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Abstract

We introduce a new information theoretic measure that we call Public Information Complexity (PIC),
as a tool for the study of multi-party computation protocols, and of quantities such as their communication
complexity, or the amount of randomness they require in the context of information-theoretic private
computations. We are able to use this measure directly in the natural asynchronous message-passing
peer-to-peer model and show a number of interesting properties and applications of our new notion:
the Public Information Complexity is a lower bound on the Communication Complexity and an upper
bound on the Information Complexity; the difference between the Public Information Complexity and the
Information Complexity provides a lower bound on the amount of randomness used in a protocol; any
communication protocol can be compressed to its Public Information Cost; an explicit calculation of the
zero-error Public Information Complexity of the k-party, n-bit Parity function, where a player outputs the
bit-wise parity of the inputs. The latter result also establishes that the amount of randomness needed by a
private protocol that computes this function is Ω(n).

1 Introduction

Communication complexity, originally introduced by Yao [Yao79Yao79], is a prolific field of research in theoretical
computer science that yielded many important results in various fields. Informally, it attempts to answer the
question “How many bits must distributed players transmit to solve a given distributed problem ?” The study
of the two-party case has produced a large number of interesting and important results, both upper and lower
bounds, with many applications in other areas in theoretical computer science such as circuit complexity, data
structures, streaming algorithms and distributed computation (see, e.g., [KN97KN97, MNSW98MNSW98, GG10GG10, SHK+10SHK+10,
FHW12FHW12]).

A powerful tool recently introduced for the study of two-party communication protocols is the measure of
Information Complexity (or cost). This measure, originally defined in [BCKO93BCKO93] and [CSWY01CSWY01], extends the
notions of information theory, originally introduced by Shannon [Sha48Sha48], to interactive settings. It quantifies,
roughly speaking, the amount of information about their respective inputs that Alice and Bob must leak to each
other in order to compute a given function f of their inputs. Information complexity (IC) has been used in a
long series of papers to prove lower bounds on communication complexity and other properties of (two-party)
communication protocols (e.g., [BJKS04BJKS04, BBCR13BBCR13, BR14BR14, Bra15Bra15]). An interesting property of information
complexity is that it satisfies a direct sum property. The direct sum question, one of the most interesting
questions in complexity theory, asks whether solving n independent copies of the same problem must cost (in
a given measure) n times the cost of solving a single instance. In the case of communication complexity, this
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question has been studied in, e.g., [FKNN95FKNN95, CSWY01CSWY01, Sha03Sha03, JRS03JRS03, HJMR10HJMR10, BBCR13BBCR13, Kla10Kla10, Jai15Jai15]
and in many cases it remains open whether a direct sum property holds.

Another important question in communication complexity is the relation between the information
complexity of a function and its communication complexity. One would like to know if it is possible to
compute a function by sending a number of bits which is not (too much) more than the information the
protocol actually has to reveal. Put differently, is it always possible to compress the communication cost of a
protocol to its information cost? For the two-party case it is known that perfect compression is not possible for
single shot protocols [GKR15aGKR15a, GKR15bGKR15b] (unless they are restricted to a constant number of rounds [JRS03JRS03]).
Still, several interesting compression results are known. The equality between information cost and amortized
communication cost is shown in [BR14BR14, Bra15Bra15], and other compression techniques are given in [BBCR13BBCR13,
BMY15BMY15, BBK+16BBK+16, Pan15Pan15]. It remains open if one can compress interactive communication up to some
small loss (for example logarithmic in the size of the input). The specific case of compression under product
distributions was studied in [Kol16Kol16, She18She18], leading to a compression to O(I polylog(I)).

When trying to study the multi-party (i.e., where at least 3 players are involved) communication settings
using similar information-theoretic methods, such as IC, one encounters a serious problem. The celebrated
results on information-theoretic private computation [BOGW88BOGW88, CCD88CCD88] state that if the number of players
is at least 3, then any function can be computed by a randomized protocol such that no information about the
inputs is revealed to the other players (other than what is implied by the value of the function and their own
input). Thus, in the multi-party case, the IC of any function f is 0 (or only the entropy of f , depending on the
definition of IC), and cannot serve to study multi-party protocols.

For this reason, information theory has rarely been used in the multi-party setting, where most results
related to communication complexity have been obtained via combinatorial techniques. Among the interesting
works on multi-party settings are [PVZ16PVZ16, WZ14WZ14] which introduce the techniques of symmetrization and
composition, and [CRR14CRR14, CR15CR15] which study the influence of the topology of the network. One notable
exception is the work of Braverman et al. [BEO+13BEO+13] which studies the set-disjointness problem using
information theoretic tools. Braverman et al. provide almost tight bounds in the so-called coordinator model
(that differs from the more natural peer-to-peer model) by analyzing the information leaked between the
players but also the information obtained by the coordinator itself. The set disjointness problem is arguably
one of the most extensively studied problem in communication complexity (cf. [Bra15Bra15, BJKS04BJKS04, CKS03CKS03,
Gro09Gro09, Jay09Jay09, BGPW13BGPW13]). This line of research was followed by [CM15CM15] which also uses information theory
to obtain tight bounds on the communication complexity of the function Tribes in the coordinator model.
Information theory is also used in [BO15BO15] to study set-disjointness in the broadcast model. A compression
procedure for the broadcast model is described in [KOS17KOS17].

A number of sub-models have been considered in the literature for the multi-party computation protocols
setting: the number in hand model (NIH), where each player has a private input, is arguably the most natural
one, while in the number on the forehead model (NOF), each player i knows all inputs xj , j 6= i, i.e., the
“inputs” of all players except its own. As to the communication pattern, a number of variants have been
considered as well: in the blackboard model, the players communicate by broadcasting messages (or writing
them on a “blackboard”); in the message passing model, each pair of players is given a private channel to
mutually communicate (for more details on the different variants see [KN97KN97]). Most of the results obtained
in multi-party communication complexity were obtained for the NOF model or the blackboard model. The
present paper studies, however, the NIH, message passing (peer to peer) model, which is also the most
closely related to the work done on message passing protocols in the distributed computing and networking
communities.
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1.1 Our contributions

Our main goal is to introduce novel information-theoretical measures for the study of number-in-hand,
message-passing multi-party protocols, coupled with a natural model that, among other things, allows private
protocols (which is not the case for, e.g., the coordinator model).

We define the new measure of Public Information Complexity (PIC), as a tool for the study of multi-
party computation protocols, and of quantities such as their communication complexity, or the amount of
randomness they require in the context of information-theoretic private computations. Intuitively, our new
measure captures a combination of the amount of information about the inputs that the players leak to other
players, and the amount of randomness that the protocol uses. By proving lower bounds on PIC for a given
multi-party function f , we are able to give lower bounds on the multi-party communication complexity of
f and on the amount of randomness needed to privately compute f . The crucial point is that the PIC of
functions, in our multi-party model, is not always 0, unlike their IC.

Our new measure works in a model which is a slight restriction of the most general asynchronous model,
where, for a given player at a given time, the set of players from which that player waits for a message can
be determined by that player’s own local view. This allows us to have the property that for any protocol,
the information which is leaked during the execution of the protocol is at most the communication cost of
the protocol. Note that in the multi-party case, the information cost of a protocol may be higher than its
communication cost, because the identity of the player from which one receives a message might carry some
information. We are able to define our measure and use it directly in a natural asynchronous peer-to-peer
model (and not, e.g., in the coordinator model used in most works studying the multi-party case, c.f. [DF89DF89]).
The latter point is particularly important when one is interested in private computation, since our model
allows for private protocols, while this is not necessarily the case for other models. Furthermore, if one
seeks to accurately understand communication complexity in the natural peer-to-peer model, suppressing
polylog-factor inaccuracies, one has to study directly the peer-to-peer model, because lower bounds in the
coordintor model translate to the peer-to-peer model only up to logarithmic factors (see the comparison of
models in subsection 3.13.1).

We then continue and show a number of interesting properties and applications of our new notion:

• The Public Information Complexity is a lower bound on the Communication Complexity and an upper
bound on the Information Complexity. In fact, it can be strictly larger than the Information Complexity.

• The difference between the Public Information Complexity and the Information Complexity provides a
lower bound on the amount of randomness used in a protocol.

• We compress any communication protocol to their PIC (up to logarithmic factors), by extending to the
multi-party setting the work of Brody et al. [BBK+16BBK+16] and Pankratov [Pan15Pan15].

• We show that one can approach the central question of direct sum in communication complexity by
trying to prove a direct sum result for PIC. Indeed, we show that a direct sum property for PIC implies
a certain direct sum property for communication complexity.

• We precisely calculate the zero-error Public Information Complexity of the k-party, n-bit Parity function
(Par), where a player outputs the bit-wise parity of the inputs. We show that the PIC of this function is
n(k − 1). This result is tight and it also establishes that the amount of randomness needed for a private
protocol that computes this function is Ω(n). While this sounds a reasonable assertion no previous
proof for such claim existed.
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1.2 Organization

The paper is organized as follows. In section 22 we review several notations and information theory basics. In
Section 33 we define the communication model that we work with and a number of traditional complexity
measures. In Section 44 we define the new measure PIC that we introduce in the present paper, and in Section 55
we discuss its relation to randomness and multi-party private computation. In Section 66 we give tight bounds
for the parity function Par, using PIC. In section 77, we discuss the existence of a direct sum property for PIC.

2 Preliminaries

We start by defining a number of notations. We denote by k the number of players. We often use n to denote
the size (in bits) of the input to each player. Calligraphic letters will be used to denote sets. Upper case letters
will be used to denote random variables, and given two random variables A and B, we will denote by AB the
joint random variable (A,B). Given a string (of bits) s, |s| denotes the length of s. Using parentheses we
denote an ordered set (family) of items, e.g., (Yi). Given a family (Yi), Y−i denotes the sub-family which is
the family (Yi) without the element Yi. The letter X will usually denote the input to the players, and we thus
use the shortened notation X for (Xi), i.e. the input to all players. π will be used to denote a protocol. We
use the term entropy to talk about binary entropy.

