
Rate vs. Buffer Size - Greedy Information
Gathering on the Line

ADI ROSÉN

CNRS & University of Paris 11

and

GABRIEL SCALOSUB

University of Toronto

We consider packet networks with limited buffer space at the nodes, and are interested in the

question of maximizing the number of packets that arrive to destination rather than being dropped

due to full buffers.
We initiate a more refined analysis of the throughput competitive ratio of admission and schedul-

ing policies in the Competitive Network Throughput model [Aiello et al. 2005], taking into account

not only the network size but also the buffer size and the injection rate of the traffic.
We specifically consider the problem of information gathering on the line, with limited buffer

space, under adversarial traffic. We examine how the buffer size and the injection rate of the traffic

affect the performance of the greedy protocol for this problem. We establish upper bounds on
the competitive ratio of the greedy protocol in terms of the network size, the buffer size, and the

adversary’s rate, and present lower bounds which are tight up to constant factors. These results

show, for example, that provisioning the network with sufficiently large buffers may substan-
tially improve the performance of the greedy protocol in some cases, whereas for some high-rate

adversaries, using larger buffers does not have any effect on the competitive ratio of the protocol.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—Packet-Switching Network, Store and Forward Networks; F.2.2 [Anal-
ysis of Algorithms and Problem Complexity]: Non Numerical Algorithms and Problems—

Routing and Layout, Sequencing and Scheduling; G.2.2 [Discrete Mathematics]: Graph The-

ory—Network Problems

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Buffer Management, Competitive Network Throughput,

Information Gathering, Online Algorithms, Competitive Analysis

1. INTRODUCTION

Throughput analysis of packet networks under adversarial settings has received
increasing attention in recent years. A large number of works have analyzed the

A preliminary version of this paper appeared in the Proceedings of the 19th Annual ACM Sym-

posium on Parallel Algorithms and Architectures (SPAA), pp. 305-314, 2007.
Author’s address: A. Rosén, CNRS & University of Paris 11, LRI Bât. 490, Université Paris Sud,
91405 Orsay, France (e-mail: adiro@lri.fr). G. Scalosub, Department of Computer Science,

University of Toronto, Toronto, ON, M5S 3G4, Canada (e-mail: scalosub@cs.toronto.edu).
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–25.



2 · A. Rosén and G. Scalosub

competitive ratios of admission and scheduling policies, measuring the throughput
of the system, when traffic is given by an adversary and buffer space is limited.
Such works have addressed single buffers, e.g., [Aiello et al. 2005; Kesselman et al.
2005; Andelman and Mansour 2003; Kesselman et al. 2004], switches, e.g., [Azar
and Richter 2005; Albers and Schmidt 2005; Azar and Litichevskey 2006; Azar
and Richter 2004; Kesselman and Rosén 2006], or whole networks, e.g., [Aiello
et al. 2003; Gordon and Rosén 2005; Angelov et al. 2005; Azar and Zachut 2005;
Kesselman et al. 2003]. The adversarial setting for this investigation is motivated by
theoretical interest as well as by practical needs, especially the increasing difficulty
in obtaining tractable and accurate probabilistic models for network traffic. The
setting of whole networks, which is especially relevant to the present work, has been
studied in recent years in the framework of the Competitive Network Throughput
(CNT) model, first introduced in [Aiello et al. 2003]. This model aims at evaluating
the throughput of online local-control packet admission and scheduling policies in
networks with adversarial traffic, when buffer space at the routers is limited. In this
model, packets are injected to various nodes over time, and the goal is to maximize
the overall number of packets delivered, rather than being dropped en-route due
to limited buffer space. First results for this model have been obtained in [Aiello
et al. 2003] and were followed by additional results in, e.g., [Angelov et al. 2005;
Azar and Zachut 2005; Gordon and Rosén 2005].

Most of the results mentioned above consider an arbitrary size for the buffers
and a non-restricted adversary which can inject any sequence of packets into the
network. They then give competitive ratios for various policies which are usually
independent of the buffer size and are a function of, e.g., the network size. This
approach is clearly of merit in order to obtain results that would hold for all sce-
narios. However, some results, especially in the context of the throughput of single
switches, lead to the question whether the size of the buffer influences the attainable
competitive ratios for the problem at hand. For example, Azar and Litichevskey
[Azar and Litichevskey 2006] consider the problem of scheduling a multi queue sys-
tem and present an algorithm whose competitive ratio depends on the size of the
buffers, such that as the buffer size increases, the performance guarantee of the
algorithm improves accordingly. In the context of the CNT model it is known that
if the buffer size is B = 1 then the greedy protocol (and in fact any online deter-
ministic protocol) on the line is Ω(n)-competitive [Aiello et al. 2003], while if B > 1
better competitive ratios (such as O(

√
n)) can be achieved by online local-control

protocols [Aiello et al. 2003; Angelov et al. 2005].

We initiate a study in the framework of the CNT model of the interplay between
the competitive ratio of admission and scheduling protocols and the size of the
buffers provided in the network - on one hand, and the injection rate of the traffic
into the network - on the other hand. We aim at studying the question of whether
providing the network with buffers whose sizes have a certain relationship with the
network size and/or the injection rate of the traffic, can influence the performance
of the network, measured by the competitive ratio of the deployed protocols.

As a first test case for this approach we study the topology of the line and the
problem of information gathering (i.e., all packets are destined to a single node in the
network). This question received considerable attention in the literature, especially
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 3

in the context of sensor networks and wireless ad-hoc networks, e.g., [Kothapalli
and Scheideler 2003; Florens et al. 2004; Kothapalli et al. 2005], as well as in the
context of the CNT model [Aiello et al. 2003; Azar and Zachut 2005; Angelov et al.
2005]. We give tight results, up to constant factors, for the competitive ratio of the
greedy policy for information gathering on the line, as a function of the size of the
line, n, the size of the buffer at each node B, and the injection rate of the adversary
controlling the traffic, r. Roughly speaking, this injection rate bounds from above
the amount of packets the adversary is allowed to inject into the network at every
time step (For a formal definition of the adversary see Section 1.3).

Our results give insight into the question of whether provisioning the network
with large buffers improves the performance of the system, measured by the through-
put competitive ratio of the protocol. We show, for example, that for relatively
small rates, increasing the buffer size available at the network’s nodes indeed en-
ables the greedy protocol to guarantee a better competitive ratio. However, this
improvement is limited, in the sense that increasing the buffer size beyond a cer-
tain size, no longer helps in guaranteeing a better competitive ratio. Another
consequence of our results is that when the adversary has rate r ≤ 1, if buffers
are sufficiently large, then the greedy protocol achieves optimal throughput, while
if the buffer size is too small, then the greedy protocol cannot achieve optimal
throughput. See Section 1.2 for a detailed description of our results.

We view our results as a first step towards a more refined analysis of throughput
competitiveness and towards providing guidelines on how should buffers be deployed
in the network in adversarial settings. We believe that the results presented here
give a better understanding of the role of buffer size in guaranteeing that simple
protocols perform well under adversarial traffic. This may enable the use of some
limited knowledge on the traffic pattern, even in an adversarial setting, which could
be harnessed into providing better performance guarantees.

1.1 Related Work

Problems of maximizing throughput given limited size buffers and against adver-
sarial traffic have been studied extensively in recent years e.g., [Aiello et al. 2005;
Kesselman et al. 2005; Andelman and Mansour 2003; Azar and Richter 2005; Albers
and Schmidt 2005; Azar and Litichevskey 2006; Kesselman et al. 2004]. See [Epstein
and Stee 2004] for a short survey. These works consider the task of maximizing the
number of packets transmitted from a single buffer, or from a switch, analyzing the
performance of the algorithms using competitive analysis.

