three substitutions in Theorem 3, S. Ito and S. Yasutomi
[21] define three transformations from [0, 1]2 to [0, 1]2, namely:

T1(α, ρ) = (
α

1 + ρ
,

ρ

1 + α
), T2(α, ρ) = (

1

2 − α
,

ρ

2 − α
),

T3(α, ρ) = (1 − α, 1 − ρ).

Then it is proven that a Sturmian word sα,ρ is substitution invariant if
and only if there exists a sequence S1, . . . , Sn with Si ∈ {T1, T2, T3} such
that (α, ρ) = S1 ◦ · · · ◦ Sn(α, ρ). Since there are three transformations,
the task of determining such (α, ρ) is tedious. Yasutomi’s original proof
of Theorem 2 in [35] is somewhat technical and lengthy.

Since Theorem 2 is a key elementary result, it is worth giving a proof
that is more transparent and accessible. Let us note that a geometric
proof based on the use of cut-and-project schemes has also been given
in [4]. The proof we present here is based on Rauzy fractals.

1.3. Rauzy fractals. Rauzy fractals (first introduced in [30] in the
Tribonacci case) are compact attractors of a graph-directed iterated
function system associated with primitive substitutions with some pre-
scribed algebraic properties. For more details, see for instance Chap. 7
in [28]. Rauzy fractals have numerous applications in number theory,
ergodic theory, dynamical systems, fractal geometry and tiling theory
(see for instance [3, 18, 19, 20, 30, 32], and Chap. 7 in [28]). The main
purpose of the present paper is to describe a new application of Rauzy
fractals to Sturmian words and more precisely, to study Rauzy fractals
associated with invertibe two-letter substitutions according to [15].
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Let us first describe an intuitive approach to Rauzy fractals for two-
letter substitutions. We give a more formal definition in Section 2. Let
σ be a primitive and unimodular substitution over {1, 2}. If σ does
not admit a fixed point, that is, if the image of 1 (resp. 2) begins
with 2 (resp. 1), then σ2 admits a fixed point. Otherwise, a fixed
point of σ is still a fixed point of σ2. Let s = s0s1s2 . . . be a fixed
point of σ2. Let (1 − α, α) be the eigenvector with positive entries of
Mσ corresponding to the Perron-Frobenius eigenvalue. We shall call
α the characteristic length of the matrix Mσ or of the substitution σ,
according to the context.

We define an oriented walk on the real line as follows. We start from
the origin; in the n-th step, if sn−1 = 1, we move to the right side by
α; if sn−1 = 2, we move to the left side by 1−α. Taking the closure of
the orbit of the origin under this transformation, we obtain

X = closure {|s0s1 . . . sk−1|1 · α + |s0s1 . . . sk−1|2 · (α − 1); k ≥ 0},
where |s0s1 . . . sn−1|j stands for the number of occurrences of the letter
j in the word s0s1 . . . sn−1. Furthermore, we define

(2)

X1 = closure {|s0s1 . . . sk−1|1 · α+ |s0s1 . . . sk−1|2 · (α − 1);
k ≥ 0, sk = 1},

X2 = closure {|s0s1 . . . sk−1|1 · α+ |s0s1 . . . sk−1|2 · (α − 1);
k ≥ 0, sk = 2}.

The Rauzy fractals of σ are defined as the set X = X1 ∪X2, X1, X2 in
(2). (To be more precise, we shall see in Section 2 that X, X1, X2 are
an affine image of the Rauzy fractals.)

A central property for our study is that the fixed points of an invert-
ible substitution are Sturmian (see Theorem 4), and hence the associ-
ated Rauzy fractals are intervals.

Theorem 5 ([12]). Let σ be a primitive unimodular substitution over
{1, 2}. Then the Rauzy fractals X1, X2 and X1 ∪ X2 are intervals if
and only if σ is invertible.

A simple proof of this result is given in Section 2.4. Let us note that
we only use here in the present paper the following easy implication:
the Rauzy fractals of an invertible substitution are intervals.

Let us give a sketch of our proof of Theorem 2. By Theorem 4
and Theorem 5, if a Sturmian word is substitution invariant, then it
is a fixed point of some primitive substitution with connected Rauzy
fractals.

Let σ be an invertible substitution with characteristic length α. Then
α is a Sturm number, and the Rauzy fractals X1, X2 are intervals with
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length 1−α and α, respectively. Suppose s = sα,ρ or s = sα,ρ is a fixed
point of σ2. (According to Proposition 1 below, we can indifferently
consider any of these two words.) One checks that ρ = 1−α−h, where
{h} = X1 ∩ X2.

Let V ′ be the line y = 1−α′

α′
x, where α′ is the algebraic conjugate

of α. A broken line in R2, the so-called stepped surface, is associated
with line V ′, defined as a discretization of V ′ (see Figure 3).

