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Abstract. This survey aims at giving a consistent presentation of numer-
ation from a dynamical viewpoint: we focus on numeration systems, their
associated compactification, and dynamical systems that can be naturally
defined on them. The exposition is unified by the fibred numeration system
concept. Many examples are discussed. Various numerations on rational
integers, real or complex numbers are presented with special attention paid
to β-numeration and its generalisations, abstract numeration systems and
shift radix systems, as well as G-scales and odometers. A section of appli-
cations ends the paper.

Le but de ce survol est d’aborder définitions et propriétés concernant la
numération d’un point de vue dynamique : nous nous concentrons sur les
systèmes de numération, leur compactification, et les systèmes dynamiques
définis sur ces espaces. La notion de système de numération fibré unifie la
présentation. De nombreux exemples sont étudiés. Plusieurs numérations
sur les entiers naturels, relatifs, les nombres réels ou complexes sont présentées.
Nous portons une attention spéciale à la β-numération ainsi qu’à ses générali-
sations, aux systèmes de numération abstraits, aux systèmes dits “shift
radix”, de même qu’aux G-échelles et aux odomètres. Un paragraphe d’appli-
cations conclut ce survol.
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1. Introduction

1.1. Origins. Numeration is the art of representation of numbers; primarily
natural numbers, then extensions of them - fractions, negative, real, complex
numbers, vectors, a.s.o. Numeration systems are algorithmic ways of coding
numbers, i.e., essentially a process permitting to code elements of an infinite
set with finitely many symbols.

For ancient civilisations, numeration was necessary for practical use, com-
merce, astronomy, etc. Hence numeration systems have been created not only
for writing down numbers, but also in order to perform arithmetical operations.

Numeration is inherently dynamical, since it is collated with infinity as poten-
tiality, as already asserted by Aristotle1: if I can represent some natural number,

1“The infinite exhibits itself in different ways - in time, in the generations of man,
and in the division of magnitudes. For generally the infinite has this mode of existence:
one thing is always being taken after another, and each thing that is taken is always fi-
nite, but always different. Again, ‘being’ has more than one sense, so that we must not
regard the infinite as a ‘this’, such as a man or a horse, but must suppose it to exist
in the sense in which we speak of the day or the games as existing things whose be-
ing has not come to them like that of a substance, but consists in a process of coming
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how do I write the next one? On that score, it is significant that motion (greek
δύναµις) and infinity are treated together in Aristotle’s work (Physics, third
book). Furthermore, the will to deal with arbitrary large numbers requires
some kind of invariance of the representation and a recursive algorithm which
will be iterated, hence something of a dynamical kind again.

In the sequel, we briefly mention the most important historical steps of nu-
meration. We refer to the book of Ifrah [Ifr94] for an amazing amount of
information on the subject and additional references.

Numeration systems are the ultimate elaboration concerning representation
of numbers. Most early representations are only concerned with finitely many
numbers, indeed those which are of a practical use. Some primitive civilisations
ignored the numeration concept and only had names for cardinals that were
immediately perceptible without performing any action of counting, i.e., as
anybody can experiment alone, from one to four. For example, the Australian
tribe Aranda say “ninta” for one, “tara” for two, “tara-ma-ninta” for three, and
“tara-ma-tara” for four. Larger numbers are indeterminate (many, a lot).

Many people have developed a representation of natural numbers with fin-
gers, hands or other parts of the human body. Using phalanxes and articula-
tions, it is then possible to represent (or show) numbers up to ten thousand
or more. A way of showing numbers up to 1010 just with both hands was im-
plemented in the XVIth century in China (Sua fa tong zong, 1593). Clearly,
the choice of base 10 was at the origin of these methods. Other bases were
attested as well, like five, twelve, twenty or sixty by Babylonians. However, all
representations of common use work with a base.

Bases have been developed in Egypt and Mesopotamia, about 5000 years
ago. The Egyptians had a special sign for any small power of ten: a vertical
stroke for 1, a kind of horseshoe for 10, a spiral for 100, a loto flower for 1000,
a finger for 10000, a tadpole for 105, and a praying man for a million. For
45200, they drew four fingers, five loto flowers and two spirals (hieroglyphic
writing). A similar principle was used by Sumerians with base 60. To avoid an
over complicated representation, digits (from 1 to 59) were written in base 10.
This kind of representation follows an additional logic. A more concise coding
has been used by inventing a symbol for each digit from 1 to 9 in base 10. In
this modified system, 431 is understood as 4× 100 + 3× 10 + 1× 1 instead of
100 + 100 + 100 + 100 + 10 + 10 + 10 + 1. Etruscans used such a system, as did
Hieratic and Demotic handwritings in Egypt.

The next crucial step was the invention of positional numeration. It has
been discovered independently four times, by Babylonians, in China, by the
pre-Columbian Mayas, and in India. However, only Indians had a distinct sign
for every digit. Babylonians only had two, for 1 and 10. Therefore, since they
used base 60, they represented 157, say, in three blocks: from the left to the

to be or passing away; definite if you like at each stage, yet always different.” [Ari63]
translation from http://people.bu.edu/wwildman/WeirdWildWeb/courses/wphil/readings/
wphil rdg07 physics entire.htm
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right, two times the unit symbol (representing 120), three times the symbol
for 10 (for 30), and seven times the unit symbol again (for 7). To avoid any
confusion between blocks (does eight times the unit symbol represent 8 × 1
or 2 × 60 + 6, etc), they used specific arrangements of the symbols - as one
encounters nowadays on the six faces of a dice2. Positional numeration enabled
the representation of arbitrary large numbers. Nevertheless, the system was
uncomplete without the most ingenuous invention, i.e., the zero. A sign for zero
was necessary and it was known to these four civilisations. To end the story, to
be able to represent huge numbers, but also to perform arithmetic operations
with any of them, one had to understand that this zero was a quantity, and not
“nothing”, i.e., an entity of the same type as the other numbers. Ifrah writes:
[Notre] “numération est née en Inde il y a plus de quinze siècles, de l’improbable
conjonction de trois grandes idées ; à savoir :

- l’idée de donner aux chiffres de base des signes graphiques détachés de
toute intuition sensible, n’évoquant donc pas visuellement le nombre des unités
représentées ;

- celle d’adopter le principe selon lequel les chiffres de base ont une valeur
qui varie suivant la place qu’ils occupent dans les représentations numériques ;

- et enfin celle de se donner un zéro totalement ‘opératoire’, c’est-à-dire
permettant de remplacer le vide des unités manquantes et ayant simultanément
le sens du ‘nombre nul’.”3 [Ifr94].

After this great achievement, it was possible to become aware of the mul-
tiplicative dimension of the numeration system: 431 not only satisfies 431 =
4×100+3×10+1 (additive understanding) but also 431 = 1+10×(3+4×10).
Moreover, the representation could be obtained in a purely dynamical way and
had a meaning in terms of modular arithmetic. Finally, the concept of num-
ber fits closely with its representation. A mathematical maturation following
an increasing abstraction process culminating in the invention of the zero had
been necessary to construct a satisfactory numeration system. It turned out to
be the key for many further mathematical developments.

1.2. What this survey is (not) about. The subject of representing nonnega-
tive integers, real numbers or any suitable extension, generalisation or analogon
of them (complex numbers, integers of a number field, elements of a quotient
ring, vectors of a finite-dimensional vector space, points of a function field, and
so on) is too vast to be covered in a single paper. Hence we made choices among
the most notable ways to think about numbers and their representations. Our
standpoint is essentially dynamical: we are more interested in transformations

2For pictures and examples, see [Ifr94], vol. 1, page 315 et seq. or the internet page
http://history.missouristate.edu/jchuchiak/HST%20101-Lecture%202cuneiform writing.htm
3Our numeration was created in India more than fifteen centuries ago on the basis of the

improbable conjunction of three important ideas, namely:
–to give base digits graphic signs unlinked with any sensitive intuition; they thus do not

visually indicate the number of represented quantities;
–to adopt a principle whereby base digits have a value that depends on their position in

the numerical representation;
–and lastly, to give a totally “operatory” zero, i.e., so that the gap left by missing units

can be filled, while also representing a “zero number”.
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yielding representations than in the representations themselves. We also focus
on dynamical systems emerging from these representations as well, since we
think that they give some insight into their understanding: as we explained
through our historical considerations, numeration is itself a dynamical concept.
Usually, papers on numeration deal with numeration on some special set of
numbers: N, Z, [0, 1], Z[i],... Our purpose is to introduce a general setting in
which these examples can take place. In fact, a suitable concept already exists
in the literature, since it turns out that the notion of fibred system, according
to Schweiger, is a powerful object to subsume most of the different numerations
under a unified concept. Therefore, the concepts we define in Section 2 origi-
nate directly from his book [Sch95b]4 or have been naturally built up from it.
More precisely, the key concept will be that of a fibred numeration system that
we present in Section 2.2. A second conceptual source of inspiration was the
survey of Kátai [Kát95].

These notions - essentially fibred systems and numeration systems - are very
general and helpful for determining what quite different types of numerations
may have in common. Simultaneously, they are flexible since they can be en-
riched with different structures. According to our needs, that is, describing the
classical examples of numeration, we will equip them progressively with a topol-
ogy, a sigma-algebra or an algebraic structure, giving rise to new questions. In
other words, our purpose is not to study properties of fibred numeration sys-
tems, but rather to use them as a framework for considering numeration.

This paper is organised as follows. The main definitions are introduced in
Sections 2.1, 2.2 and 2.3. Section 2.1 proposes a general definition of a numera-
tion system and introduces the difference between representation and expansion.
The key of Section 2 is Section 2.2, where fibred numeration systems are in-
troduced (Definition 2.4) and where their general properties are discussed. A
second important mathematical object of this paper is defined in Section 2.3:
the compactification associated with a fibred numeration system. The main no-
tions are illustrated by the most usual expansion, i.e., the q-adic numeration.
Section 2.4 presents in detail several well and less known examples from the
viewpoint given by the vocabulary we just introduced. Section 2.5 deals with
questions we will handle along the paper and presents a series of significative
examples.

Each of the next three sections is devoted to a specific direction of general-
isation of standard numeration. Section 3 is devoted to canonical numeration
systems that originate in numeration in number fields, and to a very recent
and promising generalisation of them: shift radix systems. Section 4 deals with

4“The notion of a fibred system arose from successive attempts to extend the so-called
metrical number theory of decimal expansions and continued fractions to more general types
of algorithms. [...]

Another source for this theory is ergodic theory, especially the interest in providing exam-
ples for one-sided subshifts, topological Markov chains, sofic systems and the like.”[Sch95b],
pages 1-2. For other applications of fibred systems and relevant references, see the preface
and Chapter 1 of [Sch95b], and the subsequent book of the same author [Sch00b].
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sofic numeration systems, Dumont-Thomas numeration and abstract numera-
tion systems. In both sections, the exposition focuses on geometrical aspects
and on the connection with β-numeration. The progression towards a higher
degree of generalisation is also emphasised. The presentation through fibred
numeration systems is new. Section 5 deals with a large family of dynamical
systems with zero entropy, called odometers: roughly speaking, they correspond
to the addition by 1. These systems are natural generalisations of Hensel’s q-
adic numbers. These three sections begin with a detailed introduction to which
the reader is referred for more details.

Section 6 is concerned with a selection of applications. Section 6.1 gives a
partial and short survey on the vast question of the asymptotic distribution of
additive functions with respect to numeration systems, especially the sum-of-
digits function. Section 6.2 explains how Rauzy fractals (that have been devel-
oped in Section 4) can be used to construct bounded remainder sets and to get
discrepancy estimates of Kronecker sequences. Section 6.3 deals with computer
arithmetics and cryptography, and Section 6.4 is concerned with applications
in physics, namely quasicrystals. Note that the current resarch on quasicrystals
is very active, as shown in this volume by the contribution [GVG06].

A survey on dynamical aspects of numeration assumes that the reader is
already familiar with the underlying basic concepts from dynamical systems,
ergodic theory, symbolic dynamics, and formal languages. Only Section 6 here
and there requires more advanced notions. As general references on dynamical
systems and ergodic theory, see [Bil65, CFS82, KH95, Pet89, PY98, Wal82].
For symbolic dynamics, see [BP97, BNM00, Kit98, LM95]. For references on
word combinatorics, automata and formal languages, see [AS03, Lot83, Lot02,
Lot05, PP04, PF02, Sak03]. Up to our knowledge, we did not treat subjects
that have been already covered in previous surveys or books, even if some of
them contain certain dynamical aspects. Let us now briefly mention some of
these surveys.

A pedagogical introductive exposition of numeration from a dynamical point
of view can be found in [DK02]. For a related dynamical approach of numer-
ation systems based on the compactification of the set of real numbers, see
[Kam05, Kam06]. This latter approach includes in particular the β-numeration
and numerations inspired by weighted substitutions (substitution numeration
systems are discussed in Section 4).

Connections between β-expansions, Vershik’s adic transformation and cod-
ings of hyperbolic automorphisms are extensively presented in Sidorov’s sur-
vey [Sid03], where the author already studies alternative β-expansions from
a probabilistic viewpoint. In the same vein, see also [ES02, Sch95a]. Let us
note that tiling theory has also close connections with numeration (e.g., see
[Rob04, Sol97, Thu89]).

For the connections between arithmetic properties of numbers and syntaxic
properties of their representations, see [Rig04]. The question of renormalisa-
tion (or change of alphabet) is motivated by performing arithmetic operations.
In [Fro00, Fro02], Frougny shows among other things that renormalisation is
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computable by a finite transducer in the case of a G-scale given by a linear re-
currence sequence (G-scales are introduced and discussed in Section 5). These
survey papers develop the theory of β-representation from the point of view of
automata theory.

Numeration systems are also closely related to computer arithmetics such
as illustrated in [BM04, Knu98, Mul89, Mul97]; indeed some numerations can
be particularly efficient for algorithms that allow to perform the main mathe-
matical operations and to compute the main mathematical functions; see also
Section 6.3.

A wide literature has been devoted to Cobhams’s theorem [Cob69] and its
connections with numeration systems, e.g., see [BHMV94, Dur98a, Dur98b,
Dur02b] and the survey [Dur02a]. Let us recall that Cobhams’s theorem states
that if the characteristic sequence of a set of nonneegative integers is recognis-
able in two multiplicatively independent bases, then it is ultimately periodic.

Let us also quote [AB06] for spectacular recent results concerning combina-
torial transcendence criteria that may be applied to the b-adic expansion of a
real number. For more details, see also the survey [AB05b].

2. Fibred numeration systems

2.1. Numeration systems. Let q ≥ 2 be an integer. Then every nonnegative
integer n can be uniquely written as

(2.1) n = ε`(n)q` + ε`−1(n)q`−1 + · · ·+ ε1(n)q + ε0(n),

with nonnegative digits 0 ≤ εk(n) ≤ q − 1, and ε`(n) 6= 0 for ` 6= 0. Otherwise
stated, the word ε0(n)ε1(n) . . . ε`−1(n)ε`(n) represents the number n. Similarly,
any real number x ∈ [0, 1) can be uniquely written as

(2.2) x =

∞∑

k=1

εk(x)q
−k,

with 0 ≤ εk(n) ≤ q − 1 again and the further assumption that the sequence
(εk(x))k≥1 does not eventually take only the value q−1. The sequence (εk(x))k≥1

represents the real number x. These sequences are called q-adic representation
of n and x, respectively.

If (Fn)n is the (shifted) Fibonacci sequence with convention F0 = 1, F1 = 2,
Fn+2 = Fn+1 + Fn, any nonnegative integer can be uniquely written as

(2.3) n = ε`(n)F` + ε`−1(n)F`−1 + · · · + ε1(n)F1 + ε0(n),

with digits εk(n) ∈ {0, 1} satisfying the condition εk(n)εk+1(n) = 0 for all k, and
ε`(n) 6= 0 for ` 6= 0. This is called the Zeckendorf expansion (see Example 2.7).

Both ways of writing nonnegative integers characterise integers with a finite
sequence of digits satisfying some conditions. For real numbers, the represen-
tation is done through an (infinite) sequence (and it has to be so, since the
interval [0, 1) is uncountable). A numeration system is a coding of the elements
of a set with a (finite or infinite) sequence of digits. The result of the coding -
the sequence - is a representation of the element.
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Definition 2.1. A numeration system (resp. a finite numeration system) is a
triple (X, I, ϕ), where X is a set, I a finite or countable set, and ϕ an injective
map ϕ : X ↪→ IN∗

, x 7→ (εn(x))n≥1 (resp. ϕ : X ↪→ I(N), where I(N) stands
for the set of finite sequences over I). The map ϕ is the representation map,
and ϕ(x) is the representation of x ∈ X. Let (X, I, ϕ) be a numeration system
(resp. finite numeration system). The admissible sequences (resp. admissible
strings) are defined as the representations ϕ(x), for x ∈ X.

Let us note that we have chosen the convention ϕ : X ↪→ IN∗
for the choice of

the index set, i.e., we have chosen to start with index 1. Example 2.1 (resp. 2.2)
shows that it can be more natural to begin with index 0 (resp. 1). Therefore,
we shall allow us to switch from one convention to the other one according to
the context.

Equations (2.1) and (2.2) say actually more than expressing a representation.
The equality takes into account the algebraic structure of the set of represented
numbers (existence of an addition on N and R, respectively), and the topological
structure as well for (2.2) by considering a convergent series: these structures
allow us to understand the representation as an expansion. These expansions
use the sequence of nonnegative (resp. negative) powers of q as a base. This
can be formulated in an abstract way in the following definition.

Definition 2.2. Let (X, I, ϕ) be a numeration system. An expansion is a map

ψ : IN∗ → X (resp. ψ : I(N) → X) such that ψ ◦ ϕ(x) = x for all x ∈ X. An
expansion of an element x ∈ X is an equality x = ψ(y); it is a proper expansion
if y = ϕ(x), and an improper expansion otherwise.

If X is a subset of an A-module (in the case of a finite number system) or of
a topological A-module, an expansion is often of the type ψ(y) =

∑∞
n=1 ν(yn)ξn,

with ν : I → A and (ξn)n≥1 ∈ XN∗
. In this case, the sequence (ξn≥1)n is called

a base or scale.

For example, if one considers the q-adic expansion (2.1), then X = N is a
subset of the Z-module Z, and we have an expansion defined by a finite sum
ψ(y) =

∑
n≥0 ynq

n, i.e., a base ξj = qj and ν(i) = i. For (2.2), the expansion

is given by the series ψ(y) =
∑

n≥1 ynq
−n.

2.2. Fibred systems and fibred numeration systems. Section 2.1 intro-
duced a useful vocabulary, but the notion of numeration system remains poor.
It becomes much more interesting when one asks how the digits are produced,
that is, how the representation map is constructed. The dynamical dimension
of numeration lies precisely there. Therefore, the key concept of Section 2 orig-
inates in the observation that, in (2.1), (2.2), (2.3), and many other examples
of representations, the digits are (at least, can be) obtained by iteration of a
transformation, and that this transformation contains an amount of interesting
information on the numeration. This concept is that of fibred numeration sys-
tem and we will use it along the paper. It is itself constructed from the notion
of fibred system, issued from [Sch95b], that we recall now.

Definition 2.3. A fibred system is a set X and a transformation T : X → X
for which there exist a finite or countable set I and a partition X =

⊎
i∈I Xi of
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X such that the restriction Ti of T on Xi is injective, for any i ∈ I. This yields
a well defined map ε : X → I that associates the index i with x ∈ X such that
x ∈ Xi.

Suppose (X,T ) is a fibred system with the associated objects above. Let
ϕ : X → IN∗

be defined by ϕ(x) = (ε(T nx))n≥1. We will write εn = ε◦T n−1 for
short. Let S stand for the (right-sided) shift operator on IN∗

. These definitions
yield a commutative diagram

(2.4)

X
T−→ X

ϕ
y

yϕ
IN∗ −→

S
IN∗

Definition 2.4. Let (X,T ) be a fibred system and ϕ : X → IN∗
be defined

by ϕ(x) = (ε(T nx))n≥1. If the function ϕ is injective (i.e., if (X, I, ϕ) is a
numeration system), we call the quadruple N = (X,T, I, ϕ) a fibred numeration
system (FNS for short). Then I is the set of digits of the numeration system;
the map ϕ is the representation map and ϕ(x) the N -representation of x.

In general, the representation map is not surjective. The set of prefixes of
N -representations is called the language L = L(N ) of the fibred numeration
system, and its elements are said to be admissible. The admissible sequences
are defined as the elements y ∈ IN∗

for which y = ϕ(x) for some x ∈ X.

Note that we could have taken the quadruple (X,T, I, ε) instead of the
quadruple (X,T, I, ϕ) in the definition. In almost all examples, the set of digits
is finite. It may happen that it is countable (e.g., see Example 2.3 and 2.7
below).

Let (X,T ) be a fibred system with a partition (Xi)i∈I and a map ϕ as in the
diagram (2.4). By definition of a partition, Xi 6= ∅ for each i ∈ I; hence all digits
are admissible. Moreover, set of prefixes and set of factors are synonymous here:

L =
{
(ε1(x), ε2(x), . . . , εn(x)) ; n ∈ N, x ∈ X

}

=
{
(εm+1(x), εm+2(x), . . . , εm+n(x)) ; (m,n) ∈ N2, x ∈ X

}
.

(2.5)

However, ϕ(X) is not necessarily shift invariant and it may happen that for
some m,

{
(εm+1(x), εm+2(x), . . . , εm+n(x)) ; n ∈ N, x ∈ X

}
6= L.

This is due to the lack of surjectivity of the transformation T .
The representation map transports cylinders from the product space IN∗

to
X, and for (i0, i1, . . . , in−1) ∈ In, one may define the cylinder

(2.6) X ⊃ C(i0, i1, . . . , in−1) =
⋂

0≤j<n

T−j(Xij ) = ϕ−1[i0, i1, . . . , in−1].

Moreover, the earlier assumption in Definition 2.3 that the restriction of T to
Xi is injective says that the application x 7→ (ε(x), T (x)) is itself injective. It
is a necessary condition for ϕ to be injective, and N is an FNS if and only if

(2.7) ∀x ∈ X :
⋂

n≥0

C(ε1(x), ε2(x), . . . , εn(x)) = {x}.
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If X is a metric space, a sufficient condition for (2.7) to hold is that, for any ad-
missible sequence (i1, i2, . . . , in, . . .), the diameter of the cylinders C(i1, i2, . . . , in)
tends to zero when n tends to infinity. In this case, if F is a closed subset of
X, then

F =
∞⋂

n=1

⋃

(i1,...,in)∈L
C(i1,...,in)∩F 6=∅

C(i1, . . . , in),

which proves that the σ-algebra B generated by the cylinders is the Borel alge-
bra. In general, T is B-measurable.

The representations introduced in Definition 2.4 are by nature infinite. It is
suitable to have access to finite expansions, in order to have a notion of finite
fibred numeration system, as one had finite numeration systems in Section 2.1.
For that purpose, we need to look at fixed points of the transformation T . Let
(X,T, I, ϕ) be an FNS. If x ∈ X satisfies T (x) = x, then its representation is
constant, i.e., there exists i ∈ I such that ϕ(x) = (i, i, i, . . .). By injectivity of
ϕ, the converse is true too, and ϕ induces a bijection between the set of fixed
points and the constant admissible sequences.

Definition 2.5. A fibred numeration system N = (X,T, I, ϕ) is finite (FFNS)
if there exists a fixed point x0 under the transformation T with N -representation
ϕ(x0) = (i0, i0, . . .) such that for every element x ∈ X, there exists a nonnega-
tive integer n0 satisfying εn(x) = i0 for all n ≥ n0.

A fibred numeration system N is quasi-finite if and only if it is not finite and
every N -representation is ultimately periodic.

The attractor of the system is defined as the set A = {x ∈ X ; ∃k ≥ 1 :
T k(x) = x}.

In other words, an FNS is finite if there exists a unique fixed point and if it
belongs to every orbit. By injectivity of ϕ, the attractor is the set of elements
having a purely periodic representation. An FNS is finite or quasi-finite if every
orbit falls in the attractor: ∀x ∈ X,∃k such that T kx ∈ A.

In an FFNS, the representation ϕ(x) = (ε1(x), ε2(x), . . . , εn0−1(x), i0, i0,. . .)
of an element can be identified with the finite representation (ε1(x), ε2(x), . . . ,
εn0−1(x)). With this convention, an FFNS is an FNS where every element has
a finite representation. Then the representation map can be considered as a
map ϕ : X → I(N). This gives finite expansions (according to Definition 2.2),
by defining

ψ(y1, y2, . . . , yn) = ψ(y1, y2, . . . , yn, i0, i0, . . .).

The interest of the notion of FFNS comes from the examples: a lot of ex-
pansions are finite (e.g., see Example 2.1 below). Furthermore, dealing with
infinite representations whenever the set X is at most countable is irrelevant.
Lastly, coding an essentially finite information like ϕ(x) = (ε1(x), ε2(x), . . . ,
εn0−1(x), i0, i0, . . .) by an infinite sequence is abusive. This concept is thus a
translation into the framework of (infinite) representations of the natural notion
of finite expansion.
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The difficulty lies in the fact that we deal in full generality only with represen-
tations and not with explicit expansions using a zero. Indeed, finite expansions
(in the sense above) are usually those whose infinite form ends with zeros: if
n ∈ N as in (2.1), we have

n = ε0(n) + ε1(n)q + · · ·+ ε`−1(n)q`−1 + ε`(n)q` + 0 · q`+1 + 0 · q`+2 + · · · .
Embedding N in Zq, the latter is even the Hensel expansion of n.