In the context of whole networks, Aiello et al. [Aiello et al. 2003] introduced the
Competitive Network Throughput (CNT) model to study the performance of buffer
management and scheduling policies which are provided with limited buffer space
and against adversarial traffic. Aiello et al. show that some protocols (e.g., Nearest-
to-Go (NTG)) are competitive on all networks while some other protocols (e.g.,
Furthest-to-Go (FTG)) do not have bounded competitive ratio on all networks.
They further show that any greedy protocol on the line is O(n)-competitive, that
NTG is O(n2/3)-competitive, and that no greedy policy can have a competitive
ratio better than Ω(

√
n). These results hold for any buffer size B > 1. On the

other hand they show that if B = 1, any greedy policy has competitive ratio Ω(n).
Angelov et al. [Angelov et al. 2005] show that for the problem of information

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · A. Rosén and G. Scalosub

Range of r Subrange of r Result UB LB

r ≤ 1
r <

√
B−1

n
Optimal Thm. 7

r ≥
√

B−1
n

Θ
(
max

{
1, r
√

n
B

})
Thm. 8 Thm. 10

1 < r < min
{

B,
√

n
} r ≤ n

B
Θ
(√

rn
B

)
Thm. 14 Thm. 20

n
B

< r < min
{

B,
√

n
}

Θ(r) Thm. 15 Thm. 18

r ≥ min
{

B,
√

n
}

Θ(
√

n) [Angelov et al. 2005] Lem. 22

Table I. Summary of results for B ≥ 2, depending on the rate of the adversary. For
every range, the UB column refers to the proof of the upper bound and the LB
column refers to the proof of the lower bound.

gathering on the line (where the destination of all packets is the same node), the
greedy policy is O(

√
n)-competitive for any B > 1. Two works, one by Angelov

et al. [Angelov et al. 2005] and the other by Azar and Zachut [Azar and Zachut
2005], give centralized online algorithms for the throughput maximization problem
on the line, with polylogarithmic competitive ratio.

The fact that there is a connection between the competitive ratio of the system
and the available buffer size is suggested in a work by Azar and Litichevskey [Azar
and Litichevskey 2006]. They examine the competitive ratio of online algorithms
for the problem of maximizing the throughput of a system with m input ports
with buffers of size B and a single output port, where at each time step only
one buffer can send a packet. They give an online algorithm with competitive ratio

e
e−1

(
1 + O(log m)

B

)
, which approaches e

e−1 , as we provide the input ports with larger
buffers. For sufficiently large buffers, this improved upon the best known previous
result of 1.89 [Albers and Schmidt 2005].

The problem of information gathering was studied in the literature under different
models. For example, Kothapalli and Scheideler [Kothapalli and Scheideler 2003]
study this problem for the case that an adversary controls not only the injected
traffic but also the activation and deactivation of network links. They give results
for the line and the cycle showing tight bounds on the excess amount of buffer space
that the online algorithm needs (compared to the optimal adversary) in order to
deliver all injected packets.

1.2 Our Results

We give tight bounds on the competitive ratio of the greedy protocol for information
gathering on the line. We give upper bounds and lower bound on the competitive
ratios, as a function of the available buffer space in every node, the rate of the
adversary, and the size of the network. All our results are tight up to a constant
factor.

Table I summarizes the results for the case where the buffer size is at least
2 (Section 5 treats the special case where B = 1). For different ranges of the
adversary’s rate, r (see Section 1.3 for a formal definition of the rate), it presents
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 5

r=

√
B−1

n

r

B

√
n

1

n1 2

r= n
B

r=B

Θ(n)

Θ(rn)

Θ(
√

n)

Θ
(√

rn
B

)

Θ(r)

Θ
(
r
√

n
B

)

Optimal

Fig. 1. Graphic representation of results as a function of the buffer size B and the
adversary’s rate r. The X-axis represents the buffer size and the Y-axis represents
the adversary’s rate. The different regions are marked according to the competitive
ratio of the greedy policy, depending upon the pairing of buffer size and adversary
rate values.

the competitive ratio of the greedy policy. For a graphic representation of our
results, see Figure 1.

Note specifically that these results imply that for r ≤ 1, if the nodes are supplied
with sufficiently large buffers, then the greedy policy has optimal throughput. In
addition, our results imply that for r > 1, increasing the buffer can help guarantee
a better competitive ratio, up to a point where the competitive ratio no longer
depends upon the buffer size and becomes dependant solely of the adversary’s rate.

For the case where B = 1, we show that if the adversary has rate 1/n < r < 1,
then the competitive ratio of the greedy protocol is Θ(rn). For r ≤ 1/n the greedy
policy is optimal, whereas by the results in [Aiello et al. 2003], for r ≥ 1 it is
Θ(n)-competitive.

1.3 The Model

We model the network as a digraph G = (V,E), |V | = n, |E| = m. The nodes in the
graph represent routers and the edges represent unidirectional communication links.
The system is synchronous and time proceeds in discrete time steps. All packets in
the network have equal size and without loss of generality we assume they are of
unit size. Every link has unit capacity and can transmit at most one packet in each

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · A. Rosén and G. Scalosub

time step, along the direction of the link. In the tail of every link there is a buffer
of size B ≥ 1, which can store at most B packets. Packets are injected into the
network, each identified by its source node, its target node, and a predesignated
path which it is has to follow from source to destination. Every packet injected into
the network is injected at its source node, to be stored at the output port of the
first link in its path. Each time step comprises of two substeps: the forwarding-and-
injection substep followed by the switching substep. The forwarding-and-injection
substep works as follows: For each link, a packet may be selected from the output
buffer at the tail of the link and this packet is forwarded to the node at the head of
the link. At the same time, any number of packets can be injected into the node.
In the switching sub-step packets that have arrived (or injected) to the node can be
placed in the buffer of the next (or first) edge of their path. If there is not enough
space in the buffer to store all packets some packets must be dropped.

A greedy protocol is a protocol that never drops a packet unless the buffer in
which it has to be stored is full and always forwards a packet from a buffer unless
the buffer is empty. Protocols satisfying the latter property are sometimes referred
to as work conserving.

We focus our attention in this work on the directed line topology, i.e., the case
where V = {1, . . . , n} and E = {(i, i + 1) | i ∈ {1, . . . , n− 1}}. Note that in this
topology, any packet is characterized solely by its source node and target node.
Furthermore, in this topology, every node (save the last node) has a single outgoing
link. We will therefore sometime refer to a link’s output buffer, as the buffer at
its tail node. We further focus on the problem of Information Gathering on the
line, where the target node of all packets is the last node of the line, i.e., node n.
In this case, every packet is characterized solely by its source node. In this work
we consider greedy protocols for information gathering. Note that for this problem
on the line all greedy protocols are equivalent and we will therefore refer to the
greedy protocol in this case. Since all greedy protocols are equivalent, unless stated
differently, we assume for ease of analysis, without loss of generality, that when
there is a packet arriving at a node from its preceding node, this will be the packet
which is forwarded on the node’s outgoing link in the next time step. We call this
assumption the en-route assumption. Also observe that at every time step there is
at least space for one new packet in any buffer, since a packet is always sent from a
full buffer. We can therefore assume without loss of generality that all packets that
are forwarded on a link are stored in the buffer of the node at the head of the link
and never dropped. It follows that we can assume without loss of generality that
any packet accepted and stored in any source node buffer, is never dropped, i.e.,
packets are only dropped at injection. We further assume without loss of generality
that every node employs a FIFO policy when deciding which packet to forward at
a given time step when no packet has arrived on the incoming link.

We are interested in maximizing the throughput of the network, i.e., maximizing
the number of packets which are delivered to the last node of the line.

We assume the injections are governed by an adversary. Given any real number r,
an r-adversary can inject any sequence of packets as long as for every time interval
of length t, at most drte packets are injected into the network. Note that the
adversary is allowed to inject the packets to any nodes in the network and may well
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 7

inject more than one packet simultaneously, even to the same node.
We use competitive analysis to measure the performance of the greedy protocol,

under the various combinations of parameters n, B, and r. For the purpose of
analysis, we assume without loss of generality that the optimal algorithm never
drops a packet that it accepted at injection. Unless otherwise stated, we assume
that the buffer size B is at least 2. The special case of B = 1 is treated in Section
5.

2. PRELIMINARIES

In this section we present a basic observation, which will be used in various settings
in the performance analysis appearing in the following sections.

Given any node j and time t, we say a packet p resides in j at t if p is stored in
the buffer of node j at time t. Given any interval I we say p resides in j during I
if there exists some time t ∈ I, such that p resides in j at t. Furthermore, given
any time interval I, we say a packet p resides in the system during I, if there exists
some node j such that p resides in j during I.

The following observation gives a first insight into the performance of the greedy
protocol for our problem.

