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1. Introduction

The aim of this survey is to illustrate various connections that exist be-
tween word combinatorics and arithmetic discrete geometry through the
discussion of some discretizations of elementary Euclidean objects (lines,
planes, surfaces). We focus on the role played by dynamical systems (toral
rotations mainly) that can be associated in a natural way with these discrete
structures. We show how classical techniques in symbolic dynamics applied
to some codings of such discretizations allow one to obtain results concern-
ing the enumeration of configurations and their statistical properties. Note
that we have no claim to exhaustivity: the examples that we detail here
have been chosen for their simplicity.

Let us first illustrate this interaction with Figure 1.1 below where a piece
of an arithmetic discrete plane in R3 is depicted, as well as its orthogonal
projection onto the antidiagonal plane ∆: x1+x2+x3 = 0 in R3, which can
be considered as a piece of a tiling of the plane by three kinds of lozenges,
and lastly, its coding as a two-dimensional word over a three-letter alphabet.

Figure 1.1. Left: arithmetic discrete plane. Middle: tiling
of the plane. Right: two-dimensional word.

This paper is organized as follows. We first start with the most simple
situation, namely discrete lines and Sturmian words (see Section 2). Section
3 is devoted to the higher-dimensional case, i.e., to the study of arithmetic
discrete planes. We generalize this study performed mainly in the so-called
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naive case, first, to a broader class of arithmetic discrete planes in Sec-
tion 4, and second, to functional stepped surfaces in Section 5. Section 6
is concerned with the generation of arithmetic discrete planes by so-called
generalized substitutions. Special focus is given to the duality between arith-
metic discrete planes and discrete lines in the three-dimensional space. One
key tool will be the so-called Rauzy fractal associated with the cubic Pisot
number of minimal polynomial X3 −X2 −X − 1 = 0.

2. Sturmian words and discrete lines

This section is concerned with the connections between arithmetic discrete
lines and Sturmian words. A substantial literature has been devoted to the
study of discrete lines, as illustrated for instance in the surveys [KR04,
BCK07]. Let us start by recalling the definition of an arithmetic discrete
line, introduced by Reveillès in [Rev91].

Definition 1. Let v ∈ R2, and µ, ω ∈ R. The (lower) arithmetic discrete
line D(v, µ, ω) is defined as

D(v, µ, ω) = {x ∈ Z2; 0 ≤ 〈v,v〉+ µ < ω}.

Parameter µ is called the translation parameter of D(v, µ, ω), and ω is called
the width of D(v, µ, ω).

Two natural cases are more particularly studied: if ω = ||v||∞, then
D(v, µ, ω) is said naive, and if ω = ||v||1, then D(v, µ, ω) is said standard.
One checks that a naive (resp. standard) arithmetic discrete line is made of

Figure 2.1. Left: a naive discrete line. Right: a standard
discrete line.

horizontal and diagonal (resp. horizontal and vertical) steps. One can code
such a standard line by using the Freeman code [Fre70] over the two-letter
alphabet {0, 1} as follows: one codes horizontal steps by a 0, and diagonal
ones by a 1. One gets a so-called Stumian word (un)n∈N ∈ {0, 1}N. More
precisely, Sturmian words satisfy:

Definition 2 (Morse-Hedlund [MH40]). Let Rα : R/Z → R/Z, x 7→ x +
α mod 1 be the rotation of angle α of the one-dimensional torus T = R/Z.
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Let u = (un)n∈N ∈ {0, 1}N. The infinite word u is a Sturmian word if there
exist α ∈ (0, 1), α 6∈ Q, x ∈ R such that

∀n ∈ N, un = i ⇐⇒ Rn
α(x) = nα+ x ∈ Ii (mod 1),

with I0 = [0, 1− α[, I1 = [1− α, 1[ or I0 =]0, 1− α], I1 =]1− α, 1].

For more on Sturmian words, see the surveys [AS02, Lot02, PF02] and
the references therein.

The following lemma is classical for the study of Sturmian words. Its
interest for further generalizations is stressed in the survey [BFZ05].

Lemma 1. The word w = w1 · · ·wn over the alphabet {0, 1} is a factor of
the Sturmian word u if and only if

Iw := Iw1
∩R−1

α Iw2
∩ · · ·R−n+1

α Iwn 6= ∅.

Proof. By definition, one has

∀i ∈ N, un = i ⇐⇒ nα+ x ∈ Ii (mod 1).

One first notes that ukuk+1 · · ·un+k−1 = w1 · · ·wn if and only if














kα+ x ∈ Iw1

(k + 1)α+ x ∈ Iw2

...
(k + n− 1)α+ x ∈ Iwn .

One then applies the density of (nα)n∈N in R/Z (recall that α is assumed
to be an irrational number). �

One first notes that the condition of Lemma 1 does not depend on x but
only on α. One easily checks that the sets Iw1

∩ R−1
α Iw2

∩ · · ·R−n+1
α Iwn

are intervals of T = R/Z. Furthermore, the factors of u of length n are in
one-to-one correspondence with the n+1 intervals of T whose end-points are
given by −kα mod 1, for 0 ≤ k ≤ n. This implies that two Sturmian words
coding the same rotation have the same factors. Furthermore, Sturmian
words have exactly n+ 1 factors of length n, for every n ∈ N. This is even
a characterization of Stumian words:

Theorem 1 (Coven-Hedlund [CH73]). A word u ∈ {0, 1}N is Sturmian if
and only if it has exactly n+ 1 factors of length n.

The function that associates with a word the number of its factors of a
given length is called the complexity function. For more on this function,
see for instance [AS02, All94, Fer99].

More generally, one deduces from Lemma 1 various combinatorial proper-
ties of Sturmian words, such as the expression of densities of factors [Ber96],
that can be deduced from the equidistribution of the sequence (nα)n∈N. In-
deed, the frequency of occurrence of the word w in the Sturmian word u is
equal to the length of the interval Iw.

Let us note that Definition 2 can be restated in terms of dynamical sys-
tems as follows. A dynamical system (X,T ) is defined as the action of a
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continuous and onto map T on a compact space X. An example of a geo-
metric dynamical system is given by (T, Rα).

Given a dynamical system (X,T ), a point x ∈ X, and a partition P =
{P0, . . . ,Pk−1} of X, the sequence u = (un)n∈N defined by un = i whenever
Tnx ∈ Pi, for n ∈ N, is called a coding of the dynamical system (X,T ).
A Sturmian word is thus a coding of the dynamical system (T, Rα) with
respect either to the two-interval partition {I0 = [0, 1− α[, I1 = [1− α, 1[}
or to {I0 =]0, 1− α], I1 =]1− α, 1]}.

