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Abstract. We focus in this survey on effectiveness issues for S-adic sub-
shifts and tilings. An S-adic subshift or tiling space is a dynamical system
obtained by iterating an infinite composition of substitutions, where a
substitution is a rule that replaces a letter by a word (that might be
multi-dimensional), or a tile by a finite union of tiles. Several notions of
effectiveness exist concerning S-adic subshifts and tiling spaces, such as
the computability of the sequence of iterated substitutions, or the effec-
tiveness of the language. We compare these notions and discuss effective-
ness issues concerning classical properties of the associated subshifts and
tiling spaces, such as the computability of shift-invariant measures and
the existence of local rules (soficity). We also focus on planar tilings.
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1 Introduction

Decidability in symbolic dynamics and ergodic theory has already a long history.
Let us quote as an illustration the undecidability of the emptiness problem (the
domino problem) for multi-dimensional subshifts of finite type (SFT) [8, 40], or
else the connections between effective ergodic theory, computable analysis and
effective randomness (see for instance [14, 33, 44]). Computability is a notion
that has also appeared as a major understanding tool in the study of multi-
dimensional subshifts of finite type with the breakthrough characterization by
M. Hochman and T. Meyerovitch of the entropies of multi-dimensional subshifts
of finite type as the non-negative right recursively enumerable numbers [32] (see
also [28] in the one-dimensional case). Let us mention also the realization of
effective subshifts (with factor and projective subaction operation) from higher-
dimensional subshifts of finite type [3, 19, 31]. It is now clear that sofic and
effective subshifts are closely related, in particular for substitutive subshifts and
tilings. Indeed, contrarily to the one-dimensional case, substitution subshifts
are known to have (colored) local rules (they are SFT or sofic) in the higher-
dimensional framework [26,29,36].
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We focus here on effectiveness issues for S-adic subshifts (and tilings). An S-
adic expansion is a way to represent (or to generate) words (one-dimensional and
multi-dimensional ones), or tilings, by composing infinitely many substitutions.
A (word) substitution is a morphism of the free monoid: it replaces letters by
words. Substitutions can also be defined in the higher-dimensional framework:
they replace letters by multi-dimensional patterns, and act on multi-dimensional
words (configurations) in Zd; more generally, substitutions can also generate and
act on tilings, by replacing a tile by a finite union of tiles. An infinite word u (or
a d-dimensional configuration, or a tiling) admits an S-adic expansion if

u = lim
n→∞

σ0σ1 · · ·σn−1(an),

where (σn)n∈N is a sequence of substitutions, and (an)n∈N a sequence of letters.
For more on substitutions, see e.g. [38], and for more on S-adic words and tilings,
see [9, 39]. There is a deep parallelism between subshifts associated with such
expansions (under natural assumptions like primitivity) and Bratteli–Vershik
systems endowed with adic transformations, hence the terminology ‘adic’, with
the letter S referring to ‘substitution’. This connection between adic models and
substitutions has been widely investigated; see e.g. [24], or [10] and the references
therein. Recall also that any Cantor minimal system admits a Bratteli–Vershik
representation [30], which illustrates the representation power of this notion.
Without any further assumption on the S-adic representation, every infinite
word admits an S-adic expansion (according to Cassaigne’s construction, see
e.g. [9, Remark 3]). One thus needs to introduce suitable assumptions on these
S-adic representations in order to find a good balance between the expressive
power of such representations and the information provided by their existence.
Let us illustrate this with [2] where it is proved that multi-dimensional S-adic
subshifts, obtained by applying an effective sequence of substitutions chosen
among a finite set of substitutions, are sofic subshifts.

Basic notions and definitions on substitutions and S-adic subshifts and tilings are
recalled in Section 2. We discuss some decidability results in the one-dimensional
setting for substitutive words in Section 3. Section 4 focuses on effectiveness for
S-adic subshifts. Lastly, multi-dimensional Sturmian words and planar tilings
are considered in Section 5.