We give a reminder on basic information theory, as introduced in [Sha48Sha48].

Definition 2.1. The entropy of a (discrete) random variable X is

H(X) =
∑
x

Pr[X = x] log

(
1

Pr[X = x]

)
.

The conditional entropy H(X | Y ) is defined as E
y
[H(X | Y = y)].

Proposition 2.2. For any finite set X ⊆ {0, 1}∗ and any random variable X with support supp(X) ⊆ X , it
holds

H(X) ≤ log(|X |).

Moreover, if the set X is prefix-free, it holds H(X) ≤ E[|X|].

Definition 2.3. The mutual information between two random variables X,Y is

I(X;Y ) = H(X)−H(X | Y ).

The conditional mutual information I(X;Y | Z) is H(X | Z)−H(X | Y Z).

The mutual information measures the change in the entropy of X when one learns the value of Y . It is
non negative, and is symmetric: I(X;Y ) = I(Y ;X).

Proposition 2.4. For any random variables X , Y and Z, I(X;Y | Z) = 0 if and only if X and Y are
independent for each possible value of Z.

Proposition 2.5. For any random variables X and Y , H(X | Y ) ≤ H(X).

Proposition 2.6 (Chain Rule). Let A, B, C, D be four random variables. Then

I(AB;C | D) = I(A;C | D) + I(B;C | DA).
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Lemma 2.7 (Data processing inequality). For any X , Y , Z, and any function f , it holds: I(X; f(Y ) | Z) ≤
I(X;Y | Z)

Proof.

I(X; f(Y ) | Z) ≤ I(X; f(Y ) | Z) + I(X;Y | f(Y )Z)

= I(X;Y f(Y ) | Z)

= I(X;Y | Z) + I(X; f(Y ) | Y Z)

= I(X;Y | Z).

Proposition 2.8 ([Bra15Bra15]). Let A, B, C, D be four random variables such that I(B;D | AC) = 0. Then

I(A;B | C) ≥ I(A;B | CD).

Proposition 2.9 ([Bra15Bra15]). Let A, B, C, D be four random variables such that I(B;D | C) = 0. Then

I(A;B | C) ≤ I(A;B | CD).

3 The model

We now define a natural communication model which is a slight restriction of the most general asynchronous
peer-to-peer model. Its restriction is that for a given player at a given time, the set of players from which
that player waits for a message can be determined by that player’s own local view. The player continues its
computation only after messages are received from this set. This allows us to define information theoretical
tools that pertain to the transcripts of the protocols, and at the same time to use these tools as lower bounds
for communication complexity. This restriction however does not exclude the existence of private protocols,
as other special cases of the general asynchronous model do. We observe that without such restriction the
information revealed by the execution of a protocol might be higher than the number of bits transmitted and
that, on the other hand, practically all multi-party protocols in the literature are implicitly defined in our
model. We also compare our model to the general one and to other restricted ones and explain the usefulness
and logic of our specific model.

3.1 Definition of the model

We work in the multi-party number in hand peer-to-peer model. Each player has unbounded local computation
power and, in addition to its input Xi, has access to a source of private randomness Ri. We will use the
notation R for (Ri), i.e., the private randomness of all players. A source of public randomness Rp is also
available to all players. The system consists of k players and a family of k functions f = (fi)i∈[[1,k]], with

∀ i ∈ [[1, k]], fi :
k∏
l=1

Xl → Yi, where Xl denotes the set of possible inputs of player l, and Yi denotes the set

of possible outputs of player i. The players are given some input x = (xi) ∈
k∏
i=1
Xi, and for every i, player i

has to compute fi(x). Each player has a special write-only output tape.
We define the communication model as follows, which is the asynchronous setting, with some restrictions.

To make the discussion simpler we assume a global time which is unknown to the players. Every pair

5



of players is connected by a bidirectional communication link that allows them to send messages in both
directions. There is no bound on the delivery time (i.e., when the message arrives to its destination node) of a
message, but every message is delivered in finite time, and the communication link maintains FIFO order in
each of the two directions. Messages that arrive to the head of the link at the destination node of that link are
buffered until they are read by that node. Given a specific time we define the view of player i, denoted Di, as
the input of that player, Xi, its private randomness, Ri, and the messages received so far by player i. The
protocol of each player i runs in local rounds. In each round, player i sends messages to some subset of the
other players. The identity of these players, as well as the content of these messages, depend on the current
view of player i. The player also decides whether to write a (nonempty) string on its output tape. Then, the
player waits for messages from a certain subset of the other players, where this subset is also determined by
the current view of the player. That is, the player reads a single message from each of the incoming links that
connect it to that subset of other players. If for a certain such link no message is available, then the player
waits until such message is available (i.e., arrives). Then the (local) round of player i terminates11. To make it
possible for the player to identify the arrival of the complete message that it waits for, we require that each
message sent by a player in the protocol be self-delimiting.

Denote by Dji the set of possible views of player i at the end of local round j, j ≥ 0, where the beginning
of the protocol is considered round 0. Formally, a protocol π is defined by a set of local programs, one for
each player i, where the local program of player i is defined by a sequence of functions, parametrized by the
index of the local round j, j ≥ 1:

• Sji : Dj−1i → 2{1,...,k}\{i}, defining the set of players to which player i sends the messages.

• mj
i,q : Dj−1i → {0, 1}∗, such that for any Dj−1

i ∈ Dj−1i , if q ∈ Sji (D
j−1
i ), then mj

i,q(D
j−1
i ) is the

content of the message player i sends to player q. Each such message is self-delimiting.

• Oji : Dj−1i → {0, 1}∗, defining what the player writes on the output tape. Each player can write on its
output tape a non-empty string only once.22

• Sji : Dj−1i → 2{1,...,k}\{i}, defining the set of players from which player i waits to receive a message.

We define the transcript of the protocol of player i, denoted Πi, as the concatenation of the messages read
by player i from the links of the sets S1

i , S
2
i , . . ., ordered by local round number, and within each round by

the index of the player. We denote by
←→
Πi the concatenation of Πi together with a similar concatenation

−→
Πi

of the messages sent by player i to the sets S0
i , S

1
i , . . . We denote by Πi→j the concatenation of the messages

sent by player i to player j during the course of the protocol. The transcript of the (whole) protocol, denoted
Π, is obtained by concatenating all the Πi ordered by, say, player index.

We will give most of the definitions for the case where all functions fi are the same function, that we
denote by f . The definitions in the case of family of functions are similar.

Definition 3.1. For ε ≥ 0, a protocol π ε-computes a function f if for all (x1, . . . , xk) ∈ X1 × · · · × Xk:

1. For all possible assignments for the random sources Ri, 1 ≤ i ≤ k, and Rp, every player eventually
(i.e., in finite time) writes on its output tape (a non-empty string).

1The fact that the receiving of the incoming messages comes as the last step of the (local) round comes only to emphasize that the
sending of the messages and the writing on the output tape are a function of only the messages received in previous (local) rounds.

2We require that each player writes only once on its output tape so that the local view of the player determines the local output of
the protocol (i.e., so that the player itself “knows” the output). This requirement is needed since a player may not know locally that
the protocol ended.
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2. With probability at least 1 − ε (over all random sources) the following event occurs: each player i
writes on its output tape the value f(x), i.e., the correct value of the function.

For simplicity we also assume that a protocol must eventually stop. That is, for all possible inputs and all
possible assignments for the random sources, eventually (i.e., in finite time) there is no message in transit.

3.2 Comparison to other models

The somewhat restricted model (compared to the general asynchronous model) that we work with allows us to
define a measure similar to information cost that we will later show to have desirable properties and to be of
use. Notice that the general asynchronous model is problematic in this respect since one bit of communication
can bring log(k) bits of information, as not only the content of the message but also the identity of the sender
may reveal information. Thus, information cannot be used as a lower bound on communication. In our case,
the sets Sli and Sli are determined by the current view of the player, (Πi) contains only the content of the
messages, and thus the desirable relation between the communication and the information is maintained. On
the other hand, our restriction is natural, does not seem to be very restrictive (practically all protocols in the
literature adhere to our model), and does not exclude the existence of private protocols.

To exemplify the above mentioned issue in the general asynchronous model consider the following simple
example of a deterministic protocol, for 4 players A, B and C, D, which allows A to transmit to B its input
bit x, but where all messages sent in the protocol are the bit 0, and the protocol generates only a single
transcript over all possible inputs.

A: If x = 0 send 0 to C; after receiving 0 from C, send 0 to D.
If x = 1 send 0 to D; after receiving 0 from D, send 0 to C

B: After receiving 0 from a player, send 0 back to that player.
C,D: After receiving 0 from A send 0 to B. After receiving 0 from B send 0 to A.

It is easy to see that B learns the value of x from the order of the messages it gets.
There has been a long series of works about multi-party communication protocols in different variants

of models, for example [CKS03CKS03, Gro09Gro09, Jay09Jay09, PVZ16PVZ16, CRR14CRR14, CR15CR15]. In [BEO+13BEO+13], Braverman et al.
consider a restricted class of protocols working in the coordinator model: an additional player with no input
can communicate privately with each player, and the players can only communicate with the coordinator.

We first note that the coordinator model does not yield exact bounds for the multi-party communication
complexity in the peer-to-peer model (neither in our model nor in the most general one). Namely, a protocol
in the peer-to-peer model can be transformed into a protocol in the coordinator model with an O(log k)
multiplicative factor in the communication complexity, by sending any message to the coordinator with
a O(log k)-bit label indicating its destination. This factor is sometimes necessary, e.g., for the q-index
function, where players Pi, 0 ≤ i ≤ k−1, each holds an input bit xi, player Pk holds q indices 0 ≤ j` ≤ k−1,
1 ≤ ` ≤ q, and Pk should learn the vector (xj1 , xj1 , . . . , xjq): in the coordinator model the communication
complexity of this function is Θ(min{k, q log k}), while in both peer-to-peer models there is a protocol
for this function that sends only (at most) min{k, 2q} bits, where Pk just queries the appropriate other
players. But this multiplicative factor between the complexities in the two models is not always necessary:
the communication complexity of the parity function Par is Θ(k) both in the peer-to-peer models and in the
coordinator model.