We thus do not use a zero to define FFNS. Actually, a zero is needed if one
intends to characterise finite expansions in a non-finite FNS, since there is no
possibility to differentiate the different fixed points of T in general. Consider
for instance X = Z2 with the usual representation giving the Hensel expan-
sion. The transformation is T (x) = (x−x (mod 2))/2. It has two fixed points,
0 and −1. The set of digits is {0, 1}. According to Definition 2.5, the FNS
(Z2, T, {0, 1}, ϕ) is not finite, but it induces two FFNS, on the nonnegative in-
tegers, and on the negative integers, respectively. From the formal viewpoint
of representations, there is no difference between both subsystems. Neverthe-
less, as elements of Z2, only nonnegative integers have finite expansions. This
is done by privileging the fixed point 0. Note that if there exist several fixed
points and if the representation of every element ends with the representation
of some of them, all representations are finitely codable. However, it would be
confusing to speak of finite representation in this latter case.

2.3. N - compactification. Endowing I with a suitable topology, one may see
the closure of ϕ(X) in the product space IN∗

as a topological space equipped
with the product topology. This yields the following definition.

Definition 2.6. For a fibred numeration system N = (X,T, I, ϕ), with a Haus-
dorff topological space I as digit set, the associated N -compactification XN is
defined as the closure of ϕ(X) in the product space IN∗

.

By the diagram (2.4) and its consequence (2.5), XN is stable under the shift
action. We will therefore consider in the sequel the subshift (XN , S). If I is a
discrete set, then

XN = {(i0, i1, . . .) ; ∀n ≥ 0 , C(i0, . . . , in−1) 6= ∅}.
Lastly note that if (X,T, I, ϕ) is a finite FNS, and if (xn)n ∈ XN , then
(x0, . . . , xm, i0, i0, . . .) ∈ XN .

2.4. Examples. The present section presents in a detailed way several numer-
ation systems. It illustrates the definitions introduced above and fixes vocab-
ulary and notation used in the rest of the paper. In particular, Example 2.1
and 2.7 generalise systematically (2.1), (2.2), and (2.3). Example 2.2 is central
in Section 3 and Section 4.

Example 2.1. q-adic representations
The q-adic numeration is the most usual numeration. There exist several q-

adic numeration systems, all fibred, depending on whether one deals with non-
negative integers, integers, real numbers, Hensel’s q-adic numbers, or whether
one uses the classical set of digits, or else allows other representations.
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1. Let X = N, I = {0, 1, . . . , q−1}, Xi = i+qN. According to Definition 2.3,
ε(n) ≡ n (mod q) and let T : X → X be defined by T (n) = (n − ε(n))/q.
Then 0 is the only fixed point of T . We have an FFNS, with language, set of
representations and compactification

Lq =
⋃

n≥0

{0, 1, . . . , q − 1}n,

ϕ(X) = I(N) =
{
(i0, . . . , in−1, 0, 0, 0, . . .) ;n ∈ N, ij ∈ {0, 1, . . . , q − 1}

}
,

XN = {0, 1, . . . , q − 1}N.
The addition can be extended to XN , and gives the additive (profinite) group
Zq = lim←−Z/qnZ. The coordinates are independent and identically uniformly

distributed on I w.r.t. Haar measure µq, which fulfills µq[i0, . . . , ik−1] = q−k.
(See Paragraph 6 of the present example below).

2. Let X = Z, and everything else as in the first example. This is again an
FNS, and actually a quasi-FFNS, since

ϕ(X) = {(i0, . . . , in−1, a, a, a, . . .);n ∈ N, a = 0 or a = q − 1}.
In other words, there are two T -invariant points, which are 0 and −1. The
other sets are as in the first case: L = Lq and XN = Zq.

3. Take now X = Z and T (n) = (n− ε(n))/(−q). Curiously, this is again an
FFNS, with the same language, set of representatives and compactification as
in the first example (see Theorem 3.1).

4. It is possible to generalise the second example by modifying the set of
digits and taking any complete set of representants modulo q, with q ∈ Z,
|q| ≥ 2. Then one always gets an FNS or a quasi-FFNS. This is due to the
observation that for

L = max{|i| ; i ∈ I}/(|q| − 1),

the interval [−L,L] is stable by T and |T (n)| < |n| whenever |n| > L. The
compactification is IN, the language and the set of representations hardly de-
pend on the set of digits (see [Kát95] for a detailed study with many examples,
and in particular, Lemma 1 therein, for the fact that it is a quasi-FFNS or an
FFNS).

5. X = [0, 1), I = {0, 1, . . . , q−1}, Xi = [i/q, (i+1)/q), and T (x) = qx−bqxc.
This defines an FNS, which becomes a quasi-FFNS if the space is restricted to
[0, 1) ∩Q. The Lebesgue measure is T -invariant.

The language is Lq and the compactification Zq in both cases. The set
of representations is the whole product space without the sequences ultimately
equal to q−1 in the first case (FNS), the subset of ultimately periodic sequences
in the second case (quasi-FFNS). The attractor is the set A = {a/b ; a <
b and gcd(b, q) = 1}. If x = a/b, with a and b coprime integers, write b = b1b2,
with b1 being the highest divisor of b whose prime factors divide q. Then the
length of the preperiod is min{m ; b1|qm} and the length of the period is the
order of q in (Z/b2Z)∗.

The continuous extension ψ of ϕ−1 is defined on Zq by ψ(y) =
∑

n≥1 ynq
−n.

Elements of X having improper representations are the so-called “q-rationals”,
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i.e., the numbers of the form a/qm with a ∈ N, m ≥ 0 and a/qm < 1. If the
proper expansion is (i1, i2, . . . , is, 0

ω), then the improper one is

(i1, i2, . . . , is−1, is − 1, (q − 1)ω).

6. Let X = Zq, with Xi = i + qZq, I = {0, 1, . . . , q − 1}, and T (x) =
(x − ε(x))/q. It is an FNS equal to its own N -compactification. There are
q fixed points — F = {0,−1, 1/(1 − q), 2/(1 − q), . . . , (q − 2)/(1 − q)}. The
attractor is: A = F + Z.

Example 2.2. β-representations
1. It is possible in Example 2.1 to replace q by any real number β > 1. Namely,
X = [0, 1], I = {0, 1, . . . , dβe − 1}, and T (x) = Tβ(x) = βx − bβxc, ε(x) =
bβxc. This way of producing β-representations (which are actually expansions∑

n≥1 εn(x)β−n according to Definition 2.2) is traditionally called “greedy”,
since the digit chosen at step n is always the greatest possible, that is,

max



ε ∈ I;

n−1∑

j=1

εj(x)β
−j + εβ−n < x



 .

This is according to Rényi [Rén57]. See Example 2.4 for a discussion on this
seminal paper.

According to Parry [Par60], the set of admissible sequences ϕ(X) is simply
characterised in terms of one particular β-expansion. For x ∈ [0, 1], set dβ(x) =

ϕ(x).5 In particular, let dβ(1) = (tn)n≥1. We then set d∗β(1) = dβ(1), if dβ(1)
is infinite, and

d∗β(1) = (t1 . . . tm−1(tm − 1))ω,

if dβ(1) = t1 . . . tm−1tm0ω is finite (tm 6= 0). The set ϕ(X) of β-representations
of real numbers in [0, 1) is exactly the set of sequences (xn)n≥1 with values in
I, such that

(2.8) ∀k ≥ 1, (xn)n≥k <lex d
∗
β(1).

The set XN = ϕ([0, 1)) is called the (right) one-sided β-shift. It is equal to the
set of sequences (xi)i≥1 which satisfy

(2.9) ∀k ≥ 1, (xi)i≥k ≤lex d
∗
β(1),

where ≤lex denotes the lexicographical order.

Definition 2.7. Numbers β such that dβ(1) is ultimately periodic are called
Parry numbers and those such that dβ(1) is finite are called simple Parry num-
bers.

Parry numbers and simple Parry numbers are clearly algebraic integers:
Parry showed that they are Perron numbers [Par60]. For example, the golden

mean % = 1+
√

5
2 is a simple Parry number with d%(1) = 110ω . According

to Definition 2.2, simple Parry numbers are those that produce improper ex-
pansions. With any sequence (xn)n≥1 ∈ XN , we can associate the expansion

5This notation is redundant with ϕ, but it is standard in β-numeration, thus we will use
it.
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ψ(x) =
∑

n≥1 xnβ
−n. Then ψ(x) ∈ [0, 1] and numbers with two expansions are

exactly those with finite expansion:

ψ(x1 . . . xs−1xs0
ω) = ψ((x1 . . . xs−1(xs − 1)d∗β(1)).

If β is assumed to be a Pisot number, then every element of Q(β)∩[0, 1] admits
a ultimately periodic expansion [Sch80, BM86], hence β is either a Parry number
or a simple Parry number [BM86]. One deduces from the characterisation (2.9)
that the shift XN is of finite type if and only if β is a simple Parry number,
and it is sofic if and only if XN is a Parry number [IT74, BM86].

Rényi [Rén57] proved that ([0, 1), Tβ) has a unique absolutely continuous in-
variant probability measure hβ(x)dλ, and computed it explicitly when β was the
golden mean. Parry [Par60] extended this computation to the general case and
proved that the Radon-Nikodym derivative of the measure is a step function,
with a finite number of steps if and only if β is a Parry number.

2. Note that
∑

n≥1(dβe − 1)β−n = (dβe − 1)/(β − 1) > 1, if β is not an
integer. This leaves some freedom in the choice of the digit. The “lazy” choice
corresponds to the smallest possible digit, that is,

min



ε ∈ I;x−




n−1∑

j=0

εj(x)β
−j−1 + εβ−n−1


 <

dβe − 1

βn(β − 1)



 .

This corresponds to ε(x) =

⌈
βx− dβe − 1

β − 1

⌉
and T (x) = βx−ε(x). These trans-

formations are conjugated: write ϕg and ϕ` for greedy and lazy representations,
respectively. Then

ϕ`

(dβe − 1

β − 1
− x
)

= (dβe − 1, dβe − 1, . . .)− ϕg(x).

3. It is also possible to make a choice at any step: lazy or greedy. If this
choice is made in alternance, we still have an FNS (with transformation T 2 and
pairs of digits). More complicated choices (e.g., random) are also of interest
(but are not FNS). See [DK03], [Sid03], and the references therein.

4. For β, the dominating root of some polynomial of the type

Xd − a0X
d−1 − a1X

d−2 − · · · − ad−1

with integral coefficients a0 ≥ a1 ≥ · · · ≥ ad−1 ≥ 1, the restriction of the
first tranformation (T (x) = βx − bβxc) on Z[β−1]+ = Z[β−1] ∩ R+ yields an
FFNS. Such numbers β are said to satisfy Property (F ) (introduced in [FS92]).
They will take a substantial room in this survey (see Section 3.3 and 4.4).
An extensively studied question is to find the characterisation of these β (see
Section 4). More generally, for detailed surveys on the β-numeration, see for
instance [BM89, Bla89, Lot02, Fro00, Sid03].

Example 2.3. Continued fractions
Continued fractions have been an important source of inspiration in founding

fibred systems [Sch95b]. Classical continued fractions, called regular, use X =
[0, 1], the so-called Gauß transformation T (x) = 1/x−b1/xc, T (0) = 0, partition
Xi = ( 1

i+1 ,
1
i ], and ε(x) = b1/xc (ε(0) = ∞). The set of digits is N∗ ∪ {∞}.
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The representation map is one-to-one. In fact, the linear maps ha : t 7→ 1
t+a

(a ∈ N∗) defined on [0,∞] generate a free monoid to which it is convenient to
add the constant map h∞ : t 7→ 0. The iteration

(2.10) x = hε(x)(Tx) = hε(x) ◦ · · · ◦ hε(T nx)(T
n+1(x))

ends with h∞ for any rational number r ∈ [0, 1], so that r = hε(x) ◦ · · · ◦
hε(T nx) ◦ h∞(r) (with T n+1(x) = 0). Irrational numbers x have an infinite
expansion (according to Definition 2.2) since T n(x) is never equal to 0.

The restriction to rational numbers yields an FFNS and the restriction to
rational and quadratic numbers is a quasi-FFNS (by Lagrange’s theorem). In
the generic case, passing to the limit in (2.10), we get for any real number in [0, 1]
a unique expansion from the representation ϕ(x) (terminated by (h∞ ◦h∞ ◦ . . .
if x is rational), namely

x = lim
n→∞

hε(x) ◦ · · · ◦ hε(T nx)(0)

and usually denoted by [0; ε1(x), ε2(x), . . . ]. Note that any rational number
r = hε(x) ◦ · · · ◦ hε(T nx)(0) with ε(T nx) ≥ 2 has also the expansion r = hε(x) ◦
· · ·◦hε(T nx)−1◦h1(0) which does not come from a representation (cf. Question 7
infra).

The expansion of special numbers (nothing is known about the continued
fraction expansion of 3

√
2), as well as the distribution properties of the digits

(partial quotients) have been extensively studied since Gauß and are still the
focus of many publications. For an example of a spectacular and very recent
result, see [AB05a]. The regularity of T allows us to use Perron-Frobenius
operators, which yields interesting asymptotic results like the Gauß-Kuzmin-
Wirsing’s result, that we cite as an example [Wir74]:

λ{x ; T n(x) < t} =
log(1 + t)

log 2
+O(qn), with q = 0.303663...

(here λ is the Lebesgue measure). The limit is due to Gauß, the first error term
and the first published proof are due to Kuzmin. The bottom line is due to
Wirsing [Wir74], who gave the best possible value for q. There is a huge number
of variants (with even, odd, or negative digits for example). See Kraaikamp’s
thesis [Kra90] for a unified approach by using the so-called singularisation pro-
cess based on matrix identities like

(
1 e
1 a

)(
0 f
1 1

)(
0 1
1 b

)
=

(
0 e
1 a+ f

)(
1 −f
1 b+ 1

)

with arbitrary a, b, e and f . For further references involving metrical theory,
see [IK02], and for generalisations to higher dimension we refer to [Sch95b]
and [Sch00b]. Due to the huge amount of literature, including books, it is not
worthwile to say much more about the theory of continued fractions.

Example 2.4. f -expansions
It is often referred to the paper of Rényi [Rén57] as the first occurrence of

β-expansions. It is rarely mentioned that β-expansions only occupy the fourth
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section of this famous paper and are seen as an example of the today less popular
f -expansions.6

The idea is to represent the real numbers x ∈ [0, 1] as

x = f(a1 + f(a2 + f(a3 + · · · + f(an + · · · )) · · · ), with ai ∈ N(2.11)

= lim
n→∞

f(a1 + f(a2 + f(a3 + · · ·+ f(an) · · · ))).

It originates in the observation that both continued fractions and q-adic ex-
pansions are special cases of the same type, namely an f -expansion, with
f(x) = 1/x for the continued fractions and f(x) = x/q for the q-adic expan-
sions. Furthermore, the coefficients are given in both cases by a1 = bf−1(x)c
and it is clear that existence of an algorithm and convergence in (2.11) occur
under suitable assumptions of general type on f (injectivity and regularity).

More precisely, let f : J → [0, 1] be a homeomorphism, where J ⊂ R+. Let
ε(x) = bf−1(x)c for 0 ≤ x ≤ 1 and T : [0, 1] → [0, 1] be defined by T (x) =
f−1(x)− ε(x). For 1 ≤ k ≤ n, let us introduce

uk,n(x) = f(εk(x) + f(εk+1(x) + · · ·+ f(εn(x) + T n(x)) · · · )
vk,n(x) = f(εk(x) + f(εk+1(x) + · · ·+ f(εn(x)) · · · ).

Then, one has u1,n(x) = x, uk,n(x) = u1,n−k+1(T
k−1(x)), and similarly vk,n(x) =

v1,n−k+1(T
k−1(x)). We are interested in the convergence of (v1,n(x))n to x. In-

deed,

(2.12) x− v1,n(x) = T n(x)

n∏

k=1

vk,n − uk,n

f−1(vk,n)− f−1(uk,n)
.

Provided that for all x, (v1,n(x))n tends to x, then one gets a fibred numera-
tion system and expansions according to Definition 2.2. They are called f -
expansions. This question seems to have been raised for the first time by
Kakeya [Kak24] in 1924. Independently, Bissinger treated the case of a de-
creasing function f [Bis44] and Everett the case of an increasing function f two
years later [Eve46] before the already cited synthesis of Rényi [Rén57]. Since
one needs the function f to be injective and continuous, there are two cases,
whenever f is increasing or decreasing.

The usual assumptions are either f : [1, g] → [0, 1], decreasing, with 2 < g ≤
+∞, f(1) = 1 and f(g) = 0, or f : [0, g]→ [0, 1], increasing, with 1 < g ≤ +∞,
f(0) = 0, and f(g) = 1. In both cases, the set of digits is I = {1, . . . , dge − 1}.

6The term β-expansion does not even occur in the Thron’s AMS review of [Rén57] who
just evokes “more general f -expansions” [than the q-adic one]. In Zentralblatt, the one full
page long review of Hartman shortly says (in the citation below, g is the upper bound of the
interval on which the function f is defined, see infra): “Der schwierige Fall: g < ∞, g nicht
ganz, wird nicht allgemein untersucht, jedoch kann Verf. für den Sonderfall f(x) = x/β (bei
0 ≤ x ≤ β) oder 1 (bei β < x), β nicht ganz, d.h. für die systematischen Entwicklungen
nach einer gebrochenen Basis, den Hauptsatz noch beweisen.” (The difficult case: g < ∞, g
not integral, is not investigated in general. However, the author is able to prove the principal
theorem for the special case f(x) = x/β (for 0 ≤ x ≤ β) or 1 (for β < x), β not an integer, that
is, for systematic expansions w.r.t. a fractional base.) [This “principal theorem” is concerned
with the absolutely continuous invariant measure (see Example 2.2) - the case of g finite and
not an integer is not treated in general.]
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In case g = +∞, the set of digits is infinite and there is a formal problem
at the extremities of the interval. Let us consider the decreasing case. Then
T is not well defined at 0. It is possible to consider the transformation T on
[0, 1] \ ∪j≥0T

−j{0}. It is also valid to set T (0) = 0 and ε(0) = ∞, say. Then,
we say that the f -representation of x is finite if the digit ∞ occurs. In terms
of expansions, for (εn(x))n = (i1, . . . , in,∞,∞, . . .), we have a finite expansion
x = f(i1+f(i2+· · ·+f(in)) · · · ). For the special case of continued fractions, the
first choice considers the Gauß transformation on [0, 1] \Q and the second one
obtains the so-called regular continued fraction expansion of rational numbers.
The case f increasing is similar.

The convergence to 0 of the righthand side when n tends to infinity in Equa-
tion (2.12) is clearly ensured under the hypothesis that f is contracting (s-
lipschitz with s < 1). There are several results in this direction, which are
variants of this hypothesis and depend on the different cases (f decreasing or
increasing, g finite or not). For instance, Kakeya proved the convergence under
the hypothesis g integral or infinite and |f ′(x)| < 1 almost everywhere [Kak24].
We refer to the references cited above and to the paper of Parry [Par64] for
more details.

The rest of Rényi’s paper is devoted to the ergodic study of the dynamical
system ([0, 1], T ). By considering the case of independent digits (g ∈ N or
g = ∞), and by assuming that there exists a constant C such that for all x,
one has supt |Hn(x, t)| ≤ C inft |Hn(x, t)|, where

H(x, t) =
d

dt
f(ε1(x) + f(ε2 + · · ·+ f(εn(x) + t)) · · · ),

he proves that there exists a unique T -invariant absolutely continuous measure
µ = hdλ such that C−1 ≤ h(x) ≤ C. Note that the terminology “independent”
is troublesome, since as random variables defined on ([0, 1], µ), the digits εn
are not necessarily independent. They are in the q-adic case, but they are not
in the continued fractions case, nor for the β-expansions. Furthermore, there
are sometimes infinite invariant measures. In [Tha83], Thaler gives general
conditions on f for that and some examples, as f : [0,∞] → [0, 1], f(x) =
x/(1 + x). See also [Aar86] for more detailed information on these measures,
especially wandering rates. For further developments on f -expansions, we refer
to [Sch95b] and [DK02].

Example 2.5. Rational bases
A surprising question is to ask for a q-adic representation of integers with a

rational number q = r/s > 1 (r and s being coprime positive integers, s ≥ 2).
To do that, we can follow Kátai’s approach [Kát95], looking for a map T : Z→ Z

such that any integer n can be written in the form n = r
sT (n) + R(n). A

divisibility reasoning requests R(n) = ε(n)
s , where ε(n) may play the rôle of

the least significant digit. This leads to simultaneous definitions of the maps
ε : Z→ {0, 1, . . . , r} and T from the relation

(2.13) sn = rT (n) + ε(n),

where T (n) and ε(n) stand respectively for the quotient and the remainder in
the Euclidean divsion of sn by r. The partial r

s -expansion of n is then given by
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the formula

(2.14) n =
ε(n)

s
+

1

s

(r
s

)
ε(Tn) + · · ·+ 1

s

(r
s

)k−1
ε(T k−1n) +

(r
s

)k
T k(n).

It is easy to check from the definition that T (0) = 0, T (n) < n if n ≥ 1, and
−n < T (−n) < 0, if n ≥ r. Consequently, for any positive integer n, there
exists a unique integer ν = ν(n) ≥ 1 such that T ν−1(n) 6= 0 and T ν(n) = 0.
Choosing I = {0, 1, . . . , r − 1} and the map A : Z → IN∗

defined as A(n) =
(εj(n))j≥1, we get a numeration system (Z, T,A). The restriction of T to N

(still denoted by T ), gives rise to a finite numeration system with (r/s)-adic

expansion
∑ν(n)

j=1 εj(n)s−1(r/s)j−1. Moreover (N , T, I,A) is also a finite fibred
system.

This representation has been recently studied in [AFS05] where it is an-
nounced in particular that the language Lr/s of this representation is neither
regular, nor context-free. The authors also show that the (r/s)-expansion is
closely connected to Mahler’s problem on the distribution of the sequences
n 7→ t(r/s)n (t ∈ R).

(2)

2|1
KK

1|0
��

0|2
((
(0)

x|x
��

Figure 2.1. The transducer for the addition by 1 for the 3
2 -

expansion. The state (a) (for a = 0, 2) corresponds to the carry
digit a. The label x|y means that x is the current input digit
and y the resulting output digit.

The addition by 1 is computed by a transducer which is depicted in Figure 2.1
for r = 3, s = 2. In this case, adding 1 to nmeans adding the digit 2 to the string
ε1(n)ε2(n) . . . which is read from left to right by the transducer to produce the
output ε1(n+ 1)ε2(n + 1) . . . .

In fact, T is naturally extended to the group Zr of r-adic integers by (2.13)
where n, now, belongs to Zr, and ε(n) is the unique integer in I such that the
r-adic valuation of sn−ε(n) is at least 1. In symbolic notations, Zr is identified
to IN and T acts on IN as the one-sided shift. Note that the map n 7→ sn
is an automorphism of Zr. By taking the limit in (2.14), the infinite string
ε1(n)ε2(n) . . . (n ∈ Zr) corresponds to the Hensel expansion of n, using the
base s−1(r/s)j , j = 0, 1, 2, . . . . Hence, Zr turns out to be the compactification
of Lr/s. For the restriction of T to X = Z, we get a quasi-finite fibred system
where the representation of any negative integer is ultimately periodic.

Example 2.6. Signed numeration systems
Such representations have been introduced to facilitate arithmetical opera-

tions. To our knowledge, the first appearance of negative digits is due to Cauchy,
whose title “Sur les moyens d’éviter les erreurs dans les calculs numériques”
is significant. Cauchy proposes explicit examples of additions and multiplica-
tions of natural numbers using digits i with −5 ≤ i ≤ 5. He also verbally
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explains how one performs the conversion between both representations, using
what was not yet called a transducer at that time: “Les nombres étant ex-
primés, comme on vient de le dire, par des chiffres dont la valeur numérique ne
surpasse pas 5, les additions, soustractions, multiplications, divisions, les con-
versions de fractions ordinaires en fractions décimales et les autres opérations
de l’arithmétique, se trouveront notablement simplifiées. Ainsi, en particulier,
la table de multiplication pourra être réduite au quart de son étendue, et l’on
n’aura plus à effectuer de multiplications partielles que par les seuls chiffres 2,
3, 4 = 2× 2, et 5 = 10/2. Ainsi, pour être en état de multiplier l’un par l’autre
deux nombres quelconques, il suffira de savoir doubler ou tripler un nombre, ou
en prendre la moitié. [· · · ] Observons en outre que, dans les additions, multipli-
cations, élévations aux puissances, etc, les reports faits d’une colonne à l’autre
seront généralement très faibles, et souvent nuls, attendu que les chiffres positifs
et négatifs se détruiront mutuellement en grande partie, dans une colonne ver-
ticale composée de plusieurs chiffres.7” There is a dual interest: considerably
reduce the size of the multiplication tables; dramatically decrease the carry
propagation.

Nowadays, signed representations have two advantages. The first one is still
algorithmic - as for Cauchy, the title of the book in which Knuth mentions them
is significant (see [Knu98]). The second interest lies in the associated dynamical
systems.

