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1. INTRODUCTION
In this paper we consider the interval selection problem, namely, finding a maximum
cardinality subset of disjoint intervals from a given collection of intervals on the real
line. A celebrated algorithm of Gavril [17] that picks the intervals greedily in increas-
ing order of their right endpoint yields an optimal solution in the classic setting where
the complete set of intervals is known to the algorithm. Here we study this problem in
the streaming model [19; 26], where the input is given to the algorithm as a stream of
items (intervals in our case), one at a time, and the algorithm has a limited memory
that precludes storing the whole input. Yet, the algorithm is still required to output a
feasible solution, with a good approximation ratio.

The motivation for the streaming model stems, inter alia, from applications of man-
aging very large data sets, such as biological data, (cf. [24]), network traffic data,
(cf. [28]), and more. Although some function of the whole data set is to be computed,
it is impossible to store the whole input. Depending on the setting, different variants
of the streaming model have been considered in the literature, such as the classical
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streaming model [19] or the so-called semi-streaming model [14]. Common to all of
them is the fact that the space used by the streaming algorithm is linear in some
natural upper bound on the size of the output it returns (sometimes, a multiplicative
polylogarithmic overhead is allowed).

In many problems considered in the streaming literature, the size of the output is
fully determined by some parameter of the input, and thus, one would typically express
the space complexity as a function of this parameter (cf. [4; 15]). However, in other
problems, the size of the output cannot be a priori expressed that way as it depends on
the given instance; in such settings it is natural to seek a streaming algorithm whose
space complexity is not much larger than the output size of the given instance (cf. [18]).
Clearly, as long as the computational model of the streaming algorithm is based on a
Turing machine with no distinction between the working tape and the output tape, the
size of the output is an inherent lower bound on the required space.

In this paper, we consider a setting where the algorithm is given a stream of real-
line intervals, each one defined by its two endpoints, and the goal is to compute a
maximum cardinality subset of disjoint intervals (or an approximation thereof). This
problem finds many applications, e.g., in resource allocation problems, and it has been
extensively studied in the online and offline settings in many variants, see, e.g., [17; 5;
27; 9; 7; 6]. We seek algorithms with a good upper bound on the space they use for a
given instance, expressed in terms of the size of the output for that specific instance.
Typically, we seek algorithms that use space which is at most linear in the size of the
output and yet guarantee a good approximation ratio.

Related Work.. The offline interval selection problem corresponds to finding a max-
imum independent set in an interval graph. An optimal greedy algorithm was discov-
ered early [17] and has since been a staple of algorithms textbooks [10; 20]. It should
be noted that the input can be given in (at least) two different ways: as an intersec-
tion graph with the nodes corresponding to the intervals, or as a set of intervals given
by their endpoints. This distinction makes little difference in the traditional offline
setting, where switching between these representations can be done efficiently, but, it
can be important in access- or resource-constrained settings. We choose to study the
interval selection problem assuming the latter representation — that is, the input is
given as a set of intervals — since we believe that it makes more sense in applications
related to the online and streaming settings (most previous works on online interval
selection make the same choice).

The study of space-constrained algorithms goes back at least to the 1980 work of
Munro and Paterson on selection and sorting [25]. More recently, the streaming model
was developed to capture the processing of massive data-sets that arise in practice
[26]. Most streaming algorithms deal with the approximate computation of various
statistics, as exemplified by the celebrated paper of Alon, Matias, and Szegedy [4].

A number of classic graph theoretic problems have been treated in the streaming
setting, for example, matching problems [23; 13], diameter and shortest paths [14;
15], min-cut [3], and graph spanners [15]. These were mostly studied under the semi-
streaming model, introduced by Feigenbaum et al. [14]; in this model, the algorithm is
allowed to use n logO(1)(n) space on an n-vertex graph (i.e., logO(1)(n) bits per vertex).
Closest to our problem, the independent set problem in general sparse graphs (and
hypergraphs) was studied in the streaming setting by Halldórsson et al. [18]. Geomet-
ric streaming algorithms have also appeared in recent years, especially dealing with
extent and ranges, such as [2].

There is a plethora of literature on interval selection in the online setting, where the
intervals arrive one-by-one and the algorithm should maintain a valid solution at all
times so that an interval can be added to the solution only at its arrival time. Some
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papers capture the problem as a call admission problem on a linear network, with the
objective of maximizing the number (or weight) of accepted calls. Awerbuch et al. [5]
present a strongly dlogNe-competitive algorithm for the problem, where N is the num-
ber of nodes on the line (corresponding to the number of possible interval endpoints).
This yields an O(log ∆)-competitive algorithm for the weighted case, where ∆ is the
ratio between the longest to the shortest interval. On the negative side, they estab-
lish a lower bound of Ω(logN) on the competitive ratio of randomized non-preemptive
online interval selection algorithms.1 In the context of the real line, this immediately
implies that such algorithms cannot have a competitive ratio that is independent of
the length of the input. In fact, Bachmann et al. [7] showed that the competitive ratio
of randomized non-preemptive online algorithms for interval selection on the real line
must be linear in the number of intervals in the input. For the weighted case, preemp-
tive online scheduling has a lower bound of Ω(log κ), where κ is the minimum of the
maximum interval length, the maximum interval benefit, and the maximum interval
value-density (i.e., the interval benefit divided by its length) [6]. In comparison, much
better results are possible for preemptive online algorithms in the unweighted setting:
Adler and Azar [1] devise a 16-competitive algorithm. One way of easing the task of the
algorithm in the weighted case is to assume arrival by time, i.e., the intervals arrive
in order of left endpoints. This has been treated for different weighted problems [27;
22; 12; 16] (but the lower bound of [6] still holds).

Subsequent to the initial publication of the present results [11], Cabello and Pérez-
Lanterno [8] presented streaming algorithms that estimate the size of the maximum
independent set out of a set of intervals. Their algorithms give for a general instance
a (2 + ε) approximation, and for unit intervals a (3/2 + ε) approximation, using space
polynomial in 1

ε and in log n. They also presented new, simpler than ours, algorithms
for finding the approximated independent set, which in some cases match our bounds
as to the approximation ratio and the space used.

Our results.. We give tight results for the interval selection problem in the streaming
setting. Our main positive result is a deterministic 2-approximation streaming algo-
rithm that uses space linear in the size of the output (Sec. 3). This is complemented by
a matching lower bound (Sec. 5), stating that an approximation ratio of 2 − ε cannot
be obtained by any randomized streaming algorithm with space significantly smaller
than the size of the input (which can be much larger than the size of the output). The
special case of proper interval collections (i.e., collections of intervals with no proper
containments) is also considered, for which a deterministic 3/2-approximation stream-
ing algorithm that uses space linear in the output size is presented (Sec. 4) and a
matching lower bound on the approximation ratio is established (Sec. 5) for streams of
unit intervals (a special case of proper intervals). The upper bounds are extended to
multiple-pass streaming algorithms: we show that an approximation ratio 1+1/(2p−1)
can be obtained in p passes over the input (Sec. 6).

In passing, we also answer an open question posed by Adler and Azar [1] in the con-
text of randomized preemptive online algorithms for the interval selection problem.
Adler and Azar point out that the decisions made by their online algorithm depend
on the whole history (i.e., the input seen so far) and that natural attempts to remove
this dependency seem to fail. Consequently, they write (using the term “active call” for
an interval in the solution maintained by the online algorithm) that “it seems very
interesting to find out whether there exist constant-competitive algorithms where each

1A preemptive online interval selection algorithm is allowed to withdraw intervals that were previously
picked to be included in the solution. In contrast, if a non-preemptive online interval selection algorithm
adds an interval to the solution, then this interval will remain in the solution indefinitely.
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decision depends only on the currently active calls and maybe on additional bounded in-
formation”. We answer this question in the affirmative by slightly modifying our main
algorithm to achieve a randomized preemptive online algorithm that admits constant
competitive ratio and uses space linear in the size of the optimal solution, rather than
the size of the input, as the algorithm of Adler and Azar does (Sec. 7).2

2. PRELIMINARIES
We think of the real line R as stretching from left to right so that an interval I con-
tains all points between its left endpoint left(I) and its right endpoint right(I), where
left(I) < right(I). Each endpoint can be either open (exclusive) or closed (inclusive).
A half-open interval has a closed left endpoint and an open right endpoint. (This is,
perhaps, the natural interval type to use in most resource allocation applications.) Ob-
serve that the assumption that left(I) < right(I) implies that every interval contains an
open set (in the topological sense) and that half-open intervals are always well defined.

