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ABSTRACT General Terms

This paper considers the problem of packet-mode scheduling of in- Algorithms, Performance, Theory

put queued switches. Packets have variable lengths, and are divided

into cells of unit length. Each packet arrives to the switch with a

given deadline by which it must traverse the switch. A packet suc- Keywords

cessfully passes the switch if the sequence of cells comprising it Input-Queued Switches, Packet-Mode Scheduling, CditiyeeAnal-
is contiguouslytransmitted out of the switch before the packet's YSis

deadline expires. A packet transmission may be preempted and

restarted from the beginning later. The scheduling policy hasto 1. INTRODUCTION

decide at each time step which packets to serve. The problem is

online in nature, and thus we use competitive analysis to measure The explosive growth of voice and video traffic in the Intermnet
the performance of our scheduling policies. generates new Quality of Service (QoS) requirements. QoS mech-

First we consider the case where the goal of the switch policy ggt';rfr;stﬁgzgﬁggrargﬁgigsegs;sgdsii?:gkr‘na;)lisr?snioé al netvrvcr:ikn to
is to maximize the total number of successfully transmitted pack- 9 ’ umdelay o )

ets. We derive two algorithms achieving the competitive ratios of !sr\r/lvlijtr:hzznncjav':\//l\?cfqulé rri%lljtli:oelg t?gﬁ?éﬁ:t:igtmipgggztghsé !sr:e aup;iccléet-
(2>V1°8 T 1 1) andN + 1, respectively, wheré is the ratio between : a

the | tand the Shortest Kot | he i th ber of of switches. Due to the high variability of the Internet traffic, sim-
the longest and the shortest packet lengths/sins the number o ple scheduling strategies such as FIFO or Round-Robin might not
input/output ports. We also show that any deterministic online al-

. " . guarantee the adequate QoS to all applications. The problem is
gorithm has a competitive ratio of at Ieaﬁi_n( [log L] +1, NV). . that packets of real-time applications such as voice and video can-
Then we study the general case in which each packet has an Nhot be delayed outside of a small pre-defined time window, i.e.,

trinsic value representing its priority,_and the goal is to maximize there is a maximum permissible delay of such a packet at a router.
the total value of successfully transmitted packets. We derive an al- In addition, packets may have different priorities. For example, a
gorithm which achieves a competitive ratiodf + 2,/ +1/2 + packet carrying an Independent (I) frame of an MPEG video stream

Zekyetl/e4l 3, wherex is the ratio between the maximum  is more important than a packet carrying a Predicted (P) frame, al-
and tﬁzﬁinimum value per cell. We note that [4] gives a lower though they_have the same delay_ requirements. In this_ haper we
bound ofQ(x) on the pen‘ormanée of any deterministic online al- consider swngh .poI|C|es that_take into account the permissible de-
gorithm. In particular, our algorithm achieves a competitive ratio lay and the_pnorlty of the various packets.

o ! ) We consider the input queuing (IQ) switch architecture, where
of approximatelyl 1.123 for x = 1, which improves upon the pre- kets arriving from the input lines are queued at the input port
vious best-known upper bound for this problem [17]. packets a 9 pu queu NpUt ports.

We complement our results by studying the offiine version of Tht_a packe_ts are then extracted from the input queues to cross the
the problem, which is NP-hard We give a pseudo-polynoral switch fabric a_lnd to _be forwarded to th_e output ports. An IQ switch
approximatic;n algorithm for the general case and a polynosnial operates on f|x¢d-s_|ze cell_s _and t_he time thaF elapses between_two
approximation algorithm for the case of unit value packets _consecutlve S\_Nltc_hl_ng decisions is called a time slot. Each arriv-

’ ing IP packet is divided into cells at the input, and these cells are

. . . scheduled across the switch fabric separately. A major issue in the
Categories and Subject Descriptors design of 1Q switches is the scheduler that controls the access to
the switching fabric in order to avoid contention at the input ports
and at the output ports. A large number of cell scheduling algo-
rithms have been proposed in tlieerature for the 1Q switch ar-
chitecture: these are PIM [2], IRRM [23], iSLIP [21], iOCF [22],
RPA [20] and Batch [8], to name just a few. All the above men-
Permission to make digital or hard copies of all or part of this work for ~tioned works consider the scheduling problem on the cell level; the
personal or classroom use is granted without fee provided that copies areunderlying architecture is such that the various cells comprising a
not made or distributed for profit or commercial advantage and that copies given IP packet are buffered at the output port, and when all cells
bear thlS notice and the full citation 0[:1 the first page To Copy OtherWise,.tF’ Comprising a packet are Co”ected, the packet is re-assembled and
republish, to post on servers or to redistribute to lists, requires prior specific transmitted on the output line [9].

permission and/or a fee. . .
SPAA04 June 27-30, 2004, Barcelona, Spain. Cell-mode scheduling has a number of drawbacks. First, one