The representation considered by Cauchy is redundant - e.g., 5 = 15̄, where
n̄ = −n. In the sequel, we restrict ourselves to base 2 with digits {1̄, 0, 1}.
Reitwiesner proved in [Rei57] that any integer n ∈ Z can be uniquely written
as a finite sum

∑
0≤i≤` ai2

i with ai ∈ {−1, 0, 1} and ai · ai+1 = 0. This yields
the compactification

XN =
{
x0x1x2 . . . ∈ {−1, 0, 1} ; ∀i ∈ N : xixi+1 = 0

}
.

This signed-digit expansion is usually called the nonadjacent form (NAF) or the
canonical sparse form (see [HP01] for more details). Let us note that one of the
interests of this numeration is that its redundancy allows sparse representations:
this has applications particularly for the multiplication and the exponentiation
in cryptography, such as illustrated in Section 6.3.

This numeration system is an FFNS. The elements of this FFNS are X = Z,
with partition X0 = 2Z, X−1 = −1 + 4Z and X1 = 1 + 4Z, and transformation
T (n) = (n− ε(n))/2. Two natural transformations act on XN , the shift S and

7As previously explained, additions, subtractions, multiplications, divisions, conversions of
ordinary fractions into decimal fractions, and other arithmetical operations, can be signifi-
cantly reduced by expressing numbers by digits whose numerical value does not exceed 5. In
particular, the multiplication table might be reduced by a quarter, and it will only be neces-
sary to perform partial multiplications using the digits 2, 3, 4 = 2×2, and 5 = 10/2. Hence, it
is just essential to know how to double or triple one number, or to divide it in half in order to
be able to multiply any one number by another. Note also that, in additions, multiplications,
raisings of numbers to powers, etc., carryovers made from one column to another are generally
very weak, and often even equal to zero, since positive and negative digits will gradually and
mutually destroy each other in a vertical column made of several digits.
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the addition by 1, denoted as τ , imported from Z by

(2.15)

Z
+1−→ Z

ϕ
y

yϕ
XN −→

τ
XN .

Then (XN , S) is a topological mixing Markov chain whose Parry measure is the
Markov probability measure with transition matrix

P =




0 1 0
1/4 1/2 1/4
0 1 0




and initial distribution (1/6, 2/3, 1/6). Furthermore, (XN , S) is conjugated to
the dynamical system ([−2/3, 2/3], u) by

Ψ(x0x1x2 . . .) =
∞∑

k=0

xk2
−k−1,

where u(x) = 2x − a(x)mod 1. A realisation of the natural extension is given
by (X,S) with

X =
(
[−2/3,−1/3) × [−1/3, 1/3]

)
∪

∪
(
[−1/3, 1/3) × [−2/3, 2/3]

)
∪
(
[1/3, 2/3) × [−1/3, 1/3]

)

and S(x, y) =
(
2x− a(x), (a(x) + y)/2

)
, where a(x) = −1 if −2/3 ≤ x < −1/3,

a(x) = 0 if −1/3 ≤ x < 1/3 and a(x) = 0 if 1/3 ≤ x ≤ 2/3.
The odometer (XN , τ) (see Section 5) is topologically conjugated to the usual

dyadic odometer (Z2, x 7→ x+ 1). This FNS and related arithmetical functions
are studied by Dajani, Kraaikamp and Liardet [DKL06].

Example 2.7. Zeckendorf and Ostrowski representation
Let (Fn)n be the (shifted) Fibonacci sequence F0 = 1, F1 = 2 and Fn+2 =

Fn+1 + Fn. Then any nonnegative integer can be represented as a sum n =∑
j εj(n)Fj . This representation is unique if one assumes that εj(n) ∈ {0, 1}

and εj(n)εj+1(n) = 0. It is called Zeckendorf expansion. If % = (1 +
√

5)/2 is
the golden mean, the map f given by f(n) =

∑
j≥0 εj(n)%−j−1 embeds N into

[0, 1], the righthand side of the latter equation being the greedy β-expansion of
its sum (for β = %, see Example 2.2).

Let us note that the representation of the real number f(n) is given by
an FNS, but this does not yield an FNS producing the Zeckendorf expansion.
Indeed, the Zeckendorf representation of n is required to be able to compute
the real number f(n). One obtains it by the greedy algorithm.

The compactification XN is the set of (0, 1)-sequences without consecu-
tive 1’s. The addition cannot be extended by continuity to XN as x + y =
lim(xn + yn) for integer sequences (xn)n and (yn)n tending to x and y, respec-
tively (this sequence does not converge in XN ), but the addition by 1 can: if
(xn)n is a sequence of nonnegative integers converging to x, then the sequence
(xn + 1)n converges too. See Example 5.2 for details.
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The Ostrowski representation of the nonnegative integers is a generalisation
of the Zeckendorf expansion (for more details, see the references in [Ber01]).
Assume 0 < α < 1/2, α 6∈ Q. Let α = [0; a1, a2, . . . , an, . . .] be its continued
fraction expansion with convergents pn/qn = [0; a1, a2, . . . , an]. Then every
nonnegative integer n has a representation n =

∑
j≥0 εj(n)qn, which becomes

unique under the condition

(2.16)





0 ≤ ε0(m) ≤ a1 − 1;

∀ j ≥ 1, 0 ≤ εj(m) ≤ aj+1;

∀ j ≥ 1, (εj(m) = aj+1 ⇒ εj−1(m) = 0 ).

The set XN accurately describes the representations. Although this numeration
system is not fibred, Definition 2.6 gives here

XN = {(xn)n≥0 ∈ NN ; ∀j ≥ 0 : x0q0 + · · · + xjqj < qj+1}
= {(xn)n≥0 ∈ NN; x0 ≤ a1 − 1 and

∀j ≥ 1 : xj ≤ aj+1 and [xj = aj+1 ⇒ xj−1 = 0]}.
On XN , the addition by 1 τ : x 7→ x + 1 can be performed continuously by
extending the addition by 1 for the integers. The map

(2.17) f(n) =
∞∑

j=0

εj(n)(qjα− pj)

associates a real number f(n) ∈ [−α, 1− α[ with n.
In particular, if α = [0; 2, 1, 1, 1, . . .] = %−2 = (3 −

√
5)/2, then the sequence

of denominators (qn)n of the convergents is exactly the Fibonacci sequence,
and the map f coincides with the map given above in the discussion on the
Zeckendorf expansion up to a multiplicative constant.

In general, the map f extends by continuity to XN and realises an almost
topological isomorphism in the sense of Denker and Keane [DK79] between the
odometer (XN , τ) and ([1−α,α], Rα), where Rα denotes the rotation with angle
α. Explicitly, we have a commutative diagram

(2.18)

XN
τ−→ XN

f
y

yf
[−α, 1− α] −→

Rα

[−α, 1− α],

where f induces an homeomorphism between XN \OZ(0ω) and [−α, 1−α]\αZ

(mod 1), i.e., the spaces without the (countable) two-sided orbit of 0 (OZ(0ω)
denotes the bilateral orbit of 0ω). In particular, the odometer (XN , τ) is strictly
ergodic (uniquely ergodic and minimal).

This numeration system is not fibred. Nevertheless, the expansion given by
the map f arises from a fibred numeration system too. This latter FNS thus
produces Ostrowski expansions of real numbers, and it is defined by introducing
a skew product of the continued fraction transformation, according to [Ito86,
IN88, Ste81, VS94].

Let X = [0, 1) × [0, 1), T (x, y) = ({1/x}, {y/x}), T (0, y) = (0, 0) (one recog-
nises on the first component the Gauß transformation), ε(x, y) = (b1/xc, by/xc),
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and I = N∗ × N∗. By applying the fibred system (X,T ) to the pair (α, y), one
recovers an expansion of the real number y in [0, 1) as

y =

∞∑

j=0

εj(y)|qjα− pj|,

with digits satisfying
{
∀ j ≥ 1, 0 ≤ εj(m) ≤ aj+1;

∀ j ≥ 1, (εj(m) = aj+1 ⇒ εj+1(m) = 0 ).

Note that this system of conditions is in some sense dual to the system of
equations (2.16). It is also possible (see [IN88]) to recover an expansion of
the form y =

∑∞
j=0 εj(y)(qjα−pj), with digits satisfying constraints (2.16) as a

fibred numeration system, but the expression of the map T is more complicated.
For their metrical study, see [Ito86, IN88]. For more on the connections between
Ostrowski’s numeration, word combinatorics, and particularly Sturmian words,
see the survey [Ber01], the sixth chapter in [PF02], and the very complete
description of the scenery flow given in [AF01]. In the same vein, see also
[JP04] for similar numeration systems associated with episturmian words.

2.5. Questions. The list of examples above has proposed a medley of fibred
numeration systems, with some of their properties. We gather and discuss some
recurrent questions brought to light on that occasion that one can ask whenever
a fibred system (X,T ) and a representation map ϕ are introduced.

Question 1. First of all, is ϕ injective? In other words, do we have an FNS?
In some cases (nonnegative integers, real numbers or subsets of them), X and
I are totally ordered sets and the injectivity of the representation map is a
consequence of its monotonicity with respect to the order on X and to the
lexicographical order on IN∗

.
If we have an FNS, do we have an FFNS, a quasi-FFNS? Are there inter-

esting characterisations of the attractor? The set of elements x ∈ X whose
N -representation is stationary equal to i0 is stable under the action of T . This
also applies to the set of elements with ultimately periodic N -representation. In
case we have an FNS, but not an FFNS, this observation interprets the problem
of finding elements that have finite or ultimately periodic representations as well
as finding induced FFNS and induced quasi-FFNS. This question is discussed,
e.g., in Section 3 and particularly in Section 3.3. Note that number theoretists
also asked for characterisations of purely periodic expansions (for q-adic expan-
sions of real numbers, continued fractions...) We evoke it in Section 4.4, for
instance.

Question 2. The determination of the language is trivial when the representa-
tion map is surjective (Examples 2.1 and 2.3). Otherwise, the language can be
described with some simple rules (Examples 2.2, 2.6, 2.7) or it cannot (Exam-
ple 2.4). Hence the question: given an FNS, describe the underlying language.
The structure of the language reflects that of the numeration system, and it
even often happens that the combinatorics of the language has a translation in
terms of arithmetic properties of the numeration (e.g., see the survey [Rig04]).
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Let us note that it is usual and meaningful to distinguish between different
levels of complexity of the language (e.g., independence of the digits if L = IN∗

,
Markovian structure, finite type, or sofic type). We refer to Section 4 for rele-
vant results and examples. In the case of shift radix systems (See Section 3.4),
the language of the underlying number system is described via Theorem 3.8
for parameters corresponding to canonical number systems (see Section 3.1)
and β-expansions. The stucture of this language for all the other parameters
remains to be investigated.

Question 3. The list of properties of the language above corresponds to prop-
erties of the subshift (XN , S). The dynamical structure of this subshift is an
interesting question as well. It is not independent of the previous one: suppose
XN is endowed with some S-invariant measure. Then the digits can be seen
as random variables En(ω) = ωn (the n-th projection). Their distribution can
be investigated and reflects the properties of the digits — e.g., a Markovian
structure of digits versus the sequence of coordinates as a Markov chain. Let
us note that the natural extension of the transformation T (in the fibred case)
is a useful tool to find explicitly invariant measures. It is standard for con-
tinued fractions; see for example [BKS00] for more special continued fractions,
and [DKS96] for the β-transformation (see also Question 5 below). See also
[BDK06] (and the bibliography therein) for recent results on the camparison
between the distribution of the number of digits determined when comparing
two types of expansions in integer bases produced by fibred systems (e.g., con-
tinued fractions and decimal expansions).

Question 4. Let us consider the transfer of some operations on X. This
question does not necessarily address numeration systems. More precisely, if X
is a group or a semi-group (X, ∗), is it possible to define an inner law on XN
by x∗̇y = lim(ϕ(xn ∗ yn)), where limϕ(xn) = x and limϕ(yn) = y? Or if T ′ is
a further transformation on X, does it yield a transformation T on XN by

T (x) = lim
xn→x

ϕ(T ′(xn))?

According to these transformations on XN , some probability measures may be
defined on XN . Then coordinates might be seen as random variables whose
distribution also reflects the dependence questions asked in Question 3.

Question 5. The dynamical system (X,T ) is itself of interest. The precise
study of the commutative diagram issued from (2.4) by replacing IN∗

by XN

(2.19)

X
T−→ X

ϕ
y

yϕ
XN −→

S
XN

can make (X,T ) a factor or even a conjugated dynamical system of (XN , S). As
mentioned above, other transformations (like the addition by 1) or algebraic op-
erations on X can also be considered and transferred to the N -compactification,
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giving commutative diagrams similar to (2.19):

(2.20)

X
T ′

−→ X

ϕ
y

yϕ
XN −→

T
XN

Results on X can be sometimes proved in this way (cf. Section 6).
The shift acting on the symbolic dynamical system (XN , S) is usually not

a one-to-one map. It is natural to try to look for a two-sided subshift that
would project onto (XN , S) (a natural extension, see also Question 3). Clas-
sical applications are, for instance, the determination of the invariant measure
[NIT77], as well as the characterisation of the attractor, and of elements of
X having a purely periodic N -representation, e.g., in the β-numeration case,
see [IS01, San02, IR05, BS05b] (the attactor is described in this case in terms
of central tile or Rauzy fractal discussed in Section 4.3, see also Question 8).
More generally, the compactification XN ofX opens a broad range of dynamical
questions in connection with the numeration.

Question 6. An important issue in numeration systems is to reccognise ro-
tations (discrete spectrum) among encountered dynamical systems. More pre-
cisely, let (X,T, µ,B) be a dynamical system. We first note that if T has a
discrete spectrum, then T has a rigid time, i.e., there exists an increasing se-
quence (nk)k≥0 of integers such that the sequence k 7→ T nk weakly converges
to the identity. In other words, for any f and g in L2(X,µ), one has

lim
k

(T nkf |g) = (f |g).

Such a rigid time can be selected in order to characterise T up to an isomor-
phism. In fact, it is proved in [BDS01] that for any countable subgroup G of
U, there exists a sequence (an)n of integers such that for any complex number
ξ, then the sequence n 7→ ξan converges to 1 if and only if ξ ∈ G. Such a
sequence, called characteristic for G, is a rigid time for any dynamical system
(X,T, µ,B) of discrete spectrum such that G is the group of eigenvalues. In
case G is cyclically generated by ζ = e2iπα, a characteristic sequence is built ex-
plicitly from the continued fraction expansion of α (see [BDS01], Theorem 1∗).
Clearly if (an)n is a rigid time for T and if the group of complex numbers z such
that limn z

an = 1 is reduced to {1}, then T is weakly mixing. The following
proposition is extracted from [Sol92b]:

Proposition 2.1. Let T = (X,T, µ,B) be a dynamical system. Assume first
that there exists an increasing sequence (an)n of integers such that the group of
complex numbers z verifying limn z

an = 1 is countable and second, that there
exists a dense subset D of L2(X,µ), such that for all f ∈ D, the series

∑

n≥0

||f ◦ T an − f || 22

converges, then T has a discrete spectrum.
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Question 7. An FNS produces the following situation:

X
∼−→
ϕ
ϕ(X)

i
↪→ XN .

Assume furthermore that X is a Hausdorff topological space and that the map
ϕ−1 : ϕ(X)→X admits a continuous extension ψ : XN → X. We note ϕ = i◦ϕ.
We have ψ ◦ϕ = idX. Elements y of XN distinct from ϕ(x) such that ψ(y) = x
(if any) are called improper representations of x.

Natural questions are to characterise the x ∈ X having improperN -representations,
to count the number of improper representations, to find them, and so on. In
other words, study the equivalence relation R on XN defined by uRv ⇔ ψ(u) =
ψ(v). In many cases (essentially the various expansions of real numbers), X
is connected, XN is completely disconnected, ϕ is not continuous, but ψ (by
definition) is continuous and X is homeomorphic to the quotient space XN /R.
The improper representations are naturally understood as expansions.

Question 8. To many numeration systems (see for instance those considered
in Section 3 and Section 4) we can attach a set, the so-called central tile (or
Rauzy fractal), which is often a fractal set. The central tile is usually defined by
renormalizing the iterations of the inverse T−1 of the underlying fibred system
(see for instance Sections 3.6 and 4.3). We are interested in properties of these
sets. For instance, their boundaries usually have fractional dimension and their
topological properties are difficult do describe. In general, we are interested in
knowing whether these sets inherit a natural iterated function system structure
from the associated number system. One motivation for the introduction of
such sets is to exhibit explicitly a rotation factor of the associated dynamical
system (see also Question 6 and Section 4.4).

There are further questions, which only make sense in determined types of
numeration systems and require further special and accurate definitions. They
will be stated in the corresponding sections.

3. Canonical numeration systems, β-expansions and shift radix

systems

The present section starts with a description of two well-known notions of
numeration systems: canonical number systems in residue class rings of poly-
nomial rings, and β-expansions of integers. At a first glance, these two notions
of numeration system are quite different. However — and for this reason we
treat them both in the same section — they can be regarded as special cases
of so-called shift radix systems. Shift radix systems (introduced in Section 3.4)
are families of quite simple dynamical systems.

All these notions of number systems admit the definition of fundamental
domains. These sets often have fractal structure and admit a tiling of the space.
Fundamental domains of canonical number systems are discussed at the end of
the present section (Section 3.6), whereas tiles associated with β-expansions
(so-called Rauzy fractals) are one of the main topics of Section 4.
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3.1. Canonical numeration systems in number fields. This subsection is
mainly devoted to numeration systems located in a residue class ring

X = A[x]/p(x)A[x]

where p(x) = xd + pd−1x
d−1 + · · · + p1x + p0 ∈ A[x] is a polynomial over the

commutative ring A. By reduction modulo p, we see that each element q ∈ X
has a representative of the shape

q(x) = q0 + q1x+ · · ·+ qd−1x
d−1 (qj ∈ A)

where d is the degree of the polynomial p(x). In order to define a fibred numer-
ation system on X, we consider the mapping

T : X → X,

q 7→ q−ε(q)
x

where the digit ε(q) ∈ X is defined in a way that

(3.1) T (q) ∈ X.
Note that this requirement generally leaves some freedom for the definition of ε.
In the cases considered in this subsection, the image I of ε will always be finite.
Moreover, the representation map ϕ = (ε(T nx))n≥0 defined in Section 2.2 will
be surjective, i.e., all elements of IN are admissible.

If we iterate T for ` times starting with an element q ∈ X, we obtain the
representative

(3.2) q(x) = ε(q) + ε(Tq)x+ · · · + ε(T `−1q)x`−1 + T `(q)x`.

According to Definition 2.4, the quadruple N = (X,T, I, ϕ) is an FNS. More-
over, following Definition 2.5, we call N an FFNS if for each q ∈ X, there exists
an ` ∈ N such that T k(q) = 0 for each k ≥ `.

Once we have fixed the ring A, the definition of N only depends on p and
ε. Moreover, in what follows, the image I of ε will always be chosen to be a
complete set of coset representatives of A/p0A (recall that p0 is the constant
term of the polynomial p). With this choice, the requirement (3.1) determines
the value of ε(q) uniquely for each q ∈ X. In other words, in this case N is
determined by the pair (p, I). Motivated by the shape of the representation
(3.2) we will call p the base of the numeration system (p, I), and I its set of
digits.

The pair (p, I) defined in this way still provides a fairly general notion of
numeration system. By further specialization, we will obtain the notion of
canonical numeration systems from it, as well as a notion of digit systems over
finite fields that will be discussed in Section 3.5.

Historically, the term canonical numeration system is from the Hungarian
school (see [KS75], [KK80], [Kov81a]). They used it for numeration systems de-
fined in the ring of integers of an algebraic number field.8 Meanwhile, Pethő [Pet91]

8With the word “canonical” the authors wanted to emphasize the fact that the digits he
attached to these numeration systems were chosen in a very simple “canonical” way.
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generalized this notion to numeration systems in certain polynomial rings, and
this is this notion of numeration system to which we will attach the name
canonical numeration system in the present survey.

Before we precisely define Kovács’ as well as Pethő’s notion of numeration
system and link it to the general numeration systems in residue classes of poly-
nomial rings, we discuss some earlier papers on the subject.

In fact, instances of numeration systems in rings of integers were studied long
before Kovács’ paper. The first paper on these objects seems to be Grünwald’s
treatise [Grü85] dating back to 1885 which is devoted to numeration systems
with negative bases. In particular Grünwald showed the following result.

Theorem 3.1. Let q ≥ 2. Each n ∈ Z admits a unique finite representation
w.r.t. the base number −q, i.e.,

n = c0 + c1(−q) + · · ·+ c`(−q)`

where 0 ≤ ci < q for i ∈ {0, . . . , `} and c` 6= 0 for ` 6= 0.

We can say that Theorem 3.1 describes the bases of number systems in the
ring of integers Z of the number field Q. It is natural to ask whether this concept
can be generalised to other number fields. Knuth [Knu60] and Penney [Pen65]
observed that b = −1 +

√
−1 serves as a base for a numeration system with

digits {0, 1} in the ring of integers Z[
√
−1] of the field of Gaussian numbers

Q(
√
−1), i.e., each z ∈ Z[

√
−1] admits a unique representation of the shape

z = c0 + c1b+ · · · + c`b
`

with digits ci ∈ {0, 1} and c` 6= 0 for ` 6= 0. Knuth [Knu98] also observed that
this numeration system is strongly related to the famous twin-dragon fractal
which will be discussed in Section 3.6. It is not hard to see that Grünwald’s as
well as Knuth’s examples are special cases of FFNS.

We consider the details of this correspondence for a more general definition
of numeration systems in the ring of integers ZK of a number field K. In
particular, we claim that the pair (b,D) with b ∈ ZK and D = {0, 1, . . . , |N(b)|−
1} defines an FFNS in ZK if each z ∈ ZK admits a unique representation of
the shape

(3.3) z = c0 + c1b+ · · ·+ c`b
` (ci ∈ N)

if c` 6= 0 for ` 6= 0 (note that this requirement just ensures that there are
no leading zeros in the representations). To see this, set X = ZK and define
T : ZK → ZK by

T (z) =
z − ε(z)

b
where ε(z) is the unique element of D with T (z) ∈ ZK . Note that D is uniquely
determined by b. The first systematic study of FFNS in rings of integers of
number fields was done by Kátai and Szabó [KS75]. They proved that the only
canonical bases in Z[i] are the numbers b = −n +

√
−1 with n ≥ 1. Later

Kátai and Kóvacs [KK80, KK81] (see also Gilbert [Gil81]) characterised all
(bases of) canonical numeration systems in quadratic number fields. A. Kovács,



28

B. Kovács, Pethő and Scheicher [Kov81a, Kov81b, KP91, Sch97, Kov01] studied
numeration systems in rings of integers of algebraic number fields of higher de-
gree and proved some partial characterisation results (some further generalised
concepts of numeration systems can be found in [KP83, Kov84]). In [KP92] an
estimate for the length ` of the CNS representation (3.3) of z w.r.t. base b in
terms of the modulus of the conjugates of z as well as b is given.

Pethő [Pet91] observed that the notion of numeration systems in number
fields can be easily extended using residue class rings of polynomials. In par-
ticular, he gave the following definition.

Definition 3.1. Let

p(x) = xd + pd−1x
d−1 + · · · + p1x+ p0 ∈ Z[x], D = {0, 1, . . . , |p0| − 1}

and X = Z[x]/p(x)Z[x] and denote the image of x under the canonical epimor-
phism from Z[x] to X again by x. If every non-zero element q(x) ∈ X can be
written uniquely in the form

(3.4) q(x) = c0 + c1x+ · · ·+ c`x
`

with c0, . . . , c` ∈ D, and c` 6= 0, we call (p,D) a canonical number system (CNS
for short).

Let p be irreducible and assume that b is a root of p. Let K = Q(b) and
assume further that ZK = Z[b], i.e., ZK is monogenic. Then Z[x]/p(x)Z[x] is
isomorphic to ZK , and this definition is easily seen to agree with the above
definition of numeration systems in rings of integers of number fields.

On the other hand, canonical numeration systems turn out to be a special
case of the more general definition given at the beginning of this section. To ob-
serve this, we choose the commutative ring A occurring there to be Z. The value
of ε(q) is defined to be the least nonnegative integer meeting the requirement
that

T (q) =
q − ε(q)

x
∈ X.

Note that this definition implies that ε(X) = D, as required. Indeed, if

q(x) = q0 + q1x+ · · ·+ qd−1x
d−1 (qj ∈ Z)

is a representative of q, then T takes the form

(3.5) T (q) =
d−1∑

i=0

(qi+1 − cpi+1)x
i,

where qd = 0 and c = bq0/p0c. Then

(3.6) q(x) = (q0 − cp0) + xT (q), where q0 − cp0 ∈ D.
Thus the iteration of T yields exactly the representation (3.4) given above.
The iteration process of T can become divergent (e.g., q(x) = −1 for p(x) =
x2 + 4x + 2), ultimately periodic (e.g., q(x) = −1 for p(x) = x2 − 2x + 2) or
can terminate at 0 (e.g., q(x) = −1 for p(x) = x2 + 2x + 2). For the reader’s
convenience, we will give the details for the last constellation.
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Example 3.1. Let p(x) = x2 + 2x+ 2 be a polynomial. We want to calculate
the representation of q(x) = −1 ∈ Z[x]/p(x)Z(x). To this matter we need to
iterate the mapping T defined in (3.5). Setting dj = ε(T j(q)) this yields

q = −1, c = −1,
T (q) = (0− (−1) · 2) + (0− (−1) · 1)x = 2 + x, c = 1, d0 = 1,
T 2(q) = (1− 1 · 2) + (0− 1 · 1)x = −1− x, c = −1, d1 = 0,
T 3(q) = (−1− (−1) · 2) + (0− (−1) · 1)x = 1 + x, c = 0, d2 = 1,
T 4(q) = (1− 0 · 2) + (0− 0 · 1)x = 1, c = 0, d3 = 1,
T 5(q) = 0, c = 0, d4 = 1,
T k(q) = 0 for k ≥ 6.