The interval related notions of intersection, disjointness, and containment follow the
standard view of an interval as a set of points. Throughout, the symbols ⊂ and ⊃ de-
note strict containment, whereas the symbols ⊆ and ⊇ denote non-strict containment.
Two intervals I, J properly intersect if they intersect without containment; I properly
contains J if I contains J and J does not contain I. An interval collection I is said to
be proper (and the intervals in the collection, proper intervals) if no two intervals in I
exhibit proper containment. The load of I is defined to be maxp∈R |{I ∈ I | p ∈ I}|.

The interval selection problem asks for a maximum cardinality subset of pairwise
disjoint intervals out of a given set S of intervals. In the streaming model, the input
interval set S is considered to be an ordered set (a.k.a. a stream) and the intervals ar-
rive one by one according to that order. The intervals are specified by their endpoints,
where each endpoint is represented by a bit string of length b (the same b for all end-
points). This may potentially provide a streaming algorithm with the edge of knowing
in advance some bounds on the number of intervals that will arrive and on the number
of intervals that can be placed between two already-received intervals. However, our
algorithms do not take advantage of this extra information and our lower bounds show
that it is essentially useless. An optimal solution to a given instance S of the interval
selection problem is denoted by Opt(S).

We may sometimes talk about segments, rather than intervals, when we want to
emphasize that the entities under consideration are not necessarily part of the input.
Given a set I of intervals, a maximal continuous segment in

⋃
I∈I I is called a con-

nected component (or, for simplicity, component).

3. THE MAIN ALGORITHM
3.1. Overview
Given a stream S of intervals, our algorithm maintains a (proper interval) collection
A ⊆ S, referred to as the actual intervals, from which the output Alg(S) = Opt(A) is
taken. It also maintains a collection V of virtual intervals, where each virtual interval
is the intersection of two actual intervals that existed in A at some point. The role
of the virtual intervals is to prevent undesired intervals from joining A: an arriving
interval I ∈ S joins A if and only if it does not contain any currently maintained
virtual or actual interval.

2The technique employed in Sec. 7 is based on a “classify and randomly select” argument that guarantees
that the solution produced by the online algorithm is a constant approximation of the optimal solution
with constant probability. Using the technique of [21] (reformulated as Theorem 4.1 in [1]), this can be
strengthened to guarantee a constant approximation with high probability.
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Our algorithm is designed to guarantee that each interval I ∈ S leaves a trace in
eitherA or V , namely, there exists some J ∈ A∪V such that J ⊆ I. Moreover, if I, I ′ ∈ A
properly intersect, then I ∩ I ′ ∈ V . This essentially means that an arriving interval is
rejected if and only if it contains some previous interval of S or the intersection of two
properly intersecting previous intervals in S that have belonged to A.

Following that, it is not too difficult to show that the load of the interval collection A
is at most 2. Based on a careful analysis of the structure of the (connected) components
in A and the locations of the virtual intervals within these components and between
them, we can argue that |V | ≤ |A|. This immediately yields the desired upper bound on
the space of our algorithm as |A| ≤ 2 · |Opt(A)|. The bound on the approximation ratio
essentially stems from the observation that |Opt(S)| ≤ |Opt(A ∪ V )| (a direct corollary
of the fact that each interval in S leaves a trace in A ∪ V ) and from the invariant that
each actual interval contains at most 2 virtual intervals.

It is interesting to point out that our algorithm is in fact a deterministic preemptive
online algorithm that maintains a load-2 interval collection (the collectionA). Since the
main result of Adler and Azar [1] also relies on such an algorithm, one may wonder if
the two algorithms can be compared. Actually, the algorithm of Adler and Azar bases
its rejection (and preemption) decisions on similar conditions: an arriving interval is
rejected if and only if it contains some previous interval of S or the intersection of two
properly intersecting intervals in A. (Adler and Azar use a different terminology, but
the essence is very similar.) The difference lies in the latter condition: Whereas the
algorithm of Adler and Azar considers only the properly intersecting intervals that are
currently in A, our algorithm also (implicitly) considers properly intersecting intervals
that belonged to A in the past and were preempted since. This seemingly small dif-
ference turns out to be crucial as it allows our algorithm to use much less memory,
thus giving rise to an interesting phenomena: by remembering extra information (i.e.,
intersecting intervals that belonged to A in the past and are not in A anymore), we
actually end up using less memory.

3.2. The algorithm
Consider a stream S = (I1, . . . , In) of intervals on the real line. It will be convenient to
assume that all endpoints are distinct, i.e., {left(I), right(I)}∩ {left(J), right(J)} = ∅ for
every two intervals I, J ∈ S. Unless stated otherwise, we will also assume that the in-
tervals mentioned in this section are closed on both endpoints. These two assumptions
are lifted in Appendix A.

Our algorithm, denoted Alg, maintains a collection A ⊆ S of actual intervals and a
collection V of virtual intervals, where each virtual interval is realized by endpoints
of intervals in S. That is, any virtual interval I ∈ V satisfies {left(I), right(I)} ⊆
{left(J), right(J) | J ∈ S}. The algorithm initially sets A, V ← ∅. Then, upon arrival of
a new interval I ∈ S, Alg proceeds according to the policy3 presented in Algorithm 1.

The algorithm first verifies that the new interval I does not contain any currently
stored (actual or virtual) interval; if it does, then the new interval is ignored (rejected).
Therefore, if Alg reaches line 3, then we can assume that I + J for any interval J ∈
A∪V . Next, in lines 4–7 Alg removes all the actual and virtual intervals that contain I.
Lines 8–12 form the heart of the algorithm: updating the virtual intervals that remain
in V . The idea here is that a virtual interval that intersects with I is “trimmed” until
it is contained in I; if an actual interval intersects with I, then the intersection is
introduced as a new virtual interval. Finally, any actual interval J that exclusively

3Note that Alg can be thought of as an online algorithm with preemption with respect to the set A.
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Algorithm 1 The policy of Alg upon arrival of an interval I ∈ S.
1: if ∃J ∈ A ∪ V s.t. J ⊆ I then
2: reject I and halt
3: A← A ∪ {I}
4: for all J ∈ A− {I} s.t. J ⊇ I do
5: A← A− {J}
6: for all J ∈ V s.t. J ⊇ I do
7: V ← V − {J}
8: for p ∈ {left(I), right(I)} do
9: if ∃J ∈ V s.t. p ∈ J then

10: V ← V − {J} ∪ {I ∩ J}
11: else if ∃J ∈ A s.t. p ∈ J then
12: V ← V ∪ {I ∩ J}
13: for all J ∈ A and K ∈ V do
14: if left(J) < left(K) < right(K) < right(J) then
15: A← A− {J}

contains some virtual intervalK (that is, J containsK even if we remove J ’s endpoints)
is removed from the actual interval collection A in lines 13–15.

After the last interval In is processed, Alg outputs Alg(S) = Opt(A), that is, an
optimal subset of the interval collection A (computed, say, by the greedy left-to-
right algorithm). In the remainder of this section we prove that: (a) at all times,
|V | ≤ |A| ≤ 2 · |Alg(S)|; and (b) |Alg(S)| ≥ |Opt(S)|/2. Together, we obtain the desired
approximation, using space at most constant times larger than the size of the optimal
output. The figures in Appendix C may provide helpful illustrations for the effect that
the new interval I has on the sets A and V .

3.3. Analysis
Throughout the analysis, we let 1 ≤ t ≤ n denote the time at which Alg completed
processing interval It ∈ S; time t = 0 denotes the beginning of the execution. We refer
to the period between time t− 1 and time t as round t. The stream prefix (I1, . . . , It) is
denoted by St. The collections A and V at time t are denoted by At and Vt, respectively,
although, when t is clear from the context, we may omit the subscript. We begin by
showing that each virtual interval is indeed realized by (at most) two actual intervals
and that the new interval I is not removed immediately after joining A.

PROPOSITION 3.1. At any time t, if ρ ∈ Vt, then there exist some σ, σ′ ∈ St such that
ρ = σ ∩ σ′.

PROOF. By induction on t. The case t = 0 is trivial as V0 = ∅. For time t > 0, we
observe that any new virtual interval ρ added to V in round t is either the intersection
of two actual intervals (line 12) or the intersection of an actual interval and a virtual
interval in Vt−1 (line 10). In the former case, the assertion follows immediately; in the
latter case, the assertion follows by the inductive hypothesis.

PROPOSITION 3.2. For every 1 ≤ t ≤ n, if Alg reaches line 3 when processing It = I,
then I ∈ At.