The sets X1,X2 have a self-similar structure: indeed they satisfy a set
equation which is controlled by the stepped surface of V ′ (see Lemma 4
and Theorem 6). Hence, by connectedness and self-similarity of Rauzy
fractals, we express the intersection X1 ∩ X2 in terms of the stepped
surface (see Theorem 8).

Then we show that the stepped surface is associated with the rotation
Rγ with γ = α′−1

2α′−1
, which may be considered as the dual rotation of

Rα. An arithmetic characterization of the stepped surface is obtained
(see Theorem 10). This allows us to get an algebraic description of the
intersection set X1 ∩ X2 for an invertible substitution σ, which yields
a proof of Theorem 2.

This paper is organized as follows. We first review in Section 2
some basic facts on Rauzy fractals. We then discuss in Section 2.4 the
connectedness of Rauzy fractals for a two-letter alphabet. Theorem 5
is proven in this section. In Section 3, we study set equations of Rauzy
fractals, especially in the invertible case. The intersection set X1 ∩X2

for invertible substitutions is determined in Section 4. In Section 5, an
algebraic characterization of the stepped surface is given. A proof of
Theorem 2 is given in Section 6.

2. Rauzy fractals

In this section we review some basic facts on Rauzy fractals. We
present here all definitions that apply to a two-letter alphabet, which
is sufficient for our purpose. Note that the notation, which is adapted
from [18], is slightly different from [3].

2.1. Sturm numbers. Let σ be a primitive unimodular substitution
over {1, 2}. Let β be the maximal eigenvalue of its incidence matrix
Mσ. Its algebraic conjugate β ′ is also an eigenvalue of Mσ. By the
Perron-Frobenius’ theorem, we have β > 1. Now ββ ′ = det Mσ = ±1
implies |β ′| < 1. Therefore β is a Pisot number and the substitution σ
is said to be of Pisot type.

It is well-known that the densities of letters exist in fixed points of
primitive substitutions (see [29]). Furthermore, the vector of densities
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of the letters 1 and 2 denoted by (1 − α, α), with 0 ≤ α ≤ 1, is easily
proven to be an expanding eigenvector, i.e., an eigenvector associated
with the expanding eigenvalue β. Let us recall that α is called the
characteristic length of Mσ. The characteristic length α is (irrational)
quadratic; the vector (1 − α′, α′) is an eigenvector associated with the
eigenvalue β ′. Still by Perron-Frobenius’ theorem, coordinates 1 − α′,
α′ cannot both be positive, hence α′(1 − α′) ≤ 0, which implies that
α′ 6∈]0, 1[. Hence α is a Sturm number.

Conversely, any Sturm number is the characteristic length of a primi-
tive unimodular matrix M of size 2×2. Indeed, if α is a Sturm number,
then sα,α is a fixed point of an invertible primitive substitution σ fol-
lowing Theorem 1, and hence α is the characteristic length of Mσ. We
thus have proven the lemma below.

Lemma 1. A number α ∈ (0, 1) is a Sturm number if and only if
there exists a 2 × 2 primitive unimodular matrix M with non-negative
integral entries such that (1 − α, α) is an expanding eigenvector of M .
Consequently, if the Sturmian word sα,ρ is substitution invariant, then
this implies that α is a Sturm number.

Example 1. Let σ be the substitution 1 7→ 121, 2 7→ 12, i.e., the square
of the Fibonacci substitution. This substitution admits as a unique

fixed point the Fibonacci word sα,α, with α = 3−
√

5
2

, whose first terms
are

121121211211212112121

One has Mσ =

[

2 1
1 1

]

, β = 3+
√

5
2

, and β ′ = 3−
√

5
2

= α = 1
β

> 0.

We will also need the following lemma.

Lemma 2 ([24, 34, 8]). Let σ be a non-trivial substitution over {1, 2}.
The following three conditions are equivalent:

(i) σ is primitive invertible;
(ii) for any Sturmian word s, σ(s) is still a Sturmian word;

(iii) there exists a Sturmian word s such that σ(s) is a Sturmian
word.

The equivalence between (i) and (ii) is due to [24] and [34], the
equivalence with (iii) is proven in [8]. For more details, see [23].

2.2. Upper and lower Sturmian sequences. In this subsection,
we show that sα,ρ is substitution invariant if and only if sα,ρ is also
substitution invariant.
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Proposition 1. Let 0 < α < 1 be an irrational number and 0 ≤ ρ ≤ 1.
Then sα,ρ is substitution invariant if and only sα,ρ is also substitution
invariant.

Proof. Suppose sα,ρ = s0s1s2 . . . is a fixed point of the non-trivial sub-
stitution σ. According to Lemma 2, σ is primitive invertible. By
primitivity, one has

(3) |σ2(1)| ≥ 2 and |σ2(2)| ≥ 2.