Moreover, when studying private protocols in the peer-to-peer model, the coordinator model does not
offer any insight. In the (asynchronous) coordinator model, described in [DF89DF89] and used for instance in
[BEO+13BEO+13], if there is no privacy requirement with respect to the coordinator, it is trivial to have a private
protocol by all players sending their input to the coordinator, and the coordinator returning the results to the
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players. If there is a privacy requirement with respect to the coordinator, then if there is a random source
shared by all the players (but not the coordinator), privacy is always possible using the protocol of [FKN94FKN94].
If no such source exists, privacy is impossible in general. This follows from the results of Braverman et
al. [BEO+13BEO+13] who show a non-zero lower bound on the total internal information complexity of all parties
(including the coordinator) for the function Disjointness in that model.

Note also that the private protocols described in [BOGW88BOGW88, CCD88CCD88] (and further work) are defined in
the synchronous setting, and thus can be adapted to our communication model (the sets Sji and Sji are always
all the players and hence even independent of the current views).

In the sequel we also use a special case of our model, where the sets Sji and Sji are a function only of
i and j, and not of the entire current view of the player. This is a natural special case for protocols which
we call oblivious protocols, where the communication pattern is fixed and is not a function of the input or
randomness. Clearly, the messages themselves remain a function of the view of the players. We observe that
synchronous protocols are a special case of oblivious protocols.

3.3 Communication complexity and information complexity

Communication complexity, introduced in [Yao79Yao79], measures how many bits of communication are needed
in order for a set of players to compute with error ε a given function of their inputs. The allowed error ε,
implicit in many of the contexts, will be written explicitly as a superscript when necessary.

Definition 3.2. The communication cost of a protocol π, CC(π), is the maximal length of the transcript of π
over all possible inputs, private randomness and public randomness.

Definition 3.3. CC(f) denotes the communication cost of the best protocol computing f .

Information complexity measures the amount of information that must be transmitted so that the players
can compute a given function of their joint inputs. One of its main uses is to provide a lower bound on the
communication complexity of the function. In the two-party setting, this measure led to interesting results
on the communication complexity of various functions, such as AND and Disjointness. We now focus on
designing an analogue to the information cost, for the multi-party setting. The notion of internal information
cost for two-party protocols (c.f. [CSWY01CSWY01, BJKS04BJKS04, Bra15Bra15]) can be easily generalized to any number of
players:

Definition 3.4. The internal information cost of a protocol π for k players, with respect to input distribution
µ, is the sum of the information revealed to each player about the inputs of the other players:

ICµ(π) =

k∑
i=1

I(X−i; Πi | XiRiR
p).

Intuitively, the information cost of a protocol is the amount of information each player learns about the
inputs of the other players during the protocol. The definition we give above, when restricted to two players
is the same as in [Bra15Bra15], even though they look slightly different. This is because we make explicit the role
of the randomness, which will allow us to later give bounds on the amount of randomness needed for private
protocols in the multi-party setting.

The internal information complexity of a function f with respect to input distribution µ, as well as
the internal information complexity of a function f , can be defined for the multi-party case based on the
information cost of a protocol, just as in the 2-party case.
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Definition 3.5. The internal information complexity of a function f , with respect to input distribution µ is
the infimum of the internal information cost over all protocols computing f on input distribution µ:

ICµ(f) = inf
π computing f

ICµ(π).

The information revealed to a given player by a protocol can be written in several ways:

Proposition 3.6. For any protocol π, for any player i:

I(X−i;
←→
Πi | XiRiR

p) = I(X−i; Πi | XiRiR
p).

Proof. For any protocol π, for any player i:

I(X−i;
←→
Πi | XiRiR

p) = I(X−i;
−→
ΠiΠi | XiRiR

p)

= I(X−i; Πi | XiRiR
p) + I(X−i;

−→
Πi | XiRiR

pΠi) (chain rule)

= I(X−i; Πi | XiRiR
p) (since H(

−→
Πi | XiRiR

pΠi) = 0) .

3.4 Information complexity and privacy

The definition of a private protocol as defined in [BOGW88BOGW88, CCD88CCD88] is the following.

Definition 3.7. A k-player protocol π for computing a family of functions (fi) is private33 if for every player
i ∈ [[1, k]], for all pairs of inputs x = (x1, . . . , xk) and x′ = (x′1, . . . , x

′
k) such that fi(x) = fi(x

′) and
xi = x′i, for all possible private random tapes ri of player i, and all possible public random tapes rp, it holds
that for any transcript T

Pr[Πi = T | Ri = ri ; X = x ; Rp = rp] = Pr[Πi = T | Ri = ri ; X = x′ ; Rp = rp] ,

where the probability is over the randomness R−i.

The notion of privacy has an equivalent formulation in terms of information.

Proposition 3.8. A protocol π is private if and only if for all input distributions µ,

k∑
i=1

I(X−i; Πi | XiRiR
pfi(X)) = 0.

Proof. By proposition 2.42.4, definition 3.73.7 is equivalent to the following:

∀ i, I(X−i; Πi | XiRiR
pfi(X)) = 0 .

Since I is non-negative, this is equivalent to

k∑
i=1

I(X−i; Πi | XiRiR
pfi(X)) = 0 .

3In this paper we consider only the setting of 1-privacy, which we call here for simplicity, privacy.
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It is well known that in the multi-party number-in-hand peer-to-peer setting (for k ≥ 3), unlike in the
two-party case, any function can be privately computed.

Theorem 3.9 ([BOGW88BOGW88],[CCD88CCD88]). Any family of functions of more than two variables can be computed
by a private protocol.

Using the above theorem, we can give the following lemma.

Lemma 3.10. For any family of functions (fi) of more than two variables and any µ,

ICµ(f) ≤
k∑
i=1

H(fi(X)), where X is distributed according to µ.

Proof. Let π be a k-player private protocol computing (fi). Fix a distribution µ on the inputs.

ICµ(π) =

k∑
i=1

I(X−i; Πi | XiRiR
p)

≤
k∑
i=1

I(X−i; Πifi(X) | XiRiR
p)

=
k∑
i=1

[I(X−i; fi(X) | XiRiR
p) + I(X−i; Πi | XiRiR

pfi(X))]

=

k∑
i=1

I(X−i; fi(X) | XiRiR
p)

≤
k∑
i=1

H(fi(X)).

Now, ICµ(f) ≤ ICµ(π) ≤
k∑
i=1

H(fi(X)).

This lemma shows that IC cannot be used in the multi-party setting for any meaningful lower bounds on
the communication complexity, since its value is always upper bounded by the entropies of the functions. Our
goal is to get lower bounds tight in both k and n. For this reason, we introduce a new information-theoretic
quantity for the multi-party setting.

4 The new measure: Public Information Cost

We now introduce a new information theoretic quantity which can be used instead of IC in the multi-party
setting. The notion we define will be suitable for studying multi-party communication in a model which is
only a slight restriction on the general asynchronous model, and which allows for private protocols. This
means that while IC will be at most the entropies of the functions, our new notion remains a strong lower
bound for communication.

Definition 4.1. For any k-player protocol π and any input distribution µ, we define the public information
cost of π:

PICµ(π) =
k∑
i=1

I(X−i; ΠiR−i | XiRiR
p).
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The difference between the definition of PIC and that of IC is the presence of the other parties’ private
randomness, R−i, in the formula. Thus, if π is a protocol using only public randomness, then for any input
distribution µ, PICµ(π) = ICµ(π), and hence the name “public information cost”.

Informally speaking, the public information cost measures both the information about the inputs learned
by the players and the information that is hidden by the use of private coins. PIC can be decomposed, using
the chain rule, into two terms, making explicit the contribution of the internal information cost and that of the
private randomness of the players.

Proposition 4.2. For any k-player protocol π and any input distribution µ,

PICµ(π) = ICµ(π) +
k∑
i=1

I(R−i;X−i|XiΠiRiR
p).

A possible intuitive meaning of the second term could be the following. At the end of the protocol,
player i knows its input Xi, its private coins Ri, the public coins Rp and its transcript Πi. Suppose that the
private randomness R−i of the other players is now revealed to player i. This brings to that player some new
information, quantified by I(R−i;X−i|XiΠiRiR

p), about the inputs X−i of the other players.
We also define the public information complexity of a function, given error probability ε. In the sequel,

when clear from the context, we sometimes omit ε.

Definition 4.3. For any function f , ε ≥ 0, and any input distribution µ, we define the quantity

PICεµ(f) = inf
π ε-computing f

PICµ(π) .

Definition 4.4. For any f , we define the quantity

PICε(f) = inf
π ε- computing f

sup
µ

PICµ(π) .

The public information cost is a lower bound on the communication complexity.

Proposition 4.5. For any protocol π and input distribution µ, CC(π) ≥ PICµ(π). Thus, for any function f ,
CC(f) ≥ PIC(f).

Proof.

PICµ(π) =

k∑
i=1

I(X−i;R−i | XiRiR
p) + I(X−i; Πi | XiRR

p) (by the chain rule)

=

k∑
i=1

I(X−i; Πi | XiRR
p) (since the first term is 0 by Proposition 2.42.4)

=
k∑
i=1

H(Πi | XiRR
p) (since H(Πi | XRRp) = 0 )

≤
k∑
i=1

H(Πi) (by Proposition 2.52.5) .