PROOF. In line 3, I is added to A and subsequently, it can only be removed from A
if a virtual interval ρ that is contained in I but does not have an endpoint in common
with V is found (line 15). Such an interval ρ cannot be in Vt−1 since otherwise, I would
have been rejected in line 2. The assertion follows since every virtual interval added
to V in round t has a common endpoint with I.
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Lemma 3.3 lies at the core of our analysis: it states that each interval in S leaves
some trace in either A or V . This will be employed later on to argue that Alg(S) is not
much smaller than Opt(S).

LEMMA 3.3. For every interval It ∈ S and for every time t′ ≥ t, there exists some
interval ρ ∈ At′ ∪ Vt′ such that ρ ⊆ It.

PROOF. A new coming interval I is added to A in line 3 unless some interval ρ ⊆ I
is found in A ∪ V . An actual interval ρ ∈ A is removed from A only if another actual
interval I ⊆ ρ has just joined A (line 5) or if a virtual interval σ ⊂ ρ is found in V
(line 15). A virtual interval ρ ∈ V is removed from V only if an actual interval I ⊆ ρ
has just joined A (line 7) or if it is replaced in V by another virtual interval σ ⊆ ρ
(line 10). The assertion follows.

3.3.1. The structural lemma. We now turn to establish our main lemma regarding the
updating phase in lines 8–12 and the resulting structure of the interval collections A
and V . Lemma 3.4 states seven invariants maintained by our algorithm; these invari-
ants are then proved simultaneously by induction on t, essentially by straightforward
analysis of the policy presented in Algorithm 1.

LEMMA 3.4. For any round 1 ≤ t ≤ n, the updating phase satisfies the following
two properties:
(P1) If ρ is added to V in round t, then ρ ∈ Vt.
(P2) If ρ and σ are added to V in round t, then ρ ∩ σ = ∅.
Moreover, for any time 0 ≤ t ≤ n, the interval collections A and V satisfy the following
five properties:
(P3) For every ρ ∈ A and σ ∈ V , if ρ ∩ σ 6= ∅, then σ ⊂ ρ with a common endpoint.
(P4) For every ρ, σ ∈ A, if ρ ∩ σ 6= ∅, then ρ ∩ σ ∈ V .
(P5) Every point p ∈ R is contained in at most 1 virtual interval.
(P6) Every point p ∈ R is contained in at most 2 actual intervals.
(P7) There do not exist two actual intervals ρ, σ ∈ A such that ρ ⊆ σ.

PROOF. We first establish (P1) regardless of the other six properties.
Establishing (P1). It is sufficient to show that if ρ is added to V in line 10 or line 12
of the execution for p = left(I), then it is not removed from V in line 10 of the execution
for p = right(I). Indeed, if ρ is added to V in the execution for p = left(I), then ρ = I ∩σ
for some interval σ ∈ At−1 ∪ Vt−1 such that left(I) ∈ σ. Since σ cannot contain I (as
otherwise, it would have been removed in line 5 or line 7), it follows that left(σ) <
left(I) < right(σ) < right(I), so ρ = [left(I), right(σ)]. Therefore, right(I) /∈ ρ and ρ is not
removed from V in line 10 of the execution for p = right(I).

Next, we establish (P2), (P3), (P4), and (P5) simultaneously by induction on t. The
case t = 0 is trivial: (P2) holds vacuously, while (P3), (P4), and (P5) hold as A0 = V0 = ∅.
Assume that the four properties hold for t − 1 and consider the execution of Alg upon
arrival of interval I = It for some 1 ≤ t ≤ n.
Establishing (P2). As each iteration of the for loop in lines 8–12 adds at most one
virtual interval to V , we may assume that ρ is added in the execution for p = left(I)
and σ is added in the execution for p = right(I). This means that ρ = I∩τ` and σ = I∩τr
for some intervals τ`, τr ∈ At−1 ∪ Vt−1 such that left(I) ∈ τ` and right(I) ∈ τr. We argue
that τ` and τr do not intersect, which implies that ρ and σ do not intersect.

To that end, assume by way of contradiction that they do and let τ∩ = τ` ∩ τr. If
both τ` and τr are virtual intervals, then we immediately reach a contradiction due the
inductive hypothesis on (P5). If both τ` and τr are actual intervals, which means that
ρ and σ are added to V in line 12, then by the inductive hypothesis on (P4), τ∩ ∈ Vt−1.
By definition, τ∩ must intersect with I. On the other hand, neither left(I) nor right(I)
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can belong to τ∩ as otherwise, the else condition in line 11 would not have passed, thus
τ∩ ⊂ I. But this means that Alg should not have reached line 3 and in particular, ρ and
σ would not have been added to V .

So, assume that τ` is actual and τr is virtual (the proof of the converse possibility is
identical). By the inductive hypothesis on (P3), we know that τr ⊂ τ`. But this implies
that both endpoints of I belong to τ`, namely, I ⊆ τ`, and τ` should have been removed
from A in line 5.
Establishing (P3). Consider some ρ ∈ At and σ ∈ Vt such that ρ ∩ σ 6= ∅. If ρ ∈ At−1

and σ ∈ Vt−1, then the property holds by the inductive hypothesis. Assume first that
ρ is added to A in round t, so ρ is the last arriving interval I. Notice that σ cannot be
in Vt−1 as this implies that either (i) σ ⊆ I, in which case I would have been rejected
in line 2; (ii) σ ⊇ I, in which case σ would have been removed from V in line 7; or (iii)
σ and I properly intersect, in which case σ is removed from V in line 10. Thus, σ is
added to V in round t either in line 10 or in line 12. In both cases, σ is contained in I
with a common endpoint.

It remains to consider the case in which ρ ∈ At−1 and σ is added to V in round t.
If σ is added to V in line 10, then it replaces in V some interval τ ∈ Vt−1 such that
σ ⊆ τ . Hence, τ must also intersect with ρ and by the inductive hypothesis, τ ⊂ ρ, so σ
must be contained in ρ. Since ρ is not removed in line 15, ρ and σ must have a common
endpoint. If σ is added to V in line 12, then σ = I ∩ τ for some interval τ ∈ At−1 such
that an endpoint p of I is contained in τ . The property is established by arguing that τ
and ρ must be the same interval.

To that end, suppose toward a contradiction that τ 6= ρ. Assume without loss of
generality that p = left(I), so left(τ) < left(I) < right(τ) < right(I). Since σ = I ∩
τ = [left(I), right(τ)] intersects with ρ, both I and τ must also intersect with ρ. By the
inductive hypothesis on (P4), we know that σ∩ = ρ ∩ τ ∈ Vt−1. We also know that σ∩
intersects with I as both ρ and τ intersect with I. Since τ + I, it follows that σ∩ + I,
hence σ∩ must still be in V when Alg reaches line 8. If left(I) ∈ σ∩, then the else
condition in line 11 would not have passed and σ would not have been added to V in
line 12, so left(I) /∈ σ∩. But right(I) /∈ σ∩ as right(I) /∈ τ , hence σ∩ ⊆ I and I should
have been rejected in line 2. In any case, we conclude that ρ and τ are indeed the same
interval.
Establishing (P4). Consider two intersecting intervals ρ, σ ∈ At. If both ρ and σ are
also in At−1, then by the inductive hypothesis, τ = ρ ∩ σ ∈ Vt−1. If τ /∈ Vt, then it
must have been removed from V either in line 7 because I ⊆ τ , in which case I is
also contained in both ρ and σ and they would have been removed from A in line 5, or
in line 10, where it is replaced in V by some other virtual interval τ ′ ⊂ τ (the strict
containment follows from the distinct endpoints assumption), in which case at least
one of the intervals ρ and σ should have been removed in line 15. Therefore, τ ∈ Vt and
the property holds in that case.

So, suppose that ρ ∈ At−1, while σ = I is added to A in round t. Since ρ, I ∈ At,
both ρ and I are in A when Alg reaches line 8, thus they cannot contain each other.
Assume without loss of generality that left(ρ) < left(I) < right(ρ) < right(I). If left(I)
does not belong to any virtual interval in Vt−1, then in line 12 the virtual interval
τ = ρ ∩ I is added to V and it must still be there at time t due to (P1). So, assume
that left(I) belongs to some virtual interval τ ∈ Vt−1. Since τ intersects with ρ, the
inductive hypothesis on (P3) implies that τ ⊂ ρ with a common endpoint. In line 10, τ
is replaced in V by the new virtual interval τ ′ = τ ∩ I, which, by (P1) remains in V at
time t. The interval τ ′ intersects with both ρ and I, hence, by (P3) (applied to time t),
it is contained in both of them, having a common endpoint with each, thus τ ′ = ρ ∩ σ
and the property holds.
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ρ1 ρ3 ρ5

ρ2 ρ4

Fig. 1. A component C of A. The solid lines depict the actual intervals ρi, i = 1, . . . , 5; the dashed lines
depict the virtual intervals that intersect with C (all of them must be contained in C).