Note that sα,ρ = s0s1s2 . . . is also a fixed point of the non-trivial sub-

stitution σ2. Let us prove that sα,ρ is a fixed point of σ2.
Let us assume that sα,ρ 6= sα,ρ (otherwise, there is nothing to prove).

One has either

(4)
sα,ρ = s0 . . . sn−121sn+2 · · · = s0 . . . sn−121sα,α,
sα,ρ = s0 . . . sn−112sn+2 · · · = s0 . . . sn−112sα,α

or

(5)
sα,ρ = 1sα,α,
sα,ρ = 2sα,α.

Let s = sα,ρ and s′ = sα,ρ. We assume that we are in case (4); case (5)
can be handled in the same way.

It is shown in [33] (as a consequence of Theorem 3) that if τ is
an invertible substitution over a two-letter alphabet, then there exist
two words u and v such that either τ(12) = u12v, τ(21) = u21v, or
τ(12) = u21v, τ(21) = u12v. By applying twice this result, one deduces
that there exist a finite word w and an infinite word t, such that

(6) σ2(s) = w21t, σ2(s′) = w12t.

One first deduces that t = sα,α. Indeed, 12t and 21t are two Sturmian
words with the same angle α. Second, we deduce from σ2(s0s1 . . . sn−1) =
s0s1 . . . sn−1u = w and (3) that w and s0s1 . . . sn−1 are equal to the
empty word. Again by (4) and (6), we have

σ2(s) = 21t, σ2(s′) = 12t = s′.

Hence s′ is a fixed point of σ2. �

2.3. Definition of Rauzy fractals. Let ~e1, ~e2 be the canonical basis
of R2. Let f : {1, 2}∗ → Z2 be the Parikh map, also called abelian-
ization homomorphism, defined by f(w) = |w|1~e1 + |w|2~e2, where |w|i
denotes the number of occurrences of the letter i in w.

Let V be the expanding eigenspace of the matrix Mσ corresponding
to the eigenvalue β, and V ′ the contracting eigenspace corresponding
to β ′. The expanding subspace is generated by the vector ~v = (1 −
α, α), therefore the contracting subspace is generated by the vector
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~v′ = (1 − α′, α′). Then V ⊕ V ′ = R2 is a direct sum decomposition of
R2. According to this direct sum, two natural projections are defined:

π : R2 → V ′ and π′ : R2 → V.

We define the Rauzy fractal associated with σ as the closure of the
projection according to π of the vertices of the broken line (illustrated
in Figure 1) obtained by applying map f to the prefixes of a given fixed
point of σ2. (We recall that σ2 always admits a fixed point since we
work on a two-letter alphabet.)

VV ’ 

Figure 1. The broken line.

More precisely, let s = (sk)k≥0 be a fixed point of σ2. We first define

Y = {f(s0 . . . sk−1); k ≥ 0},
where the notation s0 . . . sk−1 stands for the empty word when k = 0.
We then divide Y into two parts:

Y1 = {f(s0 . . . sk−1); sk = 1}, Y2 = {f(s0 . . . sk−1); sk = 2}.
Projecting Y1, Y2 onto the contracting eigenspace V ′ and taking the
closures, we get

~X1 = π(Y1), ~X2 = π(Y2).
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We call ~X1 and ~X2 the Rauzy fractals of the substitution σ. It is shown
in [18] that the Rauzy fractals are independent of the choice of the
fixed point in the definition.

Clearly, Rauzy fractals ~X1 and ~X2 are one-dimensional objects. One
has

(7) ~e1 = − α′

α − α′~v +
α

α − α′~v
′ and ~e2 =

1 − α′

α − α′~v +
α − 1

α − α′~v
′.

Hence an easy computation shows that

X1 = φ( ~X1), X2 = φ( ~X2),

where X1, X2 are defined in (2) and φ is the linear map defined by

(8) φ : V ′ → R, φ(
x~v′

α − α′ ) = x.

By abuse of language, we also call X, X1 and X2 the Rauzy fractals of
the substitution σ.

Barge and Diamond showed in [5] that every Pisot substitution over
a two-letter alphabet satisfies a certain combinatorial condition, called
the strong coincidence condition. Thanks to this, one can show that

Lemma 3 ([18]). Let σ be a primitive Pisot substitution over two let-
ters. Then

µ(X1) = 1 − α, µ(X2) = α,

where µ is the Lebesgue measure and α is the characteristic length of
Mσ.

2.4. Connectedness of Rauzy fractals. It is generally hard to de-
cide whether Rauzy fractals are connected (see for instance [1, 12]).
However, in the two-letter case we have a complete characterization
given by Theorem 5. We provide an elementary proof of this folklore
result.
Proof of Theorem 5.