Using Proposition 2.22.2, for each i, H(Πi) is upper bounded by the expected size of Πi. As the expected size
of Π is upper bounded by the sum over i of the expected size of Πi, we get CC(π) ≥ PICµ(π).
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In fact, as we show below, the public information cost of a function is equal to its information cost (IC) in
a setting where only public randomness is allowed. The role of private coins in communication protocols has
been studied for example in [BG14BG14, BBK+16BBK+16, Koz15Koz15]. In the next section we will see that the difference
between the public information cost and the information cost is related to the private coins used during the
protocol.

Theorem 4.6. For any protocol π there exists a public coin protocol π′ such that for all input distributions µ,
PICµ(π′) = PICµ(π). If π is oblivious then so is π′.

Proof. Given an an arbitrary protocol π, we build a public coin protocol π′ as follows.
Let R′p denote the public random tape of π′. We consider R′p as being composed of k + 1 parts, one to be
used as the public random tape of π, and the k other parts as the k private random tapes, in π, of the k players.
This can be done by interleaving the k + 1 tapes bit by bit on R′p. We denote the k + 1 resulting tapes as Rp

and Ri, 1 ≤ i ≤ k. Protocol π′ is then defined as running protocol π, when the players use the corresponding
“public random tape” Rp and “private random tapes” Ri, as defined for π. Observe that the transcripts of π′

and π′ are therefore identical. Observe also that if π is oblivious, so is π′. Let R denote (Ri). We have,

PICµ(π′) =
k∑
i=1

I(X−i; Π′i | XiR
′p)

=
k∑
i=1

I(X−i; Π′i | XiRR
p)

=

k∑
i=1

[I(X−i; Π′iR−i | XiRiR
p)− I(X−i;R−i | XiRiR

p)] (chain rule)

=
k∑
i=1

I(X−i; Π′iR−i | XiRiR
p) (since the second term equals 0)

=
k∑
i=1

I(X−i; ΠiR−i | XiRiR
p) (since the transcripts of π′ and of π are identical)

= PICµ(π) .

The next theorem is a direct consequence of Theorem 4.64.6.

Theorem 4.7. For any function f and input distribution µ,

PICµ(f) = inf
π computing f , using only public coins

ICµ(π)

and
PIC(f) = inf

π computing f , using only public coins
sup
µ

ICµ(π) .

The following property of the public information cost will be useful for zero-error protocols.

Proposition 4.8. For any function f , for any input distribution µ, PIC0
µ(f) = ICdet

µ (f) where

ICdet
µ (f) = inf

π deterministic protocol computing f
ICµ(π) .
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Proof. Let δ > 0 be arbitrary. To prove the claim we show that there exists a deterministic protocol computing
f , π0, such that ICµ(π0) ≤ PIC0

µ(f) + δ.
Let π be a zero-error protocol for f such that PICµ(π) ≤ PIC0

µ(f) + δ
2 . By Theorem 4.74.7, one can assume

that π has no private randomness.

ICµ(π) =

k∑
i=1

I(X−i; Πi | XiR
p)

=
k∑
i=1

E
r

[I(X−i; Πi | Xi, R
p = r)]

= E
r

[
k∑
i=1

I(X−i; Πi | Xi, R
p = r)

]
.

Letting t(r) =
k∑
i=1

I(X−i; Πi | Xi, R
p = r), it holds that ICµ(π) = E

r
[t(r)]. Let r0 be a value of the public

random tape such that t(r0) ≤ ICµ(π) + δ
2 and define π0 to be the protocol operating like π when the random

tape is r0. Note that π0 is a deterministic (zero-error) protocol computing f .

PICµ(π0) = ICµ(π0)

=

k∑
i=1

I(X−i; Π0
i | Xi)

=
k∑
i=1

I(X−i; Πi | XiR = r0)

= t(r0)

≤ ICµ(π) +
δ

2

≤ PICµ(π) +
δ

2
≤ PIC0

µ(f) + δ .

δ being arbitrary, this concludes the proof.

We now observe that PIC and IC are strictly different even in the two-party case. We prove below
that for the AND function, the public information cost is log(3) ' 1.58, while, as shown in [BGPW13BGPW13],
IC0(AND) ' 1.49. This implies that the protocol that achieves the optimal information cost for AND must
use private coins. We remark that in [BGPW13BGPW13] it is shown that the external information cost of AND, that
we do not consider here, is log(3).

Proposition 4.9. For two players, PIC0(AND) = log2 3 ' 1.58.

Proof. In this proof we denote PIC0(·) by simply PIC(·). We call a protocol π′ symmetric to π (and an input
distribution µ′ symmetric to µ) when the roles of Alice and Bob (or of the inputs X and Y ) are flipped.

We first prove that there exists a protocol π∗ for AND such that supµ PICµ(π∗) = infπ supµ PICµ(π),
where the infimum is over all protocols π computing AND. To this end we now prove that for any protocol
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π for AND it holds that supµ PICµ(π∗) ≤ supµ PICµ(π), where π∗ is a protocol for AND that we define
below. Consider an arbitrary protocol π. By Proposition 4.84.8 we can assume w.l.o.g. that π is deterministic.
Since π computes AND there must be a non-constant bit sent in π. Assume w.l.o.g. that the first player
to send a non-constant bit in π is Alice (having input X).44 Since π is deterministic, this first non-constant
bit is either Alice’s input bit, x, or, 1− x. Since Alice must compute the value of AND, we also have that
H(AND(X,Y )|XΠA) = 0, where ΠA is the transcript of the messages received by Alice. Consider now the
protocol π∗ defined as follows: Alice sends her input bit x to Bob; Bob, who can now compute AND(X,Y ),
sends to Alice that value.

For any input distribution µ we have

PIC(π∗) = ICµ(π∗)

= I(X; Π∗B | Y ) + I(Y ; Π∗A | X)

= H(X | Y ) + (H(Y | X)−H(Y | X AND(X,Y )))

= I(X; ΠB | Y ) + (H(Y | X)−H(Y | X AND(X,Y )))

≤ I(X; ΠB | Y ) + (H(Y | X)−H(Y | XΠA)) (because H(AND(X,Y )|XΠA) = 0)

= I(X; ΠB | Y ) + I(Y ; ΠA | X)

= PIC(π) .

It follows that for any π computing AND, it holds that supµ PICµ(π∗) ≤ supµ PICµ(π), and hence
supµ PICµ(π∗) = infπ supµ PICµ(π).

To finalize the proof we now show that supµ PICµ(π∗) = PICµ∗(π
∗) for µ∗ defined as follows: X and Y

are independent; X ∼ Ber(13 ,
2
3); Y ∼ Ber(12 ,

1
2).

Consider an arbitrary input distribution µ. Let α and β be such that Prµ[X = 0] = α and Prµ[Y = 0] =
β. Observe that X and Y are not necessarily independent. We have

PICµ(π∗) = Iµ(X; Π∗ | Y ) + Iµ(Y ; Π∗ | X)

= Hµ(X | Y ) + [α · Iµ(Y ; Π∗ | X = 0) + (1− α) · Iµ(Y ; Π∗ | X = 1)] ,

where the second equality follows fromHµ(X | YΠ∗)=0, as the transcript of π∗ fully determinesX . Observe
that when X = 0, Alice doesn’t learn from Π∗ anything about Y , while when X = 1, Alice learns from Π∗

the value of Y . Thus
PICµ(π∗) = Hµ(X | Y ) + (1− α) ·Hµ(Y | X = 1) .

Now define another input distribution µ′ such that: X and Y are independent; X ∼ Ber(α, 1 − α);
Pr[Y = 1] = Prµ[Y = 1 | X = 1]. Note that Hµ′(X | Y ) = Hµ′(X) = Hµ(X) and that Hµ′(Y | X =
1) = Hµ′(Y ) = Hµ(Y | X = 1). We thus have that

PICµ′(π
∗) = Iµ′(X; Π∗ | Y ) + Iµ′(Y ; Π∗ | X)

= Hµ′(X | Y ) + (1− α) ·Hµ′(Y | X = 1)

= Hµ(X) + (1− α) ·Hµ(Y | X = 1)

≥ Hµ(X | Y ) + (1− α) ·Hµ(Y | X = 1)

= PICµ(π∗) .

4We can assume this w.l.o.g. because for any protocol π, supµ PICµ(π) = supµ PICµ(π
′), where π′ is the protocol symmetric

to π. This is because any input distribution µ has a symmetric one, µ′.
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Therefore, to find supµ PICµ(π∗) we can consider only input distributions µ′ such that X and Y are
independent. For such µ′ we define α′ and β′ such that X ∼ Ber(α′, 1− α′) and Y ∼ Ber(β′, 1− β′). We
have

PICµ′(π
∗) = Hµ′(X) + (1− α′)Hµ′(Y ) .

Thus, for any α′, PICµ′(π∗) is maximized when Hµ′(Y ) = 1, i.e., when β′ = 1
2 . In that case we have

PICµ′(π
∗) = Hµ′(X)+(1−α′). Thus, to find supµ PICµ(π∗), we study the function f : [0, 1]→ R, defined

as f(α′) = −α′ log(α′) + (α′ − 1) log(1− α′) + 1− α′. 55

Now, f is continuous on [0, 1] and differentiable on (0, 1). For 0 < α < 1, we have:
(1) f ′(α′) = − log(α′)− 1 + log(1− α′) + 1− 1 = log( 1

α′ − 1)− 1; (2) f ′ is continuous and decreasing
on (0, 1); and (3) f ′ admits the unique root 1

3 . Thus, f is maximized for α′ = 1
3 , its maximum value being

f(13) = log(3).
We thus have that supµ PICµ(π∗) = PICµ∗(π

∗) for µ∗ defined as follows: X and Y are independent;
X ∼ Ber(13 ,

2
3); Y ∼ Ber(12 ,

1
2), that PICµ∗(π∗) = log(3), and that PIC(AND) = log(3) ' 1.58.