Observation 1. Consider the information gathering problem on the line of n
nodes. Given any time interval I = (t, t′], if there are K packets residing in the
system during I, then under the greedy protocol, by time t′ + K + (n− 1), at least
K packets are delivered.

Proof. Assume wlog that t = 0. We say a packet p initially resides at node
j during I, if j is the minimal index of a node such that p resides in j during I.
Assume the number of packets which initially reside in each node 1, . . . , n − 1 is
K1, . . . ,Kn−1, respectively, and let Mi =

∑i
j=1 Kj . We prove by induction on the

node number i that for every i = 1, . . . , n− 1, at least Mi packets traverse the edge
(i, i + 1) by time t′ + Mi + i, which by the definition of Mi implies that by time
t′ + K + (n− 1) at least K packets are delivered. For i = 1, the claim holds by the
fact that the algorithm is greedy and maintains FIFO order: any packet residing
in node 1 at any time s ∈ I, is forwarded by time s + K1 + 1 ≤ t′ + M1 + 1, as
required. For the induction step, consider node i ≥ 2. By the induction hypothesis,
at least Mi−1 packets traverse the edge (i − 1, i) by time t′ + Mi−1 + (i − 1).
By the en-route assumption, all these packets traverse the edge (i, i + 1) by time
t′+Mi−1+i. Let X be the number of packets residing in node i at time t′+Mi−1+i.
If X < Ki, then at least Ki−X additional packets traversed edge (i, i + 1) by time
Mi−1 + i. In any case, since the protocol is greedy and Mi = Mi−1 + Ki, at least
min(X, Ki) additional packets will traverse edge (i, i + 1) in between t′ + Mi−1 + i
and t′ + Mi−1 + i + Ki = t′ + Mi + i. Hence at least Mi packets traverse the edge
(i, i + 1) by time t′ + Mi + i.

3. LOW RATE ADVERSARIES

3.1 Large Buffers

In this section we show that for any adversary of rate r ≤ 1, if B ≥ max
{

2, dr2ne+ 1
}

then the greedy policy does not drop packets and is therefore optimal. To this end
ACM Journal Name, Vol. V, No. N, Month 20YY.



8 · A. Rosén and G. Scalosub

we analyze the system as if it has unbounded buffers and no packet is dropped and
give an upper bound of max

{
2, dr2ne+ 1

}
on the size of the buffers.

As a first step, we prove the following lemma, which bounds from above the
overall number of packets in the network, under the greedy policy:

Lemma 2. For any r-adversary r ≤ 1, under the greedy policy, at any time t,
the number of packets in the system is at most drne.

To see this, since all greedy protocols are equivalent for our problem, it is sufficient
to show that the above lemma holds for any specific greedy protocol. For analysis
purposes it is convenient to consider the Longest-in-System (LIS) protocol. Under
the LIS protocol, at any node i and time t where the buffer at i is not empty, the
packet forwarded at time t is the packet that has been in the system longest, among
all packets residing at i’s buffer at time t (where ties are broken arbitrarily).

The following lemma enables us to give a bound on the amount of time every
packet stays in the network:

Lemma 3. Under LIS, for any adversary of rate r ≤ 1, consider any packet p
injected to node i in time t. Then for every j ≥ i, p arrives to node j by time t + j
and p is sent from node j by time t + j + 1.

Proof. By induction on t. For t = 0, since r ≤ 1, p is the only packet injected
in time t, which implies it is the first packet injected. Due to the LIS policy, it
therefore traverses the network without being delayed at any node. Hence, for every
j ≥ i, it arrives to node j at time t + (j − i) ≤ t + j and leaves in the next time
step, i.e. in time t + (j − i) + 1 ≤ t + j + 1.

For the induction step on t, we prove the result by induction on j. For j = i,
the first part of the claim trivially holds. By the induction hypothesis on t, every
packet q injected to any node v ≤ j in time t′ < t would leave node j by time
t′ + j + 1 ≤ t + j, hence LIS would schedule p to be sent from node j by time
t + j + 1.

For the induction step, consider any j > i. By the induction hypothesis on j− 1,
p is sent from node j − 1 by time t + (j − 1) + 1 = t + j, and therefore arrives to
node j by time t + j. By the induction hypothesis on t, every packet q injected to
any node v ≤ j in time t′ < t would leave node j by time t′ + j + 1 ≤ t + j, hence
LIS would schedule p to be sent from node j by time t + j + 1.

Applying the above lemma with j = n we obtain the following corollary:

Corollary 4. Under LIS, for any adversary of rate r ≤ 1, every packet is in
the system for at most n time units.

The following lemma gives an upper bound on the overall number of packets in
the network at any given time under the LIS protocol.

Lemma 5. Under LIS, for any adversary of rate r ≤ 1, and at any time t, the
number of packets in the system in time t is at most drne.

Proof. Consider any time t. By Corollary 4, any packet injected to the system
before time t − n has already been delivered. Hence the system holds only pack-
ets injected during the interval (t − n, t]. By the definition of the adversary, the
maximum number of packets injected during such an interval is at most drne.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 9

Combining the above lemma with the fact that all greedy policies are equivalent,
we conclude the proof of Lemma 2. Note that Lemma 2 guarantees that for any
r-adversary such that r ≤ 1, if B ≥ drne then any greedy policy does not drop
packets and hence any greedy policy is optimal. In what follows we show that the
same result holds even for buffers of smaller size.

Lemma 6. For any adversary of rate r ≤ 1 and any greedy policy, at any time t
there are at most max

{
2, dr2ne+ 1

}
packets in every buffer.

Proof. Let i be any node in the system. If at the beginning of time step t there
are more than 2 packets at i’s buffer, then at time t − 1 the node was not empty
(since at most 2 packets can arrive in each time step). Let t′ be the latest time
prior to t where the buffer is empty. Without loss of generality assume t′ = 0. We
distinguish between two cases:

Case 1: t ≤ dnre:
In this case, at time t the number of packets in node i is at most

t + dtre − t = dtre ≤ dr2ne+ 1.

Case 2: t > dnre:
Let ε = dtre − tr and note that 0 ≤ ε < 1. At time t the number of packets in

node i is at most

dnre+ dtre − t = dnre+ t(r − 1) + ε
= dnre − t(1− r) + ε
< dnre − dnre(1− r) + ε
≤ dnrer + 1,

where the first term follows from Lemma 2 and the inequality follows from the fact
that r ≤ 1. Since any integer m which satisfies m < drner also satisfies m ≤ dr2ne,
it follows that the number of packets in node i is at most dr2ne+ 1.

The following theorem is an immediate consequence of the above lemma:

Theorem 7. For any r-adversary such that r ≤ 1, if B ≥ max
{

2, dr2ne+ 1
}

then the greedy policy does not drop packets and thus is optimal.

3.2 Small Buffers

In this section we give tight bounds on the competitive ratio of the greedy policy
against any r-adversary with r ≤ 1, in a network which is supplied with relatively
small buffers.

3.2.1 Upper Bound

Theorem 8. If 2 ≤ B ≤ n and the packets are injected by an r-adversary with√
B−1

n ≤ r ≤ 1, then the greedy policy is O(max
{

1, r
√

n
B

}
)-competitive.

Proof. For the purpose of the analysis we divide time into a sequence of intervals
P0, K0, P1, K1, P2, K2, . . .. Intervals Pi are defined by the number of packets that
the adversary accepts. Intervals Ki will be fixed length intervals of length k = cn,
for some suitably chosen constant c. Formally, let Pi = [si, ti + 1) and Ki =
[ti + 1, ti + k) where

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · A. Rosén and G. Scalosub

(1) s0 = 0 and for i > 1, si = ti−1 + k, and
(2) ti is the earliest time after si for which the adversary accepts 3 · drne packets

during the interval [si, ti + 1).

We start by showing that we can identify Ω(min{rn,
√

nB}) distinct packets
residing in the buffers of the greedy policy during Pi.

If the greedy policy accepts at least drne of the new packets injected by the
adversary during Pi then we have at least Ω(rn) packets residing in the buffers of
the greedy policy during Pi.

Assume now that the greedy policy does not accept at least drne of the new
packets injected by the adversary during Pi. It follows that the greedy policy drops
during Pi at least 2 · drne packets.

We say that a node j is bad in Pi if at least one packet was dropped in j during Pi.
Note that if a packet is dropped in j at time t, then the buffer at that node is full
at that time, and furthermore, due to the en-route assumption, at least B− 1 ≥ B

2
of the packets residing in node j at time t have been injected to j itself. Let x
denote the number of bad nodes in Pi. If x ≥

√
n
B , then we can identify at least

x · B
2 = Ω(

√
nB) distinct packets residing in the buffers of the greedy policy during

Pi. Assume now that x <
√

n
B . Recall that the greedy policy has dropped at least

2 · drne packets during Pi, hence in at least one of the bad nodes the greedy policy
has dropped at least 2·drne√

n
B

≥ 2r
√

nB packets. Observe that by the assumption

that r ≥
√

B−1
n we are guaranteed to have 2r

√
nB ≥ 2. We now use the following

lemma, whose proof appears later in the sequel.

Lemma 9. Any bad node j such that at least q ≥ 2 packets were dropped at j
during Pi, forwards (q − 1)b1/rc packets during Pi.

It follows that there is at least one bad node from which at least

(2r
√

nB − 1)b1/rc = Ω(
√

nB)

packets have been forwarded during Pi, which means that we can identify Ω(
√

nB)
distinct packets residing in the buffers of the greedy policy during Pi.

We can therefore conclude that there are K = Ω(min{rn,
√

nB}) distinct packets
residing in the buffers of the greedy policy during Pi.

By the fact that B ≤ n, we have K = O(n). Using Observation 1 this implies
that there exists some constant c such that by taking k = cn we are guaranteed to
deliver at least K packets by the end of the interval Pi ∪Ki.

As to the adversary, note that by the choice of k - the length of interval Ki - the
overall number of packets accepted by the adversary during Pi ∪Ki is bounded by
3 · drne+ drke = O(rn).

For any j ≥ 0, summing the above over all i, we obtain a lower bound of

Ω(min{jrn, j
√

nB})
on the number of packets delivered by the greedy policy by the end of Kj , where
on the other hand the same summation yields an upper bound of O(jrn) on the
number of packets accepted by the adversary by the end of interval Kj (which
clearly also bounds from above the number of packets delivered by the adversary
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 11

by the end of Kj). It therefore follows that for every j, the ratio between the
number of packets delivered by the adversary by the end of Kj and the number
of packets delivered by the greedy policy by the end of Kj is O(max

{
1, r
√

n
B

}
),

which completes the proof.

Proof of Lemma 9. By the assumption, we know that at least 2 packets were
dropped at node j. Consider any two consecutive events in which a packet was
dropped at node j and assume without loss of generality that the first drop was at
time 0 and the second drop was at time t. Note that for every node j′ and time t′, a
packet is dropped at the switching substep of time t′ only when there has been both
an injection into node j′ and a forwarding to node j′ in the forwarding-and-injection
substep of time t′, and the buffer of j′ is full at the beginning of the forwarding-
and-injection substep. Furthermore, since every two consecutive injections are at
least b1/rc ≥ 1 time apart, we necessarily have t > 0.

If the buffer at node j is full during the entire interval (0, t], then clearly at least
t ≥ b1/rc packets have been forwarded from node j under the greedy policy during
this interval. Otherwise, let 0 < s < t be the last time prior to t in which the buffer
at node j was not full at the end of time slot s. By the maximality of s and the
fact that r ≤ 1, it follows that at the end of time s there were B − 1 packets in
the buffer of node j. Furthermore, at the forwarding-and-injection substep of time
s + 1 one packet arrived to node j on its incoming link and one packet was injected
to node j. By the fact that inter-injection time is at least b1/rc, it follows that the
interval (s, t] is of length at least b1/rc and since the buffer was always full during
this interval, it follows that one packet was forwarded from node j in every time
step in this interval, i.e., at least b1/rc packets were forwarded from node j in the
interval (0, t].

Since this holds for every two consecutive events of packets being dropped at j
and since by the assumption on j there were at least q ≥ 2 packets dropped at j
during Pi, we conclude that at least (q−1)b1/rc packets were forwarded from node
j during Pi, as required.

3.2.2 Lower Bound. In this section we prove that the upper bound given in
Theorem 8 is tight up to a constant factor. Note that for any constant 0 < c < 1
and any r-adversary such that r ≤ 1, if cr2n ≤ B ≤ dr2ne then Theorem 8
guarantees that the greedy policy is O(1)-competitive. Therefore it is enough to
prove our lower bound for buffers of size less than 1

16r2n. For simplicity, we assume
here that the nodes are numbered 0, . . . , n− 1.

Theorem 10. For any r ≤ 1, if 2 ≤ B < 1
16r2n, then there exists an r-adversary

A such that the ratio between the throughput of A and that of the greedy policy is
Ω
(
r
√

n
B

)
.

Proof. The adversary will inject packets in two epochs. We will consider the
line as divided into two blocks, where the second block is divided into segments. In
the first epoch the adversary injects only to the first block, whereas in the second
epoch the adversary injects only to the second block. The goal of the injection
sequence in the first epoch is to generate a continuous sequence of packets arriving
at the second block. The second block is divided into segments, where the injection

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 · A. Rosén and G. Scalosub

during the second epoch will cause the greedy policy to drop packets in every
segment. As the analysis will show, the overall number of packets accepted by the
greedy policy would be proportional to the number of injections made to the first
block, whereas the adversary can accept all the packets injected.

d
nodes

first block second block

node d
r′

S0 S1 S2 S3 Sk−1. . .

. .
.

time

d
r′ + (k−1)d

d
r′ + 3d

d
r′ + 2d

d
r′ + d

d
r′

1
r′ apart

r′d packets

Fig. 2. Outline of the injection pattern for the adversary showing the Ω
(
r
√

n
B

)
lower bound.

The X-axis represents the line network and each circle represents the injection of a packet. Out of
the r′d packets injected to every segment in the second block, only B packets would be absorbed

by the greedy policy.

Formally, let r′ = 1
d1/re . It follows that r/2 ≤ r′ ≤ r and 1/r′ is integral. Let

d = b
√

nBc. Consider the line as composed of two blocks of nodes, where the first
block consists of the nodes 0, . . . , d

r′ − 1 and the second block consists of nodes
d
r′ , . . . , n. We divide the second block into k = bn/dc − 1

r′ segments of length d
each, S0, . . . , Sk−1.

Note that by the assumption on B and the choice of r′ and d, the number of
nodes in the first block is at most

d

r′
=
b
√

nBc
r′

≤
√

nB

r/2
< 2

√
r2n2/16

r
=

n

2
.

Since there remain at least n
2 nodes in the second block and the length of every

ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 13

segment in the second block is

d = b
√

nBc ≤
√

nB <

√
r2n2

16
=

rn

4
≤ n

4
,

we are guaranteed to have at least two segments in the second block.
The injection sequence of the adversary is divided into two epochs, as follows:
Epoch 1: For every i = 0, . . . , d− 1, inject a packet to node i

r′ in time i
r′ .

Epoch 2: For every segment j = 0, . . . , k− 1, inject br′dc packet to the first node
of Sj , one every 1/r′ time units, starting from time d

r′ +jd. Note that by the choice
of r, r′ and d we have br′dc ≥ 2.

See Figure 2 for an outline of the injection sequence.
In addition, note that since the above injection sequence does not inject more

than one packet every 1/r′ time units, the injection rate is at most r′ ≤ r, hence it
corresponds to an r-adversary.

We now turn to analyze the performance of the greedy policy given the above
injection sequence. First note that the greedy policy accepts all the packets injected
during epoch 1. To see this, notice that the adversary injects at most one packet to
every node. It follows that there is at most one time unit where the node receives
two packets simultaneously - one from its preceding node and one injected by the
adversary. Since by our assumption B ≥ 2, the greedy policy does not drop packets
during epoch 1.

The following lemma, whose proof appears in the sequel, shows that starting
from time d

r′ , there is a continuous sequence of d packets arriving to the first node
of S0 from its preceding node.

Lemma 11. For every i = 0, . . . , d− 1, there is a continuous sequence of exactly
i + 1 packets leaving node i

r′ , starting from time i
r′ + 1.

The following lemma, whose proof appears later in the sequel, bounds from above
the number of packets which leave any of the segments in the second block, under
the assumption that 2 ≤ B < 1

16r2n:

Lemma 12. For every i = 0, . . . , k− 1, there is a continuous sequence of exactly
d+(i+1)B packets leaving Si, entering segment Si+1 starting from time d

r′+(i+1)d.

Since the number of segments in the second block is
⌊n

d

⌋
− 1

r′
=
⌊

n

b
√

nBc

⌋
− 1

r′
= O

(√
n

B

)
,

by Lemma 12, the number of packets delivered by the greedy policy is

O

(
d +

√
n

B
B

)
= O(

√
nB).

The adversary injects at least

d +
(⌊n

d

⌋
− 1

r′

)
r′d = Ω(r′n)

packets. It can keep them all by not forwarding packets in the first block and
spreading the r′d packets injected to segment Si throughout that segment while

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · A. Rosén and G. Scalosub

not sending packets between different segments. Therefore after a flush-phase at
the end of the injection sequence, the adversary can deliver all the packets it has
accepted.

It follows that the ratio between the number of packets delivered by the adversary
and the number of packets delivered by the greedy policy is at least Ω

(
r
√

n
B

)
. Since

the injection pattern is finite, the adversary can repeat this process infinitely many
times, each time waiting until the network is empty. This completes the proof of
Theorem 10.

Proof of Lemma 11. The proof is by induction on i. For the base case of i = 0, by
the definition of the greedy policy and the adversary, there is one packet leaving
node 0, starting at time 1.

For the inductive step, assume the claim holds for i. It follows that there is a
continuous sequence of exactly i + 1 packets leaving node i

r′ , starting from time
i
r′ +1. During the time interval ( i

r′ ,
i+1
r′ −1] no injections are made by the adversary

and by the end of this interval, the head of the sequence has arrived to node i+1
r′ −1.

In time i+1
r′ the head of the sequence arrives to node i+1

r′ and at the same time a
packet is injected to node i+1

r′ . Due to the en-route assumption, the injected packet
will be stored in the buffer until the entire sequence of i+1 packets has traversed the
node. Note that the first packet in the sequence will leave node i+1

r′ one time unit
after its arrival, i.e., in time i+1

r′ + 1. After the last packet of the sequence entering
the node, leaves the node, the packet injected to the node ’joins’ the sequence, thus
prolonging it to a continuous sequence of i+2 = (i+1)+1 packets which has started
leaving node i+1

r′ in time i+1
r′ + 1. This completes the proof of the lemma.

Proof of Lemma 12. The proof is by induction on i. For the base case, note that
by Lemma 11, there is a continuous sequence of exactly d packets entering the first
node of S0, starting from time d

r′ . It follows that during d time units, there is a
packet arriving to the first node of S0 from its preceding node. In addition, during
these d time units, there are br′dc packets injected by the adversary to the first node
of S0. Due to the en-route assumption, none of these packets are forwarded from
this node until the entire sequence of d packets arriving on the incoming link has
been forwarded from the node. Note that by our assumption that 2 ≤ B < 1

16r2n,

we obtain that r > 4
√

B
n . It follows that

br′dc ≥
⌊

rb
√

nBc
2

⌋

≥
⌊

2
√

Bb
√

nBc√
n

⌋

≥
⌊

2
√

B(
√

nB − 1)√
n

⌋

=

⌊
2

(
B −

√
B

n

)⌋
> B,

ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 15

where the last inequality follows from the fact that in our case 2 ≤ B < 1
16r2n ≤

n
16 . The node can store only B out of these br′dc injected packets, which are
then forwarded immediately after the sequence arriving on the incoming link has
terminated. This prolongs the sequence leaving the first node of S0 by additional B
packets, to a total of d + B packets, which start leaving the first node of S0 in time
d
r′ + 1. Since the length of S0 is d nodes, this sequence enters segment S1 starting
from time d

r′ + d = d
r′ + d. This completes the base case.

For the inductive step, assume the claim holds for i. It follows that there is a
continuous sequence of exactly d + (i + 1)B packets leaving Si, entering segment
Si+1 starting from time d

r′ + (i + 1)d. Starting from this time, during a period of
d time units, the adversary injects r′d packets to the first node of Si+1. Similar to
the base case, due to the en-route assumption, none of these packets are forwarded
from this node until the entire sequence of d + (i + 1)B packets arriving on the
incoming link has been forwarded from this node. Since the node can only store B
out of the br′dc packets injected by the adversary, these packets ’join’ the sequence
arriving on the incoming link, thus the continuous sequence of packets leaving the
node comprises of d + (i + 1)B + B = d + (i + 2)B packets. By the fact that the
length of Si+1 is d, this sequence starts entering segment Si+2 starting from time
d
r′ + (i + 1)d + d = d

r′ + (i + 2)d, which completes the proof of the lemma.

4. HIGH RATE ADVERSARIES

In this section we treat the case of adversaries of high rates, i.e., of rates r > 1. We
give tight bounds on the competitive ratios obtained by the greedy policy in this
case. These bounds are a function of the network size n, the buffer size B, and the
injection rate r. Interestingly, different functions apply for different combinations
of these values.

4.1 Upper Bounds

Let M = max {n, B}. The following lemma shows an upper bound in terms of M
on the performance of the greedy policy, against any r-adversary with r > 1.

Lemma 13. For any r-adversary such that r > 1, the greedy policy is O
(√

rM
B + r

)
-

competitive.

Proof. The following proof is an extension of the proof appearing in [Angelov
et al. 2005].

For the purpose of the analysis we divide time into a sequence of intervals
P0, K0, P1, K1, P2, K2, . . .. Intervals Pi are defined by the number of packets that
the adversary accepts. Intervals Ki will be fixed length intervals of length k =
c′ · (
√

rMB +n), for some suitably chosen constant c′. Formally, let Pi = [si, ti +1)
and Ki = [ti + 1, ti + k) where

(1) s0 = 0 and for i > 1, si = ti−1 + k, and
(2) ti is the earliest time after si for which the adversary accepts at least drMe

packets during the interval [si, ti + 1).

In what follows, we compare the throughput of the adversary and the throughput
of the greedy algorithm in every interval Pi ∪Ki.

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · A. Rosén and G. Scalosub

We start by showing that we can identify Ω(
√

rMB) distinct packets residing in
the buffers of the greedy policy during Pi.

Note first that if the greedy policy accepts at least rM
2 of the packets accepted

by the adversary during Pi, then since rM ≥
√

rMB for r ≥ 1, we are guaranteed
to have Ω(

√
rMB) packets residing in the buffers of the greedy policy during Pi.

Assume next that the greedy policy does not accept at least rM
2 of the new

packets accepted by the adversary. It follows that it drops at least rM
2 ≥ 1 of the

new packets accepted by the adversary during Pi. For the purpose of the proof we
define a dynamic weight assignment to packets stored by the greedy protocol.

Initializing the weights: Every packet accepted by the greedy policy has its weight
initialized to zero at the time of its injection and all packets not yet delivered have
their weight reset to zero in the beginning of any interval Pi.

Increasing the weights: Any interval Pi is divided into periods for every node
separately. The `’th period of node j is defined by the time interval [xj

` , x
j
` + B),

where xj
` is the earliest time a packet is dropped from node j after the end of the

previous period of node j. In the beginning of every period, we increase the weight
of every packet in the node’s buffer by 2. There is no weight increase during the
intervals Ki.

Note that a packet is dropped at node j at the beginning of a period iff the buffer
is full at this time, i.e., there are B packets in the buffer. By increasing the weight
of each of these packets by 2, the overall weight increase is 2B, which is an upper
bound on the number of packets that are accepted by the adversary, but dropped
by the greedy policy, during this period (of length B), at node j.

We now show that under the greedy policy there are at least Ω(
√

rMB) distinct
packets residing in the network during interval Pi. Let 2c be the maximum weight
a packet has at the end of interval Pi. Note that c is an integer and that since we
assume here that rM

2 ≥ 1, we have that c ≥ 1.
For every node j, the weight increase in every period of node j is an upper bound

on the number of packets accepted by the adversary and dropped by the greedy
protocol, during that period at node j. Since the number of packets that were
dropped by the greedy protocol but accepted by the adversary during Pi is at least
rM
2 , we have that the total weight of the packets of the greedy policy is at least

rM
2 . We can therefore identify at least rM

2c distinct packets residing in the buffers
of the greedy policy during Pi.

For the case where c = 1, note that since rM ≥
√

rMB (since r ≥ 1), the above
lower bound implies that we can identify at least

√
rMB
2 = Ω(

√
rMB) distinct

packets residing in the system under the greedy policy during Pi, and we are done.
Assume next that c ≥ 2 and let p be any packet with weight 2c. Note that p

may have already been delivered by the greedy policy, when interval Pi ends. The
weight of p can be divided into two categories, such that 2c = 2w + 2v:

Weight given at p’s origin node: Denote it by 2w. It follows that p spent at
least B(w − 1) time units at its origin node, since it was there during w periods,
each lasting B time units. Since the algorithm is greedy, in every such time unit,
one packet was sent from the origin node, i.e. at least B(w − 1) packets were sent
during these time units. These are all distinct packets, which p will never ’beat’ to
the end, due to our en-route assumption.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 17

Weight given at p’s transit nodes: Denote it by 2v. In every transit node where
p had its weight increased, there are B − 1 packets left behind (because the weight
is increased only in time of overflow, where the buffer is full). Since p moves
continuously, the sets of packets in two distinct such transit nodes are disjoint,
because of the en-route assumption. Therefore, there are at least v(B − 1) distinct
packets left ’behind’ p.

The number of packets residing in the network under the greedy policy during
Pi is at least

1 + B(w − 1) + v(B − 1) = cB −B − v + 1
≥ cB −B − c + 1
= (c− 1)(B − 1).

It follows that if the greedy policy dropped at least rM
2 of the packets accepted by

the adversary during Pi, it had stored in its buffers at least

max
{

(c− 1)(B − 1),
rM

2c

}
= Ω(

√
rMB)

distinct packets during interval Pi.
We can therefore conclude that in any case there are K = Ω(

√
rMB) distinct

packets residing in the buffers under the greedy policy during Pi.
Using Observation 1, this implies that there exists some constant c′ such that by

taking k = c′ · (
√

rMB + n) we are guaranteed to deliver at least K packets by the
end of the interval Pi ∪Ki.

When considering the adversary, note that by the choice of k - the length of
interval Ki - the overall number of packets accepted by the adversary during the
interval Pi ∪Ki is upper bounded by drMe+ drke = O(rM + r

√
rMB).

For any j ≥ 0, summing the above over all i, we obtain a lower bound of
Ω(j
√

rMB) on the number of packets delivered by the greedy policy by the end
of Kj , where on the other hand the same summation yields an upper bound of
O(j(rM + r

√
rMB)) on the number of packets accepted by the adversary by the

end of interval Kj (which clearly also bounds from above the number of packets
delivered by the adversary by the end of Kj). It therefore follows that for every j,
the ratio between the number of packets delivered by the adversary by the end of
Kj and the number of packets delivered by the greedy policy by the end of Kj is

O
(√

rM
B + r

)
, which completes the proof.

The above lemma implies two upper bounds on the performance of the greedy
policy, depending on the rate of the adversary. The first applies to adversaries with
rates at most n

B :

Theorem 14. For any r-adversary such that 1 < r ≤ n
B , the greedy policy is

O(
√

rn
B )-competitive.

Proof. Assume r > 1 also satisfies 1 < r ≤ n
B . In particular in this case, we

have B < n, which implies M = n. By the assumption that 1 < r ≤ n
B , we have

r ≤
√

rn
B =

√
rM
B . It therefore follows by Lemma 13 that the competitive ratio is

at most O
(√

rn
B

)
.

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 · A. Rosén and G. Scalosub

The following theorem gives an upper bound for the remaining range of r.

Theorem 15. For any r-adversary such that r > 1 and r > n
B , the greedy policy

is O(r)-competitive.

Proof. Assume r > 1 also satisfies r > n
B . If B ≥ n then rM

B = r, hence by
Lemma 13, the competitive ratio is O(

√
r + r) = O(r). If on the other hand B < n,

then by the assumption that r > n
B , we have rM

B = rn
B < r2. It therefore follows

by Lemma 13 that the competitive ratio is at most O(
√

r2 + r) = O(r).

Angelov et al. [Angelov et al. 2005] have shown that for all r, and regardless of
the buffer size B, the greedy policy is O(

√
n)-competitive. Combining their result

with Theorems 14 and 15, we obtain the following two corollaries:

Corollary 16. For any r-adversary such that 1 < r ≤ n
B , the greedy policy is

min
{
O(
√

rn
B ), O(

√
n)
}

-competitive.

Corollary 17. For any r-adversary such that r > 1 and r > n
B , the greedy

policy is min {O(r), O(
√

n)}-competitive.

4.2 Lower Bounds

In this section we present two lower bounds which combined with the upper bounds
presented in Section 4.1, enable us to characterize the performance of the greedy
policy, up to a constant factor, for any r-adversary such that r > 1. For simplicity,
we assume here that the nodes are numbered 0, . . . , n− 1.

Theorem 18. For any 4 < r <
√

n and for any buffer size B, there exists an
r-adversary A such that the ratio between the throughput of A and that of the greedy
policy is Ω(r).

Proof. We consider the line as divided into segments and have the adversary
inject at most one packet in every time step to every segment. Given any rate
4 < r <

√
n, we show that the number of segments is at most r, hence the injection

corresponds to an r-adversary. As the analysis will show, the overall number of
packets accepted by the greedy policy would be proportional to the number of in-
jections made to the last segment, whereas the adversary can accept all the packets
injected.

Formally, Let 4 < r <
√

n and let d = d n
r2 e. Consider the line as composed of

k = b
√

n
d c segments S0, . . . , Sk−1, such that the length of segment Si is (i + 1)d.

Note that by the assumption on r we have 2 ≤ d ≤ d n
16e and the overall length

of the segments is
∑k

i=1 id = k(k+1)d
2 ≤ k2d ≤ n.

We now describe the sequence of injections generated by an r-adversary A. For
every i = 0, . . . , k − 1, A injects (i + 1)dB packets to the first node of segment Si,
starting at time ti =

∑i
j=0 jd.

See Figure 3 for an outline of the injection sequence.
First note that by the choice of k, we have k ≤

√
n
d ≤ r. Since the adversary

injects at most one packet to every segment in every time step, we are guaranteed
that the above injection sequence corresponds to an r-adversary. Furthermore,
since d ≤ d n

16e we have that k ≥ 2.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 19

..
.

..
.

S0 S1 S2

. . .

Si

. . .

(i + 1)dB packets

(i + 2)dB packets

time

Sk−1

Θ(
√

nd · B) packets

..
.

∑k−1
j=0 jd = Θ(n)

..
.

..
.

0
d

3d

6d

∑i
j=0 jd

∑i+1
j=0 jd

nodes
d(i+1)

Fig. 3. Outline of the injection pattern for the adversary showing the Ω(r) lower bound. The

X-axis represents the line network and each circle represents the injection of a packet. In every
segment Si except for S0, out of the (i+1)dB packets injected, only B packets would be absorbed

by the greedy policy.

The following lemma, whose proof appears in the sequel, enables us to bound from
above the number of packets leaving every segment Si under the greedy policy.

Lemma 19. Under the greedy policy, for any i ≥ 1, the packets leaving segment
Si form a continuous sequence of exactly (i+1)dB+B packets, which start arriving
to Si+1 in time ti+1.

It follows that the greedy policy delivers O(kdB) = O(
√

dn·B) = O
(

nB
r

)
packets.

The number of packets injected to the network by the adversary is nB and the
adversary may successfully deliver them all by storing the (i+1)dB packets injected
to segment Si in the buffers of that segment, while not forwarding any packet across
different segments until the injection sequence has terminated.

It follows that the ratio between the number of packets delivered by the adver-
sary and the number of packets delivered by the greedy policy is Ω(r). Since the
injection pattern is finite, the adversary can repeat this process infinitely many
times, each time waiting until the network is empty. This concludes the proof of
the theorem.

Proof of Lemma 19. The proof is by induction on i. For the base case clearly the
sequence of packets leaving S0 forms a continuous sequence of exactly dB packets,
which by the choice of the length of S0, starts arriving to the first node of segment
S1 in time d. By the definition of the adversary, starting at time t1 = d, there

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · A. Rosén and G. Scalosub

is a sequence of 2dB packets which are injected to the first node of segment S1,
one every time step. It follows that during dB time units, starting from time t1,
there are two packets arriving to the first node of segment S1 - one on the incoming
link and one injected by the adversary. By the en-route assumption, none of the
packets injected by the adversary during these dB time units are forwarded from
this node until the entire sequence of packets arriving on the incoming link has
been forwarded from this node. Since d ≥ 2 we have dB > B, and therefore the
greedy policy can store only B of the packets injected to the first node of S1 during
these dB time steps and must drop the remaining packets. In the following dB time
steps, there is only one packet arriving to the first node of segment S1 - the packet
injected by the adversary. The first node of segment S1 therefore forwards one
packet in every time step during these dB time units as well and maintains a full
buffer during all this time. In the following B time units, the first node of segment
S1 flushes its buffer and forwards one packet in every time step. The packets
forwarded by the first node of segment S1 therefore form a continuous sequence of
exactly dB + dB + B = 2dB + B = (i + 1)dB + B packets, which by the definition
of the length of S1, start arriving to the first node of S2 in time t1 + 2d = 3d = t2.
This completes the base case.

For the inductive step, assume the claim holds for i ≥ 1. It follows that there is a
continuous sequence of exactly (i + 1)dB + B packets leaving Si, entering segment
Si+1 starting from time ti+1. Since Starting from this time, during a period of
((i + 1) + 1)dB = (i + 2)dB time units, the adversary injects one packet in every
time step to the first node of Si+1. It follows that during (i + 1)dB + B time
units, starting from time ti+1, there are two packets arriving to the first node of
segment Si+1 - one on the incoming link and one injected by the adversary. By the
en-route assumption, none of the packets injected by the adversary during these
(i + 1)dB + B time units are forwarded from this node until the entire sequence
of packets arriving on the incoming link has been forwarded from this node. Since
(i + 1)dB + B > B, the greedy policy can store only B of the packets injected to
the first node of Si+1 during these (i + 1)dB + B time steps and must drop the
remaining packets. In the following dB − B time steps, there is only one packet
arriving to the first node of segment Si+1 - the packet injected by the adversary.
The first node of segment Si+1 therefore forwards one packet in every time step
during these dB − B time units as well and maintains a full buffer during all
this time. In the following B time units, the first node of segment Si+1 flushes
its buffer and forwards one packet in every time step. The packets forwarded by
the first node of segment Si+1 therefore form a continuous sequence of exactly
(i + 1)dB + B + (dB − B) + B = (i + 2)dB + B = ((i + 1) + 1)dB + B packets,
which by the definition of the length of Si+1, start arriving to the first node of Si+2

in time ti+1 + (i + 1)d = ti+2, which completes the proof of the lemma.

Theorem 20. For any 16B
n < r ≤ B there exists an r-adversary A such that the

ratio between the throughput of A and that of the greedy policy is Ω
(√

rn
B

)
.

Proof. We consider the line as divided into equal-length segments, each of a
length to be determined later. Given any rate 16B

n < r ≤ B, we describe an
adversary that inject at most one packet in every time step to every segment and
ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 21

further show that the adversary does not inject to more than r segments in every
time unit. This ensures that the injection sequence indeed corresponds to an r-
adversary. The analysis will show that the overall number of packets accepted
by the greedy policy is proportional to r times the segment length, whereas the
adversary can accept all the packets injected.

Formally, Let 16B
n ≤ r ≤ B and let d =

⌊√
nB
r

⌋
. Consider the line as composed

of k = bn/dc = Θ(
√

rn
B ) segments S0, . . . , Sk−1, each of length d. Note that by our

assumption that 16B
n < r, we are guaranteed to have d < n

4 and k ≥ 4. We describe
the sequence of injections generated by an r-adversary A:

For every i = 0, . . . , k− 1, A injects brdc packets to the first node of segment Si,
starting at time id.

Note that the above adversary injects at most one packet into every segment
in every time step and does not inject into more than r segments simultaneously.
It follows that the above injection sequence corresponds to an r-adversary. The
following lemma, whose proof appears in the sequel, enables us to bound the number
of packets leaving every segment Si under the greedy policy.

Lemma 21. Under the greedy policy, the packets leaving segment Si form a con-
tinuous sequence of exactly brdc+ iB packets, which start arriving to Si+1 in time
d(i + 1).

It follows that the greedy policy delivers O(rd + kB) = O(
√

rnB) packets.
The number of packets injected by the adversary is brdc · bn

d c = Θ(rn) and the
adversary may successfully deliver them all by storing the brdc packets injected to
segment Si in the buffers of that segment, while not forwarding any packet across
different segments until the injection sequence has terminated.

It follows that the ratio between the number of packets delivered by the adversary
and the number of packets delivered by the greedy policy is Ω

(√
rn
B

)
. Since the

injection pattern is finite, the adversary can repeat this process infinitely many
times, each time waiting until the network is empty. This completes the proof of
the theorem.

Proof of Lemma 21. The proof is by induction on i. For the base case, clearly
the sequence of packets leaving S0 forms a continuous sequence of exactly brdc =
brdc + 0 · B packets. By the choice of the length of every segment, this sequence
starts arriving to the first node of segment S1 in time d = (0 + 1)d.

For the inductive step, assume the claim holds for i. It follows that there is a
continuous sequence of exactly brdc+ iB packets leaving Si, entering segment Si+1

starting from time d(i + 1). Starting from this time, during a period of brdc time
units, the adversary injects brdc packets to the first node of Si+1. Since during
all this time, by the induction hypothesis, there are packets arriving to the first
node of Si+1 from its preceding node, then due to the en-route assumption, none
of these packets are forwarded from this node until the entire sequence of packets
arriving on the incoming link has been forwarded from this node. Note that since
16B

n < r ≤ B, we are guaranteed to have rd > 3B, which in turn implies that
ACM Journal Name, Vol. V, No. N, Month 20YY.



22 · A. Rosén and G. Scalosub

brdc ≥ 3B > B. 1 This implies that the greedy policy cannot store all the packets
injected to the first node of segment Si+1. Since the node can only store B out
of the brdc packets injected by the adversary, these packets ’join’ the sequence
arriving on the incoming link, thus the continuous sequence of packets leaving the
node comprises of exactly brdc + iB + B = brdc + (i + 1)B packets. By the fact
that the length of Si+1 is d, this sequence starts entering segment Si+2 starting
from time d(i + 1) + d = d(i + 2), which completes the proof of the lemma.

Aiello et al. present in [Aiello et al. 2003] an Ω(
√

n) lower bound on the com-
petitive ratio of the greedy policy, which is independent of B, by presenting an
adversary which can deliver all the packets it injects, while any greedy policy can-
not deliver more than an O(

√
n) fraction of the packets injected. The following

lemma shows an upper bound on the rate of this adversary.

Lemma 22. For any buffer size B, there exists an adversary A with rate r =
min {B,

√
n}, such that the ratio between the throughput of A and that of the greedy

policy is Ω(
√

n).

Proof. The adversary used by Aiello et al. in the proof that the greedy policy
cannot have competitive ratio better than Ω(

√
n), is a special case of the adversary

described in Section 4.2. The main difference is that their adversary uses a ”stretch”
factor of d = 1, instead of the factor c n

r2 used in Section 4.2.
Formally, the adversary considers the line as divided into k blocks, S1, . . . , Sk,

such that the length of block Si is i and it injects iB packets into the first node of
Si, starting from time

ti =
i∑

j=1

j =
i(i + 1)

2
.

Note that the number of segments k must satisfy
∑k

i=1 i ≤ n. We can therefore
choose k = b√nc.

Clearly this adversary has rate at most
√

n, since the number of segments is at
most

√
n, and it injects at most one packet to every segment in every time unit.

We now show that the rate of this adversary is bounded from above by B. Note
that for every i we have

ti+B − ti =
(i + B)(i + B + 1)

2
− i(i + 1)

2

=
1
2
(
B2 + (2i + 1)B

)

> iB.

It follows that, for any i, by the time there are packets injected to segment Si+B ,
there are no longer packets injected to any segment Sj , for j ≤ i. Hence, the
adversary has rate at most B since the number of segments to which it injects
simultaneously is at most B.