Let σ be a primitive invertible substitution. Let s be a fixed point of
σ2. By Theorem 4, s is a Sturmian word. Indeed, if s′ is any Sturmian
word with the same initial letter as s, then the sequence of Sturmian
words (according to Lemma 2) (σ2n(s′))n≥1 converges to s. Hence s
has at most n + 1 factors of length n. Since σ is both unimodular and
primitive, we infer that the density of the letter 1 in s is irrational,
which implies that s is aperiodic and thus, a Sturmian word.

Let α, ρ such that s = sα,ρ (which means indifferently either sα,ρ

or sα,ρ). Let us first prove that the points f(s0 · · · sk−1), for k ∈ N,
stay at a bounded distance of the line V ; more precisely, they stay
between the lines y = α

1−α
x + ρ−1

1−α
and y = α

1−α
x + ρ

1−α
, which directly
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implies that µ(X1 ∪ X2) ≤ 1. Indeed, the broken line defined by the
vertices f(s0 · · · sk−1), for k ∈ N, is a cutting sequence (see for instance
[23]), that is, it corresponds to the approximation of the line y =

α
1−α

x + ρ

1−α
− 1 by the broken line with integer vertices obtained by

progressing by unit segments, either up or to the right, always going
in the direction of the line, and starting from the origin point (0, 0):
one first notes that s0 = 1 if and only if ρ

1−α
− 1 < 0; furthermore,

if α < 1/2 (resp. α > 1/2), the vertex f(s0 · · · sk−1) is below (resp.
above) the line y = α

1−α
x+ ρ

1−α
− 1 if and only if sk = 2 (resp. sk = 1).

Moreover, by (7), φ ◦ π ◦ f(1) = α, and φ ◦ π ◦ f(2) = α − 1. This
implies that
(9)
{

φ ◦ π ◦ f(s0 · · · sk) = φ ◦ π ◦ f(s0 · · · sk−1) + α when sk = 1
φ ◦ π ◦ f(s0 · · · sk) = φ ◦ π ◦ f(s0 · · · sk−1) + α − 1 when sk = 2.

Hence

(10) ∀k ∈ N, φ ◦ π ◦ f(s0 · · · sk−1) ≡ kα mod 1.

By irrationality of α, we deduce that Rauzy fractals are intervals.

Conversely, let σ be a primitive unimodular substitution over {1, 2}.
We first assume that the Rauzy fractals of σ, namely X1, X2, and
X = X1 ∪ X2, are intervals. Let s = (sk)k≥0 be a fixed point of σ2

which defines X1 and X2. Let α stand for the characteristic length of
Mσ. Equations (9) and (10) still hold.

According to Lemma 3, µ(X1∩X2) = 0, µ(X1) = 1−α and µ(X2) =
α. Furthermore, X1 + α ⊂ X = X1 ∪ X2, by (9). Hence there exists
h ∈ R such that X1 = [−1 + α + h, h] and X2 = [h, h + α].

If the sequence (φ ◦ π ◦ f(s0 · · · sk−1))k≥1 never takes as value one of
the endpoints of X1 and X2, then one has according to (9)
{

∀k ∈ N, sk = 1 if and only if φ ◦ π ◦ f(s0 · · · sk−1) ∈ (−1 + α + h, h)
∀k ∈ N, sk = 2 if and only if φ ◦ π ◦ f(s0 · · · sk−1) ∈ (h, h + α).

We deduce from (10) that s = sα,1−α−h = sα,1−α−h.
If there exists k ≥ 1 such that φ ◦ π ◦ f(s0 · · · sk−1) = −1 + α + h,

then s = sα,1−α−h. Similarly, if there exists k ≥ 1 such that φ ◦ π ◦
f(s0 · · · sk−1) = h + α, then s = sα,1−α−h.

We assume now that there exists k ≥ 1 such that φ◦π◦f(s0 · · · sk−1) =
h. If sk = 1, then φ ◦ π ◦ f(s0 · · · sk) = h + α, and s = sα,1−α−h. If
sk = 2, then φ ◦ π ◦ f(s0 · · · sk) = h + α − 1, and s = sα,1−α−h.

We thus have proved that s is a Sturmian word. According to Lemma
2, this implies that σ2, and thus σ, are invertible.

�
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We deduce from the previous proof the following:

Corollary 2. Let σ be a primitive invertible substitution. Then there
exists h ∈ Z such that the Rauzy fractals satisfy

X1 = [−1 + α + h, h], X2 = [h, α + h],

where α is the characteristic length of σ. Furthermore, if sα,ρ or sα,ρ

is a fixed point point of σ2, then ρ = 1 − α − h.

Example 2. Let us continue Example 1. One has X1 = [−α, 1 − 2α],
X2 = [1 − 2α, 1 − α], h = 1 − 2α.

3. Self-similarity of Rauzy fractals

In this section, we discuss the self-similar structure of Rauzy fractals
X1 and X2, while paying special attention to the case σ invertible. The
stepped surface is shown to play an important role.

