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1 Introduction

Sturmian words are known to be codings of digitizations of an irrational
straight line [KR04,Loth02]. One could expect a higher-dimensional extension
of Sturmian words to correspond to a digitization of a hyperplane with irra-
tional normal vector. It is thus natural to consider the digitization scheme cor-
responding to the notion of standard arithmetical plane introduced in [Rev91]:
this notion consists in approximating a plane in R

3 by selecting points with
integral coordinates above and within a bounded distance of the plane; more
precisely, given v ∈ R

3, and (µ, ω) ∈ R
2, the lower (resp. upper) arithmetical

hyperplane P(v, µ, ω) is the set of points x ∈ Z
3 satisfying 0 ≤ 〈x,v〉+µ < ω

(resp. 0 < 〈x,v〉 + µ ≤ ω). If ω =
∑

|vi| = ‖v‖1, then P(v, µ, ω) is said to be
standard.

In this latter case, one approximates a plane with normal vector v ∈ R
3

by square faces oriented along the three coordinate planes. The union of all
these faces is called a stepped plane (see Figure 2); the standard discrete plane
P(v, µ, ‖v‖1) is then equal to the set of points with integer coordinates that
belong to the stepped plane; after orthogonal projection onto the plane x1 +
x2 + x3 = 0, one obtains a tiling of the plane with three kinds of lozenges,
namely the projections of the three possible unit faces. One can code this
projection over Z

2 by associating with each lozenge the name of the projected
face it corresponds to. These words are in fact three-letter two-dimensional
Sturmian words (see, e.g., [BV00]).

It is natural to try to endow arithmetic discrete planes with a relevant notion
of discrete surface. There is a vast literature devoted to discrete surface devel-
oped during the last 25 years with various approaches. For instance, in [MR81],
Morgenthaler and Rosenfeld introduce a notion of discrete surface based on a
graph theoretical approach using adjacency relations. Nevertheless, this defi-
nition is not relevant for arithmetic discrete planes. In [Fra96,KI00,KI03], the
authors show that an appropriate way to provide arithmetic discrete planes
with a discrete surface structure is to consider two-dimensional combinatorial
manifolds. For instance, Françon shows in [Fra96] that the 2-adjacency graph
of a rational standard arithmetic discrete plane has a natural underlying struc-
ture of two-dimensional combinatorial manifold.

As a particular case of this latter approach, functional discrete surfaces are
introduced in [Jam04,JP05]. A functional discrete surface is defined as a union
of pointed faces such that the orthogonal projection onto the diagonal plane
x1 + x2 + x3 = 0 induces an homeomorphism from the functional discrete
surface onto the diagonal plane. As done for stepped planes, one provides any
functional discrete surface with a two-dimensional coding over a three-letter al-
phabet. In the present paper, we refer functional discrete surfaces to functional
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stepped surfaces, since such objects are not discrete, in the sense that they are
not subsets of Z

3. Note that one could define more general stepped surfaces,
for instance approximations of spheres. Nevertheless, we restrict ourselves here
to functional surfaces, that is, surfaces that project homeomorphically onto
the diagonal plane and that can be described as graphs of piecewise affine
maps defined on the diagonal plane.

Let us recall that a substitution is a non-erasing morphism of the free monoid.
It acts naturally on all finite and infinite words. In particular, it maps a two-
sided word to a two-sided word. We are interested here in higher dimensional
analogues of substitutions. It is easy to define a two-dimensional substitution
which replaces each letter by a rectangle of fixed size. This is the analogue
of substitutions of constant length, and such a substitution acts on the set
of all two-dimensional words. For such examples, see for instance [AS03]. In
the present paper, we deal with substitutions of non-constant length; one
easily sees that such a substitution can never be defined on the set of all two-
dimensional words: if two letters are replaced by patterns of different shapes,
and if we consider two two-dimensional words that differ in exactly one place
by the corresponding letters, it is not possible that both two-dimensional words
are sent by the substitution to complete two-dimensional words. In fact, it is
not even clear that a two-dimensional substitution can act on at least one
two-dimensional word.

A notion of multidimensional substitution of non-constant
length acting on multidimensional words is studied in
[AI01,AIS01,ABI02,ABS04,Fer05b,Fer05c], inspired by the geometrical
formalism of [IO93,IO94]. According to [AI01], these multidimensional sub-
stitutions are proved to be well defined on multidimensional Sturmian words.
Given any usual unimodular substitution, then such a multidimensional
substitution can be associated with it (a substitution is said unimodular if the
determinant of its incidence matrix equals ±1). The aim of the present paper
is to explore the domain of definition of such multidimensional substitutions.
Our main result is the following: the image of a functional stepped surface
under the action of a two-dimensional substitution is still a functional stepped
surface.

Our proofs are based on a geometrical approach, using the generation of func-
tional stepped surfaces by flips. A flip is a classical notion in the study of
dimer tilings and lozenge tilings associated with the triangular lattice; e.g.,
see [Thu89]. It consists in a local reorganization of tiles that transforms a
tiling into another one. Such a reorganization can also be seen in the three-
dimensional space on the functional stepped surface itself. Suppose indeed
that a functional stepped surface contains three faces that form the lower
faces of a unit cube with integer vertices. By replacing these three faces by
the upper faces of this cube, one obtains another functional stepped surface

3



(see Figure 7). We prove that any functional stepped surface can be obtained
from a stepped plane by a sequence of flips, possibly infinite but locally finite,
in the sense that, for any bounded neighborhood of the origin in the diagonal
plane, there is only a finite number of flips whose domain has a projection
which intersects this neighborhood (see Theorem 12).

This paper is organized as follows. In Section 2 and 3, we give definitions for
stepped planes, functional stepped surfaces, their codings and review their ba-
sic properties. Section 4 is devoted to the generation of a functional stepped
surface by a locally finite sequence of flips performed on a given stepped plane.
Generalized substitutions associated with a unimodular substitution are in-
troduced in Section 5.1; we prove that the image of a stepped plane by such
a susbtitution is still a stepped plane, whose parameters can be explicitly
computed. Finally, in Section 5.2, we prove that generalized substitutions act
on the set of functional stepped surfaces. Furthermore the main result of the
present paper is proved, namely, the image of a functional stepped surface is
still a functional stepped surface.

