Partiel de Mathématiques Discrètes

Mardi 29 novembre 2011

Durée: 1 heure

Les documents et téléphones portables ne sont pas autorisés.

Le barème est donné à titre indicatif.

Exercice 1: Automate (3 points)

Dessiner un automate déterministe correspondant à l'expression rationnelle $(a+b)(a^2b^*)^*$.

Exercice 2: Ambiguïté (5 points)

1. Montrer que la grammaire \mathcal{G} suivante est ambiguë

$$S \rightarrow aSb + aaSb + \varepsilon$$

- 2. (a) Donner une grammaire \mathcal{G}' non ambiguë équivalente à \mathcal{G} .
 - (b) Montrer que \mathcal{G} et \mathcal{G}' sont bien équivalentes.

Exercice 3: Grammaire algébrique (6 points)

Décrire le langage $L = L_{S_0}(\mathcal{G})$ sur $\{a, b, c\}$ engendré par la grammaire algébrique \mathcal{G} suivante :

$$\begin{cases}
S_0 \rightarrow aS_0a \mid bS_1b \mid \varepsilon \\
S_1 \rightarrow cS_1 \mid c
\end{cases}$$

Vous devez montrer que le langage décrit est bien celui engendré par \mathcal{G} .

Exercice 4 : Langage algébrique (6 points)

- 1. Montrer que le langage $L_1 = \{a^n b^m c^k \mid n > m + k \ge 0\}$ est algébrique.
- 2. A l'aide du lemme de l'étoile, montrer que $L_2 = \{a^n b^m \mid n > m \geqslant 0\}$ n'est pas rationnel.
- 3. En déduire que L_1 n'est pas rationnel.