3.1. Set equations of Rauzy fractals. Let σ be a primitive sub-
stitution over {1, 2} and let β be the Perron-Frobenius eigenvalue of
Mσ.

It is well-known ([3],[32], [18]) that ~X1 and ~X2, and thus X1 and
X2, have a self-similar structure, i.e., both 1

β
′ X1 and 1

β
′ X2 are unions

of translated copies of X1 and X2. (We recall that |β ′| < 1.) In order
to describe the corresponding set equations, we introduce the following
notation: let D1 (resp. D2) be the set of these (a, i) ∈ R × {1, 2} such
that Xi + a ⊂ 1

β
′ X1 (resp. Xi + a ⊂ 1

β
′ X2), that is,

1

β ′
X1 =

⋃

(a,i)∈D1

Xi + a,
1

β ′
X2 =

⋃

(b,i)∈D2

Xi + b.

For the explicit form of D1, D2, we refer to [3] for the general case,
and to Section 3.4, in the present case. To give an intuitive flavour of
the explicit form, let us just note that any vertex f(s0 · · · sk−1) of the
broken line has form f(σ(s0 · · · sq−1)) + f(p), for a prefix p of σ(sq).
Its projection yields the multiplication by 1/β ′, and thus belongs to
Xsk

/β ′. The first part f(σ(s0 · · · sq−1)) contributes by projection to an
interval Xsq

and f(p) induces a translation of this interval.

Example 3. We continue Example 2. One checks that

X1

β ′ = [−1, 1/α − 2] = [−1, 1 − α] = (X1 + α − 1) + X1 + X2,

X2

β ′ = [1/α − 2, 1/α − 1] = [1 − α, 2 − α] = (X1 + 1) + (X2 + 1).

One has D1 = {(α − 1, 1), (0, 1), (0, 2)} and D2 = {(1, 1), (1, 2)}.
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3.2. The stepped surface. Recall that V ′ is the contracting eigenline
of Mσ. We denote the upper closed half-plane delimited by V ′ as (V ′)+,
and the lower open half-plane delimited by V ′ as (V ′)−. We define

S = {[z, i∗]; z ∈ Z2, z ∈ (V ′)+ and z − ~ei ∈ (V ′)−},
where the notation [z, i∗], for z ∈ Z2 and i∗ ∈ {1∗, 2∗}, endows the point
z in Z2 with color i∗ = 1∗, 2∗. Intuitively S consists of the collection of
these colored points [z, i∗] which are close to the contracting eigenline
V ′.

We now define [z, 1∗] (resp. [z, 2∗]) as the closed line segment from
z to z +~e2 (resp. to z +~e1) (see Figure 2). Then the stepped surface S
of V ′ is defined as the broken line consisting of the following segments

S =
⋃

[z,i∗]∈S

[z, i∗].

It is easily seen to be connected. A piece of a stepped surface is depicted
in Figure 3 for the example of Example 1. By abuse of language, the
formal set S will also be called the stepped surface of V ′.

[0,2*]

[0,1*]

Figure 2. The segments [0, 1∗] and [0, 2∗].

Figure 3. A piece of the stepped surface for 1 7→ 121,
2 7→ 12.

It turns out that the set equations of the Rauzy fractals are controlled
by the stepped surface. An explicit expression of sets D1 and D2 is
given in [3], from which one immediately deduces the following facts:
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Lemma 4 ([3, 18]). Using the notation above:
i) for any (a, i) ∈ D1 ∪D2, there exists an element [z, i∗] ∈ S such

that φ ◦ π(z) = a;
ii) (0, 1), (0, 2) ∈ D1 ∪ D2;

iii) (nij)1≤i,j≤2 = tMσ, where nij counts the number of elements (a, i)
in the set Dj.

3.3. Tiling associated with the stepped surface. Projecting the
stepped surface S onto V ′, we first obtain a tiling J ′ of V ′:

J ′ = {π([z, i∗]); [z, i∗] ∈ S}.
Applying the linear transformation φ (see (8)), we then get a tiling J
of the real line:

J = {φ ◦ π([z, i∗]); [z, i∗] ∈ S}.
Tiling J is a tiling with two prototiles. Indeed

J = {φ ◦ π(z) + Ji; [z, i∗] ∈ S},
where

J1 = φ ◦ π[0, 1∗] = [−1 + α, 0], J2 = φ ◦ π[0, 2∗] = [0, α].

We label the tiles of J on the right side of the origin by the sequence
T0, T1, T2, . . . , where Tn+1 is the rightside neighbour of Tn. Likewise we
label the tiles of J on the left side of the origin by T−1, T−2, . . . . One
has J = {Tk; k ∈ Z}. We furthermore define the two-sided sequence
(gk)k∈Z as the sequence of left endpoints of tiles Tk (one has g0 = 0).
An arithmetic description of the sequence (gk)k∈Z is given in Section 5.