2 Definitions

2.1 Subshifts

Let A be finite alphabet and d ≥ 1. A configuration u is an element of AZd

. A
pattern p is an element of AD, where D ⊂ Zd is a finite set, called its support.
Denote A∗ the set of patterns. A translate of the pattern p by m ∈ Zd is denoted
p+m and has D+m for support. A pattern p ∈ AD is a factor of a configuration
u = (un)n∈Zd if there exists m ∈ Zd such that the restriction of u to D + m
coincides with p + m. The set of factors (up to translation) of u is called its
language.
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The set AZd

endowed with the product topology is a compact metric space. A d-

dimensional subshift X ⊂ AZd

is a closed and shift-invariant set of configurations

in AZd

, where the shifts σm with m ∈ Zd are defined as σm : AZd → AZd

,
(un)n∈Zd 7→ (un+m)n∈Zd . The shifts provide a natural action of Zd.
A subshift X can be defined by providing its language, that is, the set of pat-
terns (up to translation) that occur in configurations in X. It can be defined
equivalently by providing the set of forbidden patterns. Subshifts of finite type
(also called SFT) are the subshifts such that the set of their forbidden patterns
is finite. Sofic subshifts are images of SFT under a factor map, where a factor
map π : X → Y between two subshifts X and Y is a continuous, surjective map
such that π ◦ σm = σm ◦ π, for all m ∈ Zd.

Definition 1 (Computable subshift). A subshift is said to be

– Π1-computable or effective if its language is co-recursively enumerable;
– Σ1-computable if its language is recursively enumerable;
– ∆1-computable or decidable if its language is recursive.

A subshift is said to be linearly recurrent if there exists C > 0 such that ev-
ery pattern whose support is a translate of [−Cn,Cn]d contains every factor
whose support is a translate of [−n, n]d. The frequency f(p) of a pattern in a
d-dimensional configuration u is defined as lim supn |xn|p/(2n+ 1)d, where xn is
the restriction of u to [−n, n]d, and |xn|p stands for the number of occurrences
of p in xn. If the lim sup is in fact a limit, then the frequency is said to exist.
A subshift is said to be uniquely ergodic if it admits a unique shift-invariant
measure; in this case, pattern frequencies do exist. A subshift is said to be min-
imal if every non-empty closed shift-invariant subset is equal to the whole set.
A minimal and uniquely ergodic subshift is said strictly ergodic. Any pattern
which appears in a strictly ergodic subshift has a positive frequency. For more
on multidimensional subshifts, see e.g. [11, Chapter 8,9].

2.2 Substitutions and S-adic Subshifts

A substitution s over the alphabet A is a map s : A −→ A∗. Let S be a finite set
of substitutions; we want to define how a pattern of substitutions s ∈ SD acts
on a pattern p ∈ AD, with D ⊂ Zd finite. This general definition allows us to
apply simultaneously different substitutions; we are in the non-deterministic case
of [36]. We thus introduce concatenation rules which specify how the respective
images of two adjacent tiles must be glued. A pattern of substitutions s ∈ SD

is said to be compatible with a pattern p ∈ AD (made of cells) if it is consistent
(the image of a cell does not depend on the sequence of concatenation rules that
are used, patterns have a unique image) and non-overlapping (the images of two
cells do not overlap).
When s and p are compatible, the (unique) image of p by s is denoted as s(p).
If all letters of s are equal to the same substitution s ∈ S , the S -pattern
is said to be s-constant. This corresponds to the classical case of the action
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of one substitution (the deterministic case in [36]). An S -super-tile of order
n corresponds to n iterations of (compatible) patterns of substitutions applied
to a letter. We define the S -adic subshift XS as the set of the configurations
for which every pattern appears in an S -super-tile. Here we can compose all
substitutions in S . This notion plays a role for the description of planar tilings
introduced in Section 5.
We now introduce the usual S-adic setting by applying only constant patterns of
substitutions. We take a sequence of substitutions S = (sn)n∈N ∈ S N; the shift
acting on S is denoted as σ (σ(S) = (sn+1)n∈N ∈ S N). The S-super-tile of order
0 and type a ∈ A is defined as the letter a, whereas the S-super-tile of order
n + 1 and type a is the image of the σ(S)-super-tile of order n and type a by
a s0-constant S -pattern. A super-tile of order n can thus be defined by a word
of size n in S ∗ together with a letter. The sequence S is said to be a directive
sequence. We then define the S-adic subshift XS as the set of the configurations
for which every pattern appears in an S-super-tile. For a closed subset S ⊂ S N,
we also define the S-adic subshift XS =

⋃
S∈SXS .

For d = 1, a natural way to define concatenation rules is to consider that the
image of two consecutive letters is obtained as the concatenation of the two
image words. Thus a substitution can be viewed as a non-erasing endomorphism
of the free monoid A∗. For example the Fibonacci substitution on the alphabet
{a, b} is defined by σ : a 7→ ab, b 7→ a. For d = 2, if all the supports of the images
by an element of S are rectangular, concatenation rules of two adjacent letters
consist in the concatenation of the two image patterns as long as the two glued
edges have the same size. Rectangular substitutions are considered e.g. in [36]
(see also [16] for the notion of shape-symmetric rectangular substitutions).
It is possible to extend the notion of substitution to geometric tilings. A tiling of
Rd is a collection of compact sets which cover topologically Rd, that is, with the
interiors of the tiles being pairwise disjoint. In general, a tile-substitution in Rd
is given by a set of prototiles T1, . . . , Tm ⊂ Rd, an expanding map and a rule how
to dissect each expanded prototile into translated copies of some prototiles Ti.
These geometric tiling substitutions are considered e.g. in [29]. It is also possible
to define S-adic tilings in this context (see [39]).
There are further strategies for defining substitutions such as described in [38].
For instance, one can also use a global information; see the formalism introduced
in [1] that allows the generation of multi-dimensional Sturmian words considered
in Section 5; this formalism also provides concatenation rules [25].

3 Some Decisions Problems for Substitutions

In the one-dimensional case, numerous decidability results exist for fixed points
of substitutions (D0L words), and their images by general morphisms (HD0L
words). More precisely, let A, B, be finite alphabets. We consider two morphisms
σ : A∗ → A∗, φ : A∗ → B∗; an infinite word of the form limn σ

n(u) (respectively
φ(limn σ

n(u))) is a D0L word (respectively an HD0L or morphic word), for u
finite word.
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We focus here on some decision problems that can be solved using the notion
of return word and derived sequence (see e.g. [20]). Let σ be a primitive sub-
stitution. It generates a minimal subshift Xσ. A return word to a word u of its
language is a word w of the language such that uw admits exactly two occur-
rences of u, with the second occurrence of u being a suffix of uw. One can recode
sequences of the subshift via return words, obtaining derived sequence (see e.g.
[20]). Note that even if analogous notions exist in the higher-dimensional case
and for tilings [37], this is not sufficient to yield a direct generalization of the
results described below.

The HD0L ω-equivalence problem (which has been open for more than 30 years)
is solved in [21] for primitive morphisms: it is decidable to know whether two
HD0L words are equal (see the references in [21] for the D0L case). The decid-
ability of the ultimate periodicity of HD0L infinite sequences has also been a
long-standing problem: it is decidable to know whether an HD0L word is ulti-
mately periodic. See [21] for the primitive case, and [22] for the general case.
See also the references in [22] for the D0L case. This problem is closely related
to the decidability of the ultimate periodicity of recognizable sets of integers in
some abstract numeration systems [7]. It is also proved in [23] that the uniform
recurrence of morphic sequences is decidable.

The particular case of constant-length substitutions (automatic sequences) has
also been widely studied; see e.g. [17, 42] where decision procedures are pro-
duced based on the connections between first-order logic and automata such
as developed in [15] where the equivalence between being p-recognizable and
p-definability is developed. For more references, see also the book [41].

4 Effectiveness for S-adic subshifts and Local Rules

We discuss here several effectivity notions for S-adic subshifts concerning their
directive sequences, pattern frequencies, or else their language. We also focus
on the existence of local rules. We only consider here iterations by constant
S -patterns. We recall that S is finite.

A closed subset S ⊂ S N is effectively closed if the set of (finite) words which do
not appear as prefixes of elements of S is recursively enumerable (one enumerates
forbidden prefixes). An effectively closed set is not necessarily a subshift.

A set of substitutions S has a good growing property if there are finitely many
ways of gluing super-tiles, and if the size of the super-tiles of order n grows with
n: there exists a finite set of patterns P ⊂ A∗ such if a pattern formed by a
super-tile of order n surrounded by super-tiles of order n is in the language of
XS N , then it appears as the n-iteration by a constant S -pattern of a pattern
of P, and, moreover, if for every ball of radius R, there exist n ∈ N such a
translate of this ball is contained in all the supports of super-tiles of order n.
Clearly non-trivial rectangular substitutions or geometrical substitutions (such
as defined in [29]) verify this property.
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Proposition 1. Let S ⊂ S N be a closed subset. If XS is effective, then there
exists an effective closed subset S′ ⊂ S N such that XS = XS′ . The reciprocal is
true if S has the good growing property.

Proof. Assume that XS is effective. The complement of its language is recur-
sively enumerable. Let S′ be the effective closed set such that a word in S ∗

is a forbidden prefix if the associated super-tiles are in the complement of the
language of XS. Clearly XS′ = XS.
Conversely, consider the S-adic subshift XS where S is effectively closed and let
P be the set of patterns given by the good growing property. Let P ′ be the set
of patterns in P that occur in Xσn(S) for infinitely many n. A pattern p is in the
language of XS if it appears in the image by an n-iteration of a pattern of P ′,
where n is the first order where the support of p is included in all super-tiles of
order n. Since P ′ is finite and the prefixes of S are co-recursively enumerable,
the same holds for the language of XS.

Definition 2 (Computable frequencies and measure). Let X be a subshift.
X is said to have computable frequencies if the frequencies of patterns exist and
are uniformly computable. A shift-invariant measure is said to be computable if
the measure of any cylinder is uniformly computable.

Remark 1. Computability of letter frequencies does not say much on the algo-
rithmic complexity of a subshift: take a subshift X ⊂ {0, 1}Z and consider the
subshift Y obtained by applying to each configuration of X the substitution
0 7→ 01, 1 7→ 10. The subshift Y admits letter frequencies (they are both equal
to 1/2), and it has the same algorithmic complexity as X.

Proposition 2. Let X be a subshift. If X is effective and uniquely ergodic, then
its invariant measure is computable and X is decidable. If X is minimal and its
frequencies are computable, then its language is recursively enumerable. If X is
minimal and effective, then it is decidable.

Proof. Let X be a d-dimensional subshift. We assume X effective and uniquely
ergodic. Let us prove that the frequency of any pattern is computable. We use
the following algorithm that takes as an argument the parameter e that stands
for the precision. We consider a finite pattern p. At step n, one produces all
‘square’ patterns of size n with support being a translate of [−n, n]d that do
not contain the n first forbidden patterns (they do not need to belong to the
language of X). For each of these square patterns of size n, one computes the
number of occurrences of p in it, divided by (2n + 1)d. We continue until these
quantities belong to an interval of length e. This algorithm then stops, and taking
an element of the interval provides an approximation of the frequency of p up to
precision e. Indeed, the square patterns of size n contain the square patterns of
size n of X. It remains to prove that the algorithm stops. Suppose it does not,
then, for all n, one can find two patterns of size n, xn and x′n, that do not contain
the n first forbidden patterns and such that ||xn|p/(2n+1)d−|x′n|p/(2n+1)d| > e.
By compactness, we can extract two configurations x and x′ that do not contain
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forbidden patterns (they thus belong to the subshift X) such that the frequency
of p in x is distinct from the frequency of p in x′. This contradicts the unique
ergodicity of X.
We now assume X minimal with computable pattern frequencies (frequencies
are positive). One can decide whether the frequency of a pattern is larger than
a given value. This thus implies that the language is recursively enumerable.
Assume that X is minimal and effective. Consider the square patterns of size
n that do not contain the n first forbidden patterns. If a pattern belongs to all
these patterns for some n, then it belongs to the language. Otherwise, consider
size n+ 1. The algorithm stops if a pattern is in the language by minimality.

Corollary 1. Let XS be a strictly ergodic S-adic subshift defined with respect
to a directive sequence S ∈ S N such that S satisfies the good growing property.
The following conditions are equivalent:

1. there exists a computable sequence S′ such that XS = XS′ ;
2. the unique invariant measure of XS is computable;
3. the subshift XS is decidable.

Proof. We first assume (1). By Proposition 1, XS is effective and Proposition 2
yields that its unique measure is computable and that XS is decidable.
We now assume (2). Let d stand for the cardinality of the alphabet of the substi-
tutions in S . The letter frequency vector is in the cone defined by the product
of the incidence matrices of the directive sequence. The incidence matrix of a
substitution s is a square matrix whose entry of index (i, j) counts the number
occurrences of the letter i in s(j). Let Mn stand for the incidence matrix of the
substitution sn. The letter frequency belongs to the cone

⋂
nM1 · · ·MnRd+, which

is one-dimensional by unique ergodicity. Given a precision e, one can compute n
such that the columns of M1 · · ·Mn are expected to be at a distance less than e
from the letter frequency vector. We fix a cylinder around the direction provided
by the letter frequency vector with precision e. Now we test finite products of
n substitutions in S . We consider the cone obtained by taking the product of
the incidence matrices, and check whether it intersects the cylinder. If it does
not intersect the cylinder, one gets a forbidden product of substitutions, which
proves that {S} is effectively closed.
It remains to prove that (3) implies (1). There exists a closed effective set such
that XS = XS, by Proposition 1. For every S′ ∈ S, one has XS′ = XS , by
minimality. We then exhibit a computable S′ in S as follows: for any n, take the
first prefix for the lexicographic order among the prefixes of elements in S such
that s0s1 · · · sn(a) is in the language of XS .