Copyright 2004 ACM 1-58113-840-7/04/00085.00. must keep a packet-reassembly buffer at each output port. Second,
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traditional cell-mode schedulers are typically unaware of the exis- ports. We also show a lower bound wfin(|log | + 1, N) on
tence of packets, and thus different cells of the same packet maythe competitive ratio of any deterministic online algorithm. We
experience different delays. This may badly affect the QoS per- further give a stronger lower bound that pertains to a class of de-
ceived by the user because the actual delay of a packetis the delayerministic algorithms based on maximum length-weighted match-
of the last cell. As aresulpacket-modscheduling ofinputqueued ing. Then we study the general case of variable value packets.
switches, where the whole packetrather than a single cell becomed/Ne present an algorithm that achieves a competitive ratib<of
the switching unit, has received considerable attention. In packet-, ——= |, 2s+y/s+1/2+1
mode switching the scheduling policy is constrained to schedule all 2VEH1/24 VEt1/2
cells of a given packetsontiguously The main advantage of this  bound of(y/x + 1)? in a related model [4], which holds in our
architecture is that the reassembly overhead is saved. In additionmodel as well. Fok = 1, the competitive ratio of our algorithm
a packet-based scheduler, which is aware of the packet entity, mayis approximatelyt 1.123, which improves upon the previous best-
use this information to provide better performance through sched- known upper bound of1.656 due to [17]. The work in [17] also
uling. The works in [19, 24, 9] consider scenarios where pack- gives a lower bound 0% — ¢ on the competitive ratio of any on-
ets (with no specific deadlines) arrive to the switch over time, and line scheduling algorithm for the continuous time modeldcs 1.
study the throughput of the switch. Scheduling of packets with in- This lower bound can be also transformed to our model. For the
dividual deadlines in the context of a single buffer is considered in special case of unit length packets, we show an upper bound of
[15]. 2 while a result in [1] implies a lower bound of the golden ratio
In the present paper we study the problem of packet-mode sched« ~ 1.614 for this case.
uling in 1Q switches, where each packet has a length, a deadline by We also analyze the offline version of the problem. For the case
which it must be sent out of the switch, and a value. This model is of variable value packets, we give3aapproximation algorithm.
warranted by networks that guarantee end-to-end delay and supporThe algorithm is pseudo-polynomial and fits the general scheme
different packet priorities (cf. the DiffServ model [5]). A schedul- introduced in [3]. For the case of unit value packets, we derive
ing policy is presented with packet arrivals and has to serve pack- a3-approximation algorithm which is a simplification of the above
ets online, i.e., without knowledge of future arrivals. We do not algorithm and has a polynomial running time. We note our problem
make any assumptions about the incoming traffic. To the best of is NP-Hard even for the case of unit value packets&ng 1 (by
our knowledge, the present work is the first to consider the general a reduction from the Partition Problem [11]).
setting of this problem, where packets may have arbitrary values, Related work. The present paper is most closely related to the
lengths, and deadlines. work of Lee and Chwa [17], where they study the parallel com-
A packet is said to successfully complete its transmission if it munication problem assuming the uniform value density (i.e. the
is contiguously scheduled for a number of time slots equal to its value of a packet is proportional to its length). They preseit a
length, and the last cell is scheduled by the packet’s deadline. In competitive algorithm and establish a lowssund of1.5 for the
this case the packetvalue is accrued by the system. The scheduletase of unit length jobs under the slotted model of time. For the
may preempt the transmission of a packet and restart it fiabar case of arbitrary length jobs, they derivd B656-competitive al-
the beginningThe ability to preempt packets helps in situations gorithm and show a lower bound &f— ¢ under the continuous
in which arriving voice or video packets require immediate service time model. In the present paper we extend their work to the case
while the switch fabric is busy transferring a large data packet). The of variable value density, but in contrast to [17], we consider only
aim of the system is that of maximizing the total value of the suc- the slotted time model. Some of our algorithms are in the spirit of
cessfully transmitted packets. For the case of unit-value packets,[17], however, we try to maximize the totadluerather than the
the goalis that of maximizing the number of successfully transmit- totallengthof the successfully transmitted packets.

+ 3. We note that there is a lower

ted packets. An enormous amount of research has been done on the single
We use competitive analysis [25, 6] to study the performance of processor scheduling problem. Baruah et al. [4] and Koren and
our algorithms. In competitive analysis, an online algoritAthG; Shasha[16] considered the preemptive version of the real-time sched-

is compared with an optimal offline algorith@PT", that knows uling problem and gave upper boundsbfind (1/x + 1)* for
the entire input sequence in advance. The advantage of competivariable length jobs with uniform and non-uniform value density,
tive analysis is that a uniform performance guarantee is provided respectively. Baruah et al. [4] presented matching lower bounds
over all input instances. Denote the benefit accruedilhy? and showing thatthese upperbounds are tight. Lipton and Tomkins [18]
by OPT on an input sequeneeby V4L (¢) andV 2T (o), re- considered the non-preemptive version of the interval scheduling
spectively. We say that LG is c-competitive if for every sequence  problem in which jobs have zero slack and uniform value density.
of packetsr, VO (5) < ¢- VAL (o) + a, wherea is a constant This model was later generalized by Goldman et al. [12] to include
independent of. delays. Dolev and Kesselman [7] studied non-preemptive schedul-
Our results. The the sequel we use the following terms. The ing of tasks with uniform value density. Garay et al. [10] consid-
slackof a packetis the number of time slots the scheduler may wait ered the effect of job interleaving by preemption on the throughput.
before starting to transmit the packet so as to finish its transmissionDifferently from the above works, in our model time is slotted and
before its deadline expires. Thalue densitpf a packetis its value each job (packet) requires two resources, namely the input port and
divided by its length (in cells). Thimportance ratiox is the ratio the output port. We call this problem théartite schedulingrob-
of the maximal to the minimal value density (the special case of lem.
x = 1is called the uniform value density case). Taegth ratiq The bipartite scheduling problem arises in many contexts. In a
L, is the length (in cells) of the longest packet assuming that the satellite switched time division multiplaccess (SS/TDMA) sys-
shortest one has just one cell. tem, the goal is to schedule all traffic demands in a minimum num-
First we consider the special case of unit value packets. We ber of time slots (i.e., minimize the makespan of the schedule).
derive two algorithms: the first algorithm achieves a competitive Gopal and Wong [13] proposed heuristic algorithms for this prob-
ratio 0]‘(22VI°g Ly 1) and the second algorithm achieves a com- lem. Jain et al. [14] studied parallel scheduling of I/O tasks, where
petitive ratio of N + 1, where N is the number of inputioutput  the set of disks must be matched to the set of I/O processors. In



contrast to these works, we consiaetine algorithms and try to DerFINITION 2.3. We define daransmission intervadf a packet
satisfy the deadline constraintsioflividual packets. p to be a maximal continuous interval in whighs scheduled. We

Organization The rest of the paper is organized as follows. The say that a packet iavailableat time¢ if its deadline is at least
model is described in Section 2. We study unit and variable value ¢+1(p)—1 andp has notyet been successfully transmitted. We also
packets in Section 3 and Section 4, respectively. In Section 5 we say that two packetonflictwith each other if they share either the
consider the offline version of the problem. Due to space limita- same input port or the same output port.

tions, some proofs are omitted from this abstract. . N .
Note that a packetmay have multiple transmission intervals (if its

transmission is preempted and then restarted). W.l.0.g., we assume
2. MODEL DESCRIPTION that an optimal offline algorithm® PT" never preempts packets.

We consideramV x N 1Q switch (see Figure 1). Packets arrive

at input ports, and each packet is labeled with the output port on 3.  UNIT VALUE PACKETS
which it has to leave the switch. A packetis divided into a number In this section we consider the case of unit value packets. Note

of unit length cells that must be transmitted cgodusly. Time is  5; the goal of the scheduling policy is to maximize the total num-
slotted and during a time slot, up to one cell can be removed from pop of hackets successfully transmitted. First we show a lower
eachinputand up to one cell can be traitsrd toeach output (note bound as a function of the maximum packet lengthand the num-
that mu_ItipIe cells can be t_ransmitted ir} parallel as long as they are o o¢ input/output portsN. Thus, in contrast to the related prob-
transmitted along a matching betwesput ports and output ports). e of single processor scheduling, a constant competitive ratio is
Next we introduce some useful defians. not achievable for our problem. Then we present two algorithms
whose competitive ratios are given in termslodndN.