5 Private computation, randomness, and PIC

We have seen that the public information cost of a function is equal to the information cost of the function
when we only consider public coin protocols, and that in order to decrease the information cost even further,
the players must use private randomness. We will see now that the difference between the public information
cost of a protocol and its information cost can provide a lower bound on the amount of private randomness
the players use during the protocol. The entropy of the transcript of the protocol, conditioned on the inputs
and the public coins, is defined as H(Π | XRp). Once the input and the public coins are fixed, the entropy of
the transcript of the protocol comes solely from the private randomness. Thus the entropy of the transcript of
the protocol provides a lower bound on the entropy of the private randomness used by the players.

Theorem 5.1. Let f = (fi) be a family of functions of k variables. Let π be a protocol for f . For any input
distribution µ, it holds:

Hµ(Π | XRp) ≥ PICµ(π)− ICµ(π)

k
.

Thus, running a protocol for f with information cost Iµ requires entropy

Hµ(Π | XRp) ≥ PICµ(f)− Iµ
k

.

Proof. We assume in what follows the input distribution µ without explicitly denoting it.
Define Qi as

Qi = I(X−i;R−i | XiRiΠiR
p) .

By Proposition 4.24.2 we have,

PIC(π) = IC(π) +

k∑
i=1

I(X−i;R−i | XiRiR
pΠi)

= IC(π) +

k∑
i=1

Qi .

5We denote here by log the logarithm base 2.
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Now,

Qi = I(X−i;R−i | XiRiΠiR
p)

= I(X−iΠi;R−i | XiRiR
p)− I(Πi;R−i | XiRiR

p) (chain rule)

≤ I(X−iΠi;R−i | XiRiR
p)

= I(X−i;R−i | XiRiR
p) + I(Πi;R−i | XiRiX−iR

p) (chain rule)

= I(Πi;R−i | XRiRp)
= H(Πi | XRiRp)
≤ H(Π | XRp) .

Thus,

PIC(π) ≤ IC(π) + k ·H(Π | XRp) .

Using Lemma 3.103.10, we can give a lower bound on the randomness required to run a private protocol.

Corollary 5.2. Let f = (fi) be a family of functions of k variables. Let π be a k-party private protocol for
f . For any distribution µ on inputs,

Hµ(Π | XRp) ≥ 1

k
·

(
PICµ(f)−

k∑
i=1

Hµ(fi)

)
.

6 Tight lower bounds for the parity function Par

We now show how one can indeed use PIC to study multi-party communication protocols and to prove
tight bounds. We study one of the canonical problems for zero-error multi-party computation, the parity
function. The k-party parity problem with n-bit inputs Parnk is defined as follows. Each player i receives n

bits (xpi )p∈[[1,n]] and Player 1 has to output the bitwise XOR of the inputs
(

k⊕
i=1

x1i ,
k⊕
i=1

x2i , . . . ,
k⊕
i=1

xni

)
. We

give a lower bound on Parnk and then use it to prove tight lower bounds on the randomness complexity of
private computations of Parnk .

There is a simple private protocol for Parnk that uses n bits of private randomness. Player 1 uses a private
random n-bit string r and sends to Player 2 the string x1 ⊕ r. Then, Player 2 computes the bit-wise parity of
its input with that message and sends x2 ⊕ x1 ⊕ r to Player 3. The players continue until Player 1 receives
back the message xk ⊕ . . .⊕ x1 ⊕ r. Player 1 then takes the bit-wise parity of this message with the private
string r to compute the value of the parity function. It is easy to see that this protocol has information cost
equal to n, since Player 1 just learns the value of the function and all other players learn nothing. We thus see
that information cost (IC) cannot provide here lower bounds that scale with k.

We note that we prove our lower bound for Parnk for a wider class of protocols, where we allow the player
outputting ⊕ki=1x

p
i to be different for each coordinate p and where the identity of that player may depend on

the input. On the other hand, we prove our lower bound for the restricted class of 0-error oblivious protocols.
We now prove a tight lower bound of Ω(nk) on the PIC of Parnk (for 0-error oblivious protocols) which can
then be used to derive other lower bounds for protocols for Parnk .
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For the purpose of the proof we define a (natural) full order on the messages of an oblivious protocol. The
order is defined as follows. We define an ordered series of lots of messages. In each lot there is at most one
message on any of the k(k− 1) directional links. The order of the messages is defined by the order of the lots,
and within each lot, the messages are ordered by, say, the lexicographical order of the links on which they
are sent. The messages are assigned to lots as follows: The first lot consists of all messages sent by all the
players in their first respective local round. The messages assigned to lot s ≥ 1 are defined inductively after
lots s′ < s have been defined. To define the messages of lot s > 1, we proceed as follows for each player
i: run the protocol π, and whenever player i is waiting for a message, extract a message from the already
defined lots (lots s′ < s), if such message is assigned to one of them. Continue until a needed message is not
available (i.e., the protocol “gets stuck”), or after player i sends, according to the protocol, a message not
already assigned to a lot s′ < s. In the latter case, assign to lot s all the messages sent by player i in the same
local round (i.e., for any player i and local round r, all messages sent by player i in local round r are in the
same lot).

To see that all the messages of the protocol are assigned to lots, build the following graph where each
node is identified by a pair (i, r), for a player i and local round r of player i. There is a directed edge from
any node (i, r′) to node (i, r), if r′ < r and there is at least one message sent by player i in round r′. Further,
there is a directed edge from node (j, r′) to node (i, r) if there is an integer ` such that the `’th message
from player j to player i is sent by player j in its local round r′ and read by player i in its local round r.
Observe that a node (i, r) is not on a directed cycle if and only if, when the protocol is run, player i reaches
the sending-of-messages phase of its local round r. Define a partial order on the nodes which are not on a
directed cycle, according to the orientation of the edges. We define the “level” of a node to be the length of
the longest directed path leading to it. Observe that by induction on this level, the messages sent by player i
in local round r, where node (i, r) is of level s, are assigned to lot number s.

Observe that the enumeration of the messages as defined above respects the intuitive “temporal causality”
of the messages of the protocol. More formally, the following two properties hold for the above defined order:
(1) the relative order of the local rounds of two messages that are both sent from player, say, i, to player, say,
j, is the same as the relative order of these messages according to the global order, and (2) the value of a
message number ` (in the global order) sent from player i is fully determined by the input to player i and the
values of the messages with indices less than ` that are received by player i.

Denote by (M
−→
ll
i )l≥0 the ordered sequence of all messages sent by player i in the protocol π, ordered

according to the enumeration defined above. Similarly, denote by (M
←−
ll
i )l≥0 the ordered sequence of messages

received by player i. Denote by j(i, l) the player receiving message M
−→
ll
i , and by l′(i, l) the integer such that

the random variable M
←−
ll′(i,l)
j(i,l) and the random variable M

−→
ll
i represent the same message. Observe that since we

consider here an oblivious protocol, the functions j(i, l) and l′(i, l) are well defined. For any l0, let M<
−→
ll0

i

be the random variable representing the so-far history of player i, i.e., all the messages to and from player i

which appear before message M
−→
ll0
i in the enumeration of messages defined above. In a similar way, define

M<
←−
ll0

i to be the random variable representing the so-far history of the messages to and from player i which

appear before message M
←−
ll0
i .

Theorem 6.1. For oblivious protocols, PIC0
µ(Parnk) ≥ n(k − 1) where µ is the uniform input distribution.

Proof. Throughout the proof we consider the uniform input distribution µ without explicitly stating it. Since
we are looking at 0-error protocols, the public information cost is equal to the information cost of deterministic
protocols. Let π be a 0-error deterministic protocol for Parnk for k players and n-bit input per player.
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We first prove that

PIC0(π) ≥
k∑
i=1

I(Xi;
←→
Πi) . (1)

Intuitively, this means that PIC is at least the sum over the players i of the amount of information that player
i leaks about its input to some entity that has access to all messages to and from player i.

Since π is a deterministic protocol we have PIC0(π) =
k∑
j=1

I(X−j ; Πj | Xj). We will therefore show that

k∑
j=1

I(X−j ; Πj | Xj) ≥
k∑
i=1

I(Xi;
←→
Πi).

Using the chain rule, we decompose
k∑
j=1

I(X−j ; Πj | Xj) into a sum over all messages received in the

protocol:

k∑
j=1

I(X−j ; Πj | Xj) =

k∑
j=1

∑
`′≥0

I(X−j ;M
←−
l̀ ′
j |M

←−
l0
j . . .M

←−
l̀ ′−1
j Xj)

=

k∑
j=1

∑
`′≥0

I(X−j ;M
←−
l̀ ′
j |M<

←−
l̀ ′

j Xj) .

We now consider each message from the point of view of the receiver rather than that of the sender.
Recall that each message in the protocol is represented by two random variables: for any i and l the two

random variables M
−→
ll
i and M

←−
ll′(i,l)
j(i,l) represent the same message. Thus, we can rearrange the last summation,

using j as a shorthand for j(i, l) and l′ as a shorthand of l′(i, l), and get

k∑
j=1

I(X−j ; Πj | Xj) =
k∑
i=1

∑
`≥0

I(X−j ;M
−→
l̀
i |M<

←−
l̀ ′

j Xj) .

Note that using the chain rule, we have for all i ∈ [[1, k]],

I(Xi;
←→
Πi) =

∑
`

I(Xi;M
−→
l̀
i |M<

−→
l̀

i ) +
∑
`

I(Xi;M
←−
l̀
i |M<

←−
l̀

i )

=
∑
`

I(Xi;M
−→
l̀
i |M<

−→
l̀

i ) ,

where we used the fact that every term of the second sum is 0. This is true using Proposition 2.42.4, which can
we used since, for any `, conditioned on M<

←−
l̀

i , Xi is independent of the variable M
←−
l̀
i (intuitively: when the

input distribution is a product distribution, the incoming messages to a player do not carry any information
on the input of that player).