As another example, let us consider symbolic dynamical systems. Let A
be a finite set. We endow AN with the product topology of the discrete
topology on A. Let u ∈ AN. Let L(u) be the set of its factors. The shift S
is defined as S : AN → AN, (un)n∈N 7→ (un+1)n∈N. The symbolic dynamical

system generated by u is (Xu, S) with Xu := {Sn(u); n ∈ N} = {v ∈
AN; L(v) ⊂ L(u)} ⊂ AN.

Since two Sturmian words coding the same rotation have the same set of
factors, then one checks that the symbolic dynamical system generated by
a Sturmian word coding the rotation Rα consists of all the Sturmian words
that code the same rotation.

Note that several combinatorial properties of Sturmian words or of naive
arithmetic discrete lines respectively, have been studied and stated indepen-
dently: for instance, the notion of balance, and the chord property respec-
tively, have been considered in [MH38, MH40, Lot02, PF02] for Sturmian
words, and in [Fre74, Ros74, Hun85, Mel05] in discrete geometry. For more
details on the connections between Sturmian words and discrete lines, see for
instance Chap. 1 of [Jam05b], and more generally, for references on discrete
lines, see the surveys [KR04, BCK07]. See [AD03, BDJR08] for complexity
like results. See also [Fer08, UW08] for recent results in discrete geometry
in connection with continued fractions.

3. Discrete planes

Let us consider now the higher-dimensional case.

Definition 3. Let v ∈ R3, and µ, ω ∈ R. The arithmetic discrete hyperplane
P(v, µ, ω) is defined as

P(v, µ, ω) = {x ∈ Z3; 0 ≤ 〈x,v〉+ µ < ω}.

If ω = ||v||∞, then P(v, µ, ω) is said naive. If ω = ||v||1, then P(v, µ, ω)
is said standard.

A piece of a naive discrete plane (left) as well as a piece of a standard
discrete plane (right) are depicted in the figure below.

Let us see now how to associate with a standard arithmetic discrete plane
a coding as a two-dimensional word on a three-letter alphabet that plays the
role of the Freeman code for arithmetic discrete lines, such as described in
Section 2.
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Figure 3.1. Left: naive discrete plane. Right: standard
discrete plane.

Let (e1, e2, e3) stand for the canonical basis of R3. Let x ∈ Z3 and
i ∈ {1, 2, 3}. Let E1, E2 and E3 be the three following faces:

E1 =
{

λe2 + µe3; (λ, µ) ∈ [0, 1[2
}

,

E2 =
{

−λe1 + µe3; (λ, µ) ∈ [0, 1[2
}

,

E3 =
{

−λe1 − µe2; (λ, µ) ∈ [0, 1[2
}

.

We call pointed face the set x+Ei. The point x is called the distinguished
vertex of the face x+ Ei. Note that each pointed face includes exactly one
integer point, namely, its distinguished vertex.

Let P := P(v, µ, ||v||1) be a standard arithmetic discrete plane. One
associates with P a so-called stepped plane P defined as the union of faces
of integral cubes that connect the points of P, as depicted in Figure 1.1
(left). By integral cube, we mean a translate by a vector with integral en-
tries of the fundamental unit cube U = {

∑

1≤i≤n λiei; λi ∈ [0, 1], for all i}
with integral vertices. The stepped plane P is thus defined as the bound-
ary of the set of integral cubes that intersect the lower open half-space
{x ∈ Z3; 〈x,v〉 + µ ≤ 0}. The vertices (that is, the points with integer
coordinates) of P are exactly the points of the arithmetic discrete plane P,
according for instance to [BV00b].

Let ∆ be the antidiagonal plane of equation x1 + x2 + x3 = 0 and let
π0 be the orthogonal projection onto ∆. Note that π0(Z

3) is a lattice in ∆
with basis (π0(e1), π0(e2)), and that π0(e3) = −π0(e1) − π0(e2). If we use
this basis for π0(Z

3), then the restriction of π0 to Z3 becomes the following
map, also denoted by π0 by abuse of notation:

π0 : Z
3 −→ Z2, x 7→ (x1 − x3, x2 − x3).

According to [BV00b, ABI02], the restriction of the projection map π0 to
P is one-to-one and onto ∆:

(3.1) ∀(m,n) ∈ Z2, ∃! (x, i) such that x+ Ei ⊂ P, π0(x) = (m,n).

Furthermore, the projections of the faces of the stepped plane P tile the
diagonal plane ∆ with three kinds of lozenges (see Figure 1.1).
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We then provide the stepped plane P with a two-dimensional coding as
follows. The two-dimensional coding of the stepped plane P is the two-

dimensional word U ∈ {1, 2, 3}Z
2

defined, for all (m,n) ∈ Z2 and all i ∈
{1, 2, 3}, by

Um,n = i ⇐⇒ ∃ (x, i) such that x+ Ei ⊂ P, π0(x) = (m,n).

According to (3.1), the value of U at each point (m,m) is well-defined.
One checks (e.g., see [BV00b, ABI02, ABS04]) that for (m,n) ∈ Z2 and
i ∈ {1, 2, 3}, then Um,n = i if and only if:

(3.2) mv1 + nv2 + µ mod v1 + v2 + v3 ∈ [v0 + · · ·+ vi−1, v0 + · · ·+ vi[,

by setting v0 = 0.
Let us now introduce an analogue of the dynamical system (T, Rα) that

is coded by the two-dimensional word U . Given two continuous and onto
maps T1 and T2 acting on X and satisfying T1 ◦ T2 = T2 ◦ T1, the Z2-action
by T1 and T2 on X, that we denote by (X,T1, T2), is defined as

∀(m,n) ∈ Z2, ∀x ∈ X, (m,n) · x = Tm
1 ◦ Tn

2 (x).

As an example, consider a Z2-action by two rotations on the torus R/Z, that
is, the Z2-action defined by

(m,n) · x = Rm
α Rn

β(x) = x+mα+ nβ mod 1.

Given any partition {P1, · · · , Pd} of the torus and a point x we can define

a (two-dimensional) word U = (Um,n)(m,n)∈Z2 ∈ {1, 2, · · · , d}Z
2

coding the

orbit of x under this Z2-action by Um,n = i whenever Rm
α Rn

β x ∈ Pi, for

(m,n) ∈ Z2. The two-dimensional coding given by (3.2) is an example of
such a coding.