Example 4. We continue Example 3. One has g−2 = 2(α − 1), g−1 =
α − 1, g0 = 0, g1 = α, g2 = 1.

3.4. Set equations of connected Rauzy fractals. According to
Corollary 2, if σ is a primitive invertible substitution, then there exists
a real number h such that X1 = [−1 + α + h, h], X2 = [h, h + α], that
is,

X1 = J1 + h, X2 = J2 + h,

where J1 = [−1 + α, 0] and J2 = [0, α] are the two prototiles of tiling
J .

Let (a, i) ∈ D1. There exists an element [z, i∗] ∈ S such that φ ◦
π(z) = a by Lemma 4. Let k ∈ Z such that φ ◦ π[z, i∗] = Tk; then

Xi + a = Ji + h + a = Tk + h.
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We thus can introduce two subsets D1 and D2 of J such that

X1

β ′ =

(

⋃

T∈D1

T

)

+ h,
X2

β ′ =

(

⋃

T∈D2

T

)

+ h.

On the one hand, the tiles in D1 ∪D2 do not overlap according to [5]
and [3]. On the other hand, these tiles must form a connected patch of
J since X1, X2, X1 ∪ X2 are intervals according to Theorem 5. Hence
we have proven that

Theorem 6. Let X1 = [−1 + α + h, h], X2 = [h, h + α] be the Rauzy
fractals of the primitive invertible substitution σ. Then

X1

β ′ =

(

⋃

T∈D1

T

)

+ h,
X2

β ′ =

(

⋃

T∈D2

T

)

+ h,

where D1,D2 and D1 ∪ D2 are connected patches of the tiling J .

Example 5. We continue Example 4. One has D1 = {T−2, T−1, T0},
D2 = {T1, T2}, X1

β′
= h + T−2 + T−1 + T0,

X2

β′
= h + T1 + T2.

4. Invertible substitutions with a given incidence matrix

In this section, we give a more detailed description of the Rauzy
fractals of invertible substitutions with a given incidence matrix.

4.1. A list of invertible substitutions with a given incidence

matrix. Let M =

(

a b
c d

)

be a primitive unimodular matrix. A

very interesting result on invertible substitutions is given in [31]:

Theorem 7 (Séébold [31]). Let M =

(

a b
c d

)

be a primitive uni-

modular matrix with non-negative entries. The number of invertible
substitutions with incidence matrix M is equal to a + b + c + d − 1.

Let σ be an invertible substitution with incidence matrix Mσ = M .
According to Lemma 4, (0, 1), (0, 2) ∈ D1 ∪ D2, hence we have

(11) T−1, T0 ∈ D1 ∪ D2.

By Lemma 4 iii), we have

(12) Card D1 = Card D1 = a + b, Card D2 = card D2 = c + d.

Let us assume that the determinant of M is equal to 1. (We will
not need to subsequently consider the case det(M) = −1, but a similar
study can be conducted.) In this case, 1/β ′ = β > 0 so that X1

β′
is on

the left side of X2

β′
. Hence by Theorem 6, the patch D1 is on the left
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side of D2. By Theorem 6, (11), and (12), we infer that there exists k
with 1 ≤ k ≤ a + b + c + d − 1 such that

(13)
D1 = {T−k, T−k+1, . . . , T−k+a+b−1},
D2 = {T−k+a+b, T−k+a+b+1, . . . , T−k+a+c+b+d−1}.

Hence there are at most a+b+c+d−1 invertible substitutions with
incidence matrix M , and their set equations are deduced from (13). On
the other hand, Theorem 7 asserts that there are exactly a+b+c+d−1
such substitutions. Since the set equations for different substitutions
are distinct, we conclude that there is a one-to-one correspondence
between the invertible substitutions with incidence matrix M and the
set equations determined by (13). We denote these substitutions by
σk, 1 ≤ k ≤ a + b + c + d − 1.

4.2. Intersection point of Rauzy fractals. For each of the substi-
tutions σk defined in the previous section, there exists ρk such that
sα,ρk

(which means indifferently either sα,ρk
or sα,ρk

) is a fixed point of
σ2

k according to the proof of Proposition 1.
Let 1 ≤ k ≤ a + b + c + d − 1. Let X1 = [−1 + α + hk, hk], X2 =

[hk, α + hk] be the Rauzy fractals of σk. One has ρk = 1 − α − hk

according to Corollary 2. Below we use the connectedness and the self-
similarity of Rauzy fractals to determine hk and thus ρk. Let us recall
that (gk)k∈Z stands for the sequence of left endpoints of tiles Tk in J .

Theorem 8. Let M be a 2 × 2 primitive matrix with non-negative
entries such that det M = 1. Let σk, 1 ≤ k ≤ a + b + c + d − 1,
be the invertible substitutions with incidence matrix M , and let X1 =
[−1 + α + hk, hk], X2 = [hk, α + hk] be the Rauzy fractals of σ2

k. Let β
be the maximal eigenvalue of M . Then

hk =
g−k+a+b

β − 1
.