Therefore, our objective now is to show that for any message M
−→
l̀
i ,

I(X−j ;M
−→
l̀
i |M<

←−
l̀ ′

j Xj) ≥ I(Xi;M
−→
l̀
i |M<

−→
l̀

i ) . (2)

Since M
−→
ll
i is determined by (Xi,M

<
−→
ll

i ), we have that H(M
−→
ll
i | XiM

<
−→
ll

i ) = 0, and I(Xi;M
−→
ll
i | M<

−→
ll

i ) =

H(M
−→
ll
i |M<

−→
ll

i ). Similarly (asXi is trivially a function ofX−j), I(X−j ;M
−→
ll
i |M<

←−
ll′

j Xj) = H(M
−→
ll
i |M<

←−
ll′

j Xj).
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Thus,

I(Xi;M
−→
l̀
i |M<

−→
l̀

i ) ≤ I(X−j ;M
−→
l̀
i |M<

←−
l̀ ′

j Xj)

m

H(M
−→
l̀
i |M<

−→
l̀

i ) ≤ H(M
−→
l̀
i |M<

←−
l̀ ′

j Xj)

m

I(M
−→
l̀
i ;M

<
−→
l̀

i ) ≥ I(M
−→
l̀
i ;M

<
←−
l̀ ′

j Xj) .

The last inequality holds if I(M
−→
l̀
i ;M

<
−→
l̀

i ) = I(M
−→
l̀
i ;M

<
−→
l̀

i M<
←−
l̀ ′

j Xj), which itself holds if

I(M
−→
l̀
i ;M

<
←−
l̀ ′

j Xj |M<
−→
l̀

i ) = 0 . (3)

Observe that given M<
−→
l̀

i , M
−→
l̀
i is fixed by Xi, and therefore by the data processing inequality

I(Xi;M
<
←−
l̀ ′

j Xj |M<
−→
l̀

i ) ≥ I(M
−→
l̀
i ;M

<
←−
l̀ ′

j Xj |M<
−→
l̀

i ) ,

and thus Equality (33) holds if
I(Xi;M

<
←−
l̀ ′

j Xj |M<
−→
l̀

i ) = 0 . (4)

Observe now that the ordering of the messages that we defined implies that M<
←−
l̀ ′

j (which is the same

message as M
−→
l̀
i ) is determined by (X−i,M

<
−→
l̀

i ). Furthermore, Xj is trivially determined by X−i. Using the
data processing inequality we thus have

I(Xi;M
<
←−
l̀ ′

j Xj |M<
−→
l̀

i ) ≤ I(Xi;X−iM
<
−→
l̀

i |M
<
−→
l̀

i ) = I(Xi;X−i |M<
−→
l̀

i ) .

Thus Equality (44) holds if I(Xi;X−i | M<
−→
l̀

i ) = 0. To prove the latter, denote by (Bd)d>0 all the

messages in M<
−→
l̀

i , ordered by local rounds of player i, and inside each round having first the messages sent
by player i, ordered by the index of the recipient, and then the messages received by player i, ordered by
the index of the sender. For convenience of notation we also define the message B0, which is the “empty
message” at the beginning of M<

−→
l̀

i .
We prove, by induction on d, that for any d ≥ 0, I(Xi;X−i | B0B1 . . . Bd) = 0. For the base of the

induction (d = 0) we have I(Xi;X−i | B0) = I(Xi;X−i) = 0, since X is distributed according to µ.
By the induction hypothesis, for some d ≥ 0, I(Xi;X−i | B0 . . . Bd) = 0. If the message Bd+1 is sent

by player i, then Bd+1 is a function of Xi and B0 . . . Bd, and thus

I(Xi;X−i | B0 . . . Bd+1) = H(X−i | B0 . . . Bd+1) −H(X−i | B0 . . . Bd+1Xi)

≤ H(X−i | B0 . . . Bd) −H(X−i | B0 . . . BdXi)

= I(Xi;X−i | B0 . . . Bd)

= 0 .
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Similarly, if the message Bd+1 is received by player i, then Bd+1 is a function of X−i and B0 . . . Bd, and
thus

I(Xi;X−i | B0 . . . Bd+1) = H(Xi | B0 . . . Bd+1) −H(Xi | B0 . . . Bd+1X−i)

≤ H(Xi | B0 . . . Bd) −H(Xi | B0 . . . BdX−i)

= I(Xi;X−i | B0 . . . Bd)

= 0 .

We thus have that I(Xi;X−i | M<
−→
l̀

i ) = 0 and the proofs of Inequality (44) and of Equality (33) are
concluded. Inequality (22) and Inequality (11) then follow.

To conclude the proof of the theorem we now show that

k∑
i=1

I(Xi;
←→
Πi) ≥ n(k − 1) . (5)

Let x = (xpi ) ∈ {0, 1}nk be an arbitrary input, where xi is the n-bit input of player i. For any index

1 ≤ p ≤ n, any player 1 ≤ q ≤ k, we consider the question whether H(
k⊕
i=1

xpi | Xq = xq,Πq = πq(x)) = 0.

Intuitively, if this is the case then player q can output
k⊕
i=1

xpi . Observe that since π is a 0-error protocol for

Parnk , then for each index p there is at least one player q such that H(
k⊕
i=1

xpi | Xq = xq,Πq = πq(x)) = 0.

Denote by qp(x) an arbitrary such player. For any player i, define Ci(x) = {p | qp(x) 6= i}. Intuitively,
when the input is x, then for each such coordinate, player i has to leak its own input on that coordinate. Let
ci(x) = |Ci(x)|.

We now show that ∀ i, H(Xi |
←→
Πi = ←→πi (x)) ≤ n − ci(x). Assume towards a contradiction that for

some i, H(Xi |
←→
Πi =←→πi (x)) > n− ci(x). This implies that the number of possible values for Xi consistent

with
←→
Πi =←→πi (x) is more than 2n−ci(x), and thus the number of coordinates of the input of the i-th player

that are fixed by
←→
Πi =←→πi (x) is strictly less than ci(x). In particular there exists an input x′ such that

• ←→πi (x′) =←→πi (x), and

• ∃ p ∈ Ci(x) such that x′pi 6= xpi .

Observe that we consider here oblivious multi-party protocols. Therefore,←→πi (x′) =←→πi (x) implies that
←→πi (x) = ←→πi (x′i, x−i) (by considering player i as Alice, and all other players together as Bob, and using
arguments as those used for a similar property for 2-party protocols). As qp(x) 6= i, this is a contradiction,

since if ←→πi (x) = ←→πi (x′i, x−i) then (the output)
k⊕
i=1

xpi is not fixed by Xq = xq and Πqp(x) = πqp(x)(x),

contradicting the definition of qp(x).
We now consider, for a given player i, the quantity E

x
[ci(x)]. For any given x and any given player i

we proved above that H(Xi |
←→
Πi = ←→πi (x)) ≤ n − ci(x). Thus, for any player i we have H(Xi |

←→
Πi) ≤

E
x
[n− ci(x)] = n− E

x
[ci(x)]. We get I(Xi;

←→
Πi) ≥ E

x
[ci(x)].
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Summing over all i, we get
k∑
i=1

I(Xi;
←→
Πi) ≥

k∑
i=1

E
x
[ci(x)] = E

x
[
k∑
i=1

ci(x)] and since by simple counting,

for any x, it holds that
k∑
i=1

ci(x) = n(k − 1), we get
k∑
i=1

I(Xi;
←→
Πi) ≥ E

x
[n(k − 1)] = n(k − 1). This

concludes the proof of Inequality (55).
Inequality (11) together with Inequality (55) conclude the proof of the theorem.

Theorem 6.2. The entropy in the private randomness of an oblivious private protocol for Parnk is at least
k−2
k · n.

Proof. For Parnk , where one player outputs the parity for each coordinate, we have
k∑
i=1

H(fi) = n. Applying

Corollary 5.25.2, we get: H(Π | XRp) ≥ k−2
k · n.

We note that all private protocols considered in the literature are oblivious protocols. Observe also that
using Theorem 5.15.1 one can also give a lower bound on the randomness needed by protocols that are allowed
to leak a given limited amount of information about the inputs of the players.

7 A direct sum for PIC ?

The direct sum property is a fundamental question in complexity theory, and has been studied for many
computation models. A direct sum theorem affirms that the amount of resources needed to perform t
independent tasks is at least the sum of the resources needed to perform each of the t tasks. In this section we
show that a certain direct sum property for PIC implies a certain direct sum property for CC. To this end, we
prove a compression result by extending previous results [BBK+16BBK+16, Pan15Pan15] to the multi-party case. Note that
information complexity (IC) has a direct sum property in the multi-party case. For PIC, it is easy to prove the
following inequality.

Theorem 7.1. For any k-variable functions f and g, for any distribution µ on the inputs of f , for any
distribution η on the inputs of g, it holds that

PICµ×η(f × g) ≤ PICµ(f) + PICη(g) .

We use here the notation f × g to indicate the task of computing f with error ε and computing g with
error ε (as opposed to computing the couple function (f, g) with error ε). In order to understand whether
the opposite inequality holds, i.e., whether a direct sum property holds for PIC, we first need to study the
problem of compressing communication.

7.1 Relation between PIC and CC: A compression result

An important open question is how well can we compress the communication cost of an interactive protocol.
Compression results have appeared in [BBCR13BBCR13, BR14BR14, BBK+16BBK+16, Pan15Pan15, BMY15BMY15], while, on the other
hand, [GKR14GKR14, GKR15bGKR15b, RS15RS15, FJK+16FJK+16, GKR15aGKR15a] focus on the hardness of compressing communication
protocols. Here, we present a compression result with regards to the average-case communication complexity,
distributional error, and the public information cost.
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Definition 7.2. Given an input distribution µ, a protocol is said to compute a function with distributional
error ε if the probability, over the input and the randomness of the protocol, that the protocol fails is at most
ε.

Definition 7.3. The average-case communication complexity of a protocol π with respect to the input
distribution µ, denoted ACCµ(π), is the expected number of bits that are transmitted in an execution of π for
inputs distributed according to µ and for uniform randomness.