After a suitable renormalization by ||v||1 of the parameters involved, one
thus defines two-dimensional Sturmian words as follows:

Definition 4 ([BV00b]). Let U = (Um,n)(m,n)∈Z2 ∈ {1, 2, 3}Z
2

. The two-
dimensional word U is said to be a two-dimensional Sturmian word if there
exist x ∈ R, and α, β ∈ R such that 1, α, β are Q-linearly independent and
α+ β < 1 such that

∀(m,n) ∈ Z2, Um, n = i ⇐⇒ Rm
α Rn

β(x) = x+ nα+mβ ∈ Ii (mod 1),

with
I1 = [0, α[, I2 = [α, α+ β[, I3 = [α+ β, 1[

or
I1 =]0, α], I2 =]α, α+ β], I3 =]α+ β, 1].

Let us state now the analogue of Lemma 1. We first consider finite rect-
angular arrays of consecutive letters, that is, rectangular words

W =







w0,n−1 · · · wm−1,n−1
...

...
w0,0 · · · wm−1,0.






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We say that w has size (m,n). The rectangular complexity of the two-
dimensional word U is the function pU (m,n) which associates with each
(m,n) ∈ N2, m and n being nonzero, the cardinality of the set of rectangular
factors of size (m,n) occurring in U .

The analogue of Lemma 1 can be stated as follows: the word W =






w0,n · · · wm,n

...
...

w0,0 · · · wm,0






is a factor of the two-dimensional Sturmian word U if

and only if

(3.3)
⋂

0≤i≤m,0≤j≤n

R−i
α R−j

β Iwi,j
6= ∅.

We first deduce that for a given (α, β), then the language of rectangular
factors of U is here again the same for every x. We also deduce results
concerning the counting of rectangular factors of a given size: there are
exaclty mn+m+ n factors of size (m,n) in the two-dimensional Sturmian
word U . We can not only deduce topological results from (3.3) but also
metrical results: the frequencies of rectangular factors of size (m,n) of a
two-dimensional Sturmian word take at most min(m,n)+5 values [BV00b].
For more on two-dimensional Sturmian words, see [BV00a, BV00b, BV01,
BT04].

Let us note that we have chosen in Definition 4 to restrict ourselves to
rationally independent parameters. Usually in arithmetic discrete geometry,
parameters are chosen to be integers. The results discussed above can also
be obtained for standard arithmetic discrete planes P(v, µ, ω), whatever is
the value taken by dimQ(v1, v2, v3) (which can take the value 1, 2, 3), either
by direct application of Bezout’s lemma if the parameters (v1, v2, v3) are
coprime integers, or from the density of the sequence (nα)n∈Q, for α being
assumed to be irrational. For more details, see the complete study performed
in [Jam05b].

Note that we consider here standard arithmetic discrete planes. Recall
that when replacing the norm || ||1 by the norm || ||∞ in the definition of
arithmetic discrete planes, one gets naive arithmetic discrete planes. The
latter are usually considered in discrete geometry. Both notions are strongly
related as shown e.g. in [SDC04], Theo. 1.

4. Functionality

Naive arithmetic discrete planes have been widely studied (e.g., see [DRR95,
AAS97, VC99, Gér99b, Gér99a, VC00, Jac01, Jac02, BB02, BB05, BCK07,
Kis04, AD08]) and are well known to be functional, i.e., in a one-to-one cor-
respondence with the integer points of one of the coordinate planes by an
orthogonal projection map. In other words, given a naive arithmetic discrete
plane P and the suitable coordinate plane, then for any integer point P of
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this coordinate plane, there exists a unique point of P obtained from P by
adding a third coordinate.

The aim of this section is first to show how to extend the notion of func-
tionality for naive arithmetic discrete planes to a larger family of arithmetic
discrete planes. Secondly, we deduce from the functionality a suitable cod-
ing of a dynamical system acting on the torus, in order to get information
on local configurations, according to the strategy described in Section 2 and
3. The results we present here are from [BFJ05, BFJP07].

Instead of projecting on a coordinate plane, we introduce in Section 4.1
a suitable orthogonal projection map on a plane along a direction α =
(α1, α2, α3) ∈ Z3, in some sense dual to the normal vector of the discrete
plane P (v, µ, ω). By dual, we mean here

〈α,v〉 = α1v1 + α2v2 + α3v3 = ω,

so that the projection of Z3 and the points of the discrete plane P (v, µ, ω)
are in one-to-one correspondence (see Lemma 2 below). We then introduce
in Section 4.2 the notion of local configurations and (m,n)-cubes which will
play the role of factors.

One interest of the notion of functionality is to reduce a three-dimensional
problem to a two-dimensional one, allowing a better understanding of the
combinatorial and geometric properties of arithmetic discrete planes: this
allows us, first, to recode in Section 4.3 arithmetic discrete planes by a two-
dimensional word over the two-letter alphabet {0, 1} (similarly as explained
in Section 3), and second, to exhibit from this coding many geometric prop-
erties of arithmetic discrete planes (set of local configurations, enumeration
of (m,n)-cubes, statistical properties. . . ). This is the object of Section 4.4.

4.1. Functional vectors. An arithmetic discrete plane P(v, µ, ω) is said
to be rational if parameters v, µ, ω belong to Z or have integer entries. One
easily checks that one can choose parameters satisfying v ∈ Z3, µ ∈ Z,
ω ∈ N and gcd(v1, v2, v3) = 1.

Let P(v, µ, ω) be an arithmetic discrete plane, and let α ∈ Z3 be such
that gcd{α1, α2, α3} = 1. Let πα : R3 −→ {x ∈ R3, 〈α,x〉 = 0} be the
affine orthogonal projection map onto the plane {x ∈ R3; 〈α,x〉 = 0} along
the vector α.

Lemma 2. [BFJP07] Let α ∈ Z3 be such that gcd(α1, α2, α3) = 1. The
map πα : P(v, µ, ω) −→ πα(Z

3) is a bijection if and only if |〈α,v〉| = ω.

By Bezout’s lemma, for any rational arithmetic discrete plane P(v, µ, ω),
with v ∈ Z3, µ ∈ Z, ω ∈ N and gcd{v1, v2, v3} = 1, then there exists a
vector α ∈ Z3 such that 〈α,v〉 = ω. A vector α ∈ Z3 is said functional if it
satisfies conditions gcd(α1, α2, α3) = 1 and 〈α,v〉 = ω. Hence, any rational
arithmetic discrete plane has functional vectors.