! | 3.1 Lower Bound

L . In this section we present a lower boundof= min{|log L]+

| ) o 1, N} on the competitive ratio of any deterministic online algo-
e .ﬁ» rithm. Given a deterministic online algorithA LG, the input

PN N sequence tcA LG is created by the adversaryDV (see Figure

Figure 1: An example of 1Q switch.

2). All packets generated by D'V have zero slack and thus each
packet has a unique possible scheduling interval.

DEFINITION 2.1. For a packep, we denote by(p) thelength
of p, measured in cells, by(p) thevalueof p, by r(p) the timep
arrivesto the switch, i.e., thelease timefp, by d(p) thedeadline
of p, byin(p) theinput portof p and byout(p) theoutput poriof p.
We denote by(p) = w(p)/l(p) thevalue densityfp and byx the
ratio of the maximal to the minimal value density. We denoté by
the ratio between the length of the longest and that of the shortest|
packet. For a set of packets we denote by (.S) the total value
of the packets irs.

DerFINITION 2.2. We define theemaining lengthof a packep
that is being transmitted at timeto be the number gf’s cells that
have not yet been transferred to the output port.

Note that the scheduling problem of an IQ switch can be reduced
to a matching problem in a bipartite graph, i.e.,giach time slot
the scheduler must compute a matching between the input and the
output ports. We represent the state of a switch at a given time as ar
N x N bipartite graph. The set ofodes/; UV, correspondsto the
input and the output ports, and each pagkefiting in the queue
of input: to be transferred to outpytcreates an edgg, = (¢, 7).
(Note that a packetis presentin the queue until its transmission is
complete.)

The scheduler magreempthe transmission of a packet at any
time, and possibly restart it later. However, the transmission of

that packet must start from the beginning, and thus the time spent

Initialize:
used < 1 [* usedis a port used bALG.*/

11 [* 1,14+ 1 are ports for whic A DV
currently generates packets.*/
For(=K —-1,...,2,1)do

Release two packets andps with slack 0 such that:
l(pa) = U(py) = 2';
If iisodd: in(ps) =1 ;in(ps) =t + 1 ; out(pa) =
out(py) = used,
Else ¢ is even): in(p.) = in(ps) =
out(pa) =1 ;out(py) =i+ 1;
Wait one time slot;
If (ALG scheduleg,, orpy) :

? if ALG scheduleg,,
i+ 1 if ALG schedulegs;

used

used {
11+ 1;
Else, wait2! — 1 time slots;
End for;
Release packet with slack 0 such that:
lp.)=1,
If ¢is odd: in(p.) = 1, out(p.) = used;
Else ¢ is even):in(p.) = used, out(p.) = 1.

for the aborted transmission is wasted. A pagkét said to be
successfully transmitteifl it has been contiguously scheduled for
l(p) time slots by timet = d(p). The system accrues the value
of a packet if the packet is successfully transmitted and gains no
value otherwise. The aim of the scheduling algorithm is that of
maximizing the total value of successfully transmitted packets.

Figure 2: Adversary ADV for algorithm ALG.

ADYV has two variablesgysed ands. If ; is even (resp. odd) then

the variabla:sed holds the input (resp. output) port that is currently




used byA LG while s and: + 1 are the output (resp. input) ports to
which ADV generates the next packets. In each iteratib®V’
generates two packets andp; with length (approximately) half
the remaining length of the packeturrently transmitted byl .G.
Packep. uses port§used, 1) and packep, uses port§used, 1 +

1) (see Figure 3). Now all three packety., p» are conflicting

at the portused and ALG can choose at most one of them. If
ALG continues to schedule the longer pagkett DV schedules

to completion one of the short packets and then continues to the
next iteration. IfALG schedules a short packet (resp.p:) then
ADV scheduleg, (resp.p.), updateaised to be: (resp.i + 1),
increases by one and then continues to the next iteration (one
time step later). Thus, in each iteratigh?V adds one packet to
the set of packets that it can successfully transmit, whilg? can
successfully transmit only one packet overall.

Iteration/ (z is even).

Packet from previous iteration

used P with remaining lengtre!+! — 1
Pa
: Two new packets with
Db it 1} lenght2!

Figure 3: ADV - basic step

In what follows we refer to a particular iteration by the value of
the variablel during this iteration. First we show thatl.G' can
have at most one scheduled packet at any time and cannot succes
fully transmit any packet befora DV generates its last packet.

LEMMA 3.1. At the end of any iteratioh, ALG has not yet
successfully transmitted any packet, and has at most one packet
that is being scheduled.jfexists then (1) has a remaining length
of 28 — 1, (2) if i is even therused = in(p), (3) if i is odd then
used = out(p).

PrRooOF The proofis by reverse induction én

Basis { = K — 1) . If ALG chooses not to schedule any packet,
the claim holds. Otherwise4d LG schedule®, or py, both
of length2®—! = 2!, Denote the packet scheduled BY.G
by p. By the definition ofADV/, it waits one time unit, sets
used = in(p), increases by one and the iteration ends.
Thus, at the end of iteratioR” — 1 the claim holds, since=
2, used = in(p) andp has remaining length af* = — 1.

Step : Assume that the claim holds for iteratién We prove that
it holds for iterationl — 1. By the induction hypothesis, at
the beginning of iteratiod — 1 (i.e., at the end of iteration
l) ALG has not yet successfully scheduled any packet, and
ALG has at most one scheduled packetnd if p exists, it
has remaining length af' — 1. W.Lo.g., assume thatis
even at the beginning of iteratidn— 1. We obtain that at
the beginning of iteratio — 1, the new packets, andp,
require the input portised, andin(p) = used. There are
two cases:

e ALG scheduleg, (resp.ps). First we note that in this
caseALG must preempp (if it exists). Now ADV
waits one time slot, updatesied to be the output port

of p, (resp. ps) and increments. Therefore, at the
end of iterationl — 1, ALG has not yet successfully
scheduled any packet and the remaining lengtp.of
(resp. ps) is 271 — 1, i is odd andused holds the
output port ofp, (resp.ps), which yields the claim.

ALG did not schedule eithes, or pp. In this case
ADV waits2'~! time slots (first, one time slot and then
another2'~' — 1 time slots). If ALG has a packet
scheduled at the beginning of iteratiba 1, then by the
induction hypothesis at the end of iteratibn 1, ALG
has not yet successfully scheduled any packeparas
remaining length o' —1—((2'~' —1)+1) = 271 1.
The claim holds for iteratioh— 1 sinceADV does not
changatsed ands:. Note that ifA LG does not have the
packetp at the beginning of iteratioh— 1, the claim
holds trivially by the induction hypothesis.