Thus

−1 = d0 + d1x+ d2x
2 + d3x

3 + d4x
4 = 1 + x2 + x3 + x4

is the unique finite representation (3.4) of −1 with respect to the base p(x).

Note that (p,D) is a canonical numeration system if and only if the attractor
of T is A = {0}. Indeed, if the attractor of T is {0} then for each q ∈ X there
exists a k0 ∈ N with T k0(q) = 0. This implies that T k(q) = 0 for each k ≥ k0.
Iterating T we see in view of (3.6) that the k-th digit ck of q is given by

T k(q) = ck + xT k+1(q).

If k ≥ k0 this implies that ck = 0. Thus q has finite CNS expansion. Since
q ∈ X was arbitrary this is true for each q ∈ X. Thus (p,D) is a CNS. The
other direction is also easy to see.

The fundamental problem that we want to address concerns exhibiting all
polynomials p that give rise to a CNS. There are many partial results on this
problem. Generalizing the above-mentioned results for quadratic number fields,
Brunotte [Bru01] characterised all quadratic CNS polynomials. In particular,
he obtained the following result.

Theorem 3.2. The pair (p(x),D) with p(x) = x2 + p1x+ p0 and set of digits
D = {0, 1, . . . , |p0| − 1} is a CNS if and only if

(3.7) p0 ≥ 2 and − 1 ≤ p1 ≤ p0.

For CNS polynomials of general degree, Kovács [Kov81a] (see also the more
general treatment in [ABPT06]) proved the following theorem.

Theorem 3.3. The polynomial

p(x) = xd + pd−1x
d−1 + · · · + p1x+ p0

gives rise to a CNS if its coefficients satisfy the “monotonicity condition”

(3.8) p0 ≥ 2 and p0 ≥ p1 ≥ · · · ≥ pd−1 > 0.

More recently, Akiyama and Pethő [AP02], Scheicher and Thuswaldner [ST04]
as well as Akiyama and Rao [AR04] showed characterisation results under the
condition

p0 > |p1|+ · · ·+ |pd−1|.
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Moreover, Brunotte [Bru01, Bru02] has results on trinomials that give rise to
CNS.

It is natural to ask whether there exists a complete description of all CNS
polynomials. This characterisation problem has been studied extensively for
the case d = 3 of cubic polynomials. Some special results on cubic CNS are
presented in Körmendi [Kör86]. Brunotte [Bru04] characterised cubic CNS
polynomials with three real roots. Akiyama et al. [ABP03] studied the prob-
lem of describing all cubic CNS systematically. Their results indicate that the
structure of cubic CNS polynomials is very irregular.

Recently, Akiyama et al. [ABB+05] invented a new notion of numeration
system, namely, the so-called shift radix systems. All recent developments on
the characterisation problem of CNS have been done in this new framework.
Shift radix systems will be discussed in Section 3.4.

3.2. Generalisations. There are some quite immediate generalisations of canon-
ical numeration systems. First, we mention that there is no definitive reason for
studying only the set of digits D = {0, 1, . . . , |p0| − 1}. More generally, each set
D containing one of each coset of Z/p0Z can serve as set of digits. Numeration
systems of this more general kind can be studied in rings of integers of number
fields as well as in residue class rings of polynomials. For quadratic numera-
tion systems, Farkas, Kátai and Steidl [Far99, Kát94, Ste89] showed that for
all but finitely many quadratic integers, there exists a set of digits such that
each element of the corresponding number field has a finite representation. In
particular, Steidl [Ste89] proves the following result for numeration systems in
Gaussian integers.

Theorem 3.4. If K = Q(i) and b is an integer of ZK satisfying |b| > 1 with
b 6= 2, 1± i, then one can effectively construct a residue system D (mod b) such
that each z ∈ ZK admits a finite representation

z = c0 + c1b+ · · · + c`b
`

with c0, . . . , c` ∈ D.

Another way of generalising canonical numeration systems involves an em-
bedding into an integer lattice. Let (p(x),D) be a canonical numeration system.
As mentioned above, each q ∈ X = Z[x]/p(x)Z[x] admits a unique representa-
tion of the shape

q0 + q1x+ · · ·+ qd−1x
d−1

with q0, . . . , qd−1 ∈ Z and d = deg(p). Thus the bijective group homomorphism

Φ : X → Zd

q 7→ (q0, . . . , qd−1)

is well defined. Besides being an homomorphism of the additive group in X, Φ
satisfies

Φ(xq) = BΦ(q)
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with

(3.9) B =




0 · · · · · · · · · 0 −p0

1
. . .

... −p1

0
. . .

. . .
... −p2

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
...

0 · · · · · · 0 1 −pd−1




.

Exploiting the properties of Φ we easily see the following equivalence. Each
q ∈ X admits a CNS representation of the shape

q = c0 + c1x+ c2x
2 + · · ·+ c`x

` (c0, . . . , c` ∈ D)

if and only if each z ∈ Zd admits a representation of the form

z = d0 +Bd1 +B2d2 + · · · +B`d` (d0, . . . , d` ∈ Φ(D)).

Thus (B,Φ(D)) is a special case of the following notion of numeration system.

Definition 3.2. Let B ∈ Zd×d be an expanding matrix (i.e., all eigenvalues of
B are greater than 1 in modulus). Let D ⊂ Zd be a complete set of cosets in
Zd/BZd such that 0 ∈ D. Then the pair (B,D) is called a matrix numeration
system if each z ∈ Zd admits a unique representation of the shape

z = d0 +Bd1 + · · · +B`d`

with d0, . . . , d` ∈ D and d` 6= 0 for ` 6= 0.

It is easy to see (along the lines of [KP91], Lemma 3) that each eigenvalue ofB
has to be greater than or equal to one in modulus to obtain a numeration system.
We impose the slightly more restrictive expanding condition to gurantee the
existence of the attractor T in Definition 3.4 (which is there called “self-affine
tile”). Matrix numeration systems have been studied, for instance, by Kátai,
Kovács and Thuswaldner in [Kát03, Kov00, Kov03, Thu01]. Apart from some
special classes it is quite hard to obtain characterisation results because the
number of parameters to be taken into account (namely the entries of B and
the elements of the set D) is very large. However, matrix number systems will
be our starting point for the definition of lattice tilings in Section 3.6.

3.3. On the finiteness property of β-expansions. At the beginning of the
present section we mentioned that so-called shift radix systems form a general-
ization of CNS as well as β-expansions. Thus, before we introduce shift radix
systems in full detail, we want to give a short account on β-expansions in the
present subsection.

The β-expansions have already been defined in Example 2.2. They represent
the elements of [0,∞) with respect to a real base number β and with a finite
set of nonnegative integer digits. It is natural to ask when these representations
are finite. Let Fin(β) be the set of all x ∈ [0,∞) having a finite β-expansion.
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Since finite sums of the shape

n∑

j=m

cjβ
−j (cj ∈ N)

are always contained in Z[β−1] ∩ [0,∞), we always have

(3.10) Fin(β) ⊆ Z[β−1] ∩ [0,∞).

According to Frougny and Solomyak [FS92], we say that a number β satisfies
property (F) if equality holds in (3.10). Using the terminology of the introduc-
tion property (F) is equivalent to the fact that (X,T ) with

X = Z[β−1] ∩ [0,∞) and T (x) = βx− bβxc
is an FFNS (see Definition 2.5).

In [FS92, Lemma 1] it was shown that (F) can hold only if β is a Pisot
number. However, there exist Pisot numbers that do not fulfill (F). This raises
the problem of exhibiting all Pisot numbers having this property. Up to now,
there has been no complete characterisation of all Pisot numbers satisfying (F).
In what follows, we would like to present some partial results that have been
achieved.

In [FS92, Proposition 1] it is proved that each quadratic Pisot number has
property (F). Akiyama [Aki00] could characterise (F) for all cubic Pisot units.
In particular, he obtained the following result.

Theorem 3.5. Let x3 − a1x
2 − a2x − 1 be the minimal polynomial of a cubic

Pisot unit β. Then β satisfies (F) if and only if

(3.11) a1 ≥ 0 and − 1 ≤ a2 ≤ a1 + 1.

If β is an arbitrary Pisot number, the complete characterisation result is still
unknown. Recent results using the notion of shift radix system suggest that even
characterisation of the cubic case is very involved (cf. [ABB+05, ABPT06]).
We refer to Section 3.4 for details on this approach. Here we just want to give
some partial characterisation results for Pisot numbers of arbitrary degree. The
following result is contained in [FS92, Theorem 2].

Theorem 3.6. Let

(3.12) xd − a1x
d−1 − · · · − ad−1x− ad

be the minimal polynomial of a Pisot number β. If the coefficients of (3.12)
satisfy the “monotonicity condition”

(3.13) a1 ≥ · · · ≥ ad ≥ 1

then β fulfills property (F).

Moreover, Hollander [Hol96] proved the following result on property (F) un-
der a condition on the representation dβ(1) of 1.

Theorem 3.7 ([Hol96, Theorem 3.4.2]). A Pisot number β has property (F) if
dβ(1) = d1 · · · dl with d1 > d2 + · · ·+ dl.
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Let us also quote [ARS04, BK05] for results in the same vein.
In Section 3.4, the most important concepts introduced in this section, namely

CNS and β-expansions, will be unified.

3.4. Shift radix systems. At a first glance, canonical numeration systems
and β-expansions are quite different objects: canonical numeration systems
are defined in polynomial rings. Furthermore, the digits in CNS expansions
are independent. On the other hand, β-expansions are representations of real
numbers whose digits are dependent. However, the characterisation results of
the finiteness properties of CNS and β-expansions resemble each other. As an
example, we mention (3.7) and (3.8) on the one hand, and (3.11) and (3.13) on
the other.

The notion of shift radix system which is discussed in the present subsection
will shed some light on this resemblance. Indeed, it turns out that canonical
numeration systems in polynomial rings over Z as well as β-expansions are
special instances of a class of very simple dynamical systems. The most recent
studies of canonical numeration systems as well as β-expansions make use of this
more general concept which allows us to obtain results on canonical numeration
systems as well as β-expansions at once. We start with a definition of shift radix
systems (cf. Akiyama et al. [ABB+05, ABPT06]).

Definition 3.3. Let d ≥ 1 be an integer, r = (r1, . . . , rd) ∈ Rd and define the
mapping τr by

τr : Zd → Zd

a = (a1, . . . , ad) 7→ (a2, . . . , ad,−brac),
where ra = r1a1 + · · ·+ rdad, i.e., the inner product of the vectors r and a. Let
r be fixed. If

(3.14) for all a ∈ Zd, then there exists k > 0 with τk
r
(a) = 0

we will call τr a shift radix system (SRS for short). For simplicity, we write
0 = (0, . . . , 0).

Let

D0
d =

{
r ∈ Rd ; ∀a ∈ Zd ∃k > 0 : τk

r
(a) = 0

}

be the set of all SRS parameters in dimension d and set

Dd =
{
r ∈ Rd ; ∀a ∈ Zd the sequence (τk

r
(a))k≥0 is ultimately periodic

}
.

It is easy to see that D0
d ⊆ Dd.

In [ABB+05] (cf. also Hollander [Hol96]), it was noted that SRS correspond
to CNS and β-expansions in the following way.

Theorem 3.8. The following correspondences hold between CNS as well as
β-expansions and SRS.

• Let p(x) = xd + pd−1x
d−1 + · · ·+ p1x+ p0 ∈ Z[x]. Then p(x) gives rise

to a CNS if and only if

(3.15) r =

(
1

p0
,
pd−1

p0
, . . . ,

p1

p0

)
∈ D0

d.
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• Let β > 1 be an algebraic integer with minimal polynomial Xd−a1X
d−1−

· · · − ad−1X − ad. Define r1, . . . , rd−1 by

(3.16) rj = aj+1β
−1 + aj+2β

−2 + · · · + adβ
j−d (1 ≤ j ≤ d− 1).

Then β has property (F) if and only if (rd−1, . . . , r1) ∈ D0
d−1.

In particular τr is conjugate to the mapping T defined in (3.5) if r is chosen as
in (3.15) and conjugate to the β-transformation Tβ(x) = βx− bβxc for r as in
(3.16).

Remark 3.1. The conjugacies mentioned in the theorem are described in
[ABB+05, Section 2 and Section 3, respectively]. In both cases they are achieved
by certain embeddings of the according numeration system in the real vector
space, followed in a natural way by some base transformations.

This theorem highlights the problem of describing the set D0
d. Describing

this set would solve the problem of characterizing all bases of CNS as well
as the problem of describing all Pisot numbers β with property (F). We start
with some considerations on the set Dd. It is not hard to see (cf. [ABB+05,
Section 4]) that

(3.17) Ed ⊆ Dd ⊆ Ed
where

Ed =
{
(r1, . . . , rd) ∈ Rd ; xd + rdx

d−1 + · · ·+ r1

has only roots y ∈ C with |y| < 1
}

denotes the Schur-Cohn region (see Schur [Sch18]). The only problem in de-
scribing Dd involves characterising its boundary. This problem turns out to be
very hard and contains, as a special case, the following conjecture of Schmidt [Sch80,
p. 274].

Conjecture 3.1. Let β be a Salem number and x ∈ Q(β) ∩ [0, 1). Then the
orbit (T k

β (x))k≥0 of x under the β-transformation Tβ is eventually periodic.

This conjecture is supported by the fact that if each rational in [0, 1) has a
ultimately periodic β-expansion, then β is either a Pisot or a Salem number. Up
to now, Boyd [Boy89, Boy96, Boy97] could only verify some special instances
of Conjecture 3.1 (see also [ABPS06] where the problem of characterising ∂Dd

is addressed).
As quoted in [Bla89], note that there exist Parry numbers which are neither

Pisot nor even Salem; consider, e.g., β4 = 3β3 + 2β2 + 3 with dβ(1) = 3203; a
Salem number is a Perron number, all conjugates of which have absolute value
less than or equal to 1, and at least one has modulus 1. It is proved in [Boy89]
that if β is a Salem number of degree 4, then β is a Parry number; see [Boy96]
for the case of Salem numbers of degree 6. Note that the algebraic conjugates

of a Parry number β > 1 are smaller than 1+
√

5
2 in modulus, with this upper

bound being sharp [FLP94, Sol94].
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We would like to characterise D0
d starting from Dd. This could be achieved by

removing all parameters r from Dd for which the mapping τr admits nontrivial
periods. We would like to do this “periodwise”. Let

(3.18) aj = (a1+j , . . . , ad+j) (0 ≤ j ≤ L− 1)

with aL+1 = a1, . . . , aL+d = ad be L vectors of Zd. We want to describe the set
of all parameters r = (r1, . . . , rd) that admit the period π(a0, . . . ,aL−1), i.e.,
the set of all r ∈ Dd with

τr(a0) = a1, τr(a1) = a2, . . . , τr(aL−2) = aL−1, τr(aL−1) = a0.

According to the definition of τr, this is the set given by

(3.19) 0 ≤ r1a1+j + · · ·+ rdad+j + ad+j+1 < 1 (0 ≤ j ≤ L− 1).

To see this, let j ∈ {0, . . . , L− 1} be fixed. The equation τr(aj) = aj+1 can be
written as

τr(aj) = τr(a1+j , . . . , ad+j)

= (a2+j , . . . , ad+j ,−br1a1+j + · · ·+ rdad+jc)
= (a2+j , . . . , ad+1+j),

i.e., ad+1+j = −br1a1+j + · · ·+ rdad+jc. Thus (3.19) holds and we are done.
We call the set defined by the inequalities in (3.19) P(π). Since P(π) is a

(possibly degenerate or even empty) convex polyhedron, we call it the cutout
polyhedron of π. Since 0 is the only permitted period for elements of D0

d, we
obtain D0

d from Dd by cutting out all polyhedra P(π) corresponding to non-zero
periods, i.e.,

(3.20) D0
d = Dd \

⋃

π 6=0

P(π).

Describing D0
d is thus tantamount to describing the cutout polyhedra coming

from non-zero periods. It can be easily seen from the definition that

τr(x) = R(r)x + v.

Here R(r) is a d × d matrix whose characteristic polynomial is xd + rdx
d−1 +

· · · + r1. Vector v is an “error term” coming from the floor function occurring
in the definition of τr and always fulfills ||v||∞ < 1 (here || · ||∞ denotes the
maximum norm). The further away from the boundary of Dd the parameter r
is chosen, the smaller are the eigenvalues of R(r). Since for each r ∈ int(Dd)
the mapping τr is contracting apart from the error term v, one can easily prove
that the norms of the elements a0, . . . ,aL−1 forming a period π(a0, . . . ,aL−1) of
τr can become large only if parameter r is chosen near the boundary. Therefore
the number of periods corresponding to a given τr with r ∈ int(Dd) is bounded.
The bound depends on the largest eigenvalue of R(r).

This fact was used to derive the following algorithm, which allows us to
describe D0

d in whole regions provided that they are at some distance away
from ∂Dd. In particular, the following result was proved in [ABB+05].
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Figure 3.1. An approximation of D0
2

Theorem 3.9. Let r1, . . . , rk ∈ Dd and denote by H the convex hull of r1, . . . , rk.
We assume that H ⊂ int(Dd) and that H is sufficiently small in diameter. For
z ∈ Zd take M(z) = max1≤i≤k{−brizc}. Then there exists an algorithm to
create a finite directed graph (V,E) with vertices V ⊂ Zd and edges E ∈ V × V
which satisfy

(1) each d-dimensional standard unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ V ,
(2) for each z = (z1, . . . , zd) ∈ V and

j ∈ [−M(−z),M(z)] ∩ Z

we have (z2, . . . , zd, j) ∈ V and a directed edge (z1, . . . , zd)→ (z2, . . . , zd, j)
in E.

(3) H ∩ D0
d = H \ ⋃π P (π), where the union is taken over all non-zero

primitive cycles of (V,E).

This result was substantially used in [ABPT06] to describe large parts of
D0

2. Since it is fairly easy to show that D0
2 ∩ ∂D2 = ∅, the difficulties related

to the boundary of D2 do not cause troubles. However, it turned out that D0
2

has a very complicated structure near this boundary. We refer the reader to
Figure 3.1 to get an impression of this structure.

The big isoceles triangle is E2 and thus, by (3.17), apart from its boundary, it
is equal to D2. The grey figure is an approximation of D0

2 which was constructed
using (3.20) and Theorem 3.9. It is easy to see that the periods (1, 1) and
(1, 0), (0, 1) correspond to cutout polygons cutting away from D0

2 the area to
the left and below the approximation. Since Theorem 3.9 can be used to treat
regions far enough away from ∂D2, D0

2 just has to be described near the upper
and right boundary of ∂D2.
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Large parts of the region near the upper boundary could be treated in
[ABPT06, Section 4] showing that this region indeed belongs to D0

2. Near the
right boundary of D2, however, the structure of D0

2 is much more complicated.
For instance, in [ABB+05] it has been proved that infinitely many different

cutouts are needed in order to describe D0
2. Moreover, the period lengths of

τr are not uniformly bounded. The shape of some infinite families of cutouts
as well as some new results on D0

2 can be found in Surer [Sur]. In view of
Theorem 3.8, this difficult structure of D0

2 implies that in cubic β-expansions
of elements of Z[β−1] ∩ [0,∞) periods of arbitrarily large length may occur.

SRS exist for parameters varying in a continuum. In [ABPT06, Section 4],
this fact was used to exploit a certain structural stability occurring in the orbits
of τr when varying r continuously near the point (1,−1). This leads to a
description of D0

2 in a big area.

Theorem 3.10. We have

{(r1, r2) ; r1 > 0,−r1 ≤ r2 < 1− 2r1} ⊂ D0
2.

In view of Theorem 3.8, this yields a large class of Pisot numbers β satisfying
property (F).

The description of D0
2 itself is not as interesting for the characterisation

of CNS since quadratic CNS are already well understood (see Theorem 3.2).
The set D0

3 has not yet been well studied. However, Scheicher and Thuswald-
ner [ST04] made some computer experiments to exhibit a counterexample to
the following conjecture which (in a slightly different form) appears in [KP91].
It says that

p(x) CNS polynomial =⇒ p(x) + 1 CNS polynomial.

In particular, they found that this is not true for

p(x) = x3 + 173x2 + 257x+ 198.

This counterexample was found by studying D0
3 near a degenerate cutout poly-

hedron that cuts out the parameter corresponding to p(x) + 1 in view of The-
orem 3.8, but not the parameter corresponding to p(x). Since Theorem 3.9
can be used to prove that no other cutout polygon cuts out regions near this
parameter, the counterexample can be confirmed.

The characterisation of cubic CNS polynomials p(x) = x3 + p2x
2 + p1x+ p0

with fixed large p0 is related to certain cuts of D0
3 which very closely resemble

D0
2. In view of Theorem 3.8, this indicates that characterisation of cubic CNS

polynomials is also very difficult. In particular, according to the Lifting theorem
([ABB+05, Theorem 6.2]), each of the periods occurring for two-dimensional
SRS also occurs for cubic CNS polynomials. Thus CNS representations of
elements of Z[x]/p(x)Z[x] with respect to a cubic polynomial p(x) can have
infinitely many periods. Moreover, there is no bound for the period length (see
[ABB+05, Section 7]). For the family of dynamical systems T in (3.5), this
means that their attractors can be arbitrarily large if p varies over the cubic
polynomials.
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Recently, Akiyama and Scheicher [AS04, AS05, HSST] studied a variant of
τr. In particular, they considered the family of dynamical systems

τ̃r : Zd → Zd

(a1, . . . , ad) 7→ (a2, . . . , ad,−
⌊
ra + 1

2

⌋
).

In the same way as above they attach the sets D̃d and D̃0
d to it. However,

interestingly, it turns out that the set D̃0
2 can be described completely in this

modified setting. In particular, it can be shown that D̃0
2 is an open triangle

together with some parts of its boundary. In Huszti et al. ([HSST]), the set D̃0
3

has been characterised completely. It turned out that D̃0
3 is the union of three

convex polyhedra together with some parts of their boundary. As in the case
of ordinary SRS, this variant is related to numeration systems. Namely, some
modifications of CNS and β-expansions fit into this framework (see [AS04]).

3.5. Numeration systems defined over finite fields. In this subsection
we would like to present other numeration systems. The first one is defined
in residue classes of polynomial rings as follows. Polynomial rings F[x] over
finite fields share many properties with the ring Z. Thus it is natural to ask
for analogues of canonical numeration systems in finite fields. Kovács and
Pethő [KP91] studied special cases of the following more general concept intro-
duced by Scheicher and Thuswaldner [ST03a].

Let F be a finite field and p(x, y) =
∑
bj(x)y

j ∈ F[x, y] be a polynomial in
two variables, and let

D = {p ∈ F[x] ; deg p(x) < deg b0(x)}.
We call (p(x, y),D) a digit system with base p(x, y) if each element q of the
quotient ring X = F[x, y]/p(x, y)F[x, y] admits a representation of the shape

q = c0(x) + c1(x)y + · · ·+ c`(x)y
`

with cj(x) ∈ D (0 ≤ j ≤ `).
Obviously these numeration systems fit into the framework defined at the

beginning of this section by setting A = F [y] and defining ε(q) as the polynomial
of least degree meeting the requirement that T (q) ∈ X.

It turns out that characterisation of the bases of these digit systems is quite
easy. Indeed, the following result is proved in [ST03a].

Theorem 3.11. The pair (p(x, y),D) is a digit system if and only if one has
maxn

i=1 deg bi < deg b0.

The β-expansions have also been extended to the case of finite fields indepen-
dently by Scheicher [Sch06], as well as Hbaib and Mkaouar [HM]. Let F((x−1))
be the field of formal Laurent series over F and denote by | · | some absolute
value. Choose β ∈ F((x−1)) with |β| > 1. Let z ∈ F((x−1)) with |z| < 1. A
β-representation of z is an infinite sequence (di)i≥1, di ∈ F[x] with

z =
∑

i≥1

di

βi
.

The most important β-representation (called β-expansion) is determined by the
“greedy algorithm”
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• r0 ← z,
• dj ← bβrj−1c,
• rj = βrj−1 − dj .

Here b·c cuts off the negative powers of a formal Laurent series.
In [Sch06] several problems related to β-expansions are studied. An analogue

of property (F) of Frougny and Solomyak [FS92] is defined. Contrary to the
classical case, all β satisfying this condition can be characterised. In [Sch06,
Section 5], it is shown that (F) is true if and only if β is a Pisot element of
F((x−1)), i.e., if β is an algebraic integer over F[x] with |β| > 1 all whose Galois
conjugates βj satisfy |βj | < 1 (see [BDGGH+92]).

Furthermore, the analogue of Conjecture 3.1 could be settled in the finite
field setting. In particular, Scheicher [Sch06] proved that all bases β that are
Pisot or Salem elements of F((x−1)) admit eventually periodic expansions.

In [HM], the “representation of 1”, which is defined in terms of an analogue
of the β-transformation, is studied.

3.6. Lattice tilings. Consider Knuth’s numeration system (−1+
√
−1, {0, 1})

discussed in Section 3.1. We are interested in the set of all complex numbers
admitting a representation w.r.t. this numeration system having zero “integer
parts”, i.e., in all numbers

z =
∑

j≥1

cj(−1 +
√
−1)−j (cj ∈ {0, 1}).

Define the set (cf. [Knu98])

T =



z ∈ C ; z =

∑

j≥1

cj(−1 +
√
−1)−j (cj ∈ {0, 1})



 .

From this definition, we easily see that T satisfies the functional equation (b =
−1 +

√
−1)

(3.21) T = b−1T ∪ b−1(T + 1).

Since f0(x) = b−1x and f1(x) = b−1(x+1) are contractive similarities in C w.r.t.
the Euclidean metric, (3.21) asserts that T is the union of contracted copies
of itself. Since the contractions are similarities in our case, T is a self-similar
set. From the general theory of self-similar sets (see for instance Hutchin-
son [Hut81]), we are able to draw several conclusions on T . Indeed, according
to a simple fixed point argument, T is uniquely defined by the set equation
(3.21). Furthermore, T is a non-empty compact subset of C. Set T is depicted
in Figure 3.2. It is the well-known twin-dragon.

We now mention some interesting properties of T . It is the closure of its
interior ([AT00]) and its boundary is a fractal set whose Hausdorff dimension
is given by

dimH∂T = 1.5236 . . .

([Gil87, Ito89]). Furthermore, it induces a tiling of C in the sense that

(3.22)
⋃

z∈Z[i]

(T + z) = C,
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Figure 3.2. Knuth’s twin dragon

where (T + z1) ∩ (T + z2) has zero Lebesgue measure if z1 and z2 are distinct
elements of Z[i] ([KK92]). Note that this implies that the Lebesgue measure of
T is equal to 1. We also mention that T is homeomorphic to the closed unit
disk ([AT05]).

These properties make T a so-called self-similar lattice tile. Tiles can be
associated with numeration systems in a more general way. After Definition 3.2,
we already mentioned that matrix numeration systems admit the definition of
tiles. Let (A,D) be a matrix numeration system. Since all eigenvalues of A are
larger than one in modulus, each of the mappings

fd(x) = A−1(x+ d) (d ∈ D)

is a contraction w.r.t. a suitable norm. This justifies the following definition.

Definition 3.4. Let (A,D) be a matrix numeration system in Zd. Then the
non-empty compact set T which is uniquely defined by the set equation

(3.23) AT =
⋃

d∈D
(T + d)

is called the self-affine tile associated with (A,D).

Since D ⊂ Zd is a complete set of cosets in Zd/AZd, these self-affine tiles are
often called self-affine tiles with standard set of digits (e.g., see [LW96a]). The
literature on these objects is vast. It is not our intention here to survey this
literature. We just want to link numeration systems and self-affine lattice tiles
and give some of their key properties. (For surveys on lattice tiles we refer the
reader for instance to [Vin00, Wan98].)

In [Ban91], it is shown that each self-affine tile with standard set of digits
has a positive d-dimensional Lebesgue measure. Together with [LW96b], this
implies the following result.

Theorem 3.12. Let T be a self-affine tile associated with a matrix numeration
system (A,D) in Zd. Then T is the closure of its interior. Its boundary ∂T has
d-dimensional Lebesgue measure zero.
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As mentioned above, the twin-dragon induces a tiling of C in the sense men-
tioned in (3.22). It is natural to ask whether all self-affine tiles associated with
matrix numeration systems share this property. In particular, let (A,D) be a
matrix numeration system. We say that the self-affine tile T associated with
(A,D) tiles Rn with respect to the lattice Zd if

T + Zd = Rd

such that (T + z1) ∩ (T + z2) has zero Lebesgue measure if z1, z2 ∈ Zd are
distinct.

It turns out that it is difficult to describe all tiles having this property. La-
garias and Wang [LW96a] and independently Kátai [Kát95] found the following
criterion.

Proposition 3.1. Let (A,D) be a matrix numeration system in Zd and set

∆(A,D) =
⋃

k≥1





k∑

j=1

Aj(dj − d′j) ; dj , d
′
j ∈ D



 .

The self-affine tile T associated with (A,D) tiles Rd with respect to the lattice
Zd if and only if

∆(A,D) = Zd.

In [LW97], methods from Fourier analysis were used to derive the tiling prop-
erty for a very large class of tilings. We do not state the theorem in full gen-
erality here (see [LW97, Theorem 6.1]). We just want to give a special case.
To state it we need some notation. Let A1 and A2 be two d × d integer ma-
trices. Here A1 ≡ A2 means A1 is integrally similar to A2, i.e., there exists
Q ∈ GL(d,Z) such that A2 = QA1Q

−1. We say that A is (integrally) reducible
if

A ≡
(
A1 0
C A2

)

holds with A1, and A2 is non-empty. We call A irreducible if it is not reducible.
Note that a sufficient condition for the irreducibility of an integer matrix A is
the irreducibility of its minimal polynomial over Q.

From [LW97, Corollary 6.2] the following result follows.

Theorem 3.13. Let (A,D) be a matrix numeration system in Zd with associ-
ated self-affine tile T . If A is irreducible, then T tiles Rd with respect to the
lattice Zd.

A special case of this result can also be found in [GH94]. Theorem 3.13
ensures, for instance, that each canonical numeration system with irreducible
base polynomial p(x) yields a tiling of Rd with Zd-translates. Indeed, just
observe that the matrix A in (3.9) has minimal polynomial p(x).

Many more properties of self-affine tiles associated with number systems have
been investigated so far. The boundary of these tiles can be represented as a
graph-directed iterated function system (see [Fal97, Chapter 3] for a definition).
Indeed, let (A,D) be a matrix numeration system and let T be the associated
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self-affine tile. Suppose that T tiles Rd by Zd-translates. The set of neighbours
of the tile T is defined by

S = {s ∈ Zd ; T ∩ (T + s) 6= ∅}.
Since T and its translates form a tiling of Rd, we may infer that

∂T =
⋃

s∈S\{0}
T ∩ (T + s).

Thus in order to describe the boundary of T , the sets Bs = T ∩ (T + s) can be
described for s ∈ S \ {0}. Using the set equation (3.23) for T , we easily derive
that (cf. [ST03b, Section 2])

Bs = A−1
⋃

d,d′∈D
BAs+d′−d + d.

Here BAs+d′−d is non-empty only if the index is an element of S. Now label
the elements of S as S = {s1, . . . , sJ} and define the graph G(S) = (V,E) with
a set of states V = S in the following way. Let Ei,j be the set of edges leading
from si to sj. Then

Ei,j =

{
si

d|d′−−→ sj ; Asi + d′ = sj + d for some d′ ∈ D
}
.

In an edge si
d|d′−−→ sj, we call d the input digit and d′ the output digit. This

yields the following result.

Proposition 3.2. The boundary ∂T is a graph-directed iterated function system
directed by the graph G(S). In particular,

∂T =
⋃

s∈S\{0}
Bs

where
Bs =

⋃

d∈D, s′∈S\{0}
s

d−→s′

A−1(Bs′ + d).

The union is extended over all d, s′ such that s
d−→ s′ is an edge in the graph

G(S \ {0}).
This description of ∂T is useful in several regards. In particular, graph G(S)

contains a lot of information on the underlying numeration system and its
associated tile. Before we give some of its applications, we should mention that
there exist simple algorithms for constructing G(S) (e.g., see [SW99, ST03b]).

In [Wan98, SW99], the graph G(S) was used to derive a formula for the
Hausdorff dimension of ∂T . The result reads as follows.

Theorem 3.14. Let (A,N ) be a matrix numeration system in Zd and T the
associated self-affine tile. Let ρ be the spectral radius of the accompanying matrix
of G(S \ {0}). If A is a similarity, then

dimB(∂T ) = dimH(∂T ) =
d log ρ

log |detA| .
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Similar results can be found in [DKV00, IKR93, Vin00, Vee98, ST02]. There
they are derived using a certain subgraph of G(S). In [Vee98, ST02], there are
dimension calculations for the case where A is not a similarity.

In [GH94], a subgraph of G(S) is used to set up an algorithmic tiling criterion.
In [LW97], this criterion was used as a basis for a proof of Theorem 3.13.

More recently, the importance of G(S) for the topological structure of tile T
was discovered. We mention a result of Bandt and Wang [BW01] that yields a
criterion for a tile to be homeomorphic to a disk. Roughly, it says that a self-
affine tile is homeomorphic to a disk if it has 6 or 8 neighbours and satisfies some
additional easy-to-check conditions. Very recently, Luo and Thuswaldner [LT06]
established criteria for the triviality of the fundamental group of a self-affine
tile. Moreover graph G(S) plays an important rôle in these criteria.

At the end, we would like to show the relation of G(S) to the matrix numer-
ation system (A,D) itself. If we change the direction of all edges in G(S), we
obtain the transposed graph GT (S). Suppose we have a representation of an
element z ∈ Zd of the shape

z = d0 +Ad1 + · · ·+A`d` (dj ∈ D).

To this representation, we associate the digit string (. . . 00d` . . . d0). Select a
state s of the graph GT (S). It can be shown that a walk in GT (S) is uniquely
defined by its starting state and a sequence of input digits. Now we run through
the graph GT (S) starting at s along a path of edges whose input digits agree
with the digit string (. . . 00d` . . . d0) starting with d0. This yields an output
string (. . . 00d′`′ . . . d

′
0). From the definition of GT (S), it is easily apparent that

this output string is the A-ary representation of z + s, i.e.,

z + s = d′0 +Ad′1 + · · ·+A`′d′`′ (d′j ∈ D).

Thus GT (S) is an adding automaton that allows us to perform additions of
A-ary representations (e.g., see [GKP98, ST02]). In [Thu01], the graph GT (S)
was used to get a characterisation of all quadratic matrices that admit a matrix
numeration system with finite representations for all elements of Z2 with a
certain natural set of digits.

4. Some sofic fibred numeration systems

This section is devoted to a particular class of FNS for which the subshiftXN
is sofic. This class especially includes β-numeration for β assumed to be a Parry
number (see Example 2.2), the Dumont-Thomas numeration associated with a
primitive substitution (see Section 4.1), as well as some abstract numeration
systems (see Section 4.2). We focus on the construction of central tiles and
Rauzy fractals in Section 4.3. In the present section, we highly use the alge-
braicity of the associated parameters of the FNS (e.g., β for the β-numeration).
We especially focus on the Pisot case and end this section by discussing the
Pisot conjecture in Section 4.4.

4.1. Substitutions and Dumont-Thomas numeration. We now introduce
a class of examples of sofic FNS — the Dumont-Thomas numeration. For
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this purpose, we first recall some basic facts on substitutions and substitutive
dynamical systems.

If A is a finite set with cardinality n, a substitution σ is an endomorphism
of the free monoid A∗. A substitution naturally extends to the set of two-sided
sequences AZ. A one-sided σ-periodic point of σ is a sequence u = (ui)i∈N ∈ AN

that satisfies σn(u) = u for some n > 0. A two-sided σ-periodic point of σ is
a two-sided sequence u = (ui)i∈Z ∈ AZ that satisfies σn(u) = u for some
n > 0, and u−1u0 belongs to the image of some letter by some iterate σm of
σ. This notion of σ-periodicity should not be confused with the usual notion of
periodicity of sequences.

A substitution over the finite set A is said to be of constant length if the
images of all letters of A have the same length. The incidence matrix Mσ =
(mi,j)1≤i,j≤n of the substitution σ has entries mi,j = |σ(j)|i, where the nota-
tion |w|i stands for the number of occurrences of the letter i in the word w. A
substitution σ is called primitive if there exists an integer n such that σn(a)
contains at least one occurrence of the letter b for every pair (a, b) ∈ A2. This is
equivalent to the fact that its incidence matrix is primitive, i.e., there exists a
nonnegative integer n such that Mn

σ has only positive entries. If σ is primitive,
then the Perron-Frobenius theorem ensures that the incidence matrix Mσ has a
simple real positive dominant eigenvalue β. A substitution σ is called unimod-
ular if det Mσ = ±1. A substitution σ is said to be Pisot if its incidence matrix
Mσ has a real dominant eigenvalue β > 1 such that, for every other eigenvalue
λ, one has 0 < |λ| < 1. The characteristic polynomial of the incidence matrix
of such a substitution is irreducible over Q, and the dominant eigenvalue β is
a Pisot number. Furthermore, it can be proved that Pisot substitutions are
primitive [PF02].

Every primitive substitution has at least one periodic point [Que87a]. If u
is a periodic point of σ, then the closure in AZ of the shift orbit of u does not
depend on u. We thus denote it by Xσ. The symbolic dynamical system gen-
erated by σ is defined as (Xσ , S). The system (Xσ , S) is minimal and uniquely
ergodic [Que87a]; it is made of all the two-sided sequences whose set of factors
coincides with the set of factors u (which does not depend on the choice of
u by primitivity). For more results on substitutions, the reader is referred to
[AS03, PF02, Que87a].

There are many natural connections between substitutions and numeration
systems (e.g., see [Dur98a, Dur98b, Fab95]). We now describe a numeration sys-
tem associated with a primitive substitution σ, known as the Dumont-Thomas
numeration [DT89, DT93, Rau90]. This numeration allows to expand prefixes
of the fixed point of the substitution, as well as real numbers in a noninteger
base associated with the substitution. In this latter case, one gets an FNS pro-
viding expansions of real numbers with digits in a finite subset of the number
field Q(β), with β being the Perron-Frobenius eigenvalue of the substitution σ.

Let σ be a primitive substitution. We denote by β its dominant eigenvalue.
Let δσ : A∗ → Q(β) be the morphism defined by

∀w ∈ A∗, δσ(w) = lim
n→∞

|σn(w)|β−n.

Note that the convergence is ensured by the Perron-Frobenius theorem.
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By definition, we have δσ(σ(a)) = βδσ(a) and δσ(ww′) = δσ(w) + δσ(w′) for

any (w,w′) ∈ (A∗)2. Furthermore, the row vector V (n) = (|σn(a)|)a∈A satisfies
the recurrence relation V (n+1) = V (n)Mσ. Hence the map δσ sends the letter
a to the corresponding coordinate of some left eigenvector vβ of the incidence
matrix Mσ.

Let a ∈ A and let x ∈ [0, δσ(a)). Then βx ∈ [0, δσ(σ(a))). There exist a
unique letter b in A, and a unique word p ∈ A∗ such that pb is a prefix of σ(a)
and δσ(p) ≤ βx < δσ(pb). Clearly, βx− δσ(p) ∈ [0, δσ(b)).

We thus define the following map T :

T :
⋃

a∈A ([0, δσ(a))× {a}) → ⋃
a∈A ([0, δσ(a))× {a})

(x, a) 7→ (βx− δσ(p), b) with

{
σ(a) = pbs
βx− δσ(p) ∈ [0, δσ(b)).

Furthermore, one checks that (X,T ) is a fibred system by setting

X =
⋃

a∈A
([0, δσ(a)) × {a}) ,

I = {(p, b, s) ∈ A∗ ×A×A∗; ∃ a ∈ A, σ(a) = pbs},
ε(x, a) = (p, b, s),

where (p, b, s) is uniquely determined by σ(a) = pbs and βx− δσ(p) ∈ [0, δσ(b)).
According to [DT89], it turns out that ϕ = (ε(T nx))n≥0 is injective, hence we

get an FNS N . Note that, at first sight, a more natural choice in the numeration
framework could be to define ε as (x, b) 7→ δσ(p), but we would lose injectivity
for the map ϕ by using such a definition.

In order to describe the subshiftXN = ϕ(X), we need to introduce the notion
of prefix-suffix automaton. The prefix-suffix automaton Mσ of the substitution
σ is defined in [CS01a, CS01b] as the oriented directed graph that has the al-
phabet A as set of vertices and whose edges satisfy the following condition:
there exists an edge labeled by (p, c, s) ∈ I from b to c if σ(b) = pcs. We then

will describe XN = ϕ(X) in terms of labels of infinite paths in the prefix-suffix
automaton. Prefix automata have also been considered in the literature by just
labelling edges with the prefix p [DT89, Rau90], but here we need all the infor-
mation (p, c, s), especially for Theorem 4.2 below: the main difference between
the prefix automaton and the prefix-suffix automaton is that the subshift gen-
erated by the first automaton (by reading labels of infinite paths) is only sofic,
while the one generated by the second automaton is of finite type. For more
details, see the discussion in Chapter 7 of [PF02].

Theorem 4.1 ([DT89]). Let σ be a primitive substitution on the alphabet A.
Let us fix a ∈ A. Every real number x ∈ [0, δσ(a)) can be uniquely expanded
as x =

∑
n≥1 δσ(pn)β−n, where the sequence of digits (pn)n≥1 is the projection

on the first component of an infinite path (pn, an, sn)n≥1 in the prefix-suffix
automaton Mσ stemming from a (i.e., p1a1 is a prefix of σ(a)), and with the
extra condition that there exist infinitely many integers n such that σ(an−1) =
pnan, with sn not equal to the empty word, i.e., pnan is a proper suffix of
σ(an−1).
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Note that the existence of infinitely many integers n such that pnan is a
proper suffix of σ(an−1) is required for the unicity of such an expansion (one
thus gets proper expansions).

We deduce from Theorem 4.1 that ϕ(X) is equal to the set of labels of
infinite paths (pn, an, sn)n≥1 in the prefix-suffix automaton, for which there
exist infinitely many integers n such that pnan is a proper prefix of σ(an−1),

whereas XN = ϕ(X) is equal to the set of labels of infinite paths in the prefix-
suffix automaton (without further condition).

Note that we can also define a Dumont-Thomas numeration on N. Let v
be a one-sided fixed point of σ; we denote its first letter by v0. We assume,
furthermore, that |σ(v0)| ≥ 2, and that v0 is a prefix of σ(v0). This numeration
depends on this particular choice of a fixed point, and more precisely on the
letter v0. One checks ([DT89], Theorem 1.5) that every finite prefix of v can be
uniquely expanded as

σn(p0)σ
n−1(p−1) · · · p−n,

where p0 6= ε, σ(v0) = p0a0s0, and (p0, a0, s0), . . . , (p−n, a−n, s−n) is the se-
quence of labels of a path in the prefix-suffix automatonMσ starting from the
state v0; for all i, one has σ(ai) = pi−1ai−1si−1. Conversely, any path in Mσ

starting from v0 generates a finite prefix of v. This numeration works a priori
on finite words but we can expand the nonnegative integer N as N = |σn(p0)|+
· · ·+ |p−n|, where N stands for the length of the prefix σn(p0)σ

n−1(p−1) · · · p−n

of v. One thus recovers a numeration system defined on N.

Example 4.1. We consider the so-called Tribonacci substitution σβ : 1 7→
12, 2 7→ 13, 3 7→ 1. It is a unimodular Pisot substitution. Its dominant
eigenvalue β > 1, which is the positive root of X3 − X2 − X − 1, is called
Tribonacci number. Its prefix-suffix automaton Mσ is depicted in Figure 4.1.

1

(ε,1,2)

��
(1,2,ε)

((
2

(ε,1,3)

hh

(1,3,ε)

((
3

(ε,1,ε)

[[

Figure 4.1. The prefix-suffix automaton for the Tribonacci substitution

The set of prefixes that occur in the labels of Mσ is equal to {ε, 1}. One
checks that the (finite or infinite) paths with label (pn, an, sn)n in Mσ, where
σ(an) = pn+1an+1sn+1 for all n, are exactly the paths for which the factor
111 does not occur in the sequence of prefixes (pn)n. The expansion given in
Theorem 4.1, with a = 1, coincides, up to a multiplication factor, with the
expansion provided by the β-numeration (see Example 2.2), with β being equal
to the Tribonacci number. Indeed one has d∗β(1) = (110)ω . Hence XN is equal

to the set of sequences (ui)i≥1 ∈ {0, 1}N∗
which do not contain the factor 111,

i.e., XN is the shift of finite type recognized by the automaton of Figure 4.2
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that is deduced from Mσ by replacing the labeled edge (p, a, s) by the length
|p| of the prefix p (as in Example 4.1).

1

0
��

1
((
2

0

hh

1
((
3

0

[[

Figure 4.2. The prefix-suffix automaton recognizing the β-
shift for the Tribonacci number

The Tribonacci substitution has been introduced and studied in detail in
[Rau82]. For more results and references on the Tribonacci substitution, see
[AR91, AY81, IK91, Lot05, Mes98, Mes00, PF02, RT05]. Let us also quote
[Arn89] and [Mes00, Mes02] for an extension of the Fibonacci multiplication
introduced in [Knu88] to the the Tribonacci case.

Example 4.2. We continue Example 4.1 in a more general setting. Let β > 1
be a Parry number as defined in Example 2.2. As introduced, for instance, in
[Thu89] and in [Fab95], one can naturally associate with (Xβ , S) a substitution
σβ called β-substitution defined as follows according to the two cases, β simple
and β non-simple:

• Assume that dβ(1) = t1 . . . tm−1tm is finite, with tm 6= 0. Thus d∗β(1) =

(t1 . . . tm−1(tm − 1))ω . One defines σβ over the alphabet {1, 2, . . . ,m}
as

σβ :





1 7→ 1t12
2 7→ 1t23
...

...
m− 1 7→ 1tm−1m
m 7→ 1tm .

• Assume that dβ(1) is infinite. Then it cannot be purely periodic –
according to Remark 7.2.5 of [Lot02]. Hence one has

dβ(1) = d∗β(1) = t1 · · · tm(tm+1 · · · tm+p)
ω,

with m ≥ 1, tm 6= tm+p and tm+1 . . . tm+p 6= 0p. One defines σβ over
the alphabet {1, 2, . . . ,m+ p} as

σβ :





1 7→ 1t12
2 7→ 1t23
...

...
m+ p− 1 7→ 1tm+p−1(m+ p)
m+ p 7→ 1tm+p(m+ 1).



48

It turns out that in both cases the substitutions σβ are primitive and that the
dominant eigenvalue of σβ is equal to β. When β is equal to the Tribonacci
number, then one recovers the Tribonacci substitution, since dβ(1) = 111. The
prefix-suffix automaton of the substitution σβ is strongly connected to the finite
automaton Mβ recognizing the set of finite factors of the β-shift XN . Indeed,
we first note that the prefixes that occur as labeled edges of Mσ contain only
the letter 1; it is thus natural to code a prefix by its length; one recovers the
automaton Mβ by replacing in the prefix-suffix automaton Mσ the labeled
edges (p, a, s) by |p|.

If σ is a constant length substitution of length q, then one recovers the q-adic
numeration. If σ is a β-substitution such as defined in Example 4.2, for a Parry
number β, then the expansion given in Theorem 4.1, with a = 1, coincides with
the expansion provided by the β-numeration, up to a multiplication factor.
More generally, even when σ is not a β-substitution, then the Dumont-Thomas
numeration shares many properties with the β-numeration. In particular, when
β is a Pisot number, then, for every a ∈ A, every element of Q(β) ∩ [0, δσ(a))
admits an eventually periodic expansion, i.e., the restriction to Q(β) yields a
quasi-finite FNS. The proof can be conducted exactly in the same way as in
[Sch80].

Let X l
N be the set of labels of infinite left-sided paths (p−m, a−m, s−m)m≥0 in

the prefix-suffix automaton; they satisfy σ(a−m) = p−m+1a−m+1s−m+1 for all
m ≥ 0. The subshiftX l

N is a subshift of finite type. The set X l
N has an interest-

ing dynamical interpretation with respect to the substitutive dynamical system
(Xσ , S). Here we follow the approach and notation of [CS01a, CS01b]. Let
us recall that substitution σ is assumed to be primitive. According to [Mos92]
and [BK06], every two-sided sequence w ∈ Xσ has a unique decomposition
w = Sν(σ(v)), with v ∈ Xσ and 0 ≤ ν < |σ(v0)|, where v0 is the 0-th coordi-
nate of v, i.e.,

w = . . . | . . .︸︷︷︸
σ(v−1)

| w−ν . . . w−1.w0 . . . wν′︸ ︷︷ ︸
σ(v0)

| . . .︸︷︷︸
σ(v1)

| . . .︸︷︷︸
σ(v2)

| . . .

The two-sided sequence w is completely determined by the two-sided se-
quence v ∈ Xσ and the value (p,w0, s) ∈ I. The desubstitution map θ : Xσ →
Xσ is thus defined as the map that sends w to v. We then define γ : Xσ → I
mapping w to (p,w0, s). It turns out that (θn(w) )n≥0 ∈ X l

N . The prefix-suffix

expansion is then defined as the map EN : Xσ → X l
N which maps a two-sided

sequence w ∈ Xσ to the sequence (γ ( θnw) )n≥0, i.e., the orbits of w through
the desubstitution map according to the partition defined by γ.

Theorem 4.2 ([CS01a, CS01b, HZ01]). Let σ be a primitive substitution such
that none of its periodic points is shift-periodic. The map EN is continuous
onto the subshift of finite type X l

N ; it is one-to-one except on the orbits under
the shift S of the σ-periodic points of σ.

In other words, the prefix-suffix expansion map EN provides a measure-
theoretic isomorphism between the shift map S on Xσ and an adic transforma-
tion on X l

N , considered as a Markov compactum, as defined in Section 5.4, by
providing set I with a natural partial ordering coming from the substitution.
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4.2. Abstract numeration systems. We first recall that the genealogical or-
der is defined as follows: if v and w belong to L, then v � w if and only if
|v| < |w| or |v| = |w|, and v preceds w with respect to the lexicographical order
deriving from <. One essential feature in the construction of the previous sec-
tion is that the dynamical system XN is sofic, which means that the language
LN is regular. Let us now extend this approach by starting directly with a
regular language. According to [LR01], given an infinite regular language L
over a totally ordered alphabet (A,<), a so-called abstract numeration system
S = (L,A,�) is defined in the following way: enumerating the words of L by
increasing genealogical order gives a one-to-one correspondence between N and
L, the nonnegative integer n is then represented by the (n+ 1)-th word of the
ordered language (L,�).

Such an abstract numeration system is in line with Definition 2.1, where
X = N, I = A, and ϕ is the (injective) map that sends the natural number n to
the (n + 1)-th word of the ordered language L. Abstract numeration systems
thus include classical numeration systems like q-adic numeration, β-numeration
when β is a Parry number, as well as the Dumont-Thomas numeration associ-
ated with a substitution.

Moreover, these abstract numeration systems have been themselves extended
to allow the representation of integers and of real numbers [LR04]: a real num-
ber is represented by an infinite word which is the limit of a converging sequence
of words in L. Under some ancillary hypotheses, we can describe such a rep-
resentation thanks to a fibred number system defined as follows, according to
[BR05, RS05].

Let L be an infinite regular language over the totally ordered alphabet (Σ, <).
The trimmed minimal automaton of L is denoted by ML = (Q, q0,Σ, δ, F )
where Q is the set of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is
the (partial) transition function, and F ⊆ Q is the set of final states. We
furthermore assume that ML is such that ML has a loop of label s0 at the
initial state q0. For any state q ∈ Q, we denote by Lq the regular language
accepted by ML from state q, and by uq(n) the number of words of length n
in Lq.

The entry of index (p, q) ∈ Q2 of the adjacency matrix ML of the automaton
ML is given by the cardinality of the set of letters s ∈ Σ, such that δ(p, s) = q.
An abstract numeration system is said to be primitive if the matrix ML is
primitive. Let β > 1 be its dominant eigenvalue. We assume moreover that
L is a language for which there exist P ∈ R[Y ], and some nonnegative real
numbers aq, q ∈ Q, which are not simultaneously equal to 0, such that for all
states q ∈ Q,

(4.1) lim
n→∞

uq(n)

P (n)βn
= aq.

The coefficients aq are defined up to a scaling constant. In fact, vector (aq)q∈Q is
an eigenvector of ML [LR04]; by the Perron-Frobenius theorem, all its entries aq

have the same sign; we normalise it so that aq0 = 1− 1/β, according to [RS05].
Then we have aq ≥ 0 for all q ∈ Q.
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For q ∈ Q and s ∈ Σ, set

αq(s) =
∑

q′∈Q

aq′ ·#{t < s ; δ(q, t) = q′} =
∑

t<s

aδ(q,t).

Since (aq)q∈Q is an eigenvector of ML of eigenvalue β, one has for all q ∈ Q:

(4.2) βaq =
∑

r∈Q

ar ·#{s ∈ Σ ; δ(q, s) = r} =
∑

t∈Σ

aδ(q,t).

By nonnegativity of the coefficients as, we have 0 ≤ αq(s) ≤ βaq, for all q ∈ Q.
Note also that if s < t, s, t ∈ Σ, then αq(s) ≤ αq(t). We set, for x ∈ R+,

bxcq = max{αq(s) ; s ∈ Σ, αq(s) ≤ x}.
Using (4.2) one checks that for x ∈ [0, aq), then βx − bβxcq ∈ [0, aq′), with
bβxcq = αq(s) and δ(q, s) = q′. We can define

T :
⋃

q∈Q

([0, aq)× {q}) −→
⋃

q∈Q

([0, aq)× {q})

(x, q) 7−→ (βx− bβxcq, q′),
where q′ is determined as follows: let s be the largest letter such that αq(s) =
bβxcq; then q′ = δ(q, s). One checks that N = (X,T, I, ϕ) is a fibred number
system by setting

X = ∪q∈Q ([0, aq)× {q}) ,
I = {(s, q, q′) ∈ Σ×Q×Q ; q′ = δ(q, s)},

ε(x, q) = (s, q, q′),

where s is the largest letter such that αq(s) = bβxcq, and q′ = δ(q, s). One
checks furthermore that ϕ is injective.

We thus can expand any real number x ∈ [0, aq0) = [0, 1 − 1/β) as follows:

let (xn, rn)n≥1 = (T n(x, q0))n≥1 ∈ XN∗

, and let (w0, r0) = (s0, q0); for every
n ≥ 1, let wn be the first component of εn = ε ◦ T n−1 where x0 = x; then one
has x =

∑∞
n=1 αrn−1(wn)β−n, according to [LR02].

Abstract numeration systems lead to the generalisation of various concepts
related to the representation of integers like summatory functions of additive
functions [GR03], or like the notion of odometer [BR06].

4.3. Rauzy fractals. We have seen in Section 3.6 that it is possible to nat-
urally associate self-affine tiles and lattice tilings with matrix number systems
(see also Question 8). Such self-affine tiles are compact sets, they are the clo-
sure of their interior, they have a non-zero measure and a fractal boundary that
is the attractor of some graph-directed iterated function system. The aim of
this section is to show how to associate in the present framework similar tiles,
called Rauzy fractals, with Pisot substitutions and β-shifts.

Rauzy fractals were first introduced in [Rau82] in the case of the Tribonacci
substitution (see Example 4.1), and then in [Thu89], in the case of the β-
numeration associated with the Tribonacci number. One motivation for Rauzy’s
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construction was to exhibit explicit factors of the substitutive dynamical system
(Xσ , S), under the Pisot hypothesis, as rotations on compact abelian groups.

Rauzy fractals can more generally be associated with Pisot substitutions
(see [BK06, CS01a, CS01b, IR06, Mes00, Mes02, Sie03, Sie04] and the surveys
[BS05b, PF02]), as well as with Pisot β-shifts under the name of central tiles
(see [Aki98, Aki99, Aki00, Aki02]), but they also can be associated with ab-
stract numeration systems [BR05], as well as with some automorphisms of the
free group [ABHS06], namely the so-called irreducible with irreducible powers
automorphisms [BH92].

There are several definitions associated with several methods of construction
for Rauzy fractals.

• We detail below a construction based on formal power series in the
substitutive case. This construction is inspired by the seminal paper
[Rau82], by [Mes98, Mes00], and by [CS01a, CS01b].
• A different approach via graph-directed iterated function systems (in

the same vein as Proposition 3.2) and generalised substitutions has been
developed on the basis of ideas from [IK91], and [AI01, AIS01]. Indeed,
Rauzy fractals can be described as attractors of some graph-directed
iterated function system, as in [HZ98], where one can find a study of
the Hausdorff dimension of various sets related to Rauzy fractals, and
as in [Sir00a, Sir00b, SW02a] with a special focus on the self-similar
properties of Rauzy fractals.
• Lastly, they can be defined in case σ is a Pisot substitution as the closure

of the projection on the contracting plane of Mσ along its expanding
direction of the images by the abelianisation map of prefixes of a σ-
periodic point [BK06, IR06, PF02], where the abelianization map, also
called Parikh map, is defined as l : A∗ → Nn, l(W ) 7→ (|W |k)k=1,...,n ∈
Nn.

For more details on these approaches, see Chapters 7 and 8 of [PF02], and
[BS05b].

Let us describe how to associate a Rauzy fractal with a Pisot substitution
that is not necessarily unimodular, as a compact subset of a finite product of
Euclidean and p-adic spaces following [Sie03]. We thus consider a primitive
substitution σ that we assume furthermore to be Pisot. We then consider the
FNS N provided by the Dumont-Thomas numeration, such as described in
Section 4.1. We follow here [BS05a, BS05b, Sie03]. Let us recall that the set
X l

N is the set of labels of infinite left-sided paths (p−n, a−n, s−n) ∈ IN in the
prefix-suffix automatonMσ, with the notation of Section 4.1. (By analogy with
Section 3.6, this amounts to work with representations having zero “integer
part” w.r.t. the FNS N .) Let β stand for the dominant eigenvalue of the
primitive substitution σ.

We first define the map Γ on X l
N as

Γ((p−n, a−n, s−n)n≥0) =
∑

n≥0

δσ(p−n)Y n;
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hence Γ takes its values in a finite extension of the ring of formal power series
with coefficients in Q; we recall that the coefficients δσ(p−n) take their values
in a finite subset of Q(β).

Let us specialise these formal power series by giving the value β to the in-
determinate Y , and by considering all the Archimedean and non-Archimedean
metrizable topologies on Q(β) in which all the series

∑
n≥0 δσ(p−n)βn would

converge for (p−n, a−n, s−n)n≥0 ∈ X l
N .

We recall that β is a Pisot number of degree d, say. Let β2, . . . , βr be the real
conjugates of β, and let βr+1, βr+1, . . . , βr+s, βr+s be its complex conjugates.
For 2 ≤ j ≤ r, let Kβj

be equal to R, and for r+1 ≤ j ≤ r+ s, let Kβj
be equal

to C, with R and C being endowed with the usual topology.
Let I1, . . . , Iν be the prime ideals in the integer ring OQ(β) of Q(β) that

contain β, i.e.,

βOQ(β) =
ν∏

i=1

Iini .

Let I be a prime ideal in OQ(β). We denote by KI the completion of Q(β) for
the I-adic topology. The field KI is a finite extension of the pI-adic field QpI ,
where I ∩ Z = pIZ. The primes which appear as p-adic spaces are the prime
factors of the norm of β. One then defines the representation space of X l

N as

Kβ = Kβ2 × . . .Kβr+s
×KI1 × . . .KIν ' Rr−1 × Cs ×KI1 × · · · ×KIν .

Endowed with the product of the topologies of each of its elements, Kβ is a
metric abelian group. If σ is unimodular, then Kβ = Rr−1 × Cs is identified

with Rd−1.
The canonical embedding of Q(β) into Kβ is defined by the following mor-

phism Φ: P (β) ∈ Q(β) 7→ (P (β2)︸ ︷︷ ︸
∈Kβ2

, . . . , P (βr+s)︸ ︷︷ ︸
∈Kβr+s

, P (β)︸ ︷︷ ︸
∈KI1

, . . . , P (β)︸ ︷︷ ︸
∈KIν

) ∈ Kβ.

The topology on Kβ was chosen so that the series

lim
n→+∞

Φ(

j∑

n=0

δσ(p−n)βn) =
∑

n≥0

Φ(δσ(p−n)βn)

are convergent in Kβ for every (pn, an, sn)n≥0 ∈ X l
N . One thus defines

Υ: X l
N → Kβ, (p−n, a−n, s−n)n≥0 7→ Φ(

∑

n≥0

δσ(p−n)βn).

Definition 4.1. Let σ be a Pisot substitution and let N be the FNS provided
by the Dumont-Thomas numeration. The generalized Rauzy fractal of X l

N is

defined as TN = Υ(X l
N ), with the above notation.

If σ is unimodular, then it is a compact subset of Rd−1, where d is the car-
dinality of the alphabet A of the substitution.

It can be divided into d subpieces as follows: for every letter a in A,

TN (a) = Υ({(p−n, a−n, s−n)n≥0 ∈ X l
N ; (p−n, a−n, s−n)n≥0 is the label

of an infinite left-sided path in Mσ arriving at state a0 = a}).
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For every letter a the sets TN and TN (a) have non-empty interior [Sie03],
hence they have non-zero measure. Moreover, they are the closure of their
interior, according to [SW02a]. For examples of Rauzy fractals, see Figure 4.3.

Figure 4.3. Rauzy fractal for the Tribonacci substitution, and
Rauzy lattice tiling

Topological properties of Rauzy fractals have aroused a large interest. Their
connectedness and homeomorphy to a closed disc are investigated, e.g., in [AG04b,
AG04a, Can03, ST06]. Let us stress the fact that Rauzy fractals and self-affine
tiles associated with matrix numeration systems (such as discussed in Section
3.6) are distinct objects. Nevertheless ideas and methods used for these lat-
ter tiles have often been inspirating for the study of the tiling and topolog-
ical properties of Rauzy fractals. Indeed, Rauzy fractals are solutions of a
graph-directed iterated function system directed by the prefix-suffix automaton
[SW02b, BS05b].

Surprisingly enough, the sets TN (a) have disjoint interiors provided that the
substitution σ satisfies a combinatorial condition, the so-called strong coinci-
dence condition, according to [AI01] in the unimodular case, and [Sie03], in the
general case. A substitution is said to satisfy the strong coincidence condition
if for any pair of letters (i, j), there exist two integers k, n such that σn(i) and
σn(j) have the same k-th letter, and the prefixes of length k − 1 of σn(i) and
σn(j) have the same image under the abelianisation map l.

The strong coincidence condition has been introduced in [AI01]. This con-
dition is inspired by Dekking’s notion of coincidence [Dek78] which yields a
characterisation of constant length substitutions having a discrete spectrum;
see also [Hos92]. This notion has lead to the following conjecture:

Conjecture 4.1. Every Pisot substitution satisfies the strong coincidence con-
dition.

The conjecture has been proved for two-letter substitutions in [BD02]. For
more details on the strong coincidence condition, see [BK06, IR06, PF02].

4.4. The Pisot conjecture. One of the main incentives behind the introduc-
tion of Rauzy fractals is the following result:

Theorem 4.3 ([Rau82]). Let σ be the Tribonacci substitution σ : 1 7→ 12, 2 7→
13, 3 7→ 1. The Rauzy fractal TN (considered as a subset of R2) is a fundamental
domain of T2. Let Rβ : T2 → T2, x 7→ x + (1/β, 1/β2). The symbolic dynam-
ical system (Xσ , S) is measure-theoretically isomorphic to the toral translation
(T2, Rβ).
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This result can also be restated in more geometrical terms: the Rauzy fractal
generates a lattice tiling of the plane, as illustrated in Figure 4.3, i.e., R2 =
∪γ∈Γ(RN +γ), the union being disjoint in measure, and Γ = Z(δσ(1)− δσ(3))+
Z(δσ(2) − δσ(3)). More generally, one gets:

Theorem 4.4. Let σ be a Pisot substitution that satisfies the strong coincidence
condition. The following conditions are equivalent:

(1) (Xσ, S) is measure-theoretically isomorphic to a translation on the torus;
(2) (Xσ, S) has a pure discrete spectrum;
(3) the associated Rauzy fractal TN generates a lattice tiling, i.e.,

Kβ = ∪γ∈Γ(RN + γ),

the union being disjoint in measure, and Γ =
∑

b∈A,b6=a Z(δσ(b)−δσ(a)),
for a ∈ A.

The equivalence between (1) and (2) is a classical result in spectral theory
(e.g., see [Wal82]). The equivalence between (2) and (3) is due to Barge and
Kwapisz [BK06].

Conjecture 4.2. The equivalent conditions of Theorem 4.4 are conjectured to
hold if σ is a Pisot unimodular substitution.

Here again the conjecture holds true for two-letter alphabets [BD02, HS03,
Hos92]. Substantial literature is devoted to Conjecture 4.2 which is reviewed
in [PF02], Chap.7. See also [BK06, BK05, BBK06, BS05b, IR06] for recent
results.

Let us stress the fact that we have assumed the irreducibility of the char-
acteristic polynomial of the incidence matrix of the substitution: indeed, the
incidence matrix of a Pisot substitution has an irreducible characteristic poly-
nomial, by definition. Nevertheless, it is possible to define a Rauzy fractal
even if the substitution is not assumed to be irreducible but primitive, with its
dominant eigenvalue being a Pisot number (e.g., see [BBK06, BS05b, EIR06]).
In this latter case, the substitutive dynamical system might not have a pure
discrete spectrum, as illustrated, e.g., by Example 5.3 in [BBK06].

There exist several sufficient conditions that imply the equivalent assertions
of Theorem 4.4 inspired by Property (F), as defined in Example 2.2 and Section
3.4. Indeed, similar finiteness properties have been introduced in [BS05b] for
substitutive dynamical systems, see also [BR05, FT06] for abstract numeration
systems.

There exist also effective combinatorial characterisations for pure discrete
spectrum based either on graphs [Sie04, Thu06], or on the so-called balanced
pair algorithm [Mar04, SS02], or else conditions inspired by the strong coinci-
dence condition [BBK06, BK06, BK05, IR06]. More generally, for more on the
spectral study of substitutive dynamical systems, see [Hos86, FMN96].

Sofic covers. Analogously, a Rauzy fractal (usually called central tile) can
be associated with the left one-sided β-shift (e.g., see [Aki98, Aki99, Aki00,
Aki02, AS98, Thu89]) for β a Pisot unit. From a dynamical point of view,
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the transformation corresponding to (Xσ, S) in Theorem 4.4 is an odometer
(or an adic transformation [Sol92a, Sol92b]) acting on the left one-sided β-
shift (for more details, see Section 5). This zero entropy transformation is
in some sense not as natural as the shift S acting on Xσ. Nevertheless, if
one considers the natural extension of the β-transformation, then one gets an
interesting interpretation of Theorem 4.4 by performing a similar construction

for the whole set X̃N of two-sided N -representations; one thus gets geometric
realisation of the natural extension of the transformation T of the FNS N .

This construction is used, for instance, in [BS05a] to characterise numbers
that have a purely periodic β-expansion, producing a kind of generalised Galois’
theorem on classical continuous fractions, for β Pisot (see also the references
in Question 5). This construction also has consequences for the effective con-
struction of Markov partitions for toral automorphisms, the main eigenvalue of
which is a Pisot number. See, for instance, [Ber99, BK05, IO93, Pra99]. Based
on the approach of [KV98, SV98, Ver92, VS94], an algebraic construction of
Markov symbolic almost one-to-one covers of hyperbolic toral automorphisms
provided by the two-sided β-shift is similarly exhibited in [LS04, Sch00a] (see
also [Sid01, Sid02, Sid03, BK05]):

Definition 4.2. Let α be an automorphism of the torus. A point x is said to
be homoclinic if lim|n|→∞ αn(x) = 0. Homoclinic points form a subgroup of the
torus, that we denote by ∆α. A point x is said to be a fundamental homoclinic
point if {αn(x) ; n ∈ Z} generates the additive group ∆α.

Example 4.3. The homoclinic group of the automorphism

[
0 1
1 1

]
of T2 is

equal to 1√
5
(Z + %Z)

(
1/%
1

)
(see [SV98], for example), where % = 1+

√
5

2 .

Theorem 4.5 ([Sch00a]). Let β > 1 be a Pisot number. Let α ∈ GL(n,Z) be
an automorphism of the torus Tn that its conjugate within GL(n,Z) to the com-
panion matrix of the minimal polynomial of β. Then α admits a fundamental

homoclinic point x∆. Let X̃N be the two-sided β-shift and let

ξ : X̃N → Tn, v 7→
∑

i∈Z

viα
ix∆.

Then ξ(X̃N ) = Tn and ξ is bounded-to-one.
Furthermore, if β satisfies property (F), then ξ is almost one-to-one.

The following question is addressed in [Sch00a]: assume that α is conjugate
(in GL(n,Z)) to the companion matrix of its characteristic polynomial, that α
has a single eigenvalue β > 1, and all other eigenvalues have absolute value < 1;

then, is the restriction of ξ to X̃N almost one-to-one? This question is strongly
related to Conjecture 4.2.

5. G-scales and odometers

The present section goes back to the representation of nonnegative integers.
As always, our first model is the q-adic expansion. Within the context of an
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FNS, the algorithm produces the less significant digit first, then the second
less significant one, a.s.o. The transformation is based on modular arithmetic,
and one has n = ε0(n) + · · · + εk−1(n)qk−1 + qkT k(n) (see Example 2.1-1). A
popular extension consists in changing q at any step: it is the Cantor expansion
that we present in Example 5.1. The q-adic expansion can also be obtained in
the other way round, i.e., beginning with the most significant digit, using the
greedy algorithm. One still has a numeration system in sense of Definition 2.1
but it is not fibred anymore. Nevertheless, this way of producing expansions of
nonnegative integers yields a more general concept than the Cantor expansion,
the G-scale, which is the most general possible way of representing nonnegative
integers based on the greedy algorithm (see Definition 5.1).

According to Definition 2.6, the compactification corresponding to the q-
adic expansion (Example 2.1-1) is Zq, where the ring structure broads addition
and multiplication on N, giving a rich answer to Question 4. For a G-scale, a
compactification can be also built, but it is not possible in general to extend
the addition from N to it in a reasonable way. Nevertheless, the addition by 1
on N extends naturally and gives a dynamical system called odometer, that is
constructed in Section 5.1. This dynamical system especially reflects how carries
are performed when adding 1. In that direction, the carries tree introduced
and discussed in Section 5.2 is a combinatorial object which describes the carry
propagation. Section 5.3 constructs a bridge between the odometer and some
subshift. Its interest is double: it allows to understand the odometer as an
FNS (Corollary 5.1) despite the greedy construction and it gives indirectly
answers to Question 3 with results on invariant measures on the odometer
(Theorem 5.1). Section 5.4 briefly discusses the relation between odometers
and adic transformations on Markov compacta. Section 5.5 presents some cases
where it can be proved that the odometer is conjugate to a rotation on a compact
group. It partially answers Question 6.

5.1. G-scales. Building the odometer. Fibred numeration systems consist
in consecutive iterations of a transformation and give rise to infinite represen-
tations given by a sequence of digits. A simple generalisation is obtained by
changing the transformation at any step. They are still numeration systems in
the sense of Definition 2.1. Cantor (also called mixed radix) expansions are the
most popular examples in that direction:

Example 5.1. Let G = (Gn)n be an increasing sequence of positive integers
such that G0 = 1 and Gn|Gn+1. Let qn = Gn/Gn−1, with T (n) being the trans-

formation of Example 2.1-1 for q = qn and ε(n) the corresponding digit function.
Take n ∈ Z. Then ϕ(n) = (ε(1)(n), ε(2)(T (1)(n)), ε(3)(T (2) ◦ T (1)(n)), . . .), which

gives rise to an expansion n =
∑

j≥0 ε
(j)(T (j−1) ◦ · · · ◦ T (1)(n))Gj . In other

words, the sequence of digits (εk(n))k≥1 is characterised by the two conditions

(5.1)
∑

1≤j≤k−1

εj(n)Gj ≡ n (mod Gk) and 0 ≤
∑

1≤j<k

εj(n)Gj < n.

This expansion makes sense in the compatification ZG = lim←−Z/GmZ for general
n, and in N for nonnegative n, since the corresponding representation is finite
(the digits are ultimately 0). Everything is similar to Example 2.1, including
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the variants discussed in that example. The compactification is known as the
set of q-adic integers (see [HR79], chapter 2).

As (5.1) shows, this kind of expansion is based on the divisibility order rela-
tion. A different approach is given by expansions of natural numbers which are
essentially based on the usual total ordering. It is called greedy, since it first
looks for the most significant digit.9

Definition 5.1. A G-scale is an increasing sequence of positive integers (Gn)n
with G0 = 1.

Note that in the literature following [GLT95], G-scales are called “systems
of numeration”. We modified the terminology to avoid any confusion with
numeration systems and FNS. Given a G-scale, any nonnegative integer n can
be written in the form

(5.2) n =
∑

k≥0

εk(n)Gk

with εk(n) ∈ N. This representation is unique, provided that the following
so-called Yaglom condition

(5.3)
m∑

k=0

εk(n)Gk < Gm+1 (∀m ∈ N)

is satisfied, which is always assumed in the sequel. The digits are obtained by
the so-called greedy algorithm: let N ∈ N

• find the unique n such that Gn ≤ N < Gn+1,
• εn(N)← bN/Gnc,
• N ← N − εn(N)Gn, go to the first step.

Formally, we get the expansion (5.2) by writing εn(N) = 0 for all values of
n that have not been assigned during the performance of the greedy algorithm.
In particular, this expansion is finite in the sense that εn(N) = 0 for all but
finitely many n.

The infinite word JG(n) = ε0(n)ε1(n)ε2(n) · · · is by definition theG-represen-
tation of n. In particular, JG(0) = 0ω. Some examples and general properties
can be found in [Fra85]. The first study from a dynamical point of view is due
to Grabner et al. ([GLT95]). It is a numeration system according to Defini-
tion 2.1. Although it is not fibred, one may consider, as in Definition 2.6, its
compactification, i.e., the closure of the language in the product space Π(G)
below. By property (5.3), KG is the set of sequences e = e0e1e2 · · · belonging

9The word greedy stresses that, at any step, the representation algorithm chooses in an
appropriate sense the digit that gives the greatest possible contribution. In the present sit-
uation, it is not fibred. Conversely, what is called “greedy β-representation” is fibred, since
the greedyness is thought to be inside an imposed fibred framework: a fibred system is given
(β-transformation on the unit interval). The digit is then chosen in this greedy way.
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to the infinite product

Π(G) =

∞∏

m=0

{0, 1, . . . , dGm+1/Gme − 1},

satisfying (5.3). The usual notation in the literature is KG and we will use
it in the sequel. The set of nonnegative integers N is embedded in KG by the
canonical injection n 7→ JG(n), with n and JG(n) being freely identified (except
if they could be source of confusion). Their image forms a dense subset of KG.
The natural ordering on the nonnegative integers yields a partial order on KG

by x 4 y if xn = yn for n > n0 and xn0 < yn0 or x = y. This order is called
antipodal. In particular, the map n 7→ JG(n) is increasing with respect to the
usual order on N and the antipodal order on KG.

From a topological standpoint, the compact space KG is almost always a
Cantor set:

Proposition 5.1 ([BDIL00], Theorem 2). If the sequence (Gn+1−Gn)n is not
bounded, then KG is homeomorphic to the triadic Cantor space. Otherwise, it
is homeomorphic to a countable initial segment of the ordinals.

The addition by 1 naturally extends to KG (see Question 4):

(5.4) ∀x = x0x1 · · · ∈ KG : τ(x) = lim
n→∞

J(x0 + x1G1 + · · ·+ xnGn + 1).

According to (5.3), this limit exists. It is 0ω if and only if there are infinitely
many integers n such that

(5.5) x0 + x1G1 + · · ·+ xnGn = Gn+1 − 1.

Definition 5.2. The dynamical system (KG, τ) is called an odometer.

There is no universal terminology concerning the meaning of odometer. By
common sense, the word “odometer” is concerned with counting from a dynam-
ical viewpoint, especially how one goes from n to n + 1. Most of the authors
restrict this term to the Cantor case (for instance [Dow05] or [Aar97], or even
to the dyadic case [Nad98]). One usually encounters “adding machine” for the
q-adic case. It seems that the term “odometer” regularly occurred from the
late 1970’s on, as a source of constructions in ergodic theory. Osikawa [Osi78]
built flows over an odometer to produce singular flows with given spectrum.
Ito [Ito78] built in the same spirit flows preserving the measure of maximal
entropy. Constructions over odometers have proved to be generic: Katznel-
son [Kat79] proved that if f is a C2−orientation-preserving diffeomorphism of
the circle whose rotation number has unbounded continued fraction coefficients,
then the system (f, µ), where µ is the Lebesgue measure, is orbit equivalent to
an odometer of product type (i.e., a Cantor odometer endowed with a prod-
uct probability measure). Host et al. showed in [HMP91] that every rank one
system may be written as a Rokhlin-Kakutani tower over an odometer. See
also [Fer97] for such constructions and an overview of rank one systems.

Example 5.2. Example 2.7, continued. For the Zeckendorf representation,
we have G2n − 1 = (01)n and G2n+1 − 1 = (10)n1 (immediate verification
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by induction). Therefore, 0ω possesses two preimages by τ , namely (01)ω and
(10)ω . This shows that there is no chance to extend the addition on N to a group
on the compactification (as it is the case for the q−adic or even for the Cantor
representation). Indeed, even the monoid law cannot be naturally extended:
take x = (01)ω and y = (10)ω . Then (01)n +(10)n = (G2n− 1)+ (G2n−1− 1) =
G2n+1−2 = 0(01)n but (01)n0+(10)n1 = (G2n−1)+(G2n+1−1) = G2n+2−2 =
10(01)n. We have two cluster points, which are the two elements of τ−2{0ω}.
The same phenomenon occurs for the general Ostrowski representation.

5.2. Carries tree. As outlined in the above paragraph, the structure of the
words Gn − 1 contains important information concerning the odometer. A
tree of carries was introduced in [BDIL00], which gives some visibility to this
information. The nodes of the tree are N ∪ {−1}, and −1 is the root of the
tree. There is an edge joining −1 and n if Gk+1 − 1 is a prefix of Gn+1 − 1 for
no k < n. For 0 ≤ m < n, there is an edge joining k and n if k is the greatest
integer such that Gk+1 − 1 is a prefix of Gn+1 − 1 (for simplicity, the integers
are here identified with their representation).

To give the tree is equivalent with giving a descent function D : N→ N∪{−1}
verifying D(n) < n for all n and: ∀n ∈ N, ∃k ∈ N : Dk(n) = −1. We have
D(n) = m if and only if m and n are joined by an edge. Given a tree of this
type, there exist infinitely many G-scales having this tree as a carries tree. The
smallest one with respect to the lexicographical order is unique and called a low
scale. It is given by Gm+1 = Gm + Gn+1 for D(m) = n. Therefore, one may
imagine any type of tree one wishes.

Example 5.3. cf. [BDIL00]

(1) Linear tree. If (Gn)n is a Cantor scale, then the edges join n and n+1
for all n.

(2) Fibonacci tree. For the Zeckendorf expansion, we have edges between
1 and 0 and between n and n+ 2 for all n.

(3) Hedgehog tree. Let q ≥ 2 and Gn+1 = qGn + 1. Then the language
is the set of words with letters in {0, 1, . . . , q} such that xn = q implies
xj = 0 for j < n. We have an edge joining −1 and n for all nodes
n 6= −1.

(4) Comb tree. It is given by D(0) = −1, and D(2n+2) = D(2n+1) = 2n
for any n ≥ 0. The corresponding low scale is G2n+j = 2j3n for n ≥ 0
and j = 1, 2.

The image below shows respectively the linear tree, the Fibonacci tree and the
comb tree.

−1 // 0 // 1 // 2 // 3 // ...

Figure 5.1. The linear tree

The preimages of 0ω correspond to the infinite branches of the carries tree:
to an infinite branch (n0, n1, n2, . . .), where n0 = −1 and D(nk+1) = nk cor-
responds x = lim(Gnk+1 − 1). In particular, for the scale with a hedgehog
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2 // 4 // 6 // ...
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1 // 3 // 5 // ...

Figure 5.2. The Fibonacci tree
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Figure 5.3. The hedgehog tree

−1 // 0 //
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2 //

��

4 //

��

...

1 3 5

Figure 5.4. The comb tree

tree, the preimage of 0ω is empty. The following proposition indicates a further
property of the odometer which can be read on the carries tree.

Definition 5.3. A tree is of finite type if all nodes have finitely many neigh-
bours.

Proposition 5.2. A carries tree is of finite type if and only if

∀n ∈ N ∪ {−1}, {m > n ; n and m are joined by an edge} is finite.

Then the set of discontinuity points of τ is ω(G)\τ1(0ω), where the omega limit
set ω(G) is the set of limit points in KG of the sequence (Gn−1)n. Furthermore,
the carries tree is of finite type if and only if τ is continuous.

Proof. By construction, ω(G) is not empty and compact. For x ∈ KG, let
m(x) = max{k ; Gk+1 − 1 is a prefix of x} ∈ {−1, 0, . . . ,+∞}. Clearly, τ is
continuous at any point x ∈ τ−1{0ω}. If x 6∈ ω(G), then there is a cylinder C
containing x and not intersecting ω(G), hencem(x) is bounded on C. Therefore,
τ is continous at x. If x ∈ ω(G), then x = lim(Gnk

− 1). If τ(x) 6= 0ω, then τ
is not continous at x, since τ(Gnk

− 1) = Gnk
, which tends to zero in KG.

Let x = lim(Gnk+1
− 1). Then the characterisation follows from the equiva-

lence of the following statements:
• Gm(x)+1 − 1 is a prefix of Gnk+1

− 1 for k large enough and limD(nk) =∞;
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• m(x) is finite;
• x is a discontinuity point of τ . �

For a low scale, the discontinuity points are exactly the Gn+1 − 1 such that
the node n is not of finite type.

Example 5.4. G-scales arising from β-numeration. Let β > 1 and d∗β(1) =

(an)n≥0 (see Example 2.2). Then define G0 = 1 and Gn+1 = a0Gn + a1Gn−1 +
· · ·+anG0 +1. Sequence (Gn)n is a scale of numeration whose compactification
coincides (up to a mirror symmetry) with the compactification Xβ (cf. [BM89]):
the lexicographical condition defining the language is

(εn, εn−1, . . . , ε0) <lex (a0, a1, . . .) (∀n ∈ N).

Furthermore, set

Z+
β = {wmβ

m + · · ·+ w0 ; m ∈ N, wm · · ·w0 ∈ Lβ}.
If S is the successor function S : Z+

β → Z+
β given by S(x) = min{y; y > x}, and

if ϕ(
∑
εnGn) =

∑
εnβ

n, then the diagram

N
τ−→ N

ϕ
y

yϕ
Z+

β −→
S

Z+
β

is commutative and ϕ is bijective. It has been proved in [GLT95] that the
odometer is continuous if and only if the sequence (an)n is purely periodic, that
is, if β is a simple Parry number. If the sequence is ultimately periodic with
period b1 · · · bs (β is a Parry number), then

ω(G) = {(bkbk+1 · · · bk+s−1)
ω; 1 ≤ k ≤ s− 1}.

The preimage of 0ω is either empty if β is not a simple Parry number, or equal
to ω(G) otherwise. If we have a0 = 2 and if a1a2 · · · is the Champernowne
number in base two [Cha33], then τ−1(0ω) = ∅ and ω(G) = {0, 1}N.

5.3. Metric properties. Da capo al fine subshifts. If (Gn)n is a Cantor
scale, the odometer is a translation on a compact group for which all orbits are
dense. In particular, (KG, τ) is uniquely ergodic and minimal. In general, a
natural question is whether there exists at least one τ -invariant measure on KG

and whether it is unique. Since KG is compact, the Krylov-Bogoliubov Theo-
rem (see for instance [Wal82]) asserts that there exists an invariant measure,
provided that τ is continuous. But the question remains open without this
assumption.

Results on invariant measures concerning special families can be found in [VS94]
for Ostrowski expansions (as in Example 2.7) and in [GLT95] for linear recur-
rent numeration systems arising from a simple β-number (as in Example 5.4).
For Ostrowski scales (Gn)n, it is proved that the odometer is metrically iso-
morphic to a rotation, hence in particular uniquely ergodic (see for instance
[DS80], [VS94] or [BL04]). Furthermore, Vershik and Sidorov give in [VS94]
the distribution of the coordinates and show that they form a non-homogenous
Markov chain with explicit transitions.
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For linear recurrent numeration systems, Grabner et al. [GLT95] use the
following characterisation of unique ergodicity: the means

N 7→ N−1
∑

m≤n<m+N

f ◦ τn

converge uniformly w.r.t. m when N tends to infinity for any continuous
function f : KG → C. A standard application of the Stone-Weierstraß the-
orem allows us to consider only G-multiplicative functions f depending on
finitely many coordinates (see Section 6.1 for the definition). A technical
lemma reduces the problem again to the study of convergence of the sequence
n 7→ G−1

n

∑
k<Gn

f(k). However, the sequence n 7→∑
k<Gn

f(k) ultimately sat-
isfies the same recurrence relation as (Gn)n, from which the desired convergence
is derived. The unique invariant probability measure is explicitly given.

Example 5.5. We consider the Zeckendorf expansion again (continuation of

Example 5.2). The golden ratio is denoted by % = (1 +
√

5)/2, the unique
τ invariant measure on KG is P. By unique ergodicity of the odometer, if
Xn is the n-th projection on the compactification, i.e., Xn : KG → {0, 1},
Xn(x0, x1, . . .) = xn, then

P(Xn = 0) = lim
s→∞

1

Fn+s
#{k < Fn+s ; εn(k) = 0}

= lim
s→∞

FnFs−1

Fn+s
=

Fn

%n+1
.

Similarily (or by computing 1−P(Xn = 0)), one finds P(Xn = 0) = Fn−1%
−n−2

and the transition matrix is
(

1/% 1

1/%2 0

)
. In particular, the sequence (Xn)n is a

homogenous Markov chain. For the most general case of scales arising from a
simple Parry β-number of degree d, one gets a homogenous Markov chain of
order d − 1. We refer to [DS02] and [Ste02] for more information, especially
applications to asymptotic studies of related arithmetical functions.

The arguments of [GLT95] can be extended, but with some technical diffi-
culties, to more general odometers. However, a quite different approach turns
out to be more powerful. We expose it below.

From now on, (Gn)n is a G-scale and (KG, τ) the associated odometer. For
x ∈ KG, we define a “valuation” ν(x) = νG(x) = min{k;xk 6= 0}, if x 6= 0ω,
and ν(0ω) = ω. Note that ω stands here for the first infinite ordinal and not
for the ω-limit set. Denote by Λ = N ∪ {ω} the one-point compactification of
N. The valuation yields a map AG : KG → ΛN defined by AG(x) = (ν(τnx))n≥0

(e.g., ν(Gm) = m). Let Am = ν(1)ν(2) · · · ν(Gm − 1) and A be the infinite
word defined by the concatenation of the sequence AG(1). Then, for n =∑

k≤` εk(n)Gn, the prefix of length n of A is

(5.6) (A``)
ε`(n)(A`−1(`− 1))ε`−1(n) · · · (A00)

ε0(n).

Let (XG, S) be the subshift associated with A and X
(0)
G = XG ∩ NN.
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Proposition 5.3 ([BDL02], Proposition 2). We have a commutative diagram

(5.7)

KG
τ−→ KG

AG

y
yAG

XG −→
S

XG

The map AG is Borelian. It is continuous if and only if τ is continuous. It

induces a bijection between K∞
G = KG \ OZ(0ω) and X

(0)
G , whose inverse map

is continuous. If τ is continous, this bijection is a homeomorphism (OZ(0ω) is
the two-sided orbit of 0ω).

The precise study of AG is not simple. Some elements can be found in [BDL02].
For example, the equality AG(KG) = XG holds if and only if N ∩ ω(G) = ∅.

Proposition 5.3 has important consequences.

Corollary 5.1. The quadruples (N \ {0}, τ,N, AG) and (K∞
G , τ,N, AG) are fi-

bred numeration systems. In the sense of Definition 2.6, they have the same
compactification XG on which the shift operator acts. The dynamical systems
(KG, τ) and (XG, S) are metrically conjugated. In particular, AG transports

shift-invariant measures supported by X
(0)
G to τ -invariant measures on KG.

The subshift (XG, S) is called the valumeter. It is conjugated to the odome-
ter. As noted before, G-scales cannot be immediatly associated with a fibred
numeration system. But the odometer is conjugated to such a numeration
system. Therefore, Proposition 5.3 is a way to understand G-scales and the
corresponding numeration as fibred. Moreover, the dynamical study of the
odometer reduces to that of the valumeter, which is a more pleasing object.
For instance, the shift operator is always continuous, even if the addition is
not.

Proposition 5.4. The following statements are equivalent:
1. the word A is recurrent (each factor occurs infinitely often);
2. the word A has a preimage in XG by the shift;

3. the set X
(0)
G is not countable;

4. the set KG is a Cantor space.
Furthermore, the valumeter is minimal if and only if the letter ω never ap-

pears infinitely many times with bounded gaps in elements of XG.

Example 5.6. If G is the scale of Example 5.3-(3) (see also Example 5.9, infra),
XG contains the element (ω, ω, . . .). Then the valumeter is not minimal.

The main difficulty in proving theorems on invariant measures on (XG, S)
comes from the fact that the alphabet Λ = N ∪ {ω} is not discrete, but it has
one non-isolated point - ω. The usual techniques lie on the ∗-weak compactness
of the set of probability measures. Indeed, ∗-weak convergence of a sequence
(µn)n of probability measures defined on XG expresses the convergence of the
sequence (µn(U))n, for cylinders of the type U = [a1, . . . , an], with an ∈ N or
an = {m ∈ Λ ; m ≥ n0}. But the relevant notion of convergence in this context
takes cylinders U = [a1, . . . , an] into account, with an ∈ Λ. Hence one has to



64

introduce a so-called soft topology, which is finer as the usual ∗-weak topology.
However, the following results can be proved.

Theorem 5.1 ([BDL02], Theorems 7 and 8). 1. If the series
∑
G−1

n converges,

then there exists a shift-invariant probability measure on XG supported by X
(0)
G .

2. If the sequence (Gn+1 − Gn)n tends to infinity and if the sequence m 7→
Gm

∑
k≥mG−1

k is bounded, then (X
(0)
G , S) is uniquely ergodic, and (KG, τ) as

well.
3. The odometer (KG, τ) has zero measure-theoretic entropy with respect to any
invariant measure. If τ is continous, it has zero topological entropy.

For instance, G-scales satisfying 1 < a < Gn+1/Gn < b < ∞ for all n
satisfy the second condition of Theorem 5.1. Example 9 of [BDL02] shows that
a continous odometer can have several invariant measures. The construction
below is not continuous, but more simple.

Example 5.7. Suppose that I, J and K realise a partition of N, and assume
that I and K have an upper-density of one, that is, lim supN−1#([0, N)∩ I) =
lim supN−1#([0, N) ∩K) = 1. Define Gn+1 = Gn + 1 if n ∈ I, Gn+1 = Gn + 2
if n ∈ K, and Gn+1 = anGn +1 for n ∈ J , where the an are chosen to make the
series

∑
G−1

n convergent. Then ω(G) = {0, 1}, and τ is discontinous at these
two points. Furthermore, the sequence N 7→ N−1

∑
n<N δ0 ◦τn has at least two

accumulation points. Hence, there exist at least two τ -invariant measures.

Remark 5.1. Downarowicz calls (XG, S) da capo al fine subshift.10 Consider

a triangular array of nonnegative integers (ε
(m)
j )0≤j≤m such that ε

(j)
j ≥ 1 for all

j and

ε
(m)
j ε

(m)
j−1 · · · ε

(m)
0 ≤lex ε

(j)
j ε

(j)
j−1 · · · ε

(j)
0

for all j ≤ m. Define recursively A0 to be the empty word and

Am+1 = (Amm)ε
(m)
m · · · (A00)

ε
(m)
0 .

The sequence of words (Am)m converges to an infinite word A. This sequence
is associated with the G-scale (Gn)n constructed recursively by G0 = 1 and

Gm+1 − 1 =
∑

j≤m ε
(m)
j Gj (i.e., ε

(m)
j = εj(Gm+1 − 1) for short). The last two

equations express (5.3) and (5.6), respectively. At each step, the song is played
da capo, where the mark fine is set at position Gm+1 −Gm − 1. If this number
is larger than Gm, the above formula instructs us to periodically repeat the
entire song until position Gm+1 − 1 is reached (usually the last repetition is
incomplete). In all cases, the note m+ 1 is added at the end.

5.4. Markov compacta. Let (rn)n be a sequence of nonnegative integers, rn ≥
2 for all n, and a sequence of 0− 1 matrices (M (n))n, where M (n) is a rn× rn+1

matrix. Build the Markov compactum

(5.8) K(M) =
{

(x0, x1, . . .) ∈ Π(G) ; ∀n ∈ N : M (n)
xn,xn+1

= 1
}
.

10“The expression da capo al fine is taken from musical terminology. Having played the
entire song the musicians must play it again from the start (da capo) to a certain spot marked
in the score as fine. [...] Following musical convention, the elements of Λ will be called
notes”. [Dow]
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K(M) is an analog of a non-stationary topological Markov chain. According
to Vershik, the adic transformation S associates with x ∈ K(M) its successor
with respect to the antipodal order (the definition is recalled in Section 5.1).
Then Vershik has proved in [Ver85] the following theorem (see also [DHS99] for
related results).

Theorem 5.2. Any ergodic automorphism of a Lebesgue space is metrically
isomorphic to some adic transformation.

Usually, the isomorphism is not explicit. If (Gn)n is a Cantor scale (with the
notation of Example 5.1), then the odometer (KG, τ) is an adic transformation,
where M (n) is the qn × qn+1 matrix containing only 1’s (lines and columns
being indexed from 0 included). Odometers that are adic transformations are
not difficult to characterise, they correspond to scales (Gn)n where expansions
of Gn − 1 satisfy

Gn+2 − 1 =





εn+1(Gn+2 − 1)Gn+1 + εn(Gn+2 − 1)Gn + (Gn − 1)

if εn(Gn+2 − 1) < εn(Gn+1 − 1);

εn+1(Gn+2 − 1)Gn+1 + (Gn+1 − 1)

if εn(Gn+2 − 1) = εn(Gn+1 − 1),

with the initial condition G1 = ε0(G1 − 1) + 1. The transition matrices M (n)

have εn(Gn+1 − 1) + 1 rows, εn+1(Gn+2 − 1) + 1 columns, and have zero coeffi-
cients mi,j if and only if j = εn+1(Gn+2 − 1) and i > εn(Gn+2 − 1).

Assume now that the odometer does not coincide with an adic transforma-
tion. In some simple cases, there is a simple isomorphism with such a dy-
namical system. It is in particular the case for the so-called Multinacci scale,
which generalises the Fibonacci one: Gk = k + 1 for k ≤ m and Gn+m =
Gn+m−1 +Gn+m−2 + · · ·+Gn+1 +Gn for all n (compare with Example 4.1).

Example 5.8. Consider the scale of Example 5.3-(3). The Markov compactum
K(M) built from the square (q+1)-dimensional matrices with mi,j = 0 if j = q

and i 6= q is formed by sequences qkεkεk+1 · · · with 0 ≤ εj < q. The map
ψ : K(M)→ KG defined by

ψ(0ω) = 0ω and ψ(qkεkεk+1 · · · ) = 0k−1qεkεk+1 · · ·
realises an isomorphism between the odometer and the adic system.

It should be noticed that Markov compacta are often described in terms
of paths in an infinite graph under the name of Bratelli diagrams. We refer
to [HPS92], [DHS99] and [Doo03].

5.5. Spectral properties. In general, the spectral structure of an odometer
associated with a given scale G = (Gn)n≥0, is far from being elucidated. We
present in this section both old and recent results. As above, let (KG, τ) be
the G-odometer. We assume that the sequence n 7→ Gn+1 −Gn is unbounded,
so KG is a Cantor set according to Proposition 5.1. The first step consists
in identifying odometers that admit an invariant measure µ. This is done in
Theorem 5.1.
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The next question is to characterise G-odometers which have a non-trivial
eigenvalue. We keep in mind a result due to Halmos which asserts that the
family of ergodic dynamical systems with discrete spectrum coincides with the
family of dynamical systems which are, up to an isomorphism, translations on
compact abelian groups with a dense orbit (and hence are ergodic) [Wal82]. We
only look at examples.

In base q (Example 2.1), the odometer corresponds to the scale Gn = qn

and is nothing but the translation x 7→ x + 1 on the compact group of q-adic
integers. The situation is analogous for Cantor scales (Example 5.1) for which
q-adic integers are replaced by very similar groups exposed supra.

Example 5.9. The scale given by Gn+1 = qGn +1 (for a positive integer q, q ≥
2) is the first example of a weak mixing odometer family. Furthermore, these
odometers are measure-theoretically isomorphic to a rank one transformation
of the unit interval, with the transformation being constructed by a cutting-
stacking method [DP02].

In case (Gn)n is given by a finite homogeneous linear recurrence coming
from a simple Parry number, as in Example 5.4, the odometer is continuous,
uniquely ergodic, but little is known about its spectral properties. The following
sufficient condition is given in [GLT95]. Let us say that the odometer satisfies
hypothesis (B) if there exists an integer b > 0 such that for all k and integer N
with G-expansion

ε0(N) · · · εk(N)0b+1εk+b+2(N) · · · ,

where the addition by Gm to N (with m ≥ k+ b+2) does not change the digits
ε0(N), . . . , εk(N). Then the odometer is measure-theoretically isomorphic to a
group rotation whose pure discrete spectrum is the group

{z ∈ C ; lim
n
zGn = 1}.

This result applies especially to the Multinacci scale. For the Fibonacci numer-
ation system, the measure theoretic conjugation map between the odometer and
the translation on the one-dimensional torus T with angle the golden number
% is exhibited in [VS94, BL04]; see also Example 2.7.

Example 5.10. The study of wild attractors involves some nice odometers. In
particular, the following scales Gn+1 = Gn+Gn−d are investigated in [BKSP96],
where it is proved that for d ≥ 4, the odometer is weakly mixing, but not mixing
(Theorem 3). Using the results of Host [Hos86] and Mauduit [Mau89], the
authors prove that the non-trivial eigenvalues e2πiρ (if there were any) are such
that ρ is irrational or would belong to Q(λ), for any root λ of the characteristic
polynomial P of the recurrence with a modulus of at least 1. They first treat
the case d ≡ 4 (mod 6), for which (x2 − x + 1) | P , hence a contradiction.
Case d 6≡ 4 (mod 6) is more complicated, since P is then irreducible. But the
Galois group of P is the whole symmetric group Sd+1 in this case, and they
can conclude with an argument of [Sol92a].
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6. Applications

6.1. Additive and multiplicative functions, sum-of-digits functions.
By analogy with the classical additive and multiplicative functions studied in
number theory, whose structure is based on the prime number decomposition,
one defines arithmetical functions constructed from their expansion with respect
to a numeration system. We only deal in the sequel with functions defined on
N.

Definition 6.1. For a G-scale G = (Gn)n and the corresponding digit maps
εn, a function f : N→ C is called G-additive if f(0) = 0, and if

(6.1) f

( ∞∑

k=0

εk(n)Gk

)
=

∞∑

k=0

f (εk(n)Gk) .

G-multiplicative functions g are defined in a similar way; they satisfy g(0) = 1
and

(6.2) f

( ∞∑

k=0

εk(n)Gk

)
=

∞∏

k=0

f (εk(n)Gk) .

The most popular G-additive function is the sum-of-digits function defined
by sG(n) =

∑
k εk(n). Of course, if f is a G-additive function then, for any real

number α, the function g = exp(iαf(·)) is G-multiplicative. For the scale Gn =
qn, we speak about q-additive and q-multiplicative functions. A less immediate
example of a q-multiplicative function is given by the Walsh functions: for
x ∈ Zq, wx(n) =

∏
k e(q

−1xkεk(n)), where e(x) = exp(2πix). In fact, these
functions wx are characters of the additive group Nq where the addition is done
in base q while ignoring carries. Multiplicative functions have a great interest in
harmonic analysis and ergodic theory. First, multiplicative functions of modulus
1 belong to the Wiener vector space [Wie27] of bounded sequences g : N → C

having a correlation function γg : Z→ C. Recall that,

γg(m) := lim
N

1

N

N−1∑

n=0

g(m+ n)g(n)

for m ≥ 0 and γg(m) = γg(−m) if m < 0. The correlation γg is positive definite
so that, by the classical Bochner-Herglotz Theorem, there exists a Borel measure
σg on the torus T, called spectral measure of g, such that γg(m) is the Fourier
transform σg(m) =

∫
T
e(mt)σg(dt) of σg. One of the interests of this definition

comes from Bertrandias’ inequality

lim sup
N

|N−1
∑

0≤n<N

g(n)e(−na)| ≤
√
σg({a})

and from the formula limN N−1
∑

0≤n<N |γg(n)|2 = σg⊗σg(∆), where ∆ is the

diagonal of T2 (see [Que87a] for a general reference on the subject). Secondly,
many interesting multiplicative functions are pseudo-random (i.e., the spectral
measure is continuous). To illustrate this notion, we quote the seminal paper
of Mendès France [MF67] where the following result is proved:
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Proposition 6.1. If x ∈ Zq \ N, the Walsh character wx is pseudo-random,
but it is not pseudo-random in the sense of Bass [Bas59] (that is, its correlation
function does not converge to 0 at infinity).

The spectral properties of q-multiplicative functions were extensively studied
during the 70’s, mainly in connection with the study of uniform distribution
modulo 1 (see [MF73, Coq75, Coq76, CKMF77, CMF77, Coq79], [Que79] in the
more general setting of Cantor scales, and [CRT83] for Ostrowski numeration).
The dynamical approach involving skew products is first developed in [Lia88],
where additional references can be found; it is exploited in [Lia87] for the study
of regularity of distributions.

The summation of the sum-of-digits function has been extensively studied.
It is not our purpose to draw up an exhaustive list of known results on it. We
just mention a few results, and then give some examples where the dynamics
plays a rôle.

In 1940, Bush [Bus40] proved the asymptotics

∑

n<N

sq(n) ∼ q − 1

2
N logq N,

– see also Bellman and Shapiro [BS48]. Trollope gave in [Tro68] an explicit ex-
pression of the error term for the binary expansion. Later on, Delange [Del75]
expressed the error term for arbitrary q as NF (logq N), where F is a 1-periodic
function, continuous and nowhere differentiable, and described its Fourier co-
efficients in terms of the Riemann zeta function. The power sum τd(N) =∑

0≤n<N (s2(n))d is studied by Stolarsky [Sto77]. He proved that τd(N) ∼
q−1
N 2−d(logq N)d. Coquet [Coq86] obtained more details on the error term in

the vein of Delange.
Many results have been proved about the normal distribution of additive

functions along subsequences. We only quote a few papers, proposing dif-
ferent directions [BK95, DFM03, DR05, Ste02]. Very recently, Mauduit and
Rivat [MR06] solved a long standing conjecture of Gelfond by proving that
the sum-of-digits function sq is uniformly distributed along the primes in the
residue classes mod m, with (m, q) = 1.

In [Del72], Delange proved that a real-valued q-additive function f admits an
asymptotic distribution function: the sequence of measuresN 7→ N−1

∑
n<N δf(n)

converges weakly to a probability measure if and only if both series

(6.3)
∞∑

j=0

(
q−1∑

ε=0

f(εqj)

)
and

∞∑

j=0

q−1∑

ε=0

f(εqj)2

converge. Delange used the characterisation of weak convergence due to Lévy:
the sequence of characteristic functions converges pointwise to a function, which
has to be continuous at 0. Therefore, the most important part of the proof
deals with estimates of means of q-multiplicative functions g. Let MN (g) =
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N−1
∑

n<N g(n). Then

Mq`(g) =
∏

j<`

∑

ε<q

f(εqk).

A typical result proved by Delange in this context is MN (g) −Mqn(g) = o(1)
for qn ≤ N < qn+1. This has been generalised to further numeration systems
by Coquet and others. For Cantor numeration systems, this result is generally
not true. For example, if Gn = n2Gn−1 and g(εGn) = −1 whenever ε = 1 and
1 otherwise, one checks that (MGn)n converges to some positive constant, al-
though (M2Gn)n tends to zero. Using a martingale argument, Mauclaire proved
the following:

Theorem 6.1 ([Mau00]). Assume (Gn)n is a Cantor numeration system with
compactification KG. For x =

∑∞
k=0 xkGk ∈ ZG, let xn =

∑n
k=0 xkGk. Then

1

xn

xn−1∑

k=0

g(k) − 1

Gn

Gn−1∑

k=0

g(k) = o(1)

holds for almost all x ∈ ZG with respect to Haar measure, when n tends to
infinity.

Barat and Grabner [BG] observed that if f is a real-valued q-additive func-
tion and fn : Zq → R defined by fn(

∑
xkq

k) = f(xnq
n), then the conditions

(6.3) can be rewritten as the convergence of
∑

E(fn) and
∑

E(f2
n), which is

indeed equivalent to the convergence of
∑

E(fn) and
∑
σ2(f2

n), by fn(0) = 0
and Cauchy-Schwartz inequality. Since the random variables fn are independent
and bounded, further conditions equivalent to (6.3) are almost sure convergence
of the series

∑
fn (Kolmogorov’s three series theorem) and convergence in dis-

tribution of the same series. Finally, convergence in the distribution of
∑
fn is

by definition the weak convergence of the sequence N 7→ q−N
∑

n<qN δf(n) to a
probability measure, where δa denotes the Dirac measure at point a.

After this analysis of the problem, one of the implications in Delange’s theo-
rem is trivial. The converse assumes the almost sure convergence of f =

∑
fn,

and is based on the pointwise ergodic theorem. The whole procedure applies to
more general numeration systems, even though the lack of independence for the
functions fn makes the work more involved. In the same direction, Manstavičius
developed in [Man97] a Kubilius model for G-additive functions w.r.t. Cantor
numeration systems.

Given a numeration scale (Gn)n and a unimodular G-multiplicative function
g, several authors have investigated the subshift associated with the sequence
(g(n))n, that we denote by F(g). Interesting results concerned with q-adic
numeration systems and functions of the type g(n) = e(αsq(n)) from a spectral
viewpoint are due to Kamae [Kam77], see also Queffélec [Que79].

Barat and Liardet consider in [BL04] the case of Ostrowski numeration (with
any Ostrowski scale G) and arbitrary G-multiplicative functions g with values
in the unit circle U ⊂ C. The odometer plays a key rôle in the whole study. It
is first proved that if ∆g(n) = g(n + 1)g(n)−1 is the first backward difference
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sequence, then the subshift F(∆g) is constant or almost topological isomor-
phic to the odometer (Kα, τ). A useful property of the sequence ∆g is that it
continuously extends (up to a countable set) to the whole compact space Kα.
Furthermore, the subset G1(g) of U of topological essential values is defined

as the decreasing intersection of the sets g([0n]). It turns out that G1(g) is a
group that contains the group of essential values E(∆g) of K. Schmidt [Sch77],
and that E(∆g) = G1(g) if and only if F(g) is uniquely ergodic. The topo-
logical essential values are also characterised in terms of compactification: for
a character χ ∈ Û, the restriction of χ to G1(g) is trivial if and only if χ ◦ g
extends continuously to Kα. In general, F(g) is topologically isomorphic to
a skew product F(∆g)�G1(ζ). In case of unique ergodicity, a consequence is
the well uniform distribution of the sequence (g(n))n in U. More precise results
were obtained by Lesigne and Mauduit in the case of q-adic numeration systems
(see [LM96]): let g be q-multiplicative and g(kqn) = exp(2iπθk

n) (k ≤ q − 1).
Denote by ‖ · ‖ the distance to the nearest integer. It is proved in [LM96] that
the three following statements are equivalent:
• For all q-adic rational number α and all rational integer d, the sequence

N 7→ N−1
∑N−1

n=0 (g(n +m))d exp(2iπ(n +m)α)) converges uniformly w.r.t. m.

• For all integer d, if ‖θk
n‖ tends to 0 when n tends to infinity, for all k between

1 and q − 1, then either the series of general term
∑

k≤q−1 ‖dθk
n‖ converges or

the series of general term
∑

k≤q−1 ‖dθk
n‖2 diverges.

• F(g) is strictly ergodic.

Let us end this section by going back to substitutions and automata. The
Dumont-Thomas numeration has been introduced in [DT89, DT93] in order to
get asymptotical estimations of summatory functions of the form

∑
1≤n≤N f(un),

where (un)n is a one-sided fixed point of a substitution over the finite alphabet
A, and f is a map defined on A with values in R. These estimates are deduced
from the self-similarity properties of the substitution via the Dumont-Thomas
numeration, and are shown to behave like sum-of-digits functions with weights
provided by the derivative of f . The sequences (f(un))n are currently called
substitutional sequences (see also Section 6.4 below).

For some particular substitution cases, such as constant length substitutions,
one recovers classical summatory functions associated, e.g., to the number of
1’s in the binary expansion of n (consider the Thue-Morse substitution), or
the number of 11’s (consider the Rudin-Shapiro substitution). A natural gen-
eralisation of these sequences has the form εn = (−1)un , where un counts the
number of occurrences of a given digital pattern in the q-ary expansion of n.
Such sequences are studied in [AL91] where particular attention is paid to
sums of the form SN =

∑
0≤n<N g(n)εn, with q-multiplicative functions g. It

is also proved that |SN | ∈ O(Nα) with α ∈ [1/2, 1] depending only on (εn)n.
In particular, for the Rudin-Shapiro sequence, one has α = 1/2. Note that
the spectral measure of the Rudin-shaprio sequence and its generalisations is
Lebesgue ([Que87b],[AL91]). For more details related to uniform distribution,
see [DT97b] and the references in [DT89, AS03].
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In the same vein, Rauzy studies in [Rau90] the asymptotic behaviour of sums∑
1≤n≤N 1[0,1/2]({nα}), where 1[0,1/2] is the indicator function of the interval

[0, 1/2], for algebraic/quadratic values of α. His strategy involves introducing a
fixed point of a substitution and considering orbits in some dynamical systems.

6.2. Diophantine approximation. We review some applications of Rauzy
fractals (see Section 4.3) associated with Pisot β-numeration and Pisot substi-
tutions. Rauzy fractals have, indeed, many applications in arithmetics; this was
one of the incentives for their introduction by Rauzy [Rau82, Rau88, Rau90].

A subset A of the d-dimensional torus Td with (Lebesgue) measure µ(A) is
said to be a bounded remainder set for the minimal translation Rα : x 7→ x+α,
defined on Td, if there exists C > 0, such that

∀N ∈ N, |#{0 ≤ n < N ; nα ∈ A} −Nµ(A)| ≤ C.
When d = 1, an interval of R/Z is a bounded remainder set if and only if its
length belongs to αZ + Z [Kes67]. In the higher-dimensional case, it is proved
in [Lia87] that there are no nontrivial rectangles which are bounded remainder
sets for ergodic translations on the torus. According to [Fer92, Rau84], Rauzy
fractals associated either with a Pisot unimodular substitution or with a Pisot
unit β-numeration provide efficient ways to construct bounded remainder sets
for toral translations, provided discrete spectrum holds.

A second application in Diophantine approximation consists in exhibiting
sequences of best approximations. Let β denote the Tribonacci number, i.e.,
the real root of X3 −X2 −X − 1. The Tribonacci sequence (Tn)n∈N is defined
as: T0 = 1, T1 = 2, T2 = 4 and for all n ∈ N, Tn+3 = Tn+2 + Tn+1 + Tn. It is
proved in [CHM01] (though this was probably already known to Rauzy) that the
rational numbers (Tn/Tn+1, Tn−1/Tn+1) provide the best possible simultaneous
approximation of (1/β, 1/β2) if we use the distance to the nearest integer defined
by a particular norm, i.e., the so-called Rauzy norm; recall that if Rd is endowed
with the norm || · ||, and if θ ∈ Td, then an integer q ≥ 1 is a best approximation
of θ if |||qθ||| < |||kθ||| for all 1 ≤ k ≤ q− 1, where ||| · ||| stands for the distance
to the nearest integer associated with the norm || · ||. Furthermore, the best
possible constant

inf{c ; q1/2|||q
(
1/β, 1/β2

)
||| < c for infinitely many q}

is proved in [CHM01] to be equal to (β2 + 2β+3)−1/2. This approach is gener-
alised in [HM06] to cubic Pisot numbers with complex conjugates satisfying the
finiteness property (F) (see Section 3.3). See also [IFHY03] for closely related
results on a class of cubic parameters.

Let α be an irrational real number. The local star discrepancy for the Kro-
necker sequence (nα)n∈N is defined as ∆∗

N (α, β) = |∑N−1
n=0 χ[0,β[({nα}) −Nβ|,

whereas the star discrepancy is defined as D∗
N (α) = sup0<β<1 ∆∗

N (α, β). Most
of the discrepancy results concerning Kronecker sequences were obtained by
using the Ostrowski numeration system (see Example 2.7); for more details and
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references, we refer to [KN74] and [DT97a]. A similar approach was devel-
oped in [Ada04], where an algorithm is proposed, based on Dumont-Thomas

numeration, which computes lim sup ∆∗
n(α,β)
log n , when α is a quadratic number and

β ∈ Q(α).

6.3. Computer arithmetics and cryptography. The aim of this section is
to briefly survey some applications of numeration systems to computer arith-
metics and cryptography. We have no claim to exhaustivity, we thus restrict
ourselves to cryptographical techniques based on numeration systems already
considered above.

We have focused so far on the unicity of representations for positional nu-
meration systems. Redundancy can proved to be very useful in computer arith-
metics for the parallelism of some basic operations. Indeed, signed-digit repre-
sentations in the continuation of Cauchy’s numeration (see Example 2.6) are of
a high interest in computer arithmetics, mostly because of the fact that the re-
dundancy that they induce allows the limitation of the propagation of the carry
when performing additions and subtractions. For more details, see [Avi61],
where properties of signed-digit representations are discussed with respect to
the operations of addition, subtraction, multiplication, division and roundoff.
More precisely, let q ≥ 2 be the base, and take as digit set D = {−a, . . . , a},
with 1 ≤ a ≤ q− 1. If 2a+1 ≥ q, then any integer in Z can be represented as a
finite sum

∑
i≥0 aiq

i, with ai ∈ D. If, furthermore 2a−1 ≥ q, then it is possible
to perform additions without carry propagation. The binary signed-digit repre-
sentation studied in Example 2.6 is a particular case with q = 2, D = {−1, 0, 1}
(but in this latter case the condition 2a− 1 ≥ q does not hold).

The non-adjacent signed binary expansion (see Example 2.6) was used by
Booth [Boo51] for facilitating multiplication in base 2. It is known to have,
on average, only one third of the digits that are different from zero. As a
consequence, it is used in public-key protocols on elliptic curves over finite
fields for the scalar mutiplication, i.e., for the evaluation of kP , where P is a
point of an elliptic curve (see [Bos01]). Indeed, if k is written in base 2 and if
the the curve is defined over F2, then the cost of the evaluation of kP directly
depends on the number of “doublings” and “addings” when performing the
classical double-and-add algorithm. It is thus particularly interesting to work
with binary representations with digits in a finite set with a minimal Hamming
weight, i.e., with a minimal number of non-zero digits. For additional details,
see, e.g., [GHPT05, GH06, HKPR05, HP01, HP03, Sol01], and the references
therein. Note that the redundancy of the signed binary expansion is used for
the protection from power analysis attacks against the computational part of
cyphering elliptic curves based algorithms, by infering with power consumption
during the calculation.

Redundant systems can also be used for the computation of elementary func-
tions such as the complex logarithm and the exponential [BKM94]. Inspired by
the signed-digit numeration, a redundant representation for complex numbers
that permits fast carry-free addition is introduced in [DHK93].

Another type of numeration system can have interesting applications, namely
the so-called residue number systems; these systems are modular systems [Knu98]
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based on the Chinese remainder lemma. This representation system is partic-
ularly efficient for the computation of operations on large integers, by allow-
ing the parallel distribution of integer computations on operators defined on
smaller integer values, namely the moduli. Indeed, classical public-key proto-
cols in cryptography (such as RSA, Diffie-Hellman, Fiat-Shamir) use modular
multiplication with large integers. Residue number systems can proved to be
very efficient in this framework (e.g., see [BDK98]). For applications of residue
number systems in signal processing and cryptography, see the survey [BM04]
and [BIJ05, BIN06, BINP03, BIP05, BIJ05]. For a general and recent reference
on elliptic cryptography, see [CFA+06].

The double base number system consists in representing positive integers as∑
i≥0 2si3bi , where ai, bi ≥ 0. This numeration system is here again highly

redundant, and has many applications in signal processing and cryptography;
see for instance [CS05, DIM05] for multiplication algorithms for elliptic curves
based on this double-base numeration, and the references therein. Let us note
that Ostrowki’s numeration system (see Example 2.7) is used in [BI04] to pro-
duce a greedy expansion for the double base number system. Similarly, a fast
algorithm for computing a lower bound on the distance between a straight
line and the points of a regular grid is given in [Lef99], see also [LMT98]. This
algorithm is used to find worst cases when trying to round correctly the elemen-
tary functions in floating-point arithmetic; this is the so-called Table Maker’s
Dilemma [LMT98].

6.4. Mathematical crystallography: Rauzy fractals and quasicrystals.
A set X ⊂ Rn is said to be uniformly discrete if there exists a positive real
number r such that for any x ∈ X, the open ball located at x of radius r
contains at most one point of X; a set X ⊂ Rn is said to be relatively dense if
there exists a positive real number R such that, for any x in Rn, the open ball
located at x of radius R contains at least one point of X. A subset of Rn is a
Delaunay set if it is uniformly discrete and relatively dense. A Delaunay set is
a Meyer set if X −X is a Delaunay set, and if there exists a finite set F such
that X −X ⊂ X +F [Mey72, Mey95]. This endows a Meyer set with a “quasi-
lattice” structure. Meyer sets play indeed the rôle of lattices in the crystalline
structure theory. A Meyer set [Mey72, Mey95] is in fact a mathematical model
for quasicrystals [Moo97, BM00].

An important issue in β-numeration deals with topological properties of the
set Zβ = {±wMβ

M + · · · + w0; M ∈ N, (wM · · ·w0) ∈ L}, where L is the
β-numeration language. If β is a Parry number, then Zβ is a Delaunay set
[Thu89]. More can be said when β is a Pisot number. Indeed, it is proved,
in [BFGK98] that if β is a Pisot number, then Zβ is a Meyer set. For some
families of numbers β (mainly Pisot quadratic units), an internal law can even
be produced by formalising the quasi-stability of Zβ under subtraction and
multiplication [BFGK98]. The β-numeration turns out to be a very efficient
and promising tool for the modeling of families of quasicrystals thanks to β-
grids [BFGK98, BFGK00, EFGVG04, GVG04].

The characterisation of the numbers β for which Zβ is uniformly discrete
or even a Meyer set has aroused a large interest. Observe that Zβ is always
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a discrete set at least. It can easily be seen that Zβ is uniformly discrete if
and only if the β-shift Xβ is specified, i.e., if the strings of zeros in dβ(1) have
bounded lengths; note that the set of specified real numbers β > 1 with a
noneventually periodic dβ(1) has Hausdorff dimension 1 according to [Sch97];
for more details, see for instance [Bla89, VG06a] and the discussion in [GVG04].
If Zβ is a Meyer set, then β is a Pisot or a Salem number [Mey95].

If β is a Pisot number, then Zβ is a Meyer set. A proof of this implication
is given in [GVG04] by exhibiting a cut and project scheme. A cut and project
scheme consists of a direct product Rk×H, k ≥ 1, where H is a locally compact
abelian group, and a lattice D in Rk×H, such that with respect to the natural
projections p0 : Rk ×H → H and p1 : Rk ×H → Rk:

(1) p0(D) is dense in H;
(2) p1 restricted to D is one-to-one on its image p1(D).

This cut and project scheme is denoted by (Rk ×H,D). A subset Γ of Rk is a
model set if there exists a cut and project scheme (Rk ×H,D) and a relatively
compact set Ω of H with a non-empty interior, such that Γ = {p1(P ); P ∈
D, p0(P ) ∈ Ω}. Set Γ is called the acceptance window of the cut and project
scheme. Meyer sets are proved to be subsets of model set of Rk, for some k ≥ 1,
that are relatively dense [Mey72, Mey95, Moo97]. For more details, see for
instance [BM00, EFGVG04, GVG06, LMS03, LW03, Sen95, VG06a, VG06b].
Note that there are close connections between such a generation process for
quasicrystals and lattice tilings for Pisot unimodular substitutions (e.g., see
[BS05b, VM00, VM01]).

Substitutional sequences (defined in Section 6.1) arising from numeration
systems play an interesting rôle in quasicrystal theory, and more precisely, in
the study of Schrödinger’s difference equation

ψn−1 + ψn+1 + vnψn = eψn,

where v = (vn)n∈Z is a real sequence called potential, and e ∈ R is the en-
ergy corresponding to the solution ψ = (ψn)n, if any one exists. A detailed
account of classical results on this subject is given in [Süt95]. Connected in-
teresting topics are exposed in [AG95]. Note that for a periodic potential,
then the Schrödinger operator Hv(ψ) := ψn−1 + ψn+1 + vnψn on `2(Z) has a
purely absolutely continuous spectrum, which is in contrast with Kotani’s The-
orem [Kot89]: if v is of finite range, not periodic but ergodic with associated
invariant measure ρ on the orbit closure F(v), then Hw has purely singular
spectrum for ρ-almost all w ∈ F(v). This leads to consider the particular case
of v itself. Sturmian sequences like vn = bnα+bc−b(n−1)α+bc (the Fibonacci

potential corresponds to α = (
√

5 − 1)/2) and doubling potential (issued from
the substitution a 7→ ab, b 7→ aa) are examples of potentials for which the spec-
trum of the Schrödinger operator is a Cantor set with zero Lebesgue measure
and the operator is purely singular continuous. The Thue-Morse sequence and
the Rudin-Shapiro sequence, for examples, are not completely elucidated with
respect to the general condition on the underlying substitution exhibited by
Bovier and Ghez [BG93]: this latter condition ensures the spectrum to have
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zero Lebesgue measure. Combinatorial properties of subtitutional sequences v
seem to play a fundamental rôle in the spectral nature of Hv.
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[Kát03] I. Kátai. Generalized number systems in Euclidean spaces. Math. Comput. Mod-
elling, 38(7-9):883–892, 2003.

[Kes67] H. Kesten. On a conjecture of Erdős and Szüsz related to uniform distribution
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[Kov01] A. Kovács. Generalized binary number systems. Ann. Univ. Sci. Budap.
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[Que87a] M. Queffélec. Substitution Dynamical Systems – Spectral Analysis, volume 1294
of Lecture Notes in Mathematics. Springer Verlag, 1987.
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Mathematics. Birkhäuser Verlag, Basel, 1995.



87

[Sch95b] F. Schweiger. Ergodic theory of fibred systems and metric number theory. Oxford
Science Publications. The Clarendon Press Oxford University Press, New York,
1995.

[Sch97] K. Scheicher. Kanonische Ziffernsysteme und Automaten. Grazer Math. Ber.,
333:1–17, 1997.

[Sch00a] K. Schmidt. Algebraic coding of expansive group automorphisms and two-sided
beta-shifts. Monatsh. Math., 129(1):37–61, 2000.

[Sch00b] F. Schweiger. Multidimensional continued fractions. Oxford Science Publica-
tions. Oxford University Press, Oxford, 2000.

[Sch06] K. Scheicher. β-expansions in algebraic function fields over finite fields. Finite
Fields and Their Applications, 2006. To appear.

[Sen95] M. Senechal. Quasicrystals and geometry. Cambridge University Press, Cam-
bridge, 1995.

[Sid01] N. Sidorov. Bijective and general arithmetic codings for Pisot toral automor-
phisms. J. Dynam. Control Systems, 7(4):447–472, 2001.

[Sid02] N. Sidorov. An arithmetic group associated with a Pisot unit, and its symbolic-
dynamical representation. Acta Arith., 101(3):199–213, 2002.

[Sid03] N. Sidorov. Arithmetic dynamics. In S. Bezuglyi et al., editor, Topics in dy-
namics and ergodic theory, volume 310 of Lond. Math. Soc. Lect. Note Ser.,
pages 145–189. Cambridge University Press, 2003.

[Sie03] A. Siegel. Représentation des systèmes dynamiques substitutifs non unimodu-
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[SV98] N. Sidorov and A. Vershik. Bijective arithmetic codings of the 2-torus, and

binary quadratic forms. J. Dynam. Cont. Sys., 4:365–400, 1998.
[SW99] R. Strichartz and Y. Wang. Geometry of self-affine tiles I. Indiana Univ. Math.

J., 48:1–23, 1999.
[SW02a] V. F. Sirvent and Y. Wang. Self-affine tiling via substitution dynamical systems

and Rauzy fractals. Pacific J. Math., 206(2):465–485, 2002.
[SW02b] V. F. Sirvent and Y. Wang. Self-affine tiling via substitution dynamical systems

and Rauzy fractals. Pacific J. Math., 206(2):465–485, 2002.
[Tha83] M. Thaler. Transformations on [0, 1] with infinite invariant measures. Israel J.

Math., 46(1-2):67–96, 1983.
[Thu89] W. Thurston. Groups, tilings and finite state automata. AMS Colloquium Lec-

ture Notes, 1989.
[Thu01] J. M. Thuswaldner. Attractors of invertible expanding linear operators and

number systems in Z
2. Publ. Math. (Debrecen), 58:423–440, 2001.

[Thu06] J. M. Thuswaldner. Unimodular Pisot substitutions and their associated tiles.
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LIRMM - CNRS UMR 5506- Université Montpellier II- 161 rue Ada -34392

Montpellier Cedex 5- France

E-mail address: berthe@lirmm.fr
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