Theorem 7.4. Suppose there exists an oblivious protocol π to compute a k-variable function f over the
distribution µ with distributional error probability ε. Then for any fixed δ > 0 there exists a public-coin
protocol ρ that computes f over µ with distributional error ε+δ, and with average communication complexity

ACCµ(ρ) = O
(
k2 · ICµ(π) · log

k2 · ICµ(π) · CC(π)

δ

)
.

The proof of the above theorem will follow from extending, to the case of k > 2 players, the compression
result presented in [BBK+16BBK+16, Pan15Pan15], as stated below. Thus, the proof of Theorem 7.47.4 follows from
Theorem 4.64.6 and from Theorem 7.57.5. We remark that it is an interesting question whether the k2 factor is
necessary or whether it can be replaced by smaller function of k.

Theorem 7.5. Suppose there exists an oblivious public-coin protocol π to compute a k-variable function
f over the distribution µ with distributional error probability ε. Then for any fixed δ > 0 there exists a
public-coin protocol ρ that computes f over µ with distributional error ε+δ, and with average communication
complexity

ACCµ(ρ) = O
(
k2 · ICµ(π) · log

k2 · ICµ(π) · CC(π)

δ

)
.

In the two-party compression scheme of [BBK+16BBK+16, Pan15Pan15], the two players, given their corresponding
inputs, try to guess the transcript π(x1, x2) of the protocol π. For this, player 1 picks a candidate t1 from the
set Im(π(x1, ·)) of possible transcripts consistent with input x1, while player 2 picks a candidate t2 from
the set Im(π(·, x2)). The two players then communicate in order to find the first bit on which t1 and t2
disagree. The general structure of protocols ensures that the common prefix of t1 and t2 (until the first bit
of disagreement) is identical to the beginning of the correct transcript on inputs x1 and x2, i.e., identical
to π(x1, x2). Starting from this correct prefix, the players then pick new candidates for the transcript of
the protocol π(x1, x2), and so on, until they agree on the full transcript π(x1, x2). Clever choices of the
candidates, along with an efficient technique to find the first bit which differs between the candidates, lead to
a protocol with a small amount of communication.

In extending the proof in [BBK+16BBK+16, Pan15Pan15] to the multi-party case new difficulties are encountered. The
players can no longer try to guess the full transcript, as they have little information about the communication
between the other players, and can only try to guess their partial transcripts, according to their own input.
Then, in order to find the first disagreement in the global transcript, pairs of players need to find and
communicate the place of the first disagreement between their respective partial transcripts.

For technical reasons, in this section we use the notation
←→
Πi not as defined in Section 33 to denote the

concatenation of Πi together with a similar string
−→
Πi of the messages sent by player i. Rather, we define←→

Πi as a concatenation, local round of player i by local round of player i, of, first, the messages sent by
player i and, then, the messages received by player i. Observe that since in this section we consider oblivious
protocols there is a one-to-one correspondence between the transcripts of player i,

←→
Πi, according to the two

definitions.
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Following [BBK+16BBK+16], in the definition of our protocol we will use a two-party “device” as a black box,
call it the lcp box (for longest common prefix), which can be used by two players A and B in the following
way: A inputs a string x, B inputs a string y, and the box returns the first index j such that xj 6= yj , if
x 6= y, or returns that x = y, otherwise. The conceptual device is assumed to operate with 0 communication
complexity.

This black box device can be efficiently simulated if we allow error:

Lemma 7.6 ([FRPU94FRPU94]). For any ε > 0, there exists a randomized public coin protocol, such that on input
two n-bits strings x and y, it outputs the first index j such that xj 6= yj with probability at least 1− ε, if such
j exists, and otherwise outputs that the two strings are equal. The communication complexity of this protocol
is O(log(n/ε)).

We note that this simulation can easily be extended to the case when the two input strings are not of the
same length, by first communicating the two lengths, and continuing only if they are equal. This leaves the
communication complexity of the simulation protocol O(log(n/ε)) where n = max(|x|, |y|).

We will use the following lemma. This lemma, and its proof, are implicit in [BBK+16BBK+16]. We give here the
proof for completeness.

Lemma 7.7 ([BBK+16BBK+16]). For every input distribution µ, and every positive error probability δ, any protocol
ρ̃ that uses the lcp box ` times on average (on the input distribution µ and the internal randomness of ρ̃) on
strings of length at most C, can be simulated with error δ by a protocol ρ that does not use an lcp box and
communicates on average O(` log( `Cδ )) bits more than ρ̃.

Proof. The protocol ρ simulates ρ̃ by replacing each use of the lcp box with the protocol given by Lemma 7.67.6,
with error ε, ε to be defined later.

Since each call to that protocol fails with probability at most ε, the (distributional) error introduced by
the use of the simulation protocol instead of the lcp box is at most ε`. We thus take ε = δ/` and get that the
simulation fails with (distributional) probability δ.

By Lemma 7.67.6 each call to the protocol simulatimg the lcp box has communication complexity
O(log(C/ε)). We get that on average ρ sends O(` log(C/ε)) = O(` log( `Cδ )) bits more than ρ̃.

We use the lcp box in the definition of the protocols in our proof, and then use Lemma 7.77.7 to obtain our
final result at the end.

Proof of theorem 7.57.5. Fix the public randomness to be r. For each i, define the set Xi to be the set of possible
inputs of player i, and the set Π(i)(xi) to be the set of possible transcripts of player i, given that player i has
input xi (and the public randomness is r):

Π(i)(xi) =←→πi (X1, . . . ,Xi−1, xi,Xi+1, . . . ,Xk, r) .

The messages being self-delimiting and the protocol π being oblivious, Π(i)(xi) is naturally defined as a set
of binary strings.

Each player i can now represent Π(i)(xi) by a binary tree Ti as follows. We note that actually computing
Ti takes exponential time. However, we are concerned with the communication complexity of the protocol
and not by its computational complexity.

1. The root is the largest common prefix (lcp) of the transcripts in Π(i)(xi), and the remaining nodes are
defined inductively.
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2. For node τ , we have

• the first child of τ is the lcp of the transcripts in Π(i)(xi) beginning with τ ◦0, i.e., τ concatenated
with the bit 0.

• the second child of τ is the lcp of the transcripts in Π(i)(xi) beginning with τ ◦ 1.

3. The leaves are labelled by the possible transcripts of player i, i.e., the elements of Π(i)(xi).

We define the weight of a leaf f with label ti to be

w(ti) = Pr
(Xj)j 6=i|Xi=xi

[←→πi (X1, . . . , Xi−1, xi, Xi+1, . . . , Xk, r) = ti] .

The weight of a non-leaf node is defined by induction as the sum of the weights of its children. By construction,
the weight of the root is 1.

We say that (t1, . . . , tk) ∈ Π(1)(x1) × . . . × Π(k)(xk) is a coherent profile if every message
from i to j appears with the same content in ti and tj . In fact, given (x1, . . . , xk), the profile
(←→π1(x1, . . . , xk, r), . . . ,

←→πk(x1, . . . , xk, r)) is the only coherent profile. Assume towards a contradiction
that there are two distinct coherent profiles, given (x1, . . . , xk). Each coherent profile gives rise to a transcript
of the protocol. Let m be the first message, according to the global order of messages of an oblivious protocol
as defined in Section 66, which is different in these two transcripts. But, each message sent from player i to
player j is fully determined by the input xi and the previous messages according to that order (and the shared
randomness), and thus m cannot differ in the two transcripts.

We now define the protocol ρ̃ which allows the players to collaborate and efficiently find this coherent
profile, i.e., protocol ρ̃ allows each player i to find←→πi (x1, . . . , xk, r).
The players proceed in stages s = 1, 2 . . . . We will have the invariant that at the beginning of any stage s,
each player i is at a node τi(s) of its transcript tree Ti, such that (τ1(s), . . . , τk(s)) is a (term-wise) prefix of
(←→π1(x1, . . . , xk, r), . . . ,

←→πk(x1, . . . , xk, r)). At any time, given τi(s), for any i and s, player i furthermore
has a candidate leaf ti(s) in the tree Ti (representing a candidate for its transcript), defined as follows: player i
defines τ1 = τi(s), and then defines inductively τ j+1 to be the child of τ j which has higher weight (breaking
ties arbitrarily), until it reaches a leaf: this is the candidate ti(s). Observe that ti(s) is a descendent of τi(s)
in Ti 66 and that ti(s) corresponds to the transcript with highest probability conditioned on that the prefix of
the transcript is the string corresponding to τi(s).

At the beginning, each player i starts the protocol being at the node τi(1), which is the root of the tree Ti,
and the invariant above clearly holds. For each stage s the players proceed as follows:

1. Each pair of players (i, j) uses an lcp box to find the first occurrence where the transcript between i
and j in ti(s) is not coherent with the transcript between i and j in tj(s). Let qi,j be the index of the
message that includes this first occurrence, where the messages are numbered according to the global
order of all messages of an oblivious protocol as defined in Section 66, and∞ if no such occurrence
was found. Let Qi = minj{qi,j}. Observe that if for all pairs of players there is no such occurrence
(i.e., Qi =∞ for all i), it means that (t1(s), . . . , tk(s)) is a coherent profile, each player i has found
←→πi (x1, . . . , xk, r).

2. Each player i now broadcastsQi. Each player can then findQ = mini{Qi}. IfQ =∞, i.e., no pairwise
inconsistency has been found between any two nodes, the protocol terminates and (t1(s), . . . , tk(s)) is
found as the coherent profile.

6We define here a node to be a descendent of itself.
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3. Let (i, j) be the pair of players such that Q = qi,j . The player who has the sender role of message
number Q is considered “correct”. Let this player be player j and the player receiving the message,
player i. Player i sets its τi(s+ 1): in Ti, starting from ti(s), it goes up the tree toward τi(s), until it
reaches a node τ̂i which is correct (according to the result of the lcp box). Then, it defines τi(s+ 1) as
the child of τ̂i which is not on the path from τ̂i to ti(s).

4. Any other player j 6= i defines τj(s+ 1) = τj(s).

We now claim by induction on the stages that the invariant stated above is preserved for all players at all
times. It clearly holds at the beginning. We claim that if it holds after stage s then it also holds after stage
s+ 1. For the k− 1 players which define τj(s+ 1) = τj(s) it clearly continues to hold. For the single player,
say player i, which defines a new node as τi(s+ 1) in Step (33) we proceed as follows.

We first claim, by induction on the index of the messages in the global order, that for all messages with
index ` < Q, where message ` is sent from player j to player i, it holds that the value of message number
` is the same in the coherent profile (←→π1(x1, . . . , xk, r), . . . ,

←→πk(x1, . . . , xk, r)) and in both ti(s + 1) and
tj(s+ 1). The basis of the induction (` = 0) clearly holds. The inductive step follows from observing that
message ` is fully determined by the input to player j and the messages that appear before message ` in←→πj .
Thus, by the induction hypothesis the value of message ` in tj(s+ 1) is as it appears in the coherent profile
(←→π1(x1, . . . , xk, r), . . . ,

←→πk(x1, . . . , xk, r)). It follows from the definition of Q that the value of message ` is
the same in ti(s+ 1) and tj(s+ 1).

For message Q, we have by similar arguments that its value according to tj(s + 1) is consistent with
←→πi (x1, . . . , xk, r). The prefix of message Q as appears in the path from the root of Ti and delimited by
τi(s+ 1) is consistent with tj(s+ 1) by the choice of τi(s+ 1) in Step (33).

Now, since the relative order of messages in a transcript
←→
Πi and in the global order is the same, it follows

that τi(s+ 1) represents a prefix of←→πi (x1, . . . , xk, r), as required.
We now show that for player i which is the (single) player that sets its τi(s + 1) in Step (33) (i.e.,

the single player that changes its τ node and its guess of the transcript), w(τi(s + 1)) ≤ 1
2w(τi(s)).

We look at the sequence (τ j) defined by player i when defining its candidate leaf ti(s) as a function of
τi(s). Let τ j be the first common ancestor of ti(s) and τi(s + 1). By construction, τi(s + 1) is a child
of τ j , and ti(s) is a descendant of the other child of τ j . By the candidate leaf’s construction process,
w(τi(s+ 1)) ≤ 1

2w(τ j) ≤ 1
2w(τi(s)).

We conclude the analysis. On inputs (x1, . . . , xk), let (t1, . . . , tk) denote the coherent profile. First note
that with each stage the depth of one of the nodes τi increases. We proved that at any time (τ1, . . . , τk) is a
term-wise prefix of (t1, . . . , tk). Thus (unless CC(π) is not finite, in which case the theorem trivially holds),
the protocol terminates in finite time, with the “candidate” profile (t1, . . . , tk). To give an upper bound on the
number of stages until this happens, observe that each player will set its τi in Step (33) (i.e., will change its τi)
at most log 1

w(ti)
times, because the weight of the node τi at least halves with each such change (recall that

the root has weight 1). Since in each stage there is exactly one player that changes its τi, the total number
of stages, S, is bounded from above by

∑k
i=1 log 1

w(ti)
. We now take the average over inputs and over the

shared randomness:
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E
r,x

[S] ≤ E
r,x

k∑
i=1

log
1

w(ti)

=
k∑
i=1

E
r,xi

[
E

(xj)j 6=i|Xi=xi

[
log

1

w(ti)

]]

=
k∑
i=1

E
r,xi

 E
(xj)j 6=i|Xi=xi

log
1

Pr
(Xj)j 6=i|Xi=xi

[←→πi (X1, . . . , Xi−1, xi, Xi+1, . . . , Xk, r) =←→πi (x1, . . . , xk, r)]


=

k∑
i=1

E
r,xi

 E
ti|Xi=xi,R=r

log
1

Pr
(Xj)j 6=i|Xi=xi

[←→πi (X1, . . . , Xi−1, xi, Xi+1, . . . , Xk, r) = ti]


=

k∑
i=1

E
r,xi

[
H(
←→
Πi | xir)

]
=

k∑
i=1

H(
←→
Πi|XiR

p)

=

k∑
i=1

I(X−i;
←→
Πi|XiR

p)

=
k∑
i=1

I(X−i; Πi|XiR
p)

= ICµ(π) ,

where the one before last equality follows from Proposition 3.63.6 (and the one-to-one correspondence
between the definition of

←→
Πi used here and the definition of Section 33).

We have shown that the average number of stages is bounded by ICµ(π). At each stage, the communication
consists of k(k−1)2 calls to the lcp box on strings of length at mostO(CC(π)) (one call for each pair of players),
plus k(k − 1) messages of broadcasts of indices at Step (22), each message of size O(logCC(π)). Hence we
have a protocol with, on average, O(k2 · ICµ(π)) calls to the lcp box on strings of length at most O(CC(π))
and with

ACCµ(ρ̃) = O
(
k2 · ICµ(π) · log(CC(π))

)
.

Using Lemma 7.77.7 we can replace each use of the lcp box with a simulation protocol, to get the protocol ρ
which simulates π with distributional error ε+ δ and average communication:

ACCµ(ρ) = ACCµ(ρ̃) +O
(
k2 · ICµ(π) · log

k2 · ICµ(π) · CC(π)

δ

)
= O

(
k2 · ICµ(π) · log

k2 · ICµ(π) · CC(π)

δ

)
.
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7.2 A direct sum for PIC implies a direct sum for CC

The next theorem states that if PIC has a certain direct sum property then one can compress the communication
of certain multi-party protocols. Note that the result of this theorem is meaningful when t is large with respect
to k.

Theorem 7.8. In the oblivious setting, given a k-variable function f , if for any t and any distribution µ on
inputs of f the existence of a protocol π computing f⊗t with error ε ≥ 0 implies that there exists a protocol
π′ computing f with error ε and satisfying PICµ(π′) ≤ 1

tPICµ⊗t(π), CC(π′) ≤ CC(π), then for any fixed
δ > 0, for any t

CC2(ε+δ)(f) = O
(

1

t(ε+ δ)
· k3 · log(k) · CCε(f⊗t) · log

k2 · (CCε(f⊗t)2

δ

)
.

To prove this theorem, we first need the following lemma.

Lemma 7.9. Given an input distribution µ, any k-party protocol with distributional error ε
2 and average

communication complexity C can be turned into an oblivious protocol with distributional error ε and worst
case communication complexity C·k·log(k)

ε .

Proof. Let π be a protocol with error ε
2 and average communication complexity C. We now define a protocol

π′, which is similar to π but where player 1 acts as a “coordinator”, in addition to his original role in π, and
the other players can only communicate with player 1.

In π′ the players will receive the messages from their peers via the coordinator in a way to be described
below. When they wish to send a message to a peer, they will add this message, as a string of bits, to a
local queue, together with the destination of the message. They will send the messages to their peers via the
coordinator in a way to be described below.

So that the players can send and receive the messages the coordinator (player 1) imposes phases on the
players. In every phase, player 1 sends a message to all players indicating the beginning of the phase. Each
player then takes the next bit, denote it b, from its local queue and sends to the coordinator the message (b, i),
where i is the destination of the the message b is part of. If the player has no bits in its queue it sends the
message “no” to player 1. Player 1, after having received all k − 1 messages, forwards the bits it received to
the various players. Every player i, where at least one bit destined to i has been received, receives a message
of the form (b1, j1), . . . (bq, jq) (encoded in a self-delimiting manner) where j`, 1 ≤ ` ≤ q denote the origins
of the bit, and all other players receive the message “no”. Observe that the players receiving the bits in this
way can reconstruct the messages of the protocol π since all messages (of π) are self delimiting, and can thus
locally run the original protocol π. The protocol π′ consists of exactly T =

⌈
2C
ε

⌉
such phases. If at the end

of π′ a certain player did not output according to π, then in π′ that player outputs an arbitrary output.
Note that π′ is oblivious. Moreover, π′ fails to simulate π (i.e., there is at least one player which outputs

differently in π and in π′) only if π′ interrupts the simulation of π at the end of the T ’th phase. Since
every phase in π′ transmits at least one additional bit of the communication of π, the probability that π′

interrupts the simulation of π is the probability that the communication cost of π is more than T . We have
Pr
x,r

(|Π(x)| ≥ T ) ≤ C
T ≤

ε
2 by Markov inequality. Adding that to the original error probability of π, we have

that the protocol π′ has error ε.
Last, every phase in protocol π′ consists of communication O(k log(k)), and protocol π′ thus has worst

case communication O(T · k · log(k)) = O
(
C·k·log(k)

ε

)
.
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Proof of Theorem 7.87.8. Consider a protocol π computing f⊗t with error ε. Let µ be a distribution on inputs of
f . By hypothesis, there exist a protocol π′ computing f with error ε and satisfying PICµ(π′) ≤ 1

t ·PICµ⊗t(π),
CC(π′) ≤ CC(π). By Theorem 4.64.6, there exists such π′ that uses only public randomness.

Applying successively Theorem 7.47.4 and Lemma 7.97.9, we get a protocol ρµ with distributional error 2(ε+δ)
such that

CC(ρµ) = O
(

1

(ε+ δ)
· k3 · log(k) · PICµ(π′) · log

k2 · PICµ(π′) · CC(π′)

δ

)
= O

(
1

(ε+ δ)
· k3 · log(k) · PICµ(π′) · log

k2 · (CC(π′))2

δ

)
.

Thus,

CC(ρµ) = O
(

1

t(ε+ δ)
· k3 · log(k) · PICµ⊗t(π) · log

k2 · (CC(π))2

δ

)
= O

(
1

t(ε+ δ)
· k3 · log(k) · CC(π) · log

k2 · (CC(π))2

δ

)
.

Since the above holds for any distribution µ, the minimax theorem implies that

CC2(ε+δ)(f) = O
(

1

t(ε+ δ)
· k3 · log(k) · CCε(f⊗t) · log

k2 · (CCε(f⊗t))2

δ

)
.
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