O

Note that the packet generated AYV in the last stepy., con-
flicts with the single packet that LG may have (by Lemma 3.1)
at the end of the last iteration. We get the following corollary.

COROLLARY 3.2. ALG successfully transmits at most one packet
out of the sequence generatedbpV'.

We now give a lower bound on the number of packets that can be
scheduled by PT. The next lemma demonstrates tiiaP 7" can
gain at least one packet per iteration.

LemmA 3.3. Consideriteratior that ends at time slat There
exists a set of packets s.t.|S;| = K —1 and all packets irf; can
be successfully transmitted. <fs even (resp. odd) at the end of
time slott, then the input (resp. output) podssed} U{¢ +1,i+
2,..., K} andthe output (reps. input) por{s, i +1, ... , K } are
not used by the packets i after time slot in this schedule.

The proof of the above lemma proceeds by reverse induction on
l. Itis omitted from this abstract.

Note that from Lemma 3.3 it follows that there is a sgtof
K — 1 packets that can be successfully transmittedhovit using
ports: andused after the end of the last iteration. Thus, the packet
pe presented in the last step dfDV does not interfere with the
packetsinS; and therefore the sét U{p.} has a feasible schedule
and contaings packets. We obtain the following corollary.

COROLLARY 3.4. OPT can successfully transmit” packets
out of the sequence generatedbpV'.

We get that the competitive ratio gfL.G is at least. Note that
K cannot be larger thalV since during each iteratioA DV may
need to use a new port. On the other haiid;annot be larger than
|log L| + 1, since in iteration’ — 1, ADV generates a packet of
length2™ 1,

THEOREM 3.5. The competitive ratio of any deterministic on-
line algorithm for the case of unit value packets is at least
min{|log L| + 1, N}.

3.2 A@*/esL 4 1)-Competitive Algorithm

The Length-Sort and Schedule{.S) algorithm is described in
Figure 4. At each time slot, we assign to an edgeepresenting
packep a weight which is inversely proportional ¢s length. The
parameter specifies the preemption ratio. Specifically, we multi-
ply the weight of a packet currently in transmission by a factor of



Each time slot do the following:

Remove all packets that can no longer be fully schedule
their deadlines.

SetSt = ¢,

d by

rﬁ if pe Si_1,

Letw;(e ):{ 1 icar
r 7y otherwise;
Scan the packets in order of non-increasinge;):
Add e, to S; if possible;

Schedule the packets #.

Figure 4: Algorithm LSS(r).

r > 1. The intuition is that we try to avoid wasting time spent on
preempted packets unless much shorter packets arrive.

We now analyze the performance of th8 S algorithm. In what
follows we fix an input sequenee We consider the schedule of
LSS and that ofOPT. We denote bys“*% and byS°F7 the
set of packets successfully transmitted/by.S andO PT', respec-
tively. We also denote bp ROP = S°FT \ 5-59 the set of
packets successfully transmitted @Y7 and lost byL.S S.

Next we introduce a few useful defions. We denote by’
the set of all transmission intervals of packets transmitted By
For eachl € P““¥, denote by; the packet which is transmitted
during I. For eachp € S°FT, denote byl 77" the transmission
interval ofp in OPT.

LSS

OBSERVATION 3.6. If LS.S(r) preempts a packet scheduled
during transmission interval which ends at time slat— 1, then
there exists a packgtscheduled during transmission intervale
PL5% which begins at time sldtsuch that: (1)p conflicts withg,
and (2)l(q) < U(p)/r.

For each packet and transmission intervdl of p which does
not end successfully, we denote pyeempt(p,lithe transmission

interval guaranteed by Observation 3.6. Note that there may be
more than one such intervals and we arbitrarily choose one of them.

OBSERVATION 3.7. For everyp € DROP, there is a trans-
mission intervall € P*°% of a packet; with the following prop-
erties: (1)J N 1777 # ¢, (2) p conflicts withg, and (3)I(q)/r <
l(p).

Note that if LSS(r) started a transmission gfand then pre-
empted it in favor of a packetthenr/l(p) < 1/I(q) and since
1 < r we have that(q)/r < rl(q) <I(p).

For eaclp € DROP, we denote bylock(p)the transmission

interval guaranteed by Observation 3.7. Observe that there may b

more than one such interval and we arbitrarily select one of them.

Now we define thdlame forest'. The idea is to build trees in
which a vertex is the transmission interval of a packdtfn’® orin
DROP. The root of each tree ifr' is the transmission interval of
a packetins™®“. To derive the competitive ratio df.s.s, we will
bound the number of packets fromROP in such a tree. More
formally, the blame forest’ = (V, E)) has the set of nodég =
{vr|I € P55} U {v,|p € DROP} and the set of edge =
{(vp,v1)|I = block(p)} U {(vr,vs)|J = preempt(pr, I)}. For
each edgévr,vs) s.t. J = preempt(p, I), we say thav; is the
parent ofv; (or vy is a child ofv;). For each edgév,, vr) s.t.
J = block(p) we say thav; blocksv,.

CLAM 3.8. F'= (V, E) is a directed forest.

PrRooOF Since the outdegree of all vertices is at most 1, we need
to show that there are no cyclesih Assume towards a contradic-
tion that there is a cycle; , va, . .. , vg, v in F. By the definition
of £ andblock(p), we have thatp € DROP, v, is a leaf and
therefore the cycle contains only vertices of the farms.t. I €
PLS5 Letl, I, ..., I be the intervals iPL** corresponding
to the vertices, vo, . .. , g, respectively. Since the outdegree of
all vertices is one, the cycle must be directed. Let 5 < k bein-
dex suchthal(p;; ) is minimal. But by the definition of’, the exis-
tence of edgél; 1, I;), implies thatl; = preempt(pr;_,,1j-1).
Observation 3.6 implies thétpr,_, ) < {(pzr,)/r, which contra-
dicts to the minimality of(p;,) . [

CLaM 3.9. VI € PL%%: (1) there are at most two different
intervalsJ, J' preempted by and (2) there are at mogt packets
in DROP blocked by/.

PrRoOOF By Observation 3.6, the intervals preempted/byust
end exactly at the time slot befofestarts. They also must share at
least one port withyr. Therefore/ preempts at most two intervals.

By Observation 3.7, each packgilocked by/ must have length
of atleasi(q)/r. Moreover, all packets blocked Bymust share at
least one port withy;. Therefore[ blocks at moser packets. [1

LEMMA 3.10. The number of vertices, s.t. p € DROP in
eachtreel’ C Fis at mostZrLﬁ.