Establishing (P5). Suppose toward a contradiction that there exists two distinct in-
tervals ρ, σ ∈ Vt such that ρ ∩ σ 6= ∅. Assume without loss of generality that σ was
added to V after ρ. By the inductive hypothesis, σ is added to V in round t, while (P2)
guarantees that ρ ∈ Vt−1. If σ is added to V in line 10, then σ = I ∩ τ for some virtual
interval τ which is guaranteed to be in Vt−1 by (P2). But then the inductive hypothesis
implies that ρ ∩ τ = ∅, thus ρ ∩ σ = ∅.

So, assume that σ is added to V in line 12. In that case σ = I ∩ τ for some τ ∈ At−1.
Assume without loss of generality that left(τ) < left(I) < right(τ) < right(I) so that
σ = [left(I), right(τ)] is added to V for p = left(I). Since ρ intersects with σ, it must also
intersect with both I and τ . We know that p cannot belong to ρ as otherwise, the else
condition in line 11 would not have passed. But, by the inductive hypothesis on (P3),
ρ ⊂ τ , thus ρ ⊆ I and I should have been rejected in line 2.

Properties (P6) and (P7) can now be established based on the other properties.
Establishing (P6). Consider some point p ∈ R and suppose toward a contradiction
that there exist three distinct intervals ρ1, ρ2, ρ3 ∈ At such that p ∈ ρi for every 1 ≤ i ≤
3. By (P4), the intersections σ1,2 = ρ1 ∩ ρ2, σ1,3 = ρ1 ∩ ρ3, and σ2,3 = ρ2 ∩ ρ3 are all in Vt.
But (P5) implies that σ1,2, σ1,3, and σ2,3 are pairwise disjoint, in contradiction to their
definition.
Establishing (P7). Consider any two intervals ρ, σ ∈ At. If ρ∩σ 6= ∅, then (P4) implies
that ρ ∩ σ ∈ Vt. By (P3), ρ ∩ σ is strictly contained in both ρ and σ, hence ρ cannot be a
subset of σ (nor can σ be a subset of ρ).

3.3.2. The components. We employ Lemma 3.4 in order to understand the structure
of the components of A and their relations with the intervals in V . To that end, fix
some time t and consider an arbitrary component C formed as the union of the actual
intervals ρ1, . . . , ρk ∈ At. We denote the leftmost and rightmost points in (the segment)
C by left(C) and right(C), respectively.

We argue that the actual and virtual intervals that intersect with component C are
restricted to a certain structure (refer to Figure 1 for an illustration). To that end,
assume without loss of generality that left(ρi) < left(ρi+1) for every 1 ≤ i ≤ k − 1.
Lemma 3.4(P6) and (P7) then guarantee that

left(ρi−1) < left(ρi) < right(ρi−1) < left(ρi+1) < right(ρi) < right(ρi+1)

for every 2 ≤ i ≤ k − 1. By Lemma 3.4(P4), we conclude that ρi ∩ ρi+1 ∈ Vt for every
1 ≤ i ≤ k − 1, while Lemma 3.4(P3) implies that the segment [left(ρ2), right(ρk−1)] does
not intersect with any other virtual interval in Vt. The segment C possibly contains two
more virtual intervals at time t: an interval σ` ⊆ [left(ρ1), left(ρ2)) and an interval σr ⊆
(right(ρk−1), right(ρk)], but then Lemma 3.4(P3) guarantees that left(σ`) = left(ρ1) =
left(C) and right(σr) = right(ρk) = right(C). There may also exist virtual intervals in
between the components of A, but we will soon show that their number and structure
are fairly limited. This requires the definition of the following notions.

Partition into portions.. Point p ∈ R is said to be an 〈x, y〉-point at time t if
there exist exactly x actual intervals in At and y virtual intervals in Vt that
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contain p. By Lemma 3.4, it suffices to consider 〈x, y〉-points for 〈x, y〉 pairs in
the set F = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 1〉}, referred to as feasible pairs. Fixing
some feasible pair 〈x, y〉 ∈ F , a maximal connected set of 〈x, y〉-points is re-
ferred to as an 〈x, y〉-portion. Given some segment G ⊆ R, let ϕ(G) be the string
of feasible pairs that encodes the types of portions encountered in a left-to-right
scan of G; e.g., if C is the component illustrated in Figure 1, then ϕ(C) =
〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉.

More generally, it follows from Lemma 3.4 and the discussion above that for every
component C of A it holds that

ϕ(C) ∈ 〈1, 1〉? 〈1, 0〉 (〈2, 1〉 〈1, 0〉)∗ 〈1, 1〉? ,
where following the common notation in regular expressions, we use a superscript
question mark to denote 0 or 1 occurrences and superscript asterisk to denote zero or
more occurrences (cf. the Kleene star). Notice that by the distinct endpoints assump-
tion, given ϕ(C), it is easy to determine (uniquely) the numbers of actual and virtual
intervals that C contains and the relative (total) order of their endpoints. Thus the
string ϕ(C) gives the so-called topological structure of component C.

Likewise, if P is a segment between two adjacent components of A, or the segment
to the left of the leftmost component of A or the segment to the right of the rightmost
component of A, then it holds that

ϕ(P ) ∈ 〈0, 0〉 (〈0, 1〉 〈0, 0〉)∗ .
We refer to the 〈0, 1〉-portions as the isolated virtual intervals. The following lemma
imposes a crucial restriction on the topological structure of ϕ(P ) (and also on ϕ(C)).

LEMMA 3.5. Let ϕt = ϕ(R) be the string of feasible pairs that encodes the types of
portions encountered in a left-to-right scan of the real line at time 1 ≤ t ≤ n. Then, every
〈0, 0〉 entry in ϕt is immediately preceded or immediately followed by a 〈1, 0〉 entry.

PROOF. By induction on t. The assertion holds trivially for t = 1 as ϕ1 =
〈0, 0〉 〈1, 0〉 〈0, 0〉. Suppose that the assertion holds at time t − 1 and consider time t.
If Alg does not reach line 3 when processing I = It, then ϕt = ϕt−1 and the assertion
holds by the inductive hypothesis, so assume hereafter that Alg does reach line 3 when
processing I which means that I + J for any J ∈ At−1 ∪ Vt−1.

The proof continues by case analysis that considers the different types of possible
intersections between I and the portions corresponding to ϕt−1. Specifically, in Table I
we identify a total of 27 types of intersections (up to symmetry) and address each one of
them by depicting the string ϕt−1 together with a solid line stretched above the entries
corresponding to the portions with which interval I intersects. The resulting string
ϕt is given on the third column. The strings α, β ∈ F∗ denote the substrings of ϕt−1

encoding the portions in segments of R which are either not affected by the newcoming
interval I or affected in a limited way. We also use the notation

α′ =
{
γ, α = γ 〈0, 0〉
γ 〈x− 1, y〉, α = γ 〈x, y〉, x > 0 β′ =

{
γ, β = 〈0, 0〉 γ
〈x− 1, y〉 γ, β = 〈x, y〉 γ, x > 0

which facilitates a reduction in the number of cases we have to consider. Figures illus-
trating each of these 27 cases are provided in Appendix C (the corresponding figure
numbers are indicated in the fourth column of Table I).

Observe that I can interest at most 2 components of A ∪ V , since otherwise there
exists some J ∈ A ∪ V such that J ⊆ I and I would not reach line 3 of the algorithm.
Therefore, to cover all cases of the different types of possible intersections between I
and the portions corresponding to ϕt−1. Table I is divided into the following 5 main
categories:
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— C1: I intersects with 0 components of A and with 0 isolated virtual intervals.
— C2: I intersects with 0 components of A and with 1 isolated virtual interval.
— C3: I intersects with 1 component of A and with 0 isolated virtual intervals.
— C4: I intersects with 1 component of A and with 1 isolated virtual interval.
— C5: I intersects with 2 components of A and with 0 isolated virtual intervals.

For convenience, category C3 is further divided into two parts according to the relation
of I with the component C of A with which it intersects: the top part includes the cases
where I − C 6= ∅; the bottom part includes the cases where I − C = ∅.

The assertion follows since in all cases, every 〈0, 0〉 entry in ϕt is immediately pre-
ceded or immediately followed by a 〈1, 0〉 entry (taking into consideration the con-
straints imposed on α and β due to the inductive hypothesis).