Existence of local rules. A natural question in tiling theory is to find lo-
cal rules which only produce aperiodic tilings. The first examples of aperiodic
subshifts of finite type were based on hierarchical structures [8,40]: substitutive
structures are known to be able to force aperiodicity. Note that a non-trivial sub-
stitutive subshift cannot be sofic in dimension 1: it has zero topological entropy
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whereas non-trivial sofic subshifts have positive entropy. In dimension d ≥ 2,
under natural assumptions, it is known for different types of substitutions that
substitutive tilings can be enforced with (colored) local rules. The ideas is al-
ways to force a hierarchical structure, as in Robison’s tiling, where each change
of level is marked by the type of the super-tile of this level, and the rule used
is transmitted for super-tiles of lower order. For rectangular substitutions, the
result is proved in [36] (with the result being more general since the substitutions
are non-deterministic). The case of geometrical substitutions is handled in [29]
and the result is also true in a more combinatorial way [26].
In the case of rectangular substitutions it is shown in [2] that the S-adic subshift
XS is sofic if and only if it can be defined by a set of directive sequences S
which is effectively closed. A similar result for more general substitutions is
expected; the difficulty relies in the ability to exhibit a rectangular grid to use
the simulation (see [3, 19]) of a one-dimensional effective subshift by a two-
dimensional sofic subshift. One can also ask whether linearly recurrent effective
subshifts are sofic. Note that such a statement cannot hold for computability
reasons (there are uncountably many linearly recurrent subshifts) without any
effectivity assumption. Note also that in the one-dimensional case case, linearly
recurrent subshifts are primitive S-adic [20].

5 An application: Planar Tilings

As an example of S-adic configurations, we consider multi-dimensional Sturmian
words. The associated tilings belong to the more general class of planar tilings.
A (canonical) planar tiling is an approximation of an affine d-plane E in Rn,
via the cut-and-project method (see e.g. [4]). Such a tiling can be lifted into
the tube E + [0, t]n: the space E is called the slope and the smallest possible
t the thickness. Planar tilings are closely related to discrete planes in discrete
geometry and provide models of quasicrystals. The case t = 1 and d = n − 1
corresponds to the multi-dimensional Sturmian case. In terms of configurations,
a multidimensional Sturmian word is defined as the coding of a Zd-action by d
rotations Rαi

: R/Z → R/Z, x 7→ x + αi (1 ≤ i ≤ d), where the αi are positive
real numbers. We assume 1, α1, · · · , αd rationally independent and

∑
i αi < 1.

A multidimensional Sturmian word u ∈ {1, 2, · · · , d+ 1}Zd

is defined as follows:
there exists ρ, a partition of R/Z into d+ 1 semi-open intervals, d of lengths αi,
and one of length 1−

∑
αi, such that un = i if and only if n1α1+· · ·+ndαd+ρ ∈ Ii

[12]. The cut-and-project framework is larger than the S-adic framework but
multidimensional Sturmian words are S-adic [13] (via the formalism of [1]).
The study of the connections between the existence of local rules for a planar
tiling and the parameters of its slope started with [18,34,35,43]. In particular, it
was proven in [34] that a slope enforced by undecorated local rules is necessarily
algebraic (this is however not sufficient, see e.g. [5, 6]). However, computability
comes into play when the tiles can be decorated. Decorations indeed allow the
transfer of information through the tiling, and this was used in [27] to prove that
a slope can be enforced by such rules if and only if it is computable.



Effective S-adic symbolic dynamical systems 9

References

1. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc.
Simon Stevin 8 (2001), 181–207.

2. N. Aubrun, M. Sablik, Multidimensional effective S-adic systems are sofic, Dis-
tribution Theory 9 (2014), 7–29.

3. N. Aubrun, M. Sablik, Simulation of effective subshifts by two-dimensional sub-
shifts of finite type, Acta Applicandae Mathematicae 126 (2013), 35–63.

4. M. Baake, U. Grimm, Aperiodic order. Volume 1: A Mathematical invitation,
Cambridge University Press, Cambridge, 2013.

5. N. Bédaride, Th. Fernique, No weak local rules for the 4p-fold tilings, Disc. Com-
put. Geom. 54 (2015), 980–992.

6. N. Bédaride, Th. Fernique, When periodicities enforce aperiodicity, Comm. Math.
Phys. 335 (2015), 1099–1120.

7. J.P. Bell, E. Charlier, A.S. Fraenkel and M. Rigo, A decision problem for ulti-
mately periodic sets in non-standard numeration systems, Internat. J. Algebra
Comput 9 (2009), 809– 839.

8. R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc.
66 (1966).
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