PROOF LetT be atree inF. Recall thafl” contains vertices;
s.t. I € P59 and vertices, s.t. p € DROP. By the definition
of E, every vertexv, is a leaf inT. Let us consider the sub-tree
T’ C T that contains only vertices of the form. By Claim 3.9,
each vertexw; has at most two children and by the definition of
E andpreempt(pr, I), vr has at most one parent. According to
Observation 3.6, it is the parent ob; thenl(pr) < I(ps)/r.
Thus, the depth of” is at mostlog, L and the size ofl” is at

most2°8-(I) — [, 707 . Claim 3.9 implies that each vertex i

blocks at moser verticesv,, and therefore the number of vertices
1

vp St.p € DROP InT is at mostrLTes( . []

THEOREM 3.11. LSS(r) is (2rL1°g1<r) + 1)-competitive.

PrRooOF Note that the root of each trélé € F' corresponds to
a packet transmitted saessfully byZSS. By the definition of
F, for each packet il» ROP there is a vertex irf". Obviously,
|SCFT| < |DROP| + |SE9%), and by Lemma 3.1pD ROP| <

2 [ 5507 |S755]. Thus we obtain that
ISOFT| < (1 + 2r L7807 ) 55559 |
|

For a givenL, we can optimize the value of We obtain that the
ccompetitive ratio ofL.5:S(r) is minimized when: = oVIeg L,

COROLLARY 3.12. L55(2V°8 T) is (22VI°5 I+1 1 1).competitive.

3.3 A (N +1)-Competitive Algorithm

The Shortest Remaining Time First RT'F') algorithm is pre-
sented in Figure 5. Th8 RT F' algorithm always gives priority to
packets with the closestcompletion time. The idea behind the proof
is that every packet successfully transmitted¥ 7" and lost by
SRTF must share the last time slot of its transmission interval
in OPT with some packep successfully transmitted byRT'F'.
Hence,OPT can schedule at mosY packets per every packet
scheduled bys RT'F.

The proof of the next theorem is omitted from this abstract.



Each time slot do the following: PrRoOF Assume thatd LG does not schedule In this case it

must schedule andgq. Consider the following scenario. In the
Removg all pac_kets that can no longer be fully scheduled by next time slot arrives a set of packets s, . . . , s, such that/s =

their deadlines. 2, ,ran(si) = in(s),out(s;) = out(s),l(s;) = I(s) and
SetS; = ¢. d(s;) = £. Note that all these packets conflict wjthandg. Since
ALG is length-orientedthe weight ofp andg can only increase
over time and thereford LG continues to schedufeandq. Now
observe that it is possible to schedslends., . . . , s, sequentially
because [¢/r| < £. Thus,OPT schedules packets, namely
andsq, ... , s, while ALG schedules only two packets, namgly
andq. Therefore,ALG has a competitive ratio of at least2 =
[2¢+ 1] /2 > ¢, which contradicts our assumption[]

Scan the packets in order of non-increasing remaining length
and add them t&, if possible.

Schedule the packets givens$i.

Figure 5: Algorithm SRTF.

THEOREM 3.15. The competitive ratio of ankength oriented

) N algorithm for the case of unit value packets is at least
THEOREM 3.13. SRT'F'is (N + 1)-competitive.

. 1, /gL
3.4 Lower Bound for Length-Oriented Algo- mm{§(2 D, N}'

rithms PrROOF Let ALG be ac-competitivelength orientedalgorithm
In this section we define a class of algorithms that generalizes and letr = ch + 1]. Letk be the largest integer such tiedt< N
the algorithms given in this paper. We give a lower bound for those andz o, < L.Foro < i < k we define sef’ of packets:
algorithms which is stronger than the general lower bound proved
above for the case of unit value packets. We characterize those
algorithms in the following way. In each time slot the algorithm
assigns a weight for every packet and determines a schedule for
the next time slot by selecting packets greedily or by computing a 1 e parameters of packef are defined as follows:

S’:{p§|0§j§2k"'—1}.

maximum matching based on the weight function. Upy) = i r'sin(py) = 14 52, 0ut(p)) = (j + 1)2' and
(pj) = 1. All packets have zero slack and thus we do not specify
their deadlines.
Attime ¢ = 0, ALG will schedule all packets fror®. Note that
every packep’ in the setS* s.t.1 <1 < k, conflicts with exactly
two packets in the sef' !, namelyp% 1 andp . In addition,

packetsoz)] 1 p2] ! andp! satisfy the condltlon of Lemma 3.14
as the packetg, ¢ ands, respectively. Therefore, at time= 1,
ALG schedules the packets Bt and preempts the packets from
5", In this way,A LG successfully transmits only one packét
overall. On the other han@}PT scheduleg® packets, namely all
the packets frons*. We get that the competitive ratio gfL.G is

at least”.

If the value ofk was determined by the constraitft < N then
c>2F = N. If the value ofk was determined by the constraint
L > Zf:o r* then, sincek is the largest integer for which the
constraint holds, we get that = [log (L(r — 1)+ 1)| — 1 >
log, (L) —1. Hence2" > %Lﬁ SinceA LG is c-competitive,
it must be the case that < ¢ and thusgLﬁ < ¢. There-
fore,log L < log(r)(1 + log(c)). Assigningr = |[2¢ + 1] gives
log L < log(2c + 1)(1 + log(c)), andlog L < log?(2c + 1).
Finally, we obtain:

DEeFINITION 3.1. Let ALG be an online deterministic algo-
rithm. ALG is length-orientedf it works in the general scheme
described in Figure 6 and for each packetthe weightw,, is a
function ofl(p) and/or the remaining length @f The weight func-
tion is a non-increasing function of the remaining length (i.e, the
weight of a packet cannot decreases while it is being tratted).

Each time slot do the following:

Remove all packets that can no longer be fully scheduled by
their deadlines.

Assigns a weightv,, to every packeg.

Compute a schedule for the next time slot as a maximum

weight matching or as a greedy selection of edges.

Figure 6: Length-Oriented Algorithms, general scheme.

We start by showing some properties of length-oriented algo-

rithms.

LEMMA 3.14. Let ALG be ac-competitivdength-orientedl-
gorithm. Letr = |2¢ + 1]. Suppose that there are three packets
p, q, s eligible for scheduling such that:

¢ the remaining length gf andgq is ¢,
(s) = [¢/r],
o in(s) = in(p) # in(q),
o out(s) = out(q) # out(p),
¢ there are no other packets conflicting withy and s.

ThenALG schedules, and reject® andg.

%2“@‘1 <ec
Therefore,
c > min{%(Z‘m—l),N}.
|

4. VARIABLE VALUE PACKETS

In this section we consider the case of variable value packets.
Thus, the goal of the scheduling policy is to maximize the total
value of the packets successfully transmitted.