COROLLARY 3.6. Let C1, . . . , Cm be the components of At, 0 ≤ t ≤ n, indexed from
left to right. For every 1 ≤ i ≤ m− 1, at most one of the following three events occur:
(a) ϕ(Ci) ∈ 〈1, 1〉? 〈1, 0〉 (〈2, 1〉 〈1, 0〉)∗ 〈1, 1〉;
(b) ϕ(Ci+1) ∈ 〈1, 1〉 〈1, 0〉 (〈2, 1〉 〈1, 0〉)∗ 〈1, 1〉?; or
(c) the segment P between Ci and Ci+1 satisfies ϕ(P ) = 〈0, 0〉 〈0, 1〉 〈0, 0〉 (i.e., there is a
single isolated virtual interval between Ci and Ci+1).
Moreover, there is no isolated virtual interval to the left of C1 or to the right of Cm.

3.3.3. Accounting. We are now ready to establish the following lemma.

LEMMA 3.7. |Alg(St)| ≥ |Opt(St)|/2 at every time 0 ≤ t ≤ n.

PROOF. Lemma 3.3 guarantees that |Opt(St)| ≤ |Opt(At ∪ Vt)|. As |Alg(St)| =
|Opt(At)|, it is sufficient to bound the ratio R = |Opt(At∪Vt)|

|Opt(At)| , showing that it is at most
2.

Let C1, . . . , Cm be the components of At. Examining the three cases of Corollary 3.6,
we observe that the ratio R is maximized if event (c) always occurs, that is, Ci ∈
〈1, 0〉 (〈2, 1〉 〈1, 0〉)∗ for every 1 ≤ i ≤ m and there is an isolated virtual interval between
Ci and Ci+1 for every 1 ≤ i ≤ m− 1. We will increase R even further by assuming that
there exists an isolated virtual interval to the right of Cm.

Consider some component C = Ci, 1 ≤ i ≤ m, and let A(C) = {ρ ∈ At | ρ ⊆ C}
and V (C) = {σ ∈ Vt | σ ⊆ C}. It is easy to verify that |V (C)| = |A(C)| − 1 and that
|Opt(A(C))| = d|A(C)|/2e, whereas

|Opt(A(C) ∪ V (C))| =
{
|V (C)| if V (C) 6= ∅
1 otherwise.

Accounting for the isolated virtual interval to the right of Ci, we conclude that each
component Ci, 1 ≤ i ≤ m, contributes:
(i) 1 to the denominator of R and 2 to the numerator of R if V (Ci) = ∅; and
(ii) d|A(Ci)|/2e to the denominator of R and |A(Ci)| − 1 + 1 = |A(Ci)| to the numerator
of R if V (Ci) 6= ∅.
The assertion follows.

COROLLARY 3.8. |Alg(S)| ≥ |Opt(S)|/2.

It remains to bound from above the amount of space used by our algorithm, showing
that it is linear in the length of the bit string representing Alg(S). At each time t,
the space of Alg is linear in the length of the bit strings representing At and Vt. As
Opt(St)/2 ≤ Alg(St) ≤ Opt(St) for every 0 ≤ t ≤ n, and since Opt(St) is non-decreasing
with t, it is sufficient to show that |At|+ |Vt| = O(|Alg(St)|) = O(|Opt(At)|).
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By Lemma 3.4(P6), we know that the actual intervals in At can be colored in two col-
ors such that if two intervals belong to the same color class, then they do not intersect.
Thus, |At| ≤ 2 · |Opt(At)| at every time t. On the other hand, Corollary 3.6 implies that
if we scan the real line from left to right counting the actual and virtual intervals, then
the number of virtual intervals never exceeds that of the actual intervals. Therefore,
|Vt| ≤ |At| which establishes the following corollary.

COROLLARY 3.9. At every time t, the space of Alg is linear in the length of the bit
string representing Alg(S).

4. PROPER INTERVALS
In this section we consider the interval selection problem for proper intervals. There
is an easy deterministic 2-approximate streaming (and online) algorithm that uses no
extra space in addition to storing the output: simply greedily add an interval whenever
possible. We give here a streaming algorithm with an improved approximation ratio of
3/2 that uses output-linear space. As we show in Sec. 5, that is optimal in the semi-
streaming setting.

We first give an informal overview of the operation of the algorithm. It maintains
a collection of disjoint segments, called zones, which partitions the subset of the real
line covered by the intervals seen so far. For each zone, the algorithm keeps track of
two intervals from the input stream: the one with the leftmost left endpoint (reps.,
rightmost right endpoint) among those with a left (resp., right) endpoint in the zone.
The output of the algorithm is the maximum interval selection from this set of recorded
intervals. The performance guarantee follows from showing that this solution contains
at least two intervals within any span of three intervals of the optimal solution.

We now define the zones. Define the support of a set X of intervals, denoted supp(X),
to be the subset of the real line covered by intervals in X, or supp(X) = ∪I∈XI. Con-
nected components of the support of X are defined in a natural manner. The maximal
segments on the real line that are outside connected components of the support of X
are called out-regions (with respect to X). The zones are segments on the real line and
the zone collection Zt at time t is a partition of supp(St). A zone may initially be flexible
in that its endpoints might change, and in that it may be merged with other regions or
zones into a single zone. Zones at the extreme ends of connected components are flex-
ible, with the sole exception of the initial zone of a connected component; other zones
are fixed and unchangeable, with permanent endpoints.

We now specify how the algorithm creates and maintains the zones. Initially, there
are no zones and the whole line is considered one out-region. When an interval I is
received at time t, we consider the following cases depending on the positions of its
endpoints:

(1) Both endpoints of I are in an out-region: Create a new fixed zone equal to I, in a
connected component of its own.

(2) Both endpoints of I fall within the same connected component: Do nothing.
(3) The endpoints of I belong to zones in different connected components: First, for

each of the two zones in which the endpoints fall, fix it (if it is not already fixed)
without changing its endpoints. Then, create a new fixed zone, denoted by z, which
includes the out-region between the respective components. If I properly includes
one or two flexible zones, then these zones are merged into z; the resulting zone z
is then a fixed zone with right (reps., left) endpoint changed to be the right (resp.,
left) endpoint of the flexible zone to the right (reps., left) of z.

(4) One endpoint of I falls in a zone and the other in an out-region: Let k be the zone,
and C be the connected component, in which one endpoint of I falls. Without loss
of generality assume that the right endpoint of I falls in the out-region, i.e., the
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Fig. 2. Illustration of the different cases in zone management, with three variations of Case 3 and two for
Case 4. On the left, an incoming interval is shown in bold with the prior settings of the zones; the resulting
zone configuration is shown on the right. Flexible ends of zones are shown with brackets and out-regions in
grey.

left endpoint of I falls in k. Fix zone k (if it is not already fixed) without changing
its endpoints. Create a new flexible zone, denoted by z, which covers I \ supp(C). If
I properly includes a flexible zone k′, then k′ is merged into z, where the resulting
zone z has as its left endpoint the left endpoint of k′.

This completes the specification of the zones. See Fig. 2 for an illustration of the
different cases.

It is clear from the definition of the zones and their endpoints that the zone collection
partitions the support of the intervals seen so far. We shall assume a total order on
the zones, from left to right. The following lemma is crucial for the correctness and
performance guarantee of the algorithm.

LEMMA 4.1. The zone collection satisfies the following invariants:

(#). Each zone is contained in an input interval, and
(*). Each input interval contains at most two zones.

PROOF. The former invariant follows directly from how zones are created (in Cases
1, 3, and 4).

To prove the latter invariant by reductio ad absurdum, assume that there is an
input sequence for which the invariant fails. Let It be the first interval presented that
(at some time) contains three zones, denoted k1, k2, k3 in order (from left to right). Since
zones never shrink, time t is then also the first time that the invariant fails. Let t′ ≤ t
be the time when zone k2 achieves the extent that it has at time t. Consider the interval
It′ introduced at time t′. Since no zone is created or changed in Case 2, it does not apply
to It′ .

Let K = [left(k1), right(k3)] denote the minimal segment of the real line containing
all three zones. We observe that It′ ( K ⊆ It, implying that the input intervals are
not proper, which is a contradiction. Namely, in Case 1, the zone created corresponds
to the input interval, while, as is clear from Fig. 2, in Cases 3 and 4, the input interval
is has its endpoints in the zones (k1, k3) on either side of the center zone (k2) that is
created or changed.
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We next define the intervals maintained by the algorithm. For an interval I and
time t, let bz(I) = bzt(I) (resp. fz(I) = fzt(I)) be the zone in which left(I) (resp. right(I))
falls at time t. For each zone k, and time t, the algorithm stores the endpoints of the
intervals Lk = argminI∈St,bz(I)=k,left(I), i.e., the one with the leftmost left endpoint
in the zone, and Rk = argmaxI∈St,fz(I)=kright(I), i.e., the one with the rightmost right
endpoint in the zone. Note that Lk (resp., Rk) will be undefined if no interval has its
left (resp., right) endpoint in zone k.