We will make in all that follows the following assumption: there exists a
functional vector α ∈ Z3 for which there exists i ∈ {1, 2, 3} such that αi = 1,
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say α3 = 1. Note that, since ω = α1v1 + α2v2 + α3v3, then the hypothesis
α3 = 1 is equivalent to ω ∈ v1Z+ v2Z+ v3, i.e., ω − v3 ∈ gcd(v1, v2)Z.

There does not always exist a functional vector α with α3 = 1. Consider
for instance the case v = (6, 10, 15) with ω = 20: it is impossible to express
ω as α1v1 + α2v2 + α3v3 with one of the αi’s equal to 1.

Let Γα be the lattice obtained by projecting the arithmetic discrete plane
P(v, µ, ω) on the third coordinate plane along the functional vector α. Un-
der the previous assumption (α3 = 1), one has Γα = Ze1 + Ze2. Indeed,
the map π−1

α
: Γα → P satisfies for all y ∈ Γα with y = y1e1 + y2e2:

π−1
α

(y) = y −
⌊v1y1 + v2y2 + µ

ω

⌋

α.

Hence this assumption provides an explicit and simple expression of the
preimage of a point in Γα. We define the height HP,α(y) at y as the third
coordinate x3 of x = π−1

α
(y) ∈ P. One has

(4.1) HP,α(y) = −
⌊v1y1 + v2y2 + µ

ω

⌋

.

4.2. Local configurations and (m,n)-cubes. We want now to apply the
functionality to the enumeration of (m,n)-cubes and local configurations,
generalizing the study performed for naive planes in [VC97, Sch97, Gér99b,
Gér99a, VC99, Jac02, AD08]. For the sake of consistency in the notation,
we call them here m-cubes with m = (m1,m2) rather than (m,n)-cubes.

Let P := P(v, µ, ω) be an arithmetic discrete plane satisfying the hypoth-
esis of Section 4.1. Let α ∈ Z3 such that gcd(α1, α2, α3) = 1 and 〈α,v〉 = ω.
We assume that α3 = 1 in all that follows, i.e., ω − v3 ∈ v1Z+ v2Z.

Let m ∈ (N⋆)2 be given. By m-cube we mean a local configuration in the
discrete plane that can be observed thanks to πα through an m-window in
the functional lattice Γα = Ze1 + Ze2 (see Figure 4.2). More precisely, the
m-cube C(y,m) of P is defined as the following subset of P:

C(y,m) =
{

π−1
α

(y + z); z ∈ [[0,m1 − 1]]e1 + [[0,m2 − 1]]e2
}

.

Two m-cubes C and C′ are said translation equivalent if there exists a vector
z ∈ Z3 such that C′ = C + z.

Figure 4.1. From left to right: the (3, 3)-cube of P(v, 0, 9)
(resp. P(v, 0, 11), P(v, 0, 21), P(v, 0, 37)) centered at
(0, 0, 0), where v = 6e1+10e2+15e3, and projected along
the vector −e1+e3 (resp. e1−e2+e3, e1+e3, 2e1+e2+e3).
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In order to enumerate the different types of m-cubes that occur in P,
that is, the different equivalence classes for the translation equivalence, we
represent them as local configurations as follows. An m1 ×m2-rectangular
word L = [Li1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] over the infinite alphabet Z is called

an m-local configuration of P if there exists y ∈ Z2 such that:

L = [HP,α(z)−HP,α(y)]z∈[[0,m1−1]]e1+[[0,m2−1]]e2

where the height is defined in Equation (4.1).
Let us note that a local configuration is a plane partition. Indeed a plane

partition of N ∈ N is a rectangular word w = [wi1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]]

over the infinite alphabet N satisfying N =
∑

i,j wi,j and, for all i1 ∈ [[0,m1−

1]] and i2 ∈ [[0,m2 − 1]], max{wi1+1,i2 , wi1,i2+1} ≤ wi1,i2 .

4.3. A coding as a two-dimensional word. Our stategy is now the foll-
lowing: we recode arithmetic discrete planes according to a two-dimensional

word U ∈ {0, 1}Z
2

over the two-letter alphabet {0, 1}, namely a so-called
generalized Rote word [Rot94], following the approach of [Vui99, BV01],
and in the same flavour of the codings performed in Section 3. Such a
two-dimensional word codes a Z2-action by two rotations with respect to
a partition of the one-dimensional torus into two intervals of length 1/2.
We then express m-cubes as equivalence classes of rectangular factors of
the two-dimensional word U , and show, for every m ∈ N2, that the num-
ber of m-cubes in P(v, µ, ω) is computed by enumerating points on the
one-dimensional torus.

Note that m-cubes are subsets of arithmetic discrete planes whereas m-
local configurations are two-dimensional words over an infinite alphabet. To
be able to get words over a finite alphabet, let us introduce a two-dimensional
word coding in a natural way the parity of the heights HP,α(y), for y in the
lattice Γα = Ze1 + Ze2, according to [Vui99].

Indeed, for a naive discrete plane P, it is well known that, given two
points x and x′ of P such that their projections by πα are 4-connected
in the functional plane, then |x3−x′3| ≤ 1. In other words, the difference
between the heights of x and x′ is at most 1.

A quite unexpected fact is that this property holds for any arithmetic
discrete plane with α3 = 1. More precisely, it is easy to see that, for all
y ∈ Γα and i = 1, 2, HP,α (y + ei)−HP,α (y) takes only two values, namely
−⌊vi/ω⌋ and −⌊vi/ω⌋−1. In each case, one of these values is odd, whereas
the other one is even; we define E1 and O1 to be respectively the even and
the odd value taken by −⌊v1/ω⌋ and −⌊v1/ω⌋−1; we similarly define E2

and O2. It is now natural to introduce the following two-dimensional word
of parity of heights by identifying Γα to Z2:

(4.2) U = (Ui1,i2)(i1,i2)∈Z2 = (HP,α(y) mod 2)y∈Z2 ∈ {0, 1}Z
2

.