Proof. On the one hand, X1

β′
∩ X2

β′
= {(β ′)−1hk} = {βhk}. On the

other hand, this intersection point is the left endpoint of the interval
∪{T + hk; T ∈ D2}, i.e., the left endpoint of T−k+a+b + hk. So we get
g−k+a+b + hk = βhk, and hk =

g−k+a+b

β−1
. �

Theorem 9. Let M be a 2 × 2 primitive matrix with non-negative
entries such that det M = 1. Let σ1, σ2, . . . , σa+b+c+d−1 be the invertible
substitutions with incidence matrix M . Let G := {gk; k ∈ Z}. Then
the Sturmian word sα,ρ is a fixed point of the substitution σ2

k if and only
if

0 ≤ ρ ≤ 1 and (ρ + α − 1) ∈ G

1 − β
.
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Proof. By Theorem 8, one has ha+b+c+d−1 < · · · < h2 < h1. Hence a
real number h belongs to the set {h1, h2, . . . , ha+b+c+d−1} if and only if

(14) h ∈ G

β − 1
and ha+b+c+d−1 ≤ h ≤ h1.

The values h1 and ha+b+c+d−1 remain to be determined. For the sub-
stitution σ1, the set D1 is equal to {T−1, T0, . . . , Ta+b−2}. By Lemma
4 iii), the numbers of tiles in D1 of length 1 − α and α are a and b,
respectively. Since |T−1| = 1 − α, we have

ga+b−1 = (a − 1)(1 − α) + bα = (β − 1)(1 − α).

Here we use the equality a(1−α) + bα = β(1−α), which follows from
the fact that (1 − α, α) is an expanding eigenvector of M . Therefore
h1 = 1 − α. A similar argument shows that ha+b+c+d−1 = −α.

Remember now that ρk = 1 − α − hk. The theorem follows from
(14). �

5. The stepped surface

In this section, we give an arithmetic description of the stepped
surface S. We first define the two-sided word (tn)n∈Z as:

∀n ∈ Z, tn =

{

1, if |Tn| = 1 − α
2, if |Tn| = α.

It is well known that Sturmian words can also be described as cutting
sequences (see for instance [23]). One checks according to [3] that
(tn)n∈Z is the upper two-sided cutting sequence of the line V ′ : y =
1−α′

α′
x. Hence

(15) t−1t−2t−3 · · · = 1sγ,γ, t0t1t2 · · · = 2sγ,γ,

where

(16) γ =
α′ − 1

2α′ − 1
.

Let Rγ : x 7→ x + γ be the rotation of angle γ of the torus T1. We
deduce from (15) that for all positive k

|t−1t−2 . . . t−k|1 · γ + |t−1t−2 . . . t−k|2 · (γ − 1) = Rk
γ(0)

|t0t1 . . . tk−1|1 · γ + |t0t1 . . . tk−1|2 · (γ − 1) = −R−k
γ (0).

By definition of (gk)k∈Z , one has for every nonnegative k

g−k = |t−1t−2 . . . t−k|1 · (α − 1) + |t−1t−2 . . . t−k|2 · (−α),

gk = |t0t1 . . . tk−1|1 · (1 − α) + |t0t1 . . . tk−1|2 · α.
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Hence

(17) ∀k ∈ Z,
g′

k

2α′ − 1
= R−k

γ (0),

where g′
k denotes the conjugate of gk. This thus provides an arithmetic

description of the stepped surface.

Theorem 10. One has

G = {g ∈ Z[α]; 0 ≤ g′ < 2α′ − 1} when α′ > 1,
G = {g ∈ Z[α]; 2α′ − 1 < g′ ≤ 0} when α′ < 0.

Proof. We assume that α′ > 1. The case α′ < 0 can be handled
similarly. Note that

{Rk
γ(0); k ∈ Z} = {mγ + n; 0 ≤ mγ + n < 1}.

This together with (17) imply that

G = {g; g′ = m(α′ − 1) + n(2α′ − 1); m, n ∈ Z, 0 ≤ g′ < 2α′ − 1}
= {g; g = m(α − 1) + n(2α − 1); m, n ∈ Z, 0 ≤ g′ < 2α′ − 1}
= {g ∈ Z[α]; 0 ≤ g′ < 2α′ − 1}.

�

Remark 2. For a Sturm number α, it is easy to check that γ = α′−1
2α′−1

is also a Sturm number. We say that γ is the dual of α. One checks
that γ and α are duals of each other. In some sense, rotation Rγ is the
dual rotation of Rα.

6. Proof of Theorem 2

In this section, we prove Theorem 2.

Theorem 2. (Yasutomi [35].) Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Then
sα,ρ is substitution invariant if and only if the following two conditions
are satisfied:

(i) α is an irrational quadratic number and ρ ∈ Q(α);
(ii) α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ or α′ < 0, α′ ≤ ρ′ ≤ 1 − α′.

6.1. An algebraic lemma. We first need a preliminary lemma.

Lemma 5. Let β be a quadratic algebraic unit, and α be an irrational
number in Q(β). Then for any ρ ∈ Q(β), there exists an arbitrary
large even number n such that ρ(βn − 1) ∈ Z[α].

Proof. Let A stand for the ring of algebraic integers in Q(β). First we
claim that for any ρ ∈ Q(β), there exists an arbitrary large number
n such that ρ(βn − 1) ∈ A. Indeed, let δ ∈ A such that δρ ∈ A.
Then at least two terms in the sequence (δρβn)n≥0 belong to the same
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residue class modulo the principal ideal of A generated by δ. Hence
δρ(βn1 − βn2) is divisible by δ in A for some n1 > n2. Since β is an
algebraic unit, δρ(βn − 1) is also divisible by δ for n = n1 − n2, and
ρ(βn−1) ∈ A. This proves our claim. Note furthermore that obviously
we can decide that n is an even number. We thus have proven that for
every N > 0,

Q(β) =
⋃

n≥N

A
β2n − 1

.

We then prove that there is a rational number K such that A ⊂
KZ[α]. Indeed, let d be the square-free integer such that Q(β) =

Q(
√

d). Then there are integers a, b and c 6= 0 such that α = a+b
√

d
c

.
Note that b 6= 0 since α is irrational. It is well known that any element
in A must have the form (m

√
d + n)/2. Since

(m
√

d + n)/2 =
mcα − ma + nb

2b

is an element of Z[α]
2b

, our assertion is true by taking K = 1
2b

.
Therefore for any N > 0, we have

Q(β) =
⋃

n≥N

A
β2n − 1

⊂ K
⋃

n≥N

Z[α]

β2n − 1
⊆ Q(β).

Multiplying every term of the above formula by K−1, we obtain

Q(β) =
⋃

n≥N

Z[α]

β2n − 1
.

�

6.2. Proof of Theorem 2. Now we are in a position to prove Theorem
2.

Necessity. Let us suppose that sα,ρ is a fixed point of the non-trivial
primitive invertible substitution σ. Let β be the maximal eigenvalue
of Mσ. We may assume that det M = 1, for otherwise we consider σ2

instead of σ.
By Lemma 1, α must be a Sturm number. From Theorem 9, we

deduce

1 − α − ρ = h ∈ G

β − 1
⊆ Z[α]

β − 1
⊆ Q(β).

Hence ρ ∈ Q(β) = Q(α), so condition (i) is necessary.
Concerning (ii), we need only to consider the case α′ > 1 according

to Remark 1. Note that sα,ρ is also a fixed point of σn, for any n ≥ 1,
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and in particular for any even number n; furthermore, substitutions σn

share the same stepped surface. Hence

ρ + α − 1 ∈ G

1 − βn
,

ρ′ + α′ − 1 ∈ {g′; g ∈ G}
1 − (β ′)n

.

By Theorem 10, we have

0 ≤ ρ′ + α′ − 1 <
2α′ − 1

1 − (β ′)n
.

Note that the above formula holds for every even number n. By letting
n tend to infinity, (β ′)n vanishes, and we conclude that 1−α′ ≤ ρ′ ≤ α′.

Sufficiency. Suppose that (α, ρ) satisfies (i) and (ii). According
to Remark 1, we may assume here again that α′ > 1, so ρ′ + α′ −
1 ∈ [0, 2α′ − 1]. Since α is a Sturm number, there exists a primitive
substitution σ such that sα,α is a fixed point of σ (Theorem 1). Let
β be the maximal eigenvalue of the incidence matrix Mσ. We may
assume that det Mσ = 1, otherwise we consider σ2 instead of σ.

Obviously α ∈ Q(β). Condition (i) implies that ρ ∈ Q(α) = Q(β).
Hence ρ + α − 1 ∈ Q(β), so by Lemma 5, there exist an even number
n and g ∈ Z[α] such that

ρ + α − 1 =
g

1 − βn
.

Let us prove that g is actually an element of G. Assumptions α′ > 1
and 1 − α′ ≤ ρ′ ≤ α′ imply that 0 ≤ ρ′ + α′ − 1 ≤ 2α′ − 1. Now
0 < 1 − (β ′)n < 1 since n is even. Hence

g′ = (ρ′ + α′ − 1)(1 − (β ′)n) ∈ [0, 2α′ − 1)

so g ∈ G by Theorem 10. We thus have proven that ρ + α − 1 ∈ G
1−βn .

This together with 0 ≤ ρ ≤ 1 implies that sα,ρ is substitution invariant
(by Theorem 9). �
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[2] Allauzen C., Une caractérisation simple des nombres de Sturm, J. Théor.
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