The output of the algorithm is the maximum interval selection of the set A =
∪k{Lk, Rk}, obtained by, e.g., the classic left-right greedy algorithm.

We next detail how the algorithm maintains the intervals stored. When interval I
arrives at time t, we consider the four cases defined above.

If Case 1 applies, then I defines a new zone k, and both Lk and Rk are permanently
set to equal I.

If Case 2 applies, no zones change; the L- and R-intervals are updated for the zones
in which the endpoints of I fall. E.g., if b(I) falls in zone k, and b(I) < b(Lk), then Lk is
updated as I.

If Case 3 applies, the L- and R-intervals are updated, for the zones in which the
endpoints of I fall. Then, a new zone is created, but all the endpoints, if any, that fall
in that zone have already appeared, and thus we need only merge the information from
the at most two previous flexible zones that are merged into the new zone.

If Case 4 applies, then one endpoint of I falls in a zone k, which becomes fixed (if it
was not fixed before). Without loss of generality, assume it is the left endpoint of I that
falls in k. Then, Lk is updated appropriately. Also, a new zone z is created. If I does not
properly include any flexible zone (Subcase 1), then z covers I \ supp(C), Rz is defined
to be I, and Lz is undefined. If I does properly include a flexible zone k′ (Subcase 2),
then k′ is merged into z. Rz is defined to be I, and Lz is defined to be Lk′ .

We conclude that the algorithm can indeed maintain the intervals Lk and Rk for
each zone k as defined.

An immediate corollary of Lemma 4.1 is that the union of any five adjacent zones
must properly contain an input interval. By induction, any 5t adjacent zones must
include at least t disjoint intervals. Hence, we obtain an upper bound on the space used
by the algorithm by noting that for each zone k, only six values need to be recorded:
the endpoints of Lk, of Rk and of the zone k itself. We thus have the following.

LEMMA 4.2. The number of zones is at most 5|OPT | + 4. The space used by the
algorithm is at most O(|OPT |).

Finally, we prove the performance guarantee of the algorithm. The following lemma
captures the core of the argument. For two proper intervals I and J , we write I ≤ J to
denote that left(I) ≤ left(J) (and thus also right(I) ≤ right(J)), and similarly I < J if
left(I) < left(J). The span of a set X of intervals is the segment defined by the leftmost
left endpoint and the rightmost right endpoint of intervals in X.

LEMMA 4.3. Let R ⊆ St be a collection of three disjoint input intervals. Then, at the
end of round t, A contains a pair of intervals of St that are contained in the span of R.

PROOF. Let the three disjoint intervals be O1 < O2 < O3. Our claim is that A
contains a pair of disjoint intervals I, I ′ ∈ St, I, I ′ ⊂ [left(O1), right(O3)).

Let bi = bz(Oi) (respectively, fi = fz(Oi)) be the zone in which the left (resp., right)
endpoint of Oi falls, for i = 1, 2, 3, respectively. Clearly, b1 ≤ f1 ≤ b2 ≤ f2 ≤ b3 ≤ f3. We
observe that b1 < b2 < b3. Suppose, e.g., that b1 = f1 = b2. Then, O1 is contained within
zone b1, and since zone b1 contains the point left(O2) that is not contained in O1, it
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follows that O1 is properly contained in zone b1. So, by Lemma 4.1(Invariant (#)), there
is an interval that properly contains O1, which is a contradiction. Therefore, f1 < b3.

Consider Rf1 and Lb3 , which are well-defined intervals since the right endpoint of
O1 falls in zone f1 and the left endpoint of O3 falls in zone b3. By definition, O1 ≤ Rf1
and Lb3 ≤ O3, so Rf1 , Lb3 ⊂ [left(O1), right(O3)). Since f1 < b3, it follows that Rf1 and
Lb3 are disjoint, establishing the claim.

We conclude with the following theorem.

THEOREM 4.4. |ALG| ≥ 2|OPT |/3.

PROOF. Let |S| = n, and let O0, O1, . . . , Op−1 be the intervals in the optimal solution
OPT in order of left endpoints, where p = |OPT |. Let s = bp3c, and let OPT ′ consist
of the first (in that order) 3s intervals from OPT . By Lemma 4.3, A contains a pair of
intervals within each of the segments [left(O3r), right(O3r+2))), for 0 ≤ r < s, and thus
at least 2s = 2bp3c intervals from [left(O0), right(O3r−1)), the span of OPT ′. If 3 | p, then
this establishes the theorem.

Suppose that 3 - p. Then, the last interval in OPT , Op−1, is not contained in OPT ′.
Observe that Op−1 ≤ Rkmax , where kmax is the last zone at the end of the last round.
Thus, A contains 2s disjoint intervals within in the span of OPT ′ and one that doesn’t
intersect the span of OPT ′. Combined, we get that |ALG| ≥ 2s+1 = 2bp3c+1 ≥ 2p/3.

5. LOWER BOUNDS
In this section we establish lower bounds on the approximation ratio of randomized
streaming algorithms for the interval selection problem, establishing the following two
theorems.

THEOREM 5.1 (LOWER BOUND FOR GENERAL INTERVALS). For every real ε > 0,
integer q0 > 0, and sublinear function s : N→ N, there exist q0 ≤ q ≤ c · q0, where c is a
universal constant, an arbitrarily large integer z, and an interval stream S such that
(1) |S| = z;
(2) |Opt(S)| = q; and
(3) Alg(S) < q(1/2 + ε) for any randomized interval selection streaming algorithm Alg
with space s(z) · b, where b = Θ(log z · log q) is the length of the bit strings representing
the endpoints.

THEOREM 5.2 (LOWER BOUND FOR UNIT INTERVALS). For every real ε > 0, inte-
ger q0 > 0, and sublinear function s : N → N, there exist q0 ≤ q ≤ c · q0, where c is
a universal constant, an arbitrarily large integer z, and a unit interval stream S such
that
(1) |S| = z;
(2) |Opt(S)| = q; and
(3) Alg(S) < q(2/3+ε) for any randomized proper interval selection streaming algorithm
Alg with space s(z) · b, where b = Θ(log z) is the length of the bit strings representing the
endpoints.

Notice that in Theorems 5.1 and 5.2, the stream length z can be made arbitrarily
large with respect to the output size q. This means, in particular, that the lower bounds
given by these two theorems hold for any randomized streaming algorithm that can
store up to s′(q) intervals (rather than s(z) intervals) for any function s′ : N→ N.

Our lower bounds are proved by designing a random interval stream S for which ev-
ery deterministic algorithm performs badly on expectation; the assertion then follows
by Yao’s principle. (Our construction uses half-open intervals, but this can be easily
altered.) We remark that under the setting used by our lower bounds, the algorithm is
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required to output a collection C of disjoint intervals, and the quality of the solution is
then determined to be the cardinality of C ∩S. In other words, the algorithm is allowed
to output non-existing intervals (that is, intervals that never arrived in the input), but
it will not be credited for them. This, obviously, can only increase the power of the
algorithm, and makes our lower bound stronger.

The (k, n)-gadget.. Fix some positive integer m whose role is to bound the space of
the algorithm. Our lower bounds rely on the following framework, characterized by
the parameters k, n ∈ Z>0, denoted a (k, n)-gadget. Consider an extensive form two-
player zero-sum game played between the algorithm (MAX) and the adversary (MIN),
depicted by a sequence of k phases. Informally, in each phase t, the adversary chooses
a permutation πt ∈ Pn, where Pn is the collection of all permutations on [n], and an
index it ∈ [n].4 The algorithm observes πt (but not it) and produces a memory imageMt,
i.e., a bit string of length m. The index it is handed to the algorithm after the memory
image is produced. At the end of the last phase the algorithm tries to recover πt(it) for
t = 1, . . . , k: it outputs some i∗t ∈ [n] based on the memory image Mt, index it, and all
other memory images and indices. For each t such that i∗t = πt(it), the algorithm scores
a (positive) point.

More formally, the adversarial strategy is defined by the choices of the permutations
πt and the indices it for t = 1, . . . , k. We commit the adversary to make those choices
uniformly at random (so, the adversary reveals its mixed strategy), namely, πt ∈r Pn
and it ∈r [n] for every t, where all the random choices are independent. The strategy
of the algorithm is defined by the function sequences {ft}kt=1 and {gt}kt=1, where

ft : Pn×({0, 1}m × [n])t−1 → {0, 1}m and gt : {0, 1}m×[n]×({0, 1}m × [n])k−1 → [n] .