The two-dimensional word U satisfies, for each (i1, i2) ∈ Z2

Ui1,i2 = 0 if and only if v1i1 + v2i2 + µ mod 2ω ∈ [0, ω[.
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Indeed, one checks that Ui1,i2 = 0 if and only if
⌊

v1i1+v2i2+µ
ω

⌋

is even, that

is, v1i1 + v2i2 + µ mod 2ω ∈ [0, ω[.
The word U is a two-dimensional Rote word; one-dimensional Rote words

have been introduced in [Rot94]; they are defined as the infinite words u
over the alphabet {0, 1} that have exactly 2n factors of length n for every
positive integer n, and whose set of factors is closed under complementation,
i.e., every word obtained by interchanging zeros and ones in a factor of the
infinite word u is still a factor of u. Two-dimensional Rote words have been
studied for instance in [Vui99, BV01].

Let us now make explicit the connection between local configurations and
factors of U .

Let W = [wi1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a rectangular word of size m1×

m2 over {0, 1}. We define the complement W of W as follows:

W = [wi1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]], where 1 = 0 and 0 = 1.

We introduce the following equivalence relation defined on the set of rect-
angular factors of U of a given size:

V ∼ W if and only if V ∈ {W,W}.

There is a natural bijection between the equivalence classes of the relation
∼ on the rectangular factors of the two-dimensional word U of size m =
(m1,m2) and the m-local configurations of P; furthermore, the m-local
configurations of P are in one-to-one correspondence with the translation
equivalence classes of m-cubes of P.

The following result holds, inspired by [Vui99] where it is stated under
the assumption dimQ(v1, v2, v3) = 3. Lemma 3 plays here the role of our
key lemma (Lemma 1).

Lemma 3. Let P := P(v, µ, ω) be a rational arithmetic discrete plane with
ω − v3 ∈ v1Z+ v2Z.

Let W = [wi1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a rectangular word of size m1×
m2 over {0, 1}. Let I0 = [0, ω[ and I1 = [ω, 2ω[. Let

IW =

m1−1
⋂

i1=0

m2−1
⋂

i2=0

(

Iwi1,i2
− (v1i1 + v2i2) mod 2ω

)

.

The set IW is a left-closed right-open interval of [0, 2ω[.

• If dimQ(v1, v2, v3) > 1 or P is rational and gcd(v1, v2, 2ω) = 1, then
a rectangular word W over {0, 1} is a factor of U if and only if
IW 6= ∅.

• Otherwise, if P is rational and gcd(v1, v2, 2ω) = 2, then a rectangu-
lar word W over {0, 1} is a factor of U if and only if IW contains
an integer with the same parity as µ.
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4.4. Enumeration of local configurations. Let us now investigate the
enumeration of m-cubes (m = (m1,m2)) occuring in a given arithmetic
plane. The number of (3, 3)-cubes included in a given rational naive arith-
metic discrete plane has been proved to be at most 9 in [VC97]. More gener-
ally, in [Rev95, Gér99b], the authors proved that a rational naive arithmetic
discrete plane contains at most m1m2 m-cubes (to be more precise, transla-
tion equivalence classes of m-cubes). In [Gér99b] local configurations which
are non-necessarily rectangular are also considered. In the following theo-
rem, we show that this property also holds in our framework. For the sake
of simplicity, we omit to mention that we consider translation equivalence
classes of m-cubes:

Theorem 2. Let P := P(v, µ, ω) be a discrete plane with ω−v3 ∈ v1Z+v2Z.
Let m = (m1,m2) ∈ (N⋆)2. Then, P contains at most m1m2 m-cubes. More
precisely, one has:

(1) If dimQ(v1, v2, v3) = 1, v ∈ Z3, µ ∈ Z, ω ∈ Z and gcd(v) = 1, then
P contains at most ω m-cubes for every m = (m1,m2) ∈ (N⋆)2.
Moreover, for m1 and m2 large enough, P contains exactly ω m-
cubes.

(2) Let us assume dimQ(v1, v2, v3) = 2. Let (p1, p2) ∈ Z2 be a generator
of the lattice of periods of the two-dimensional word U . Then P

contains at most m1|p2| +m2|p1| −min{m1, |p1|}min{m2, |p2|} m-
cubes for (m1,m2) ∈ N2.

(3) If dimQ(v1, v2, v3) = 3, then P contains exactly m1m2 m-cubes for
every m = (m1,m2) ∈ (N⋆)2.

Let us note that the bounds for m1 and m2 upon which the previous
results hold (cases (1) and (2) in Theorem 2) can be explicitly computed in
terms of v and ω. The proof is a direct application of Lemma 3. For more
details, see [BFJP07].

We thus can establish that the computation of the frequency of occurrence
of an m-cube of P(v, µ, ω) can be reduced to the calculation of the length
of an interval of the torus R/ωZ. For more details, see [BFJP07]. We also
investigate in [BFJP07] the closure of the set of m-cubes of P(v, µ, ω) under
the action of a particular geometric transformation: the centrosymmetry.

5. Stepped surfaces

Let us generalize the codings as two-dimensional words introduced in
Section 3 for arithmetic discrete planes to more general discrete objects,
namely the functional stepped surfaces, such as introduced in [Jam04]. See
also [Jam05a, JP05, Jam05b, ABFJ07].

A functional discrete surface is defined as a union of pointed faces Ei, for
i = 1, 2, 3 (defined in Section 3) such that the orthogonal projection π0 onto
the antidiagonal plane ∆: x1+x2+x3 = 0 induces an homeomorphism from
the discrete surface onto ∆.
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As done for functional arithmetic discrete planes, one then provides a
discrete surface with a coding as a two-dimensional word over a three-letter
alphabet [Jam04, JP05]. Indeed, let S be a functional stepped surface. One
has

S ∩ Z3 = {x; ∃ i such that x+ Ei ⊂ S}.

Furthermore, given (m1,m2) ∈ Z2, there exists a unique face x+Ei ⊂ S such
that (m1,m2) = π0(x+Ei). The following coding is thus well-defined: a two-

dimensional word U ∈ {1, 2, 3}Z
2

is said to be the coding of the functional
stepped surface S if for all (m1,m2) ∈ Z2 and for every i ∈ {1, 2, 3}:

Um1,m2
= i ⇐⇒ ∃(x, i), such that x+ Ei ∈ S, π0(x) = (m1,m2).

We illustrate this with the following figure where a piece of a discrete
surface in R3 is depicted, as well as its orthogonal projection π0 onto the
plane ∆: x1 + x2 + x3 = 0, and its coding as a two-dimensional word over a
three-letter alphabet.
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Figure 5.1. From discrete surfaces to multidimensional
words via tilings

Let us quote the following nice characterization of codings of discrete

surfaces [Jam04]. Let U ∈ {1, 2, 3}Z
2

. Then U is a coding of a discrete
surface if and only if the factors of U of the shape given in Figure 5.2 are
included in the set of factors depicted in Figure 5.2. The main difference
between a stepped surface and a stepped plane is thus that it is possible
to locally recognize whether a set of points in Z3 is a subset of the set of
vertices of a stepped surface.



14 VALÉRIE BERTHÉ

x y

z

Figure 5.2. Permitted factors and their 3-dimensional representation.

6. From discrete to continuous structures

The aim of this section, based on the surveys [Lot05, BS05, BBLT06], is
to show how to generate standard arithmetic discrete planes by means of
a generalized substitution. We work out here in details the example of the
Tribonacci substitution.

6.1. The Tribonacci substitution. LetA be a finite set. As usual in word
combinatorics, we denote by A∗ the set of words over A and by ε the empty
word. The set A∗ endowed with the concatenation map is a free monoid.
A substitution is an endomorphism of the free monoid A∗. A substitution
naturally extends to the set of one-sided words AN. A fixed point of σ is a
word u = (ui)i∈N ∈ AN that satisfies σ(u) = u .

We consider the Tribonacci substitution σ : {1, 2, 3}∗ → {1, 2, 3}∗ defined
on the letters of the alphabet {1, 2, 3} as follows: σ : 1 7→ 12, 2 7→ 13,
3 7→ 1. The Tribonacci word is the (unique) fixed point of the substitution
σ. More precisely, by noticing that σj(1) is a nontrivial prefix of the word
σj+1(1), the sequence of words 1, σ(1), σ2(1), . . . , σn(1), . . . is easily seen
to converge to an infinite word denoted by σω(1). The first terms of this
word are

1 2 1 3 1 2 1 1 2 1 3 1 2 1 2 1 · · ·

Note that the length, denoted by |σj(1)|, of σj(1) satisfies the Tribonacci
recurrence: |σj+3(1)| = |σj+2(1)|+ |σj+1(1)|+ |σj(1)|, for every j ∈ N, hence
the terminology.

The Tribonacci substitution has been introduced and studied in [Rau82].
For more results and references on the Tribonacci substitution, see [AR91a,
AY81, IK91, Lot05, Mes98, Mes00, PF02].

The incidence matrix Mσ = (mi,j)1≤i,j≤n of a substitution σ has entries
mi,j = |σ(j)|i, where the notation |w|i stands for the number of occurrences
of the letter i in the word w. A substitution σ is called primitive if there
exists an integer n such that σn(a) contains at least one occurrence of the
letter b for every pair (a, b) ∈ A2. This is equivalent to the fact that its
incidence matrix is primitive, i.e., there exists a nonnegative integer n such
that Mn

σ has only positive entries.
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If a substitution σ is primitive, then the Perron-Frobenius theorem en-
sures that the incidence matrix Mσ has a simple real positive dominant
eigenvalue β, which admits as associated right and left eigenvectors vectors
with positive entries. A substitution σ is called unimodular if det Mσ = ±1.
A substitution σ is said to be Pisot if its incidence matrix Mσ has a real
dominant eigenvalue β > 1 such that, for every other eigenvalue λ, one has
0 < |λ| < 1. The characteristic polynomial of the incidence matrix of such a
substitution is irreducible over Q, and the dominant eigenvalue β is a Pisot
number (that is, an algebraic integer with all Galois conjugates having mod-
ulus less than 1). Furthermore, it can be proved that Pisot substitutions are
primitive [PF02].

The incidence matrix of the Tribonacci substitution σ isMσ =





1 1 1
1 0 0
0 1 0



.

This matrix is easily seen to be primitive. The characteristic polynomial
of Mσ is X3 − X2 − X − 1; this polynomial admits one positive root
β > 1 (the dominant eigenvalue) and two complex conjugates α and α,
with |α| < 1. Hence the Tribonacci substitution is Pisot and the number
β is a Pisot number. The matrix Mσ admits as eigenspaces in R3 one ex-
panding eigenline (generated by the eigenvector with positive coordinates
uβ = (1/β, 1/β2, 1/β3) associated with the eigenvalue β) and a real con-
tracting eigenplane Hc. Let vβ be the left eigenvector of Mσ with positive
entries normalized so that 〈vβ ,uβ〉 = 1. The contracting plane Hc has
equation 〈x,vβ〉 = 0.

One associates with the Tribonacci word u = (un)n≥0 a broken line start-
ing from 0 in Z3 and approximating the expanding line generated by uβ as
follows. We introduce the abelianization map f of the free monoid {1, 2, 3}∗

defined by

f : {1, 2, 3}∗ → Z3, f(w) = |w|1e1 + |w|2e2 + |w|3e3,

where (e1, e2, e3) stands for the canonical basis of R3. Note that for every
finite word w, we have f(σ(w)) = Mσf(w).

The Tribonacci broken line is defined as the broken line which joins with
segments of length 1 the points f(u0u1 · · ·uN−1), N ∈ N (see Figure 6.1).
In other words we describe this broken line by starting from the origin, and
then by reading successively the letters of the Tribonacci word u, going one
step in direction ei if one reads the letter i.

One easily deduces from the fact that σ is a Pisot substitution that the
vectors f(u0u1 . . . uN ), N ∈ N, stay within bounded distance of the ex-
panding line of Mσ, which is exactly the direction given by the vector of
probabilities of occurrence of the letters 1, 2, 3 in u. One can consider this
broken line as a discrete approximation of the line generated by the vector
uβ . It is then natural to try to represent these points by projecting them
along the expanding direction onto a transverse plane, that we chose here
to be the contracting plane Hc of Mσ.
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Let π stand for the projection in R3 onto the contracting plane along the
expanding line generated by the vector vβ. We thus define the set Rσ as
the closure of the projections of the vertices of the Tribonacci broken line:

Rσ := {π(f(u0 . . . uN−1)); N ∈ N}.

The set Rσ is called the Rauzy fractal associated with the Tribonacci sub-
stitution σ (see Figure 6.1). It can be divided into three pieces, called basic
pieces, defined for i = 1, 2, 3 as

Rσ(i) = {π(f(u0 . . . uN−1)); uN = i, N ∈ N}.

One checks that the Rauzy fractal is a compact set, that is the closure of
its interior; it has a non-zero measure, a fractal boundary and it is the attrac-
tor of some graph-directed iterated function system [Rau82]. Furthermore,
the pieces Rσ(i), for i = 1, 2, 3 are disjoint in measure.

One interesting feature of Rauzy fractal is that it can tile the plane in
two different ways [Rau82, IR06]. These two tilings are depicted in Figure
6.2. The first one corresponds to a periodic tiling (a lattice tiling), and the
second one to a self-substitutive tiling.

By tiling of Rd, we mean here tilings by translation having finitely many
tiles up to translation (a tile is assumed to be the closure of its interior):
there exist a finite set of tiles Ti and a finite number of translation sets Γi

such that

Rd = ∪i ∪γi∈Γi
Ti + γi,

and distinct translates of tiles have non-intersecting interiors; we assume
furthermore that each compact set in Rd intersects a finite number of tiles.
By lattice tiling, we mean that there exists a lattice Γ such that

Rd = ∪γ∈ΓT + γ,

where T = ∪iTi.

Figure 6.1. The Tribonacci broken line and the Rauzy fractal.

6.2. Discrete planes and tilings. The self-substitutive Tribonacci tiling
depicted in Figure 6.2 has close connections with arithmetic discrete planes.
We consider indeed the standard lower arithmetic discrete plane with pa-
rameter µ = 0 associated with the left eigenvector vβ that we denote for
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Figure 6.2. Lattice and self-substitutive Tribonacci tilings.

short by Pσ. Let us recall that vβ has positive entries. One has

Pσ = {x ∈ Z3; 0 ≤ 〈x,vβ〉 < ||vβ||1 =
∑

i=1,2,3

〈ei,vβ〉}.

We also consider the stepped plane Pσ associated with it, such as defined
in Section 3. This discretization of the contracting hyperplane Hc = {x ∈
Z3; 〈x,vβ〉 = 0} consists in approximating the plane Hc by selecting points
with integral coordinates above and within a bounded distance of the plane
Hc. It thus can be considered as the dual of the broken line which gives an
approximation of the line generated by the eigenvector uβ .

It will prove here to be more convenient to use the following set of faces
(instead of faces of type Ei introduced in Section 3): for 1 ≤ i ≤ 3, we define

Fi := {
∑

j 6=i

λjej ; 0 ≤ λj ≤ 1, for 1 ≤ j ≤ 3, j 6= i}.

One thus checks that the stepped plane Pσ is spanned as follows:

(6.1) Pσ =
⋃

(x,i)∈Z3×{1,2,3}, 0≤〈x,vβ〉<〈ei,vβ〉

x+ Fi.

This union is a disjoint union up to the boundaries of the faces.
Let us first project the stepped plane Pσ by π onto the contracting space

Hc. One gets a first tiling of Hc by three kinds of lozenges such as illustrated
in Figure 1.1. Let us now replace each face x+Fi by the corresponding basic
piece of the Rauzy fractal Rσ(i). Equation (6.1) becomes

(6.2) Hc =
⋃

(x,i)∈Z3×{1,2,3}, 0≤〈x,vβ〉<〈ei,vβ〉

π(x) +Rσ(i).

According to [Rau82] and [IR06], (6.2) provides also a tiling of the con-
tracting plane Hc, namely the self-substitutive tiling depicted in Figure 6.2.

Let us describe now a generation process for Pσ based on the notion of
generalized substitution due to [AI01], see also [IR06], which explains the
terminology self-substitutive.

We define F∗ as the set of unions of faces of type x+ Fi, for x ∈ Z3, and
i ∈ {1, 2, 3}. We define the following geometric realization of the substitution
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Figure 6.3. Generation of Pσ by iterates of E∗
1(σ).

σ on the set F∗:

∀(x, i) ∈ Zn × {1, 2, 3}, E∗
1(σ)(x+ Fi) = ∪σ(j)=pisM

−1
σ (x+ l(p)) + Fj ,

for all G1,G2 ⊂ F∗, then E∗
1(G1 ∪ G2) = E∗

1(G1) ∪ E∗
1(G2).

Theorem 3. [AI01] Let σ be the Tribonacci substitution. The stepped plane
Pσ is stable under the action of E1(σ)

∗ and contains the unit cube

U := F1 ∪ F2 ∪ F3.

The iterates (E1(σ)
∗)n(U) all belong to Pσ, and they generate larger and

larger pieces of the stepped plane Pσ. By taking the limit and by projecting
by π, one gets

Hc = lim
n→+∞

π(E1(σ)
∗)n(U).

After projection and renormalization, the sequence of pieces Mn
σπ(E1(σ)

∗)n(U)
is convergent and its limit is equal to the Rauzy fractal:

Rσ = lim
n→+∞

Mn
σπ(E1(σ)

∗)n(U).

Hence the vertices of the pieces (E1(σ)
∗)n(U) generate the arithmetic

discrete plane Pσ such as illustrated on Fig. 6.2. For more on generalized
substitutions and generation of discrete planes, see [ABI02, ABS04, ABFJ07,
Fer06, Fer07].

6.3. Rauzy tilings. We have seen that two tilings can be associated with
the Rauzy fractal, namely, a self-substitutive tiling, and a lattice tiling, as
illustrated in Figure 6.2. This latter tiling plays an important role in the
spectral study of the substitutive dynamical system (Xσ, S) generated by
the Tribonacci word (such as defined in Section 2). Indeed, one of the main
incentives behind the introduction of Rauzy fractals is the following result:

Theorem 4. [Rau82] Let σ be the Tribonacci substitution σ : 1 7→ 12, 2 7→
13, 3 7→ 1. The Rauzy fractal Rσ (considered as a subset of R2) is a funda-
mental domain of T2. Let Rβ : T

2 → T2, x 7→ x+(1/β, 1/β2). The symbolic
dynamical system (Xσ, S) is measure-theoretically isomorphic to the toral
translation (T2, Rβ).
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In other words, the Tribonacci word u is a coding with respect to the
partition of the two-dimensional torus T2 by the three pieces Rσ(i), for
i = 1, 2, 3 of an orbit of a point of T2 under the action of the translation Rβ .

We now can explain what kind of discrete approximation the Tribonacci
broken line provides for the line generated by the vector uβ . As a conse-
quence of Theorem 4, one proves that the only points in Z3 whose projection
by π belongs to the interior of Rσ are the vertices of the broken line. Hence
the broken line is obtained by a selection process which consists in shift-
ing the Rauzy fractal along the direction uβ and selecting points in Z3 in
this stripe. Note that the words associated with broken lines obtained by
shifting the unit cube along a given direction are called billiard words (see
for instance [AMST94, Bar95]). Generalizations of the Tribonacci word are
given by the so-called Arnoux-Rauzy words [AR91b] and more generally by
the family of episturmian words. Billiard words and episturmian words are
two widely studied families of infinite words in word combinatorics.

The Tribonacci lattice tiling has been widely studied and presents many
interesting features. In particular, the Tribonacci central tile has a “nice”
topological behavior (0 is an inner point and it is shown to be connected with
simply connected interior [Rau82]), which leads to interesting applications
in Diophantine approximation [CHM01] where points of the broken line
corresponding to σn(1), n ∈ N, are proved to produce best approximations
for the vector ( 1

β
, 1
β2 ) for a given norm associated with the matrix Mσ. See

also [HM06] for a similar study in the case of a family of cubic Pisot numbers
with complex conjugates.

Rauzy fractals can more generally be associated with Pisot substitutions
(see [BK06, CS01a, CS01b, IR06, Mes00, Mes02, Sie03, Sie04] and the sur-
veys [BS05, PF02]), as well as with Pisot β-shifts under the name of central
tiles (see [Aki98, Aki99, Aki00, Aki02]), but they also can be associated with
abstract numeration systems [BR05], as well as with some automorphisms
of the free group [ABHS06]. Theorem 4 is expected to hold in this context:
this is the so-called Pisot conjecture.

Conjecture 1. Let σ be a Pisot unimodular substitution. The following
equivalent conditions are conjectured to hold:

(1) the symbolic dynamical system (Xσ, S) is measure-theoretically iso-
morphic to a translation on the torus;

(2) (Xσ, S) has a pure discrete spectrum;
(3) the associated Rauzy fractal Rσ generates a lattice tiling, i.e.,

Kβ = ∪γ∈Γ(Rσ + γ),

with the union being disjoint in measure, and Γ being a lattice.

The conjecture holds true for two-letter alphabets [BD02, HS03, Hos92].
Substantial literature is devoted to Conjecture 1 which is reviewed in [PF02],
Chap.7. See also [BK06, BK05, BBK06, BS05, IR06] for recent results.
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6.4. Back to stepped planes. Generalized substitutions (introduced in
Section 6.2) are proved in [ABFJ07] to act not only on stepped planes, but
also on stepped surfaces. Furthermore, a geometric version of Brun multidi-
mensional continued fraction algorithm acting on stepped surfaces is given
in [BF08] in terms of generalized substitutions. This geometric extension of
the Brun algorithm is motivated by the discrete plane recognition problem:
given a set of points in Zd, is there a naive arithmetic discrete plane that con-
tains it? A strategy based on multidimensional continued fractions inspired
by the one-dimensional Sturmian case is thus given in [BF08, Fer08].

Indeed, in the one-dimensional case, there exists a natural strategy for
the recognition problem based on word combinatorics. Let us recall that
a substitution is a morphism of the free monoid whereas an S-adic word
is an infinite word generated as the limit of an infinite composition of a
finite number of substitutions (for more details, see Chap. 12 in [PF02]).
Sturmian words are proved to be S-adic words; the rules for the iteration of
these substitutions follow the continued fraction of the slope of the line which
is coded. We deduce from the combinatorial properties of Sturmian words
the following two facts: first, factors 00 and 11 cannot occur simultaneoulsy
in a Sturmian word, that is, one of the two letters 0 and 1 occurs as an
isolated letter. Hence, up to a prefix of length 1, any infinite Sturmian word
can be written as σ0(v) or σ1(v), where v is an infinite word over {0, 1},
and the substitutions σ0 and σ1 are defined as σ0 : 0 7→ 0, σ0 : 1 7→ 10
and σ1 : 0 7→ 01, σ1 : 1 7→ 1. Secondly, we use the fact that v is itself a
Sturmian word. We can thus reiterate the process. Suppose now we are
given a connected union of translates of horizontal and vertical segments
with integer vertices and length 1. We apply the previous process to the
finite word coding this union of segments by taking care of the boundaries.
This corresponds to the method developed in discrete geometry terms in
[Wu82, Tro93].

Let us note that the recognition problem is classical and central in the
field of discrete geometry for the segmentation of discrete surfaces and for
polyhedrization issues, for instance. Indeed, numerous applications can be
derived in image analysis and synthesis, volume modeling, pattern recogni-
tion, etc. There exist various strategies for the discrete plane recognition
problem, as described, for instance, in the survey [BCK07]. These methods
are based on linear programming, on computational geometry by perform-
ing separability tests, or on the so-called preimage technique which consists
in determining the set of parameters of the arithmetic discrete planes that
contain the given set of points.

7. Conclusion

Let us conclude by giving a brief list of geometric discretizations that can
be described by symbolic codings of dynamical systems.
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• Standard arithmetic discrete lines and Sturmian words are particular
codings of rotations over the one-dimensional torus T with respect to a
two-interval partition, one interval having as length the parameter of the
rotation.

• Similarly, standard arithmetic discrete planes and two-dimensional Stur-
mian words are codings of a Z2-action by rotations over the one-dimensional
torus T with respect to a three-interval partition, with two intervals having
as respective length the parameters of the Z2-action.

•More generally, functional arithmetic disrete planes can be coded thanks
to generalized Rote words defined as codings of a Z2-action by rotations over
the one-dimensional torus T with respect to a two-interval partition, with
two intervals of the same length. For more examples of codings associated
with naive or standard arithmetic discrete planes expressed in terms of dy-
namical systems, see [Jam05b] where codings by remainders, by umbrellas
and by parity of heights are considered.

• In a dual way, we have seen how to associate with the Tribonacci substi-
tution a broken line that can be considered as a discrete line in R3. A lattice
tiling by the Rauzy fractal can then be produced that has close connection
with a rotation on the two-dimensional torus T2.

• Lastly, let us quote [BN07] as an example of a symbolic coding of discrete
rotations defined as the composition of Euclidean rotations with a round-
ing operation, as studied in [NR03, NR04, NR05]. Indeed, it is possible to
encode all the information concerning a discrete rotation as two multidimen-
sional words Cα and C ′

α called configurations. These configurations Cα and
C ′
α can be coded by discrete dynamical systems defined by a Z2-action on the

two-dimensional torus T2. As a consequence, results concerning densities of
occurrence of symbols can be deduced.
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[BF08] V. Berthé and Th. Fernique. Brun expansions of stepped surfaces. Preprint,
2008.
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