We remark that we deal here with three types of objects: functional stepped
surfaces, lozenge tilings of the plane and two-dimensional words. There is a
straightforward relation between these objects: there is a one-to-one corre-
spondence between lozenge tilings and functional stepped surfaces containing
the origin, or functional stepped surfaces up to a translation by a multiple of
the diagonal vector (1, 1, 1) (of course, the translate of a stepped surface by
this vector gives the same lozenge tiling by projection): any tiling can be lifted
in a unique way, up to translation, to a functional stepped surface, as it is in-
tuitively clear by looking at a tiling (see for instance Figure 3 and Theorem 9).
The map which associates with a lozenge tiling the corresponding symbolic
coding is obviously one-to-one, but not onto; the set of words obtained in
this way can be completely described by a local condition (see [Jam04,JP05]).
Hence the multidimensional substitutions we deal with here can be equiv-
alently defined as acting either on functional stepped surfaces, or on their
codings as a two-dimensional word over a three-letter alphabet, or lastly, on
the corresponding tiling of the plane by lozenges. For the sake of clarity, we
choose here to focus on the first point of view, that is, on multidimensional
substitutions acting on faces of functional stepped surfaces.

2 Stepped planes

There are several ways to approximate planes by integer points such as illus-
trated in the survey [BCK04]. All these methods boil down to selecting integer
points within a bounded distance from the considered plane. Such objects are
called discrete planes. In the present paper, we deal with an approach inspired
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by the formalism of [AI01], see also [IO93,IO94,BV00,ABI02].

Let {e1, e2, e3} stand for the canonical basis of R
3. Let x ∈ Z

3 and i ∈ {1, 2, 3}.
The face (x, i?) is the subset of R

3 defined as follows (see Figure 1):

(x, i∗) =






x +

∑

j 6=i

λjej, λj ∈ [0, 1]






.

The integer i ∈ {1, 2, 3} is called the type of the face (x, i∗). We denote by
F = {(x, i∗), x ∈ Z

3, i ∈ {1, 2, 3}} the set of faces, and by G, the set of (finite
or infinite) unions of faces of F . Endowed with the union operation, G is a
monoid. We provide G with a distance as follows:

e1 e2

e3

0 0 0

Figure 1. An example of faces in R
3.

Definition 1 (Distance between two sets of faces) Given E and E ′ in
G, we set d(E , E ′) = 0 if E = E ′. Otherwise:

d(E , E ′) = 2−min{‖v‖∞, (v,i∗)⊆(E\E ′)∪(E ′\E)},

with ‖v‖∞ = max{|v1|, |v2|, |v3|}.

One easily checks that d : G × G −→ [0, 1] defines a distance on the set G.
Roughly speaking, the larger the balls B(0, r) = {x ∈ R

3, ‖x‖∞ < r} the sets
E and E ′ coincide on, the closer the sets E and E ′ are. In all that follows, G
stands for the union G provided with the topology induced by the distance d.

From now on, we denote by R
3
+ the set of vectors in R

3 with positive coordi-
nates. We then define stepped planes as a particular set of faces as follows:

Definition 2 (Stepped plane) Let v ∈ R
3
+ and µ ∈ R. The stepped plane

with normal vector v and translation parameter µ is the subset P(v, µ) of G
defined as follows (see Figure 2):

P(v, µ) =
3⋃

i=1

⋃

x∈Z3

0≤〈x,v〉+µ<vi

(x, i∗).

In other words, one has:

Proposition 1 ([IO93,IO94]) Let v ∈ R
3
+ and µ ∈ R. The stepped plane

P(v, µ) is the boundary of the union of the unit cubes intersecting the open
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Figure 2. A piece of a stepped plane in R
3.

half-space {x ∈ R
3, 〈v,x〉 + µ < 0}. The set P(v, µ) ∩ Z

3 is called the set of
vertices of P(v, µ).

Let ∆ be the diagonal plane of equation x1 + x2 + x3 = 0 and let π be the
orthogonal projection onto ∆. Note that π(Z3) is a lattice in ∆ with basis
π(e1), π(e2), and that π(e3) = −π(e1) − π(e2). If we use this basis for π(Z3),
then the restriction of π to Z

3 becomes the following map, also denoted by π

by abuse of notation:

π : Z
3 −→ Z

2, x 7−→ (x1 − x3, x2 − x3).

By construction, a stepped plane is a union of (closed) faces of type 1, 2 or 3.
Let us introduce the map v : F −→ Z

3 defined by v(x, i∗) = x+e1+· · ·+ei−1,
for i ∈ {1, 2, 3}, which associates with each face (x, i∗) a distinguished vertex
v(x, i∗). One proves that the set of vertices of a stepped plane is in one-to-
one correspondence with the set of distinguished vertices of the faces of this
stepped plane. More precisely, one gets:

Proposition 2 ([BV00,ABI02]) Let v ∈ R
3
+, µ ∈ R. One has

P(v, µ) ∩ Z
3 = {v(x, i∗), (x, i∗) ⊂ P(v, µ)},

and thus

∀(m1, m2) ∈ Z
2, ∃!(x, i∗) ∈ P(v, µ), π ◦ v(x, i∗) = (m1, m2).

Furthermore, the restriction of the projection map π to P(v, µ) is one-to-one
and onto ∆; the projections of the faces of the stepped plane P(v, µ) tile the
diagonal plane ∆ with three kinds of lozenges (see Figure 3).

Note that we recover here some classical notions of discrete geometry. Accord-
ing to J.-P. Reveillès’ terminology [Rev91], given v ∈ R

3 and (µ, ω) ∈ R
2, the

lower (resp. upper) arithmetical hyperplane P(v, µ, ω) is defined as the set of
points x ∈ Z

3 satisfying 0 ≤ 〈x,v〉 + µ < ω (resp. 0 < 〈x,v〉 + µ ≤ ω).
Moreover, if ω =

∑
|vi| = ‖v‖1, then P(v, µ, ω) is said to be standard,

while it is said to be naive if ω = max |vi| = ‖v‖∞. One checks that the
set {x ∈ Z

3, ∃i ∈ {1, 2, 3}, (x, i∗) ⊂ P(v, µ)} is the lower naive arithmetical
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Figure 3. From a stepped plane to a tiling of the plane ∆ by three kinds of lozenges.

plane P(v, µ, ‖v‖∞), whereas P(v, µ) ∩Z
3 is the lower standard arithmetical

plane P(v, µ, ‖v‖1) (see [CDS04]).