Let Γ0 be the empty string and recursively define Γt = Γt−1 ◦ ft (πt,Γt−1) ◦ it.5 The
payoff of the algorithm is the number of ts, 1 ≤ t ≤ k, such that

gt

(
ft (πt,Γt−1) , it, {ft′ (πt′ ,Γt′−1) , it′}t′ 6=t

)
= πt(it) .

In the language of the aforementioned informal description, the role of the function
ft is to produce the memory image Mt based on the permutation πt and all previous
memory images and indices (whose concatenation is given by Γt−1). The role of the
function gt is to recover πt(it) based on the memory image Mt, index it, and all other
memory images and indices.

Note that the memory images Mt′ and indices it′ , t′ 6= t, do not contain any in-
formation on the permutation πt on top of that contained in Mt. In particular, the
entropy in πt(it) given Mt, it, and {Mt′ , it′}t′ 6=t is equal to the entropy in πt(it) given
Mt and it. Therefore, it will be convenient to decompose the domain of the function
gt : {0, 1}m× [n]× ({0, 1}m× [n])k−1 → [n] so that the ({0, 1}m× [n])k−1-part determines
which function ĝt : {0, 1}m × [n] → [n] is chosen, and then this function ĝt is used to
produce i∗t based on Mt and it. Similarly, we decompose the domain of the function
ft : Pn × ({0, 1}m × [n])t−1 → {0, 1}m so that the ({0, 1}m × [n])t−1-part determines
which function f̂t : Pn → {0, 1}m is chosen, and then this function f̂t is used to produce
Mt based on πt.

We now turn to bound from above the expected payoff of the algorithm as a func-
tion of k, m, and n. The key ingredient in this context is the following lemma, which
is essentially a well known fact in slightly different settings; a proof is provided in
Appendix B for completeness.

4Throughout, we use the notation [n], where n is a positive integer, to denote the set {1, . . . , n}.
5We use the notation u ◦ v to denote the concatenation of the string u to string v.
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Fig. 3. The relative locations of the intervals in an (n, π)-stack for n = 4. The left and right endpoints of
interval Ji are located in the segments depicted by the bidirectional arrows whose length is λ/2. The exact
location within this segment is determined by π(i). In the construction of the 2-lower bound for general
intervals, the bold rectangles correspond to the segments σ` and σr in which the stacks (or auxiliary in-
tervals) identified with the left and right children, respectively, of the current node are deployed assuming
that the good interval is interval J2 (these segments do not intersect with the segments corresponding to
the bidirectional arrows).

LEMMA 5.3. For every real α > 0 and integer n0 > 0, there exists an integer n > n0

such that for every two functions f̂ : Pn → {0, 1}m and ĝ : {0, 1}m × [n] → [n], where
m = bαn log nc, we have Pπ∈rPn,i∈r[n]

(
ĝ(f̂(π), i) = π(i)

)
< 2α.

COROLLARY 5.4. For every real α > 0 and integers k, n0 > 0, there exists an integer
n > n0 such that if m ≤ αn log n, then the expected payoff of the algorithm player in a
(k, n)-gadget with space m is smaller than 2αk.

Construction’s punchline.. We shall establish Theorems 5.1 and 5.2 by a reduction
from the (k, n)-gadget framework. Specifically, given the parameters k and n, we con-
struct a random interval stream (resp., a unit interval stream) S that satisfies
(i) the length of the stream is z = |S| = Θ(nk);
(ii) the size of the optimal solution is q = Opt(S) = 2k + 1 (resp., q = Opt(S) = 3k);
(iii) the endpoints of the intervals in S can be represented by bit strings of length
b = Θ(log n · log k) (resp., b = Θ(log n+ log k)); and
(iv) a deterministic streaming algorithm with space s that outputs in expectation
k + 1 + ` (resp., 2k + `) disjoint intervals of S implies an algorithm player for the
(k, n)-gadget with memory images of size s that achieves an expected payoff at least `.
Theorems 5.1 and 5.2 follow by Corollary 5.4 since we can pick α > 0 and a sufficiently
large n so that 2αk ≤ εq and s(z) · b ≤ αn log n.

The (n, π)-stack.. We now turn to implement a (k, n)-gadget via a carefully designed
interval stream. As a first step, we introduce the (n, π)-stack construction. Given an
integer n > 0 and a permutation π ∈ Pn, an (n, π)-stack deployed in the segment [x, y),
x < y, is a collection of n intervals J1, . . . , Jn satisfying:
(1) all intervals Ji are half open;
(2) all intervals Ji have the same length, i.e., right(Ji)− left(Ji) = λn, where λ = y−x

2n−1/2 ;
and
(3) left(Ji) = x+ λ(i− 1) + επ(i) for every i ∈ [n], where ε = λ/(2n).
Notice that this deployment ensures that

left(J1) < left(J2) < · · · < left(Jn) < right(J1) < right(J2) < · · · < right(Jn) .

This implies in particular that the half open segment [left(Jn), right(J1)) is contained in
Ji for every i ∈ [n]. Moreover, the union of the intervals in the stack does not necessarily
cover the whole segment [x, y); it is always contained in [x, y), though. The structure of
an (n, π)-stack is illustrated in Figure 3.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: March 2016.



A:18 Emek, Halldórsson, and Rosén

The (k, n)-gadget is implemented by introducing k stacks, each corresponding to one
phase, and some auxiliary intervals; the stack corresponding to phase t is referred to
as stack t. The permutation π used in the construction of stack t is πt. The index it
will dictate the choice of one good interval out of the n intervals in that stack. What
exactly makes this interval good will be clarified soon; informally, the algorithm has
no incentive to output an interval in a stack unless this interval is good.

The k stacks are used both by the construction of the 2-lower bound for general
interval streams and by that of the (3/2)-lower bound for unit intervals. The difference
between the two constructions lies in the manner in which these stacks are deployed
in the real line, and in the addition of the auxiliary intervals.

A (3/2)-lower bound for unit intervals.. The interval stream that realizes the (k, n)-
gadget for the (3/2)-lower bound for unit intervals is constructed as follows. It contains
k sufficiently spaced apart stacks, where the intervals in each stack are scaled to a unit
length (so λ = 1/n). Consider stack t and suppose that it is deployed in the segment
[x, y), where y = x+ 2− 1/(2n). Recall that the permutation that determines the exact
location of the intervals in the stack is πt and that the good interval is Jit .

After the arrival of the n intervals in the stack, two more half open unit auxiliary
intervals are presented:

Lt =
[
x+

it − 1
n
− 1, x+

it − 1
n

)
and Rt =

[
x+

it − 1/2
n

+ 1, x+
it − 1/2

n
+ 2
)
.

In other words, the interval Lt (respectively, Rt) is located to the left (resp., right) of the
leftmost (resp., rightmost) point in which left(Jit) (resp., right(Jit)) may be deployed.
It is easy to verify that except for the good interval Jit that does not intersect with Lt
and Rt, every interval in the stack intersects with exactly one of these two auxiliary
intervals.

The best response of the algorithm would be to output the two auxiliary intervals
and to try to recover the good interval Jit . (Note that the payoff guaranteed by this
strategy is at least 2 per stack, whereas any other strategy yields a payoff of at most
2 per stack.) For that purpose, the algorithm has to recover the exact locations of the
endpoints of Jit that implicitly encode πt(it). Observing that the endpoints in this con-
struction can be represented by bit strings of length log(n)+log(k), Theorem 5.2 follows
by Corollary 5.4.

A 2-lower bound for general intervals.. The interval stream that realizes the (k, n)-
gadget for the 2-lower bound for general intervals is constructed as follows. Assume
that k = 2κ−1 for some positive integer κ and consider a perfect binary tree T of depth
κ. The k stacks are identified with the internal nodes of T so that stack t precedes stack
t + 1 in a pre-order traversal of T . (In other words, if stack t is identified with node u
and stack t′ is identified with a child of u, then t < t′.) In addition to the intervals in the
stacks, we also introduce 2κ = k + 1 auxiliary intervals which are identified with the
leaves of T ; these auxiliary intervals arrive last in the stream. We say that an interval
J is assigned to node u ∈ T if J belongs to the stack identified with u or if u is a leaf
and J is the auxiliary interval identified with it.

The deployment of the stacks and the auxiliary intervals in R is performed as follows.
Stack 1 (identified with T ’s root) is deployed in [0, 1). Given the deployment of stack t
identified with internal node u ∈ T in the segment [x, y), we deploy the stacks identified
with the left and right children of u in the segments

σ` = [x+ λ(it − 3/2), x+ λ(it − 1)) and σr = [x+ λ(it + n− 1/2), x+ λ(it + n)) ,
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respectively, where recall that λ = y−x
2n−1/2 . If the children of u are leaves in T , then

we deploy auxiliary intervals in those two segments instead of stacks, that is, one
auxiliary interval in σ` and one in σr. Refer to Figure 3 for an illustration.