1This holds since for 16B
n

< r ≤ B, we have rd = rb
√

nB
r
c = r

(√
nB
r
− ε

)
= r

√
nB
r
− εr =

√
rnB − εr > 4B − εr > 4B −B = 3B, where ε < 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 23

4.3 Tight Results for High Rates

In this section we conclude the results of the previous sections and derive bounds,
which are tight up to constant factors, on the competitive ratio of the greedy policy
for any r-adversary such that r > 1. We distinguish between several ranges for r.
See Table I for a summary of the results.

For the range of r ≥ min {B,
√

n}, the upper bound appearing in [Angelov et al.
2005] guarantees a competitive ratio of O(

√
n). By Lemma 22, for this range of

r, there exists an r-adversary which shows that the greedy policy cannot have a
competitive ratio better than Ω(

√
n).

The remaining range to consider is when 1 < r < min {B,
√

n}. Assume first
that max

{
1, n

B

}
< r < min {B,

√
n}. Theorem 15 gives an upper bound of O(r).

Theorem 18 gives a lower bound of Ω(r) for the case r > 4 (if r ≤ 4 the upper
bound guaranteed by Theorem 15 is O(1)). Assume now that 1 < r ≤ n

B . Theorem
14 gives an upper bound of O

(√
rn
B

)
. Theorem 20 gives a lower bound of Ω

(√
rn
B

)
,

for r > 16B
n (if r ≤ 16B

n the upper bound guaranteed by Theorem 14 is O(1)).

5. THE CASE OF B = 1

The case of B = 1 is a special case for which the competitive ratio of the greedy
protocol is bad. For rates r ≥ 1 it follows easily from Theorems 4.2 and 5.1 in [Aiello
et al. 2003] that the competitive ratio of the greedy protocol is Θ(n). For r ≤ 1/n
the greedy policy is optimal, since every packet is delivered before the next one can
be injected. For 1/n < r < 1 we have the following lemma:

Lemma 23. If B = 1 then the greedy policy has competitive ratio Θ(rn) against
any r-adversary such that 1/n < r < 1.

Proof. We describe a charging scheme, which assigns weight to the packets
accepted by the greedy policy. This scheme assigns a total weight of at least 1 per
packet accepted by the adversary and dropped by the greedy policy. We further
show that every packet accepted by the greedy policy has weight at most O(rn),
thus showing that the greedy policy is O(rn)-competitive.

The charging scheme works as follows: for every packet accepted by the adversary
and not accepted by the greedy policy that is injected at time t, we increase by
1 the weight of every packet that is present at time t in the network under the
greedy policy. Note that any packet accepted by the greedy policy is delivered at
most n time units after its injection time. During these n time units, the adversary
can inject at most drne packets. It follows that no packet will have weight greater
than drne. We have that the competitive ratio of the greedy policy against any
r-adversary with r < 1 is O(rn).

For the lower bound, let r′ = 1
d1/re . Note that r

2 ≤ r′ ≤ r and that 1
r′ is integral.

Consider the following r′-adversary (which by the definition of r′ is clearly also
an r-adversary): For every i = 0, . . . , br′nc, at time i

r′ the adversary injects one
packet to node i

r′ . Under the greedy policy, the packet injected to node 0 would
arrive to node i

r′ at time i
r′ , hence by our en-route assumption and the fact that

B = 1, the greedy policy cannot accommodate the new packet injected to node i
r′ .

It follows that the greedy policy can only deliver the first packet injected. Notice
however that the adversary can deliver all packets by not forwarding any packets

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · A. Rosén and G. Scalosub

until time br
′nc
r′ and then delivering all packets one by one. It follows that the

ratio between the number of packets delivered by the adversary and the number of
packets delivered by the greedy policy is Ω(rn). Since the injection pattern is finite,
the adversary can repeat this process infinitely many times, each time waiting until
the network is empty. This completes the proof of the lower bound.

6. DISCUSSION

In this work we are interested in the question of how does the size of the buffers
deployed in the network and the injection rate of the traffic into the network in-
fluence the attainable throughput-competitive ratio of scheduling and admission
protocols. We study the special case of the line network and the problem of infor-
mation gathering (all packet are destined to the same node), and give tight bounds
on the competitive ratio of the greedy protocol for this problem, as a function of
both the network size, the buffer size available at the nodes, and the traffic rate.
Interestingly, these bounds are different for different combinations of the parame-
ters. For example, our results indicate that for very small rates, insufficient buffer
size may be the difference between the greedy protocol achieving optimal through-
put and non-optimal throughput. Furthermore, for larger rates, our results show
that increasing the buffer size may help up to a certain point, whereas any further
increase no longer helps the greedy protocol to achieve a better competitive ratio
and its performance depends solely on the rate of the adversary.

We believe that the questions and analyses introduced in this work may lead to a
better understanding of the interplay between the buffer size and the adversary rate,
and the competitive ratio attainable by local-control protocols. Our work raises
several interesting open problems. For example, can similar results be obtained
for more involved topologies and other protocols. Another interesting question is
whether one can design protocols that would take advantage of the given buffer size
in order to reduce the competitive ratio when possible.

ACKNOWLEDGMENTS

We thank Zvi Lotker for many useful discussions.

REFERENCES

Aiello, W., Mansour, Y., Rajagopolan, S., and Rosén, A. 2005. Competitive Queue Policies
for Differentiated Services. Journal of Algorithms 55, 2, 113–141.

Aiello, W., Ostrovsky, R., Kushilevitz, E., and Rosén, A. 2003. Dynamic Routing on Net-

works with Fixed-Sized Buffers. In Proceedings of the 14th annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 771–780.

Albers, S. and Schmidt, M. 2005. On the Performance of Greedy Algorithms in Packet Buffering.
SIAM Journal on Computing 35, 2, 278–304.

Andelman, N. and Mansour, Y. 2003. Competitive Management of Non-preemptive Queues

with Multiple Values. In Proceedings of the 17th International Symposium on Distributed

Computing (DISC). 166–180.

Angelov, S., Khanna, S., and Kunal, K. 2005. The Network as a Storage Device: Dynamic

Routing with Bounded Buffers. In Proceedings of the 8th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX). 1–13.

Azar, Y. and Litichevskey, A. 2006. Maximizing Throughput in Multi-Queue Switches. Algo-

rithmica 45, 1, 69–90.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Rate vs. Buffer Size - Greedy Information Gathering on the Line · 25

Azar, Y. and Richter, Y. 2004. An Improved Algorithm for CIOQ Switches. In Proceedings of

the 12th Annual European Symposium on Algorithms (ESA). 65–76.

Azar, Y. and Richter, Y. 2005. Management of Multi-Queue Switches in QoS Networks. Al-
gorithmica 43, 1-2, 81–96.

Azar, Y. and Zachut, R. 2005. Packet Routing and Information Gathering in Lines, Rings and

Trees. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA). 484–495.

Epstein, L. and Stee, R. V. 2004. Buffer Management Problems. ACM SIGACT News 35, 3
(September), 58–66.

Florens, C., Franceschetti, M., and McEliece, R. J. 2004. Lower Bounds on Data Collection

Time in Sensory Networks. IEEE Journal on Selected Areas in Communications 22, 6, 1110–
1120.

Gordon, E. and Rosén, A. 2005. Competitive Weighted Throughput Analysis of Greedy Proto-

cols on DAGs. In Proceedings of the 24th Annual ACM Symposium on Principles of Distributed

Computing (PODC). 227–236.

Kesselman, A., Lotker, Z., Mansour, Y., and Patt-Shamir, B. 2003. Buffer Overflows of
Merging Streams. In Proceedings of the 11th Annual European Symposium on Algorithms

(ESA). 349–360.

Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., and Sviridenko,
M. 2004. Buffer Overflow Management in QoS Switches. SIAM Journal on Computing 33, 3,

563–583.

Kesselman, A., Mansour, Y., and van Stee, R. 2005. Improved Competitive Guarantees for

QoS Buffering. Algorithmica 43, 1-2, 63–80.

Kesselman, A. and Rosén, A. 2006. Scheduling policies for CIOQ switches. Journal of Algo-

rithms 60, 1, 60–83.

Kothapalli, K., Onus, M., Richa, A., and Scheideler, C. 2005. Efficient Broadcasting and

Gathering in Wireless Ad-Hoc Networks. In Proceedings of the 8th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN). 346–351.

Kothapalli, K. and Scheideler, C. 2003. Information Gathering in Adversarial Systems: Lines

and Cycles. In Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA). 333–342.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.