The bijection between the faces of P(v, µ) and the lattice Z
2 ensures us, that,

given a point (m1, m2) ∈ Z
2, there exists one and only one face (x, i∗) of

P(v, µ) such that π ◦ v(x, i∗) = (m1, m2) (see Proposition 2). We thus provide
each stepped plane with a two-dimensional coding as follows:

Definition 3 (Two-dimensional coding of a stepped plane) Let
P(v, µ) be a stepped plane with v ∈ R

3
+ and µ ∈ R. The two-dimensional cod-

ing of the stepped plane P(v, µ) is the two-dimensional word u ∈ {1, 2, 3}Z
2

defined by: for all (m1, m2) ∈ Z
2 and all i ∈ {1, 2, 3},

um1,m2 = i ⇐⇒ ∃(x, i∗) ⊂ P(v, µ) such that (m1, m2) = π ◦ v(x, i∗).

From Definition 3 and Proposition 2, an easy computation gives:

Proposition 3 ([BV00]) Let v ∈ R
3
+, µ ∈ R and u ∈ {1, 2, 3}Z2

be the
two-dimensional coding of the stepped plane P(v, µ). Let (m1, m2) ∈ Z

2 and
i ∈ {1, 2, 3}. Then um1,m2 = i if and only if:

m1v1 + m2v2 + µ mod v1 + v2 + v3 ∈ [v1 + · · ·+ vi−1, v1 + · · · + vi[.

Of course not all the two-dimensional words over the three-letter alphabet
{1, 2, 3} code a stepped plane. For instance, a word containing two consecutive
1’s and two consecutive 2’s in the same row cannot be the two-dimensional
coding of a stepped plane.

In order to generalize the notion of stepped plane to the one of functional
stepped surface (see Section 3), we use a slightly more precise property of the
restriction of the projection map π to P(v, µ).

Proposition 4 The restriction of the map π to P(v, µ) is a homeomorphism
onto the plane ∆.

Proof. We already know from Proposition 2 that the restriction of π to
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P(v, µ) is a bijection. The restriction of the map π to P(v, µ) is closed since
each compact subset of P(v, µ) is contained in a finite number of faces. This
implies that π−1 : ∆ −→ P(v, µ) is continuous. It follows that the map
π : P(v, µ) −→ ∆ is a homeomorphism.

3 Functional stepped surface

It is natural to try to extend the previous definitions and results to more
general objects:

Definition 4 (Stepped surface [Jam04]) A union S of faces (x, i∗),
where x ∈ Z

3 and i ∈ {1, 2, 3}, is called a functional stepped surface if the re-
striction of the projection map π to S is a homeomorphism. The set of integer
points included in S is called the set of vertices of S.

In particular, a stepped plane is a functional stepped surface, according to
Proposition 4. Furthermore, let us note that a functional stepped surface S is
a connected subset of R

3; indeed, it is the image of the connected set ∆ by a
continuous map.

Proposition 5 ([Jam04,JP05]) Let S be a functional stepped surface. One
has π(Z3) = π ◦ v({(x, i∗), (x, i∗) ⊂ S}). Furthermore, given (m1, m2) ∈ Z

2,
there exists a unique face (x, i∗) ⊂ S such that (m1, m2) = π ◦ v(x, i∗).

Proof. The proof is deduced from a simple case study.

The following coding is thus well defined:

Definition 5 (2D-coding of a stepped surface) A two-dimensional word
u ∈ {1, 2, 3}Z2

is said to be the coding of the functional stepped surface S if
for all (m1, m2) ∈ Z

2 and for every i ∈ {1, 2, 3}: um1,m2 = i ⇐⇒ ∃(x, i∗) ⊂
S such that (m1, m2) = π ◦ v(x, i∗).

Definition 6 (Lozenge tiling) A lozenge tiling of ∆ is defined as a subset
T of {π(x, i∗), (x, i?) ∈ F} such that the union of the lozenges contained in
T covers entirely ∆ and furthermore, the interiors of two distinct lozenges do
not intersect.

An example of a piece of a lozenge tiling is depicted in Figure 4. Let S be a
functional stepped surface. By definition, let us note that {π(x, i∗), (x, i∗) ⊂
S} is a lozenge tiling.

Proposition 6 A union of faces S ⊂ G is a functional stepped surface if and
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21 1
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1

1

2

1 1 122

3 3

Figure 4. From a lozenge tiling of ∆ to a 2D-word.

only if the restriction of π to S is a bijection onto ∆.

Proof. Let S be a union of faces such that the restriction of π to S is
a (continuous) bijection onto ∆. Every compact subset of ∆ is included in a
finite union L of lozenges of the form π(x, i∗), for (x, i∗) ⊂ S. Furthermore,
the preimage of L in S by π is a finite union of faces, by injectivity of π. We
deduce that the restriction of π to P(v, µ) is closed, and similarly as in the
proof of Proposition 4 that π : S −→ ∆ is a homeomorphism.

Figure 5. A stepped surface.

Proposition 7 Let S and S′ be two functional stepped surfaces. Then one
has:

S = S′ ⇔ S ∩ Z
3 = S′ ∩ Z

3.

In other words, a functional stepped surface is entirely characterized by the set
of its vertices.

Proof. Let S be a functional stepped surface and let u be the coding of
S (see Definition 5). It is sufficient to prove that, if the four vertices of a
face (x, i∗) belong to S, then the whole face (x, i∗) is included in S. On the
contrary and with no loss of generality, let us suppose that the four vertices
0, e2, e3 and e2 + e3 of the face (0, 1?) belong to S, and that the face (0, 1?)
is not included in S. One thus has u0,0 6= 1. If u0,0 = 2, then −e1 ∈ S and
π(−e1) = π(e2 + e3). Hence we obtain a contradiction with the bijectivity of
π : S −→ ∆. A similar investigation holds for u0,0 = 3, and for the general
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case of a face (x, i∗).

Definition 7 (i) Let x = (x1, x2, x3) ∈ Z
3 and x′ = (x′

1, x
′
2, x

′
3) ∈ Z

3 such
that π(x) = π(x′). We say that x is above x′ if x1 + x2 + x3 ≥ x′

1 + x′
2 + x′

3,
otherwise we say that x is below x′.
(ii) We then say that a functional stepped surface S is above (resp. below)
a stepped surface S′ if, for any x ∈ S ∩ Z

3 and x′ ∈ S′ ∩ Z
3 such that

π(v) = π(v′), x is above (resp. below) x′.

Notation 1 Given s ∈ Z
3, according to Proposition 7, one defines two par-

ticular functional stepped surfaces Ĉs and Čs by their set of vertices as follows:

Ĉs ∩ Z
3 = {s′ ∈ Z

3, (s1 − s′1)(s2 − s′2)(s3 − s′3) = 0 and s′i ≤ si, i ∈ {1, 2, 3}},

Čs ∩ Z
3 = {s′ ∈ Z

3, (s1 − s′1)(s2 − s′2)(s3 − s′3) = 0 and s′i ≥ si, i ∈ {1, 2, 3}}.

Figure 6. The stepped surfaces Ĉs (left) and Čs (right).

Proposition 8 Let S be a stepped surface and let s ∈ S∩Z
3. Then Ĉs (resp.

Čs) is below (resp. above) S.

Proof. Let S be a stepped surface, s ∈ S ∩ Z
3 and s′ ∈ Čs such that

s3 = s′3. The other cases can be similarly handled. We first introduce the
finite sequence of integer points (w′

k)0≤k≤s′1−s1+s′2−s2
with values in Čs defined

as follows:

w′
k =







s if k = 0,

s + ke1 if k ∈ {1, . . . , s′1 − s1},

s + (s′1 − s1)e1 + (k − (s′1 − s1))e2 if k ∈ {s′1 − s1 + 1, · · · ,

(s′1 − s1) + (s′2 − s2)}.

In particular, one notes that w′
s′1−s1+s′2−s2

= s′.

Let us now introduce the finite sequence of integer points (wk)0≤k≤s′1−s1+s′2−s2

with values in S defined as follows: for all k ∈ {0, · · · , s′1 − s1 + s′2 − s2},
π(wk) = π(w′

k). In other words, wk is the unique preimage in S of π(w′
k)
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by π. One has, for 0 ≤ k ≤ s′1 − s1 − 1, wk+1 − wk = e1. Recall that the
functional stepped surface S is a connected subset of R

3. Hence, w′
k+1 −

wk+1 ∈ {e1 + e2 + e3, 0}. Similarly, for s′1 − s1 ≤ k ≤ s′1 − s1 + s′2 − s2 − 1,
one has w′

k+1 −wk = e2, which also yields w′
k+1 −wk+1 ∈ {e1 + e2 + e3, 0}.

One thus gets that s′ = w′
s′1−s1+s′2−s2

is above ws′1−s1+s′2−s2
. We similarly prove

that Ĉs is below S.

According to [Thu89], it is well-known that for any lozenge tiling of a region R

of ∆ bounded by a polygonon, there exists a three-dimensional interpretation,
i.e., R can be lifted as a 2-skeleton of a cubical tiling of R

3. This result naturally
can be reformulated in terms of stepped surfaces.

Theorem 9 ([Thu89]) Let T be a lozenge tiling of ∆. Then there exists
a unique functional stepped surface S, up to translation by the vector e1 +
e2 + e3, of the form

⋃

π(x,i∗)∈T π(y(x), i∗) with (y(x), i∗) ∈ F , and π(x, i∗) =
π(y(x), i∗), for all (x, i∗) such that π(x, i∗) ∈ T . Such a functional stepped
surface is said to project onto T .

Proof. We follow here the proof of [Thu89]. Let T be a lozenge tiling of
∆. Let us note that there is no reason for the union of faces

⋃

π(x,i∗)∈T (x, i∗)
to be a functional stepped surface.

Let Γ be the lattice of ∆ generated by the vectors π(e1), π(e2), and π(e3).
Similarly as in the proof of Proposition 5 (e.g., see [Jam04,JP05]), one proves
by a finite case study that Γ is equal to the set of vertices of the lozenges
π(x, i∗), as well as to the set the points π ◦ v(x, i∗), for π(x, i∗) ∈ T . In other
words, we have chosen a distinguished vertex for each lozenge π(x, i∗): for any
γ ∈ Γ, there exists a unique i∗γ ∈ {1, 2, 3} such that i∗γ is the type of the
lozenge whose distinguished vertex is γ. One thus gets T = {π(γ, i∗γ), γ ∈
Γ}. Furthermore, there is a one-to-one correspondence between the lozenges
π(x, i∗) of T , and the faces (γ, i∗γ), for γ ∈ Γ. Hence a functional stepped
surface projects onto T if and only if it is of the form

⋃

γ∈Γ(xγ , i
∗
γ), with

π(xγ) = γ, for every γ ∈ Γ.

Let us first exhibit a functional stepped surface of the form
⋃

γ∈Γ(xγ , i
∗
γ) with

π(xγ) = γ, for every γ ∈ Γ. For that purpose, we introduce the oriented graph
G = (V, E) whose set of vertices is V = Γ, and whose set of edges E is equal to
the set of edges of the lozenges π(x, i∗), for π(x, i∗) ∈ T , endowed with both
orientations. We first define a weight function on the edges of G as follows: for
any γ, γ′ ∈ Γ such that the oriented edge e(γ, γ′) from γ to γ′ belongs to E,
then one sets w(γ, γ′) = 1, if γ′ = γ + π(e3), w(γ, γ′) = −1, if γ′ = γ − π(e3),
and 0, otherwise. One checks by induction on the lengths of the cycles of G that
the sum of the weights of a cycle is equal to zero. We thus can define a height
function on the vertices of G as follows: one sets h0 = 0, and for any γ, γ′ ∈ Γ
such that the edge with vertices γ and γ′ belongs to E, then hγ′ = hγ + 1, if
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γ′ = γ + π(e3), hγ′ = hγ − 1, if γ′ = γ − π(e3), and hγ′ = hγ, otherwise. One
checks that this function is well defined for any vertex of G since the graph G

is connected, and according to the properties of the weight function. We then
define for γ ∈ Γ, xγ as the point of R

3 equal to γ + hγ(e1 + e2 + e3), and i∗γ as
the type of the unique lozenge whose distinguished vertex has coordinates γ.
We now consider S =

⋃

γ∈Γ(xγ , i
∗
γ). It remains to prove that S is a functional

stepped surface. According to Proposition 6, this is a direct consequence of
the fact that the restriction of π to S is a bijection: one first notes that the
restriction of π to S∩Z

3 is one-to-one and onto Γ by construction; we conclude
similarly as in the proof of Proposition 7.

Let us consider now a functional stepped surface that contains the origin 0
of R

3 and that projects onto T ; it is of the form
⋃

γ∈Γ(yγ, i
∗
γ). with yγ − γ ∈

Z(e1 +e2 +e3), for all γ ∈ Γ. A functional stepped surface is connected, hence
one checks that, necessarily, yγ = γ + hγ.

4 Flips acting on stepped surfaces

Let us define, for s ∈ Z
3, two specific unions of faces (see Figure 7):

čs =
3⋃

i=1

(s, i∗) and ĉs =
3⋃

i=1

(s + ei, i
∗).

Let us note that a functional stepped surface cannot contain simultaneously ĉs
and čs. Furthermore, these two unions have the same boundary after projection
by π. Hence, thanks to Theorem 9, if a functional stepped surface contains one
of them, then by exchanging both unions, we obtain a functional stepped sur-
face. This leads us to define a simple operation on functional stepped surfaces,
the so-called flip, such as depicted in Figure 7:

Definition 8 (Flip) Let s ∈ Z
3. The flip map ϕs : G → G is defined as

follows: if a union of faces E ∈ G contains ĉs (resp. čs), then ϕs(E) is obtained
by replacing ĉs by čs (resp. ĉs by čs); otherwise, ϕs(E) = E .

s

Figure 7. The action of flip ϕs, for x ∈ Z3: čs (left) is exchanged with ĉs (right).

According to Theorem 9, we can perform a flip on a functional stepped surface
if and only if one can perform a classic flip in the sense, e.g., of [Thu89], on the
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lozenge tiling of the plane which corresponds to this functional stepped surface.

We are now interested in performing on a functional stepped surface, not only
one flip, but a sequence of flips. We first need to introduce the following notion:

Definition 9 (Locally finiteness) A sequence of flips (ϕsn
)n∈N∗ is said to

be locally finite if, for any n0 ∈ N
∗, the set {sn ∈ Z

3, π(sn) = π(sn0)} is
finite.

Let us recall that the set G of unions of faces is provided with the topology
induced by the distance d defined in Definition 1. Then one has:

Proposition 10 Let S be a functional stepped surface and (ϕsn
)n∈N? be a

locally finite sequence of flips such that the following limit exists:

S′ = lim
n→∞

ϕsn
◦ . . . ◦ ϕs1(S).

Then, S′ is a stepped surface.

Proof. By performing a single flip on a stepped surface, one easily checks
that one obtains a union of faces still homeomorphic by π to ∆, that is, a
functional stepped surface. The case of the action of a finite number of flips is
straightforward. Suppose now that we perform a locally finite sequence of flips
(ϕsn

)n∈N∗ on the functional stepped surface S such that (ϕsn
◦. . .◦ϕs1(S))n∈N∗

is convergent in the set G of unions of faces. According to Proposition 6, it is
sufficient to prove that the restriction of π to S′ is a bijection onto ∆. Let x
and y be two points of S′ such that π(x) = π(y). There exists n ∈ N such
that x,y ∈ ϕsn

◦ . . . ◦ ϕs1(S). Since ϕsn
◦ . . . ◦ ϕs1(S) is a functional stepped

surface, it follows that x = y. We thus have proved that the restriction of π

is one-to-one.
Let z ∈ ∆. Let A be a bounded subset of ∆ containing z. By the local
finiteness of the sequence (ϕsn

)n∈N? , there exists n0 ∈ N such that, if n ≥ n0,
then π(sn) 6∈ A. Take n1 ≥ n0; we also assume n1 large enough for S′ and
ϕsn1

◦ . . . ◦ ϕs1(S) to coincide on their intersection with π−1(A). Let y ∈
ϕsn1

◦ . . . ◦ϕs1(S) such that π(y) = z. Then one has y ∈ ϕsn
◦ . . . ◦ϕs1(S) for

all n ≥ n1, and thus y ∈ S′. We have proved that the restriction of π is onto,
which concludes the proof.

Thus, flips allow to transform functional stepped surfaces into functional
stepped surfaces. However, one cannot necessarily transform a given func-
tional stepped surface into another given one by a locally finite sequence of
flips. See Figure 8 for some examples of (un)accessibility by flips.

In order to characterize the (un)accessibility by flips between stepped surfaces,
we introduce the notion of shadows, illustrated in Figure 9:

13



Figure 8. One transform the first stepped surface into the second one, and conversely,
by performing a finite number of flips. A locally finite sequence of flips allows one to
transform the second stepped surface into the third one (we perform an infinite and
locally finite sequence of flips which rejects to the infinity the only face of type 1∗),
but the converse transformation is impossible (no flip can be performed). Lastly,
we can neither transform by flips the fourth stepped surface into the third one, nor
conversely.

Definition 10 (Shadows) Let S be a functional stepped surface. We define
three projection maps from R

3 to R
2 by:

and

π3 : (x1, x2, x3) 7−→ (x1, x2).

The shadows of S are respectively defined as the three images of the stepped
surface S by these maps.

Figure 9. The shadows of the stepped surfaces of Figure 8. The central stepped
surface has all its shadows included in the corresponding ones of the leftmost stepped
surface. The shadows of the rightmost stepped surface are neither included in the
shadow of the other stepped surfaces, nor contain them.

Considering the functional stepped surfaces of Figure 8, it is worth remarking
that one can transform one functional stepped surface into another one if and
only if the shadows of the first one contain the respective shadows of the
second one (see Figure 9). This turns out to be a general fact:

Proposition 11 Let S and S′ be two functional stepped surfaces. The fol-
lowing assertions are equivalent:
(i) There exists a locally finite sequence (ϕsn

)n∈N∗ of flips such that

S′ = lim
n→∞

ϕsn
◦ . . . ◦ ϕs1(S);

(ii) the three shadows of S′ are included in the corresponding shadows of S.

14



Proof. Since ĉs and čs have the same shadows, performing a flip does not
modify the shadows of a functional stepped surface. By performing a sequence
of flips, the shadows cannot be extended. However, note that they can be
reduced (recall the example of Figure 9). Thus, if the stepped surface S′ can
be obtained by performing a locally finite sequence of flips on the stepped
surface S, then the three shadows of S′ are included in the corresponding
shadows of S.
Conversely, let S′ and S be two functional stepped surfaces such that the
three shadows of S′ are included in the corresponding shadows of S. Let us
consider a vertex x ∈ S′ ∩ Z

3 of the functional stepped surface S′. With no
loss of generality, we suppose that x is above the stepped surface S, according
to Definition 7. We associate with this vertex x ∈ S′ the following union of
faces of S (see Figure 10):

Tx =
⋃

(x′,i∗)⊂S

x′
j
≤xj, j=1,2,3

(x′, i∗) ⊂ S.

Let us prove that Tx is a finite union of faces. By assumption, the shadow

Figure 10. Given a stepped surface S, a vertex x ∈ S′∩Z
3 defines a subset Tx of S

(in white). To Tx corresponds a lozenge tiling of a bounded and simply connected
domain of R

2.

π1(S
′) is included in the shadow π1(S). In particular, π1(x) ∈ π1(S): there

exists x′
1 ∈ Z such that (x′

1, x2, x3) ∈ S. Then, according to Proposition 8,
Tx ⊂ S is above Ĉ(x′

1,x2,x3). Consequently, for any x′′ ∈ Tx, one has x′′
2 ≤ x2

and x′′
3 ≤ x3; this yields that x′

1 ≤ x′′
1 ≤ x1. Similarly, there exist x′

2 ∈ Z and
x′

3 ∈ Z such (x1, x
′
2, x3) ∈ S and (x1, x2, x

′
3) ∈ S, and for any x′′ ∈ Tx, then

x′
2 ≤ x′′

2 ≤ x2 and x′
3 ≤ x′′

3 ≤ x3. Thus, Tx is bounded, that is, it is a finite
union of faces.
Let us now consider the union of faces T̂x which is included in Ĉx and satisfies
π(T̂x) = π(Tx) (see Figure 11, left). Similarly as Tx, T̂x is a finite union of
faces. A classic result of the theory of lozenge tilings (see, e.g., [Thu89]) yields
that the tiling corresponding to Tx can be transformed by performing a finite
number of flips into the tiling corresponding to T̂x. In terms of stepped surfaces,
this means that a finite number of flips transforms S (which contains Tx) into
a stepped surface which contains T̂x, hence the vertex x of S ′ (since x ∈ T̂x)
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too.
Now, we would like to perform such a finite number of flips for each x ∈ S′∩

s

Figure 11. By performing a finite number of flips, one transforms Tx (Figure 10,
right) into the union of faces T̂x (left, with white faces). We obtain a stepped surface
which contains the vertex x of S′, similarly as T̂x does (right). By performing such
a finite number of flips for each vertex of S ′, this transforms the stepped surface S

into the stepped surface S′.

Z
3, in order to transform by an infinite sequence of flips the functional stepped

surface S into a functional stepped surface which would contain all the vertices
S′ ∩ Z

3, that is, into S′, by Proposition 7. The only problem could be the
following one: by performing the flips to obtain a stepped surface containing
a given x in S′ ∩ Z

3, we could lose a vertex x′ of S′ ∩Z
3 previously obtained

by performing flips. However, the flips performed to obtain x ∈ S′ ∩ Z
3 are

performed below T̂x, in particular below S′ since T̂x ⊂ Ĉx and Ĉx is below S′

by Proposition 8. Hence, we do not lose the previously obtained vertices of
S′ ∩ Z

3, and the whole (infinite) sequence of flips thus transforms S into S′.

To conclude, we note that the finite number of flips performed to obtain a
stepped surface containing a vertex x of S′ ∩ Z

3 are performed at a bounded
distance from x. This yields that the previous sequence of flips (that is, the
one used to obtain the stepped surface containing all the vertices of S′ ∩ Z

3)
contains, for each π(x) ∈ π(S′ ∩ Z

3) = π(Z3), a finite number of flips ϕx′

such that π(x′) = π(x). Thus, this is a locally finite sequence of flips. This
completes the proof.

Hence, flips transform functional stepped surfaces into functional stepped sur-
faces, and we have obtained a necessary and sufficient condition - in terms of
shadows - under which a given functional stepped surface can be transformed
by flips into another one. In particular, we can use these results to give an
equivalent definition of functional stepped surfaces:

Theorem 12 A union of faces U ∈ G is a functional stepped surface if and
only if there exist a stepped plane P and a locally finite sequence of flips
(ϕsn

)n∈N such that
U = lim

n→∞
ϕsn

◦ . . . ◦ ϕs1(P).
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Proof. Since a stepped plane is a functional stepped surface, Proposition 10
yields that the limit of a sequence of functional stepped surfaces obtained by
performing a locally finite sequence of flips over a stepped plane is a functional
stepped surface. Conversely, it is easy to check that the three shadows of a
stepped plane with normal vector v ∈ R

3
+ such that v1v2v3 6= 0 are equal to

the whole plane R
2. Therefore, according to Proposition 11, one can transform

by flips any stepped plane P into a given stepped surface S.

5 Generalized substitutions

We first review in Section 5.1 the notion of generalized substitutions [AI01];
we then discuss in Section 5.2 the way they act on stepped planes and more
generally on functional stepped surfaces.

5.1 First definitions

Let A be a finite alphabet and let A? be the set of finite words over A. The
empty word is denoted by ε. A substitution is an endomorphism of the free-
monoid A? such that the image of every letter of A is non-empty. Such a
definition naturally extends to infinite or biinfinite words in AN and AZ.

Assume A = {1, 2, 3} and let σ be a substitution over A. The incidence matrix
Mσ of σ is the 3 × 3 matrix defined by:

Mσ = (|σ(j)|i)(i,j)∈{1,2,3}2 ,

where |σ(j)|i is the number of occurrences of the letter i in σ(j).

A substitution σ is then said to be unimodular if detMσ = ±1. In particular,
M−1

σ has integer coefficients. Let f : {1, 2, 3}? −→ N
3 be the map defined by

f(w) = t(|w|1, |w|2, |w|3). The map f is usually called the Parikh mapping and
is the homomorphism obtained by abelianization of the free monoid A?. One
has for every w ∈ {1, 2, 3}?, f(σ(w)) = Mσ · f(w).

Definition 11 (Generalized substitution [AI01]) Let σ be a unimodular
substitution over {1, 2, 3}. The generalized substitution Θ∗

σ : G −→ G is de-
fined by:

∀(v, i∗) ∈ F, Θ∗
σ (v, i∗) =

⋃

j,p,s

σ(j)=p·i·s

(

M−1
σ (v + f(s)), j∗

)
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and
∀E ∈ G, Θ∗

σ(E) =
⋃

(v,i∗)⊆E

Θ∗
σ ((v, i∗)) .

Example 1 Let σ : {1, 2, 3}? −→ {1, 2, 3}? be the substitution defined by
σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,

Mσ =










1 1 0

0 0 1

1 0 0










and M−1
σ =










0 0 1

1 0 −1

0 1 0










.

This yields (see Figure 12):

Θ∗
σ :

(v, 1∗) 7→ (M−1
σ v + e1 − e2, 1

∗) ∪ (M−1
σ v, 2∗)

(v, 2∗) 7→ (M−1
σ v, 3∗)

(v, 3∗) 7→ (M−1
σ v, 1∗).

Θσ
∗

Θσ
∗

Θσ
∗

Θσ
∗

Figure 12. Action of Θ∗
σ on single faces and on a given union of faces.

There is a natural measure µ defined on the elements of G, obtained by ex-
tension of the two-dimensional Lebesgue measure. Two elements E and E ′

of G are then said to be µ-disjoint if µ(E ∩ E ′) = 0. In other words, this
means that both sets do not intersect, except possibly on edges. A gener-
alized substitution does not necessarily map µ-disjoint faces to µ-disjoint
unions of faces. Consider in Example 1, Θ∗

σ(0, 1∗) ∩ Θ∗
σ(e3, 3

∗). One has
Θ∗

σ(0, 1∗) = (e1 − e2, 1
∗) ∪ (0, 2∗) and Θ∗

σ(e3, 3
∗) = (e1 − e2, 1

∗), whence
µ(Θ∗

σ(0, 1∗) ∩ Θ∗
σ(e3, 3

∗)) 6= 0.

Definition 12 A generalized substitution Θ∗
σ is said to act properly on a

union of faces E ⊂ G if µ-disjoint faces of E are mapped onto µ-disjoint
unions of faces.

Stepped planes are particularly interesting with respect to this property as
shown by Theorem 13 below. Let us assume that the substitution σ is prim-
itive, that is, Mσ admits a power with positive entries. Let v ∈ R

3
+ be a

Perron-Frobenius left eigenvector of Mσ having only positive entries. Then,
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the generalized substitution Θ∗
σ is proved in [AI01] to act properly on the

stepped plane P(v, 0), and to map it onto itself. More generally, one has the
following:

Theorem 13 ([Fer05b]) Let σ be a unimodular substitution over {1, 2, 3},
v ∈ R

3
+ and µ ∈ R. The generalized substitution Θ∗

σ acts properly on the
stepped plane P(v, µ); furthermore Θ∗

σ maps P(v, µ) onto the stepped plane
P(tMσv, µ).

5.2 Generalized substitutions and functional stepped surfaces

The aim of this section is to extend the previous results to functional stepped
surfaces, by proving the main theorem of this paper:

Theorem 14 Let σ be a unimodular substitution over {1, 2, 3}. The general-
ized substitution Θ∗

σ acts properly on every functional stepped surface. Further-
more, the image by Θ∗

σ of a functional stepped surface is a functional stepped
surface.

Let us note that a partial version of Theorem 14 has been stated in [ABJ05].
An illustration of Theorem 14 is depicted in Figure 13.

Figure 13. A generalized substitution maps a stepped surface onto a stepped surface.

Several lemmas are required to prove Theorem 14. Let us first prove the con-
tinuity of any generalized substitution as a map from G to G provided with
the distance d (see Definition 1):

Lemma 15 Let (En)n∈N ∈ GN be a convergent sequence in G. Then the se-
quence (Θ∗

σ(En))n∈N ∈ GN is a convergent sequence in G. One thus gets:

lim
n→∞

Θ∗
σ(En) = Θ∗

σ( lim
n→∞

En).
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Proof. Let E stand for the limit of the sequence (En)n∈N ∈ GN. Let us prove
that the sequence (Θ∗

σ(En))n∈N ∈ GN converges towards Θ∗
σ(E). For n ∈ N, let

rn be such that for all m ≥ rn, then Em and E contain the same faces in a
ball of radius n centered on 0. Let M = max{‖Mσf(s)‖∞, s suffix of σ(i), i ∈
{1, 2, 3}}. Let α be the modulus of the smallest eigenvalue of M−1

σ . Let us
recall that, for all x ∈ R

3, ‖M−1
σ x‖∞ ≥ α‖x‖∞. Let n > M , m ≥ rn, and

let (y, j∗) ⊆ Θ∗
σ(Em) such that ‖y‖∞ ≤ α(n − M). Let (x, i∗) ⊆ Em such

that (y, j∗) ⊆ Θ∗
σ(x, i∗); one has y = M−1

σ x + f(s), with σ(j) = p · i · s. One
deduces ‖x + Mσf(s)‖∞ ≤ n−M . Hence ‖x‖∞ ≤ n and (y, j∗) ⊆ Θ∗

σ(E). We
show in a similar way that any face (y, j∗) included in Θ∗

σ(E) and satisfying
‖y‖∞ ≤ α(n−M) is included in Θ∗

σ(Em). In other words, d(Θ∗(Em), Θ∗(E)) ≤
2−α(n−M), for every m ≥ rn, which concludes the proof.

The following lemma plays a key role by relating the action of generalized
susbtitutions to the action of flips, such as depicted in Figure 14:

Lemma 16 Let Θ∗
σ be a generalized substitution that acts properly on E ⊂ G.

Then, for any x ∈ Z
3, Θ∗

σ acts properly on ϕs(E), and furthermore, Θ∗
σ maps

ϕs(E) onto ϕM
−1
σ x(Θ

∗
σ(E)).

Proof. Let us first compute Θ∗
σ(čx). One has:

Θ∗
σ(čx)=

⋃

i=1,2,3

Θ∗
σ(x, i∗) =

⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + f(s)), j∗)

=
⋃

j,p′ 6=ε,s6=ε

σ(j)=p′·s

(M−1
σ (x + f(s)), j∗) ∪

⋃

j=1,2,3

(M−1
σ x, j∗)

︸ ︷︷ ︸

č
M

−1
σ x

.

and

Θ∗
σ(ĉx)=

⋃

i=1,2,3

Θ∗
σ(x + ei, i

∗) =
⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + ei + f(s)), j∗)

=
⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + f(i· s)), j∗) =

⋃

j,p,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ (x + f(σ(j))), j∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ (x + Mσej), j

∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ x + ej, j

∗)

︸ ︷︷ ︸

ĉ
M

−1
σ x

,
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since ei = f(i) and f(σ(j)) = Mσej. The desired result easily follows.

Θσ
∗

Θσ
∗

φ
x

φ
M xσ

−1

Figure 14. If two unions of faces differ by the flip ϕs, then their images by Θ∗
σ differ

by the flip ϕM−1
σ x

(one has here σ : 1 7→ 13, 2 7→ 1, 3 7→ 2).

Lemma 17 Let S be a stepped surface and (ϕxn
)n∈N∗ be a locally finite se-

quence of flips such that the sequence (ϕxn
◦ . . .◦ϕx1(S))n∈N∗ is convergent in

G. Then, the sequence of flips (ϕM−1
σ xn

)n∈N∗ is locally finite.

Proof. We set S′ = limn→∞ ϕxn
◦ . . . ◦ ϕx1(S). According to Proposition

10, S′ is a stepped surface. Suppose that (ϕM−1
σ xn

)n∈N∗ is not locally finite.
Let us prove that this implies S is not a stepped surface, which yields a
contradiction. We first assume w.l.o.g. that for all n ∈ N

∗, either čxn
or ĉxn

is
a subset of ϕxn

◦ . . . ◦ ϕx1(S). Since (ϕM−1
σ xn

)n∈N∗ is not locally finite, there
exists a subsequence (yn)n∈N∗ of (xn)n∈N∗ , with supn ‖yn‖ = ∞, such that:

∀(m, n) ∈ (N∗)2, π(M−1
σ ym) = π(M−1

σ yn).

If we denote by u the vector e1 + e2 + e3, this is equivalent to say that there
exists a sequence (λn) ∈ Z

N
∗
, with supn |λn| = ∞, such that:

∀n ∈ N
∗, M−1

σ (yn − y1) = λnu.

The matrix Mσ admits nonnegative entries, and at least one positive entry
in each row, since det(Mσ) 6= 0. Hence the vector Mσu has positive entries.
Moreover, one can assume supn λn = ∞ (the case infn λn = −∞ can be
similarly handled). In addition with yn = y1 + λnMσu, where (yn,1, yn,2, yn,3)
stands for the entries of yn, this yields:

lim
n→∞

yn,1 = lim
n→∞

yn,2 = lim
n→∞

yn,3 = ∞.

For all n, yn belongs to the stepped surface ϕxn
◦ . . . ◦ϕx1(S), which is hence

above Ĉyn
, according to Proposition 8. Let us consider the vertex an of this

stepped surface whose image by π is 0. This vertex has three identical entries,
say, an = (an, an, an) and is above Ĉyn

. Hence, an ≥ min(yn,1, yn,2, yn,3), and
therefore, limn an = ∞. Consider now the vertex a∞ = (a∞, a∞, a∞) of S′

whose image by π is 0. For n large enough, a∞ belongs to ϕxn
◦ . . . ◦ ϕx1(S)
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and a∞ 6= an, which yields a contradiction.

We are now in a position to prove Theorem 14:

Proof. Let us consider a stepped surface S. According to Theorem 12,
there exist a locally finite sequence of flips (ϕxn

)n∈N∗ and a stepped plane P

such that S can be obtained by performing on P the sequence of flips (ϕxn
):

S = lim
n→∞

ϕxn
◦ . . . ◦ ϕx1(P).

Then, Lemma 15 yields:

Θ∗
σ(S) = Θ∗

σ

(

lim
n→∞

ϕxn
◦ . . . ◦ ϕx1(P)

)

= lim
n→∞

Θ∗
σ(ϕxn

◦ . . . ◦ ϕx1(P)),

and by Lemma 16 one has:

Θ∗
σ(S) = lim

n→∞
ϕM−1

σ xn
◦ . . . ◦ ϕM−1

σ x1
(Θ∗

σ(P)).

By Theorem 13, Θ∗
σ maps properly P onto the stepped plane Θ∗

σ(P). The
sequence of flips (ϕM

−1
σ xn

)n is locally finite by Lemma 17, hence Theorem 12
yields that Θ∗

σ(S) is a stepped surface.
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[BV00] V. Berthé and L. Vuillon. Tilings and rotations on the torus: a two-
dimensional generalization of sturmian sequences. Discrete Math.,
223(1-3):27–53, 2000.

[CDS04] J.-M. Chassery, F. Dupont, I. Sivignon. Discrete surface
segmentation into discrete planes. In Reinhard Klette and Jovisa D.
Zunic, editors, Combinatorial Image Analysis, 10th International
Workshop, IWCIA 2004, Lecture Notes in Computer Science,
3322:458–473, 2005. Springer.

[Fer05a] T. Fernique. Bidimensional sturmian sequences and substitutions.
In Clelia de Felice and Antonio Restivo, editors, Developments in
Language Theory, DLT 2005, Lecture Notes in Computer Science,
3572:236–247, 2005. Springer.

[Fer05b] T. Fernique. Multidimensional sturmian words and substitutions.
Int. J. of Found. Comput. Sci., 17(4):575–600, 2006.

[Fer05c] T. Fernique. Substitutions on multidimensional words. Words 2005,
5th international conference on words. Publications du LACIM,
36:223–234, 2005.
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