The key observation regarding the choice of σ` and σr is that

left(Jit−1) ≤ left(σ`) < right(σ`) ≤ left(Jit) and
right(Jit) ≤ left(σr) < right(σr) ≤ right(Jit+1) .

In particular, this implies that: (1) the good interval in the stack identified with node
u ∈ T does not intersect with any interval assigned to a descendant of u in T ; and
(2) a non-good interval in the stack identified with node u ∈ T contains every interval
assigned to a descendant of either the left child of u or the right child of u in T .

Since the k+1 auxiliary intervals are non-intersecting and arrive last in the stream,
they can be included in the output of the algorithm without requiring any additional
space (on top of that dedicated to their representation). Moreover, an auxiliary inter-
val intersects with at most one interval in any valid solution, hence it is a dominant
strategy for of the algorithm to output all the auxiliary intervals. Therefore, the best
response of the algorithm can include an interval Ji of stack t, 1 ≤ t ≤ k, in the output
only if it is the good interval of that stack, namely, i = it.

By definition, in order to include interval Jit of stack t in the output, the algorithm
must hold the exact locations of its endpoints. The construction of stack t based on
permutation πt implies that the exact locations of interval Jit ’s endpoints encode the
value of πt(it). Observing that the endpoints in this construction can be represented
by bit strings of length log(n) · log(k), Theorem 5.1 follows by Corollary 5.4.

6. MULTIPLE-PASS ALGORITHMS
We extend now the streaming algorithms to use multiple passes through the data.
First, some notations. For an interval I, let next(I) be the interval in the input that
has the leftmost right endpoint among those having a left endpoint to the right of the
right endpoint of I, and let prev(I) be the interval that has the rightmost left endpoint
among those having a right endpoint to the left of the left endpoint of I. We use the
notation nexti(I) defined recursively by next0(I) = I and nexti(I) = next(nexti−1(I)),
for i > 0. Define previ(I) similarly. Observe that if I is available before a pass, then
a streaming algorithm can easily compute next(I) and prev(I) by the end of the pass,
while maintaining O(1) intervals in the memory at all times.

The multi-pass algorithm runs as follows. The first pass consists of our one-pass
algorithm, either as the algorithm of Sec. 3 for general intervals, or the algorithm of
Sec. 4 for proper intervals. The result of this pass is the set A, whichever base algo-
rithm is used. Let N0 = P0 = A. In round p > 1, the algorithm inductively computes
Np−1 = {next(I) : I ∈ Np−2} and Pp−1 = {prev(I) : I ∈ Pp−2}. Let Ap = ∪p−1

i≥0 (Ni ∪ Pi) =
{nexti(I), previ(I) : I ∈ A, 0 ≤ i ≤ p − 1} denote the combined set of intervals stored
after pass p. When requested, the algorithm produces as output the maximum interval
selection in Ap. This completes the specification of the algorithm.

We first observe that |Ap| ≤ (2p − 1)|A|, hence the space used in phase p is at most
2p− 1 times larger than the length of the bit string representing A.

Define the span of a set R of intervals to be the segment with endpoints being the
leftmost left endpoint of the intervals in R, and the rightmost right endpoint of the
intervals in R. The main idea behind the performance argument is to show that each
group of disjoint intervals (in particular, the optimal solution) must contain within its
span nearly as many disjoint intervals in Ap. We first handle the base case for general
intervals.
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LEMMA 6.1. Given an input of general intervals, the set A computed by the algo-
rithm Alg of Sec. 3 satisfies the following property: for any pair of disjoint input inter-
vals I1 and I2,A contains an interval within the span of {I1, I2} (given by [left(I1), right(I2)),
assuming I1 < I2).

PROOF. Let I1 and I2 be disjoint input intervals. By Lemma 3.3, there are intervals
ρ1, ρ2 in A ∪ V such that ρ1 ⊆ I1 and ρ2 ⊆ I2. If ρi ∈ A for either i = 1 or i = 2, then the
proof is completed. Otherwise (ρ1, ρ2 ∈ V ), Lemma 3.4(P3) and Corollary 3.6 ensure
that the span of {ρ1, ρ2} contain some interval in A. The proof is completed since the
span of {ρ1, ρ2} is a subset of the span of {I1, I2}.

The following lemmas apply both to general or proper intervals.

LEMMA 6.2. Let I be an interval in Ap and let s ≤ p−1. Let R ⊆ S, such that I ∈ R,
be a set of s + 1 disjoint intervals. Then, Ap contains a set of s + 1 intervals within the
span of R.

PROOF. Suppose R contains intervals I, I1, I2, . . . , Is , s.t. I1 < I2 . . . Ij < I < Ij+1 <
. . . < Is. By definition, the intervals nexti(I), 0 ≤ i ≤ s − j, are disjoint and contained
in As+1 and thus also in Ap. Also, by induction, nexti(I) ≤ Ii, for i = 1, . . . , s − j, and
thus they fall within the span of R. A similar claim holds for the intervals previ(I),
0 ≤ i ≤ j

LEMMA 6.3. Consider any set R of m disjoint intervals in S, where m = 2p for
general intervals and m = 2p+ 1 for proper intervals. Then, Ap contains m− 1 intervals
within the span of R.

PROOF. Consider first general intervals. Partition R into Rl, R′, Rr in order, where
Rl and Rr each contain p − 1 intervals and R′ contains two. By Lemma 6.1, A = A1

contains an interval I within the span of R′. By Lemma 6.2, Ap contains p intervals
within the span of Rr ∪ {I} and p intervals within the span of Rl ∪ {I}, for a total of
2p− 1 = m− 1 intervals.

For proper intervals, partition R into Rl, R′, Rr in order, where Rl and Rr each con-
tain p− 2 intervals and R′ contains three. By Lemma 4.3, A = A1 contains two disjoint
intervals, Il and Ir, within the span of R′. By Lemma 6.2, Ap contains p − 1 intervals
within the span of Rr ∪ {Ir} and p− 1 intervals within the span of Rl ∪ {Il}, for a total
of 2(p− 1) = m− 1 intervals.

An interval is said to be end-simplicial with respect to a set X of intervals, if it con-
tains either the leftmost right endpoint or the rightmost left endpoint of its connected
component with respect to X.

LEMMA 6.4. The set A contains all the end-simplicial intervals with respect to S.

PROOF. End-simpliciality means that the interval cannot properly contain other
input intervals. Regarding general intervals, recall from Proposition 3.1 that virtual
intervals in Alg(S) are formed by the intersection of two intervals in the input. Thus,
if I is end-simplicial with respect to S, it contains no virtual interval. Hence, I is
admitted to A and never rejected.

For proper intervals, observe that by the proper intervals algorithm (Section 4), an
end-simplicial interval I on the left (reps., right) of its component in S, will always be
the left representative, Lk, (resp., the right representative, Rk,) of the left (resp., right)
zone contained in I.
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THEOREM 6.5. The multi-pass algorithm run for p passes is a 1+ 1
2p−1 -approximation

(respectively, 1 + 1
2p -approximation) algorithm for general (reps., proper) intervals. The

space used by the algorithm run for p passes is O(p) times the size of the output.

PROOF. Define m = 2p for general intervals and m = 2p + 1 for proper intervals.
Consider an optimal interval selection with intervals I1, . . . , I|OPT |, where α = |OPT |.
Let r = α mod m, and q = bα/mc. Also let t = dr/2e and t′ = br/2c. For each Ri =
{It+1+im, . . . , It+(i+1)m}, where i = 0 . . . , q − 1, it holds by Lemma 6.3 that Ap contains
m−1 intervals within the span ofRi. By Lemmas 6.4 and 6.2,Ap also contains t disjoint
intervals within the span of [left(S), right(It)] and t′ disjoint intervals within the span of
[left(Im−t′+1), right(S)]. Hence, Ap contains at least q(m−1)+t+t′ = α−q ≥ α(m−1)/m
disjoint intervals.

7. ONLINE ALGORITHM
In this section we briefly show how to use the streaming algorithm presented in Sec. 3
to derive a randomized preemptive online interval selection algorithm. Our algorithm
is 6-competitive and on top of maintaining at any time the set of currently accepted in-
tervals A∗, its only additional memory is an interval set of cardinality linear in the size
of the current optimum. We thus answer an open question of Adler and Azar [1] about
the space complexity of randomized preemptive online algorithms for our problem.

Recall that our streaming algorithm maintains a set A of intