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Abstract. The aim of this lecture is to present a strategy for the prob-
lem of discrete plane recognition based on multidimensional continued
fractions and S-adic systems. The problem of the discrete plane recog-
nition consists in deciding whether a given set of points with integer
coordinates can be described as a plane discretization. The role played
respectively by words, substitutions, and classical continued fractions
will be played here respectively by stepped surfaces [1], generalized sub-
stitutions [2, 4], and Brun’s algorithm. We thus give a geometric inter-
pretation of Brun’s continued fraction algorithm in terms of the so-called
generalized substitutions introduced by Arnoux and Ito.

1 Plane recognition

The discrete plane recognition problem can be stated as follows: given a set of
points in Z%, does there exist a (standard) arithmetic discrete plane that contains
them?

Let us first recall the definition of a standard arithmetic discrete plane, ac-
cording to [7]. Let (e1, . .., e4) stand for the canonical basis of R?. For any = € Z¢
and i € {1,...,d}, we denote by (x,7*) the following translate of a face of the
unit hypercube:

(:c,i*) = {ei + Z)\j@j | 0< /\j < 1}.
i

Then, for any non-negative non-zero vector o € R%\{0} and p € R, we define
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Fig. 1. The faces (z,1%), (x,2") and (=, 3") (from left to right), in the d = 3 case.



the following set of faces:
Pa,p ={(x,i") | 0 < (z|a) — p < (ei]av)},

where (.|.) stands for the canonical inner product. One checks that = € Z9 is a
vertex of Pq,, (that is, x belongs to a face of Pq,,) if and only if it satisfies:

d

0< (@la) —p< Y (eila),

i=1

i.e., the set of vertices of Pq , is a so-called standard arithmetic discrete hyper-
plane.

Fig. 2. A piece of a standard arithmetic discrete plane.

There exist various strategies in discrete geometry for the recognition of
arithmetic discrete planes, such as described for instance in the survey [3]. The
aim of this lecture is to present a strategy based on multidimensional continued
fractions and S-adic systems, inspired by the one-dimensional Sturmian case.
We will see that the role played respectively by words, substitutions, and clas-
sical continued fractions will be played here by stepped surfaces [1], generalized
substitutions [2, 4], and Brun’s algorithm.

2 Discrete lines and Sturmian words

A standard arithmetic discrete line is made of horizontal and vertical steps. One
can code such a standard line by using the Freeman code over the two-letter
alphabet {0,1} as follows: one codes horizontal steps by a 0, and vertical ones
by a 1. One thus gets a Stumian word (u, )nen € {0, 1}

A natural algorithm for the recognition of finite factors of Sturmian words
can be obtained by desubstituting according to the two substitutions

JO(O) = 07 00(1) = 107 01(0) = 017 01(1) = ]-7



and to the choice of the isolated letter. For more details, see, e.g., [8,9]. Such a
desubstitution/recoding process can be translated in terms of continued fraction
algorithm and Ostrowski numeration.

3 Generalized substitutions

We now introduce similar objects in the higher-dimensional case.

The free group over {1,...,d} is denoted by Fy. A morphism of F, is thus a
map o : Fy — Fy such that, for any u, v in F, o(uv) = o(u)o(v).

A morphism is said to be non-negative if it maps each letter of {1,...,d}
to a word over {1,...,d}, and it is said to be non-erasing if it does not map
any letter to the empty word. Positive non-erasing morphisms are usually called
substitutions. The incidence matriz M, of a morphism o of Fj is the d x d matrix
whose entry at i-th row and j-th column is the number of occurrences of the
letter ¢ in o(j). A morphism is said to be unimodular if its incidence matrix
belongs to the linear group GL(d,Z), that is, has determinant +1. According to
the formalism developed in [2, 4], it is possible to associate with any unimodular
morphism of the free group o a so-called generalized substitution acting on unions
of faces as follows:

Ef)(z, i) = Y (M;'z—f@).5)~ Y, (M '(z-f(p)+e). i)
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Fig. 3. Generalized substitution associated with a morphism (acting on the faces

(0,77))

It is well-known that the image of a discrete plane under the action of E;(0)*,
when o is a substitution, is again a discrete plane plane according to [2, 5].

Proposition 1 ([2,5]). Let o be a unimodular substitution. Let o € R% be
a nonzero vector. The generalized substitution ©) maps without overlaps the
discrete plane Pa,, onto Pey o, p-

We now extend the domain of definition of generalized substitutions to more
general geometric objects.

A stepped surface (also called functional discrete surface) is defined as a union
of pointed faces such that the orthogonal projection 7 onto the antidiagonal plane
(e1 + ...+ eq)t induces an homeomorphism from the stepped surface onto the
antidiagonal plane.



One interest of this notion relies in the fact it is possible to recognize whether
a set of points in Z< is contained in a stepped surface by considering only a finite
neighbour of each point [6]. Furthermore, generalized substitutions act not only
on stepped planes but also on stepped surfaces according to [1].