In Figure 7 we describe the preemptive maximum weight match-
ing (PM V) algorithm. Each edge representing a packetis assigned



a weight equal to the value of the packet. The parameteecifies conflicting withp at the input that is scheduled BAM 'V at timet

the preemption ratio. Namely, we multiply the weight of any edge if any, or a dummy packet with zero value otherwise. Similarly, we
representing a packetcurrently in transmission by a factor ©he definep,(p, t) w.r.t. the output op.

intuition is that we allow the preemption of a packet transmission

only if ‘significantly more valuable packets’ can be scheduled af- DEFINITION 4.2. Consider the transmission intervél of an

ter the packet is preempted, thus justifying the time wasted for the O PT packetp and a transmission interval’ of a PMV packet

aborted transmission. p' conflicting withp at the input. We define theverlapping input
transmission intervadf 7 and’ to be their intersection, if any, or
Each time slot do the following: an empty interval otherwise. Similarly, we define tiverlapping

output transmission interval.r.t. the output op.
Remove all packets that can no longer be fully scheduled by

their deadlines. DEFINITION 4.3. Consider a sub-interval’ of the transmis-
row(p) ifpe M, sion intervall of an OPT packetp and let the length of ' be ¢.
Letwe(ep) = { w(p) otherwise. We say thaO PT gainsthe value of - p(p) on!'.
Compute a maximum weight matchifd;. We will show that the competitive ratio ¢t MV is at moser +

2k + 22 4+ 1 (recall thatr is the preemption factor and is
the importance ratio). We will assign the value of all packets in
) D ROP to the packets successfully transmitted B§/ V' so that
Figure 7: The PMV (r) algorithm for variable length packets. eachPMV packetis assigned at mast + 2x + “£2- times its
value, and show that such an assignment is feasible.

The assignment routine is described in Figure 8. Consider a

Schedule the packets corresponding to the edgg in

Next we analyze the performance of theV/V" algorithm. In packetp € DROP; and let! be its transmission interval. (Re-
what follows we fix an input sequeneeand let the latest deadline  member that by our assumption ea@PT" packet has a unique
of a packetino be d;. We consider the schedule &fA/V" and transmission interval.) At Sub-Step 1(a) we assign the value gained

OPT. We denote bys” """ and bys°”” the set of packets suc- by OPT on all sub-intervals of which overlap at the input or at

cessfully transmitted by MV andO PT, respectively. We also the output with a transmission interval B\ V'; at Sub-Step 1(b)

denote byDROP = S°7" \ S¥MV the set of packets success- we assign the rest of the value gained®T on I; at Step 2

fully transmitted byO P7" and lost byP MV Let DROP; be the we re-assign the value currently assigned to the packets preempted

set of packets fronf? RO P thatO PT starts to schedule at tinte by PMV. Note that at iteratiort, we may assign some value to
The following claim states that when T starts to schedule a  packets scheduled ByA/V attimet’ > ¢.

packetp from DROP;, some packets with non-negligible value The following claims demonstrate that only packets that are suc-

that conflict withp are being scheduled by MV, cessfully transmitted by’ MV are assigned some value and that

) the assignment routine is feasible and the total value assigned is at
CLAaM 4.1. Consider a packgt € DROP; and letS be the leastw(DROP).

set of packets conflicting with that are scheduled by MV at

time¢. We have thatw(.5) > w(p). CLAIM 4.3. After the assignment routine finishes, the total as-
PROOE Observe that is available taP MV attimet. If p itself signed value is assigned to packets that are successfully transmitted

is scheduled at time, we are done. Otherwise, suppose towards a by M PV.

contradiction thatw(5) < w(p). In this case the weight o¥/; PROOF. Note that at iteratiom of the assignment routine, only

can be increased by removing the edges corresponding to packety;cets that are scheduled BV at timet' > ¢ are considered

in S and add_mgap. Thgt contradlgts with the fact th&MV com- for assignment. In case a packet is preempted at some tinad

putes a maximum weight matchingl] the value that has been assigned to it due to its current transmission

interval is re-assigned at when Step 2 of the assignment routine

is executed. This value is assignedto new packetidl” starts

to schedule at*. Thus, when the assignment routine finishes, no

value is assigned to packets that are not successfully scheduled.

Note that the packet may be itself in the sef. In the next
claim we consider the situation in whidhA/'V' preempts a packet
transmission.

CLAIM 4.2. Considerthe set of packespreempted by? MV By the finiteness of the input sequence, the total assigned value is
at time and IétS be the set of new packets th&f//V starts to assigned to packets that are eventually successfully transmitted by
schedule at time. We have thai(S) > r - w(R). Mpy. O

PROOF Suppose towards a contradiction thets) < r-w(R). CLaiM 4.4. The assignment routine is feasible and after it fin-

We argue that in this case the weightld} can be increased by re-  ishes, the total value assigned is at leagD RO P).
moving the edges corresponding to packetsiand adding the

edges corresponding to packetsinwhich contradicts the maxi- PROOF. Observe that the value of any packein DROP; is

mality of the matching computed By} V. Note that packets iR processed by the_ assignmentroutine at iteratid®incep is avail-
do not conflictwith the rest of the packets that have been scheduled@P!e oMV at timet, we have thato(pi(p, t)) + w(ps(p: 1)) >
by PMV attimet — 1. [J 0. Thus, the assignment is well-defined and the value will be

fully assigned by steps 1(a) and 1(b) of the assignment routiné.
We now introduce the following defitions.
The following lemma establishes an upper bound on the total
DEFINITION 4.1. Consider the transmission intervédl of an value that can be assigned taPa/ V' packet that is successfully
OPT packetp. For atime slott € I, let p;(p, t) be the packet transmitted.



For t = 0 up tod; Do:

1. For each packet from D RO P; Do:
Let] = [t = t, t4] be the transmission interval pfin
OPT.
(@) For ¢’ = t. uptot; Do:
If w(pi(p,t')) + w(ps(p,t')) > 0 then assign

PP Ty © pilpt) and the
palier

value Ofp(p) wleim, )0_5_ 71:(132(p7t/)) tOPo(]% t/)'

(b) If pi(p, t) is successfully transmitted, lg%(p, t) be
pi(p, t). Else, ifpi(p,t) is preempted, lep;(p, t) be

with value of at leastwv(p;(p, t)) whose overlapping
input transmission intervals with areconsecutivand
non-empty In a similar way, we defing,(p, t) w.r.t.
to the output ofp. Let the value ofp minus the value
already assigned at Sub-Step 1(aybdf v > 0 then
assign the value Oéw(p,(gfﬁif;f;)o oy 10 pilp,t)

w(po(p,t)) A
) Ty ©Pe(®;t)-

and the value of

2. Consider the set of packefs preempted byP MV at time
t and the sef of new packets thaP MV starts to schedul
at this time. Lew be the total value assigned to packetsin
due to their current transmission intervals (*) and{elve the
total value of packets i¥. Assign to each packetin .S the
value ofw(p) - v/v’.

(*) For a transmission interval of a PMV packetp, the value
assigned te gue to/ is the total value assigned tan the context
of a time slott € [.

Figure 8: The assignment routine for variable length packets.

LEMMA 4.5. After the assignment routine finishes, Ra/V
packet that is successfully transmitted is assigned morezhan
2k + 2 times its value for any > 2.

PROOF Consideratransmissionintendak [¢., t¢]ofaPMV
packetp. Letv be the value assigned todue to/ by Step 1. We
will show that if p is successfully transmitted duringthenw is
bounded by 2r+2«)-w(p) andifp is preempted thenis bounded
by (r + 2k) - w(p).

Clearly, the total value assignedidy Sub-Step 1(a) is bounded

by 2« - w(p) since the sum of the lengths of the overlapping in-

put and output transmission intervals bivith that of packets in

DROP is bounded by2i(p). (Note that transmission intervals of

packets inD RO P conflicting with each other cannot overlap.)
Now let us consider Sub-Step 1(b). We claim thatan be

assigned fully or partially the value of at most two packets from

D ROP conflicting with p at the input and at the output, namely,
the two packets of2 RO P whose transmission intervals overlap
with the last time slot of . To see that, consider a paclefrom

DROP conflicting with p at the |nput whose value has been as-

signed top by Sub-Step 1(b). Lef = [£., ;] be the transmission
interval ofp in OPT'. Suppose towards a contradiction thatoes
not overlap with the last time slot df Obviously, if¢. > ¢, the
value ofp cannotAbe assignqd osincel and/ do not overlap.
Thus, assume that < ¢y. If t. > t. then the value of is com-

the last packet in the sequence of preempting pagke

D

pletely assigned by Sub-Step 1(a) sidde contained iry. In case
t. < t., the only way that the value gf can be assigned o by
Sub-Step 1(b) is thatis the last packetin the sequence of preempt-
ing packets whose overlapping input transmission intervals vith
are consecutive and non-empty. However, in this case the value of
pis still completely assigned by Sub-Step 1(aghuse is entirely
covered by the transmission intervals of tRé/ V" packets in this
sequence. We get a contradiction to our assumption. Therdfore,
overlaps with the last time slot df

Let p’ be theOPT packet whose transmission internvél =
[t%, ] overlaps with the last time slot dfat the input, if any, or a
dummy packet with zero value otherwise. Similarly, we defifie
andl” w.r.t. the output op.

By Claim 4.1, the total value of packets conflicting wijth at

e t; whenOPT starts to schedule it is at least(p')/r.
follows that if p does not take part in a sequence of preempting
packets (in this cagé > t.), it can be assigned at mostimes its
value wherp' is processed by Sub-Step 1(b)plfs the last packet
in a sequence of preempting packets (in this ¢ase t.), by the
definition of Sub-Step 1(b), the value pfis greater than or equal
to that of the packet scheduled BRA V' at the input ofp at time
t.. Hencep can still be assigned at mostimes its value whep’
is processed by Sub-Step 1(b). A similar analysis can be done for
p". Therefore, in casg is successfully transmitted during it is
assigned at mosgt- times its value by Sub-Step 1(b).

If p is preempted, at least one of the new packets conflicting with
p that PMV starts to schedule at this time has value greater than
or equal tow(p); denote this packet by. To see that, observe that
otherwise the weight of the matching scheduleddy’l” can be
increased by removing the edges corresponding to the new packets
conflicting withp and inserting back,, since by our assumption
r > 2. By the definition of Sub- Step 1(b), the unassigned value of
eitherp’ or p”’ will be assigned tg’ (or maybe to another packet
that preemptg’). Thus,p can be assigned by Sub-Step 1(b) only
the value of on& PT packet. This value is at mostimes its own
value, as we argued in the previous case.

Now let us proceed to Step 2 of the assignment routine. Suppose
thatp is successfully transmitted duridg Note that/ is considered
by Step 2 only once, namely at time Let R be the set of packets
preempted by? MV and letS be the set of new packets tha/ 1V’
starts to schedule at timte. By Claim 4.2,w(5) > r - w(R). If
any packetink has been assigned at mgstimes its value due to
its current transmission interval then by the definition of Step 2, any
packetinS is assigned at mogt/r times its value. Since initially
any preempted packetis assigned at mest« times its value by
Step 1, we obtain a geometric progression whose sum is bounded
by Zt2%, which yields the lemma. [J

Now we are ready to prove the main theorem.

THEOREM 4.6. The competitive ration oP MV (r) is at most
(2r + 26 + ZE25 4 1),

PROOF. Obviously, w(S°FT) < w(DROP) + w(SFMY).
Lemma 4.5, Claim 4.3 and Claim 4.4 imply tha{ DROP) <
(2r 426 + 22255 (SPMY). We obtain thato (S9F7) < (2r +
2 + 225 4 1) - (STMY), which establishes the theorem]

For a givenx, we optimize the value of obtaining that the com-
petitive ratio of PMV is minimized whenr = 1 + \/x +1/2.
Observe that > 2 sincex > 1 and the condition of Lemma 4.5is
satisfied.

COROLLARY 4.7. The competitive ratio dP MV (1++/k + 1/2)
s+1/2+41 +3

is at mostr + 21/k + 1/2 + 2”+\/+_1/2



We note that fok = 1 we get a competitive ratio of approxi-
mately 11.123, which improves upon the results of [17]. We also
observe that for the case of unit length packBt&/V (1) is 2-

competitive. Observe that in this case packets are not preempted,

which significantly simplifies the analysis.

THEOREM 4.8. The competitive ratio aP A1 (1) is at most
for the case of unit length packets.

5. OFFLINE ALGORITHMS

In this section we consider the offline version of our problem.
The problem is NP-hard even for the special case of unit value
packets andv = 1, which is also known as theequencing within

intervalsproblem [11]. We present a pseudo-polynomiabproximation

algorithm for the general case. This algorithm falls into the general
framework introduced in [3]. We note that [3] also giveq—i:\g-
approximation algorithm with running time polynomialirie. For

the case of unit value packets, we derivgé-approximation poly-
nomial time algorithm based on our algorithm for the general case.