Fig. 4. A piece of a stepped surface

4 Desubstitution

The point now is to try to desubstitute according to generalized substitutions.
We will use the following key property

Ei(oop) = Ei(p) o Ey(0),

that holds for any two morphisms of the free group o, i, applied to an invertible
substitution ¢ and to its inverse o ~!. Consequently, desubstitution according to
Ej(0) consists in the action of Ej (o7 1).

Let o be a unimodular substitution. A stepped surface is said to be o-tilable
if it is a union of translates of £y (0)*(0,4*), for 1 < i < d. The following question
is thus natural: can we desubstitute a o-tilable stepped surface?

Theorem 1. Let o be an invertible substitution. Let S be a o-tilable stepped
surface. We assume that there exists a non-zero vector o with non-negative en-
tries such that M !(c) has non-negative entries. Then, E;(o~1)(S) is a stepped
surface.

Our proof is based on a geometrical approach, using the generation of func-
tional stepped surfaces by flips. A flip is a classical notion in the study of dimer
tilings and lozenge tilings associated with the triangular lattice. It consists in
a local reorganization of tiles that transforms a tiling into another one. Such
a reorganization can also be seen in the 3-dimensional space on the functional
stepped surface itself. Suppose indeed that a functional stepped surface contains



3 faces that form the lower faces of a unit cube with integer vertices. By re-
placing these three faces by the upper faces of this cube, one obtains another
functional stepped surface. According to [1], any functional stepped surface can
be obtained from an arithmetic discrete plane by a sequence of flips, possibly
infinite but locally finite, in the sense that, for any bounded neighborhood of
the origin in the antidiagonal plane, there is only a finite number of flips whose
domain has a projection which intersects this neighborhood.

We thus can come back via the notion of flips to the case of discrete planes.
We then use the following:

Proposition 2. Let o be a unimodular morphism of the free group. Let o € Ri
be a nonzero vector such that

"Moo > 0.
Then, E7(c) maps without overlaps the discrete plane Py, onto Py a.,, that

is, the stepped plane Pq., is o-tilable, if and only if
‘Mo—1o > 0.

5 Brun’s algorithm

We will see that Proposition 2 can be reformulated in arithmetic terms, when
applied to particular substitutions associated with Brun’s multidimensional con-
tinued fraction algorithm.

Definition 1. The d-dimensional Brun map T is defined over [0,1]%\{0} by:
i-1 1 1 i
Tlanomva) = (S B2 2o | ] 222 2,
(67 (67 (67 (0% (0% Q;
where i is equal to the smallest index i' such that oy = max; ;.

It is convenient to provide a matrix viewpoint on Brun expansions. For a € N
and i € {1,...,d}, let us define the following (d + 1) x (d + 1) matrix:

where I, stands for the p x p identity matrix and all the unspecified coefficients
are equal to zero. Note that B, ; has integer entries and determinant —1, and
thus belongs to the linear group GL(d+ 1,Z). Consider now a = (aq,...,qq4) €
[0,1]\{0}. For i = min{j | a; = ||a||c} and @ = [a; ' |, an easy computation
shows that

(1, @) = [|af|oBa,i(1, T(a)),

where (1,u) = (1,u1,...,uy) for w = (uy,...,uy,). In particular, if o has Brun
expansion (ay, i, )n, this yields, for every suitable n:

(1,@) = 1, My (1, T (),



where 11, = [|T%(@)]|oo X ... X ||T™(a)|]|0o and M,, = Bay 4o - - - Ba,, iy, -

With each step of the algorithm, we can associate an invertible substitution

ﬂa,i-

Definition 2 (Brun morphism). Let 3, be the morphism of free group over
{1,...,d+ 1} defined, for a € N and i € {1,...,d}, by:

1 — 1“(1' + 1)
Ba,i - (t+1)— 1
Jj w—j forj#1li+1

It is easily checked that (,; has incidence matrix B, ;. In particular, 3, ; is
unimodular since B, ; € GL(d+1,Z). Note that (3, is a substitution, that is, a
positive and non-erasing morphism. Let us note furthermoe that the B, ;’s are
symmetric matrices. The substitution [, ; is moreover an automorphism:

I = (i+1) OI, L
Boi + {(+D) = (+1)71 and My1=B; = T,
o=
Ta—i

One gets
Proposition 3. For any a € [0,1]%\{0} and p € R,

P,a)p = BT (Ba,i) (Pllaf|e (1,7(a)),p)5

or, equivalently:
E{ (B21)(Pt.a.p) = Pllallw(1.7().0:

where i = min{j | oj = ||a||oc} and a = Lo ]

Thus, we can relate the action of the Brun map 7" on a vector a to the action
of a dual map E{(ﬂa_ll) on the stepped plane P(; ), ,. Hence, by identifying the
vector o with the hyperplane with normal vector (1, ), it is possible to define
the Brun’s expansion of a discrete plane, and even of a stepped surface.

We will use here the unimodularity and the weak convergence of Brun’s
algorithm. The main result of our lecture is the following:

Theorem 2. If a stepped surface S has the same Brun expansion as a totally
irrational vector o € [0,1]9\{0}, then it is a stepped plane of normal vector .

We conclude this lecture by discussing the application of this theorem to the
recognition problem for discrete planes.
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