5.1 Variable Value Packets

The input to our algorithm is a set of packéts To define our
algorithm we first define a new set of packéts For each packet
p € S, we define a set of packelap(p) that includes zero slack
packets corresponding to all posities to schedule. Specifically

r(p) +4,d(g:) = r(g:) +Ug)} -

s(p)
dup(p) = | J{ailr(a:)

Wheres(p) is the slack of a packetand is definedigs) = d(p) —
l(p) — r(p) + 1. The new sef” is defined as” = | ; dup(p).

Note that the the number of packetsffrdepends on the slack of
the packets irt and thus is pseudo-polynomialin the ingut

The algorithmSC H ED(P, w) is described in Figure 9. Since
all packets inP have zero slack, for every € P there is ex-
actly one possible transmission intervalgof/,,. If the algorithm
SCHED(P,w) selects some packete P to be scheduled, this
means that in the actual solution the packet S s.t. p € dup(q)
will be scheduled on the transmission interyal

We define the sef'(p) to contain all the packets iRt that cannot
be scheduled ip € P is scheduled (including itself). There
are two types of such packets, packets that aréujm(p) and are
actually just duplications of the original packet frdinand packets
that are conflicting withp and share some time slot wifh. More
formally, we defineg”(p) as follows:

C(p) = {q € P|I, n I, # ¢ andq conflicts withp} U dup(p) .

With slight abuse of notatior{up(p) for p € P meansiup(s)
suchthat € S andp € dup(s).
Next we analyze the performance of our algorithm.

LEMMA 5.1. Consider a seP’ of packets with zero slack and
an arbitrary weight functions. Letp be a packet with the earliest
deadline selected b C H ED(P,w). Then a feasible solution
that includeg and a feasible solution to whighcannot be added,
are both3-approximation w.r.t. the weight functian; (as defined
in Figure 9).

PROOF Observe that only packets ifi(p) contribute positive
weight to the solution. Sincg has the earliest deadline and all
packets have zero slack, each paeket C(p) \ dup(p) conflicts
with p and its transmission intervdl, contains the last time slot
of p's transmission interval,. Therefore, any feasible solution
w.r.t. the weight functionw; caninclude at mostthree packets from

Remove all packets with w(p) < 0 from P;
If P = ¢ returng;
Select a packetin P with the minimald(p).

V& € C(p),
otherwise;

w(p)
0

Letw, (z) = {
Letwz(z) = w(z) — wi(x);

T = SCHED(P, ws);

If T'U{p} is afeasible solution theR = T U {p};

Else,R=T;

ReturnR.

Figure 9: Algorithm SCHED(P, w).

C(p): at most one packet frorlup(p), and at most two packets
from C'(p) \ dup(p). Thus, the weight of an optimal solution w.r.t.
the weight functionu, is at mosBw(p). If pis in the solution, then
the weight of that solution is at least(p). If p cannot be added
to the solution, then there is a packéte C(p) which is in the
solution. Howevenw: (p') = w(p). We obtain that both solutions
are3-approximation. [

We are now ready to prove the main theorem.

THEOREM 5.2. The algorithmSC H ED( P, w) is a 3-approximation
w.r.t. the weight functiom.

PrROOF The proofis by induction on the recursion depth.
Basis: Trivial.

Step: Denote byO P77 an optimal solution w.r.t. the weight func-
tion w; and byO P75 an optimal solution w.r.t. the weight
function w,. Note that the solution returned by the algo-
rithm, R, falls within one of the two categories considered
in Lemma 5.1 and therefore; (R) > 3wi1(OPT1). By the
induction hypothesis we have that(7') > 3w2(OP13).
Therefore,

w(R) = wi(R) + w2(R)
> wi(R) + wa(T)
> 3wy (OPT}) + 3w (OPT:)
> 3w (OPT) + 3w (OPT)
= 3w(OPT).

O

THEOREM 5.3. The running time oSC HED(P, w) is poly-
nomial in|P|.

PROOF In each iteration we remove at least one packet ffldm
and therefore the number of iterations is boundedi®y Finding
the minimald(p) can be done in tim&(|P|). Updatingw; and
wy takesO(1) time per packet and in each iteration we have at
most| P| updates. Checking wheth&ru {p} is a feasible solution
can be done i0(|7']) < O(|P]) time. Therefore, the time com-
plexity of each iteration i€(|P|) and the total time complexity is
o(lpP*). O

We thus have &-approximation pseudo-polynomial time algo-
rithm for the variable value case.



5.2 Unit Value Packets

For the unit value case, we will modify our algorithm in the fol-
lowing way. Note that when we use algorith$C' £ H D on unit
value packets, in each iteratiofiC' £ H D removes a packetand
all the packetsi'(p) completely. Therefore, the solution returned
from the recursive call will not contain any packetiffp), and we
can always adg to this solution. Thus, we can instead gdin-

mediately to the solution, and then proceed to the recursive call.

Instead of creating the sétip(q) for a packet, we maintain the

time window in which it can be scheduled and shrink it if neces-

[6] A. Borodin and R. El-Yaniv, “Online Computation and
Competitive Analysis,Cambridge University Pres4998.

[7] S. Dolev and A. Kesselman, "Non-Preemptive Real-Time
Scheduling of Multimedia TasksJournal of Real-Time
Systems\vol. 17(1), pp. 23-39, July 1999.

[8] S. Dolevand A. Kesselman, "Bounded Latency Scheduling
Scheme for ATM Cells,Journal of Computer Networksol
32(3), pp 325-331, March 2000.

[9] Y. Ganjali, A. Keshavarzian, and D. Shah, “Input-Queued
Switches : Cell Switching vs. Packet Switchingfoceedings

sary to avoid interference with the packets already scheduled. The of INFOCOM 2003

algorithm is presented in Figure 10.

For eachp € S setr'(p) = r(p).

While S # ¢ do

Remove all packetsifi that can no longer be fully scheduled
by their time windows.

Select a packetin S with minimalr'(p) + I(p).
Schedule during the time windowr'(p), r' (p) + I(p)].
Removep from S.

For eachy # p with r'(p) < r'(q) <
conflicts withp
Setr'(q) = r'(p) +1(p) + 1.

r'(p) + I(p) that

Figure 10: Algorithm SCHED — 1(5).

LEMMA 5.4. The running time ofCH ED — 1(.S) is polyno-
mial in | S].

PrROOF In each iteration we remove at least one packet ffom
and therefore the number of iterations is boundedidjy Finding
the minimalr(p) + {(p) can be done in tim&(|.S]). Updating
a time window for a given packet requiré§1) time and in each
iteration we have at mo$t| updates. Therefore, the time com-
plexity of each iteration i€(].S|) and the total time complexity is
o(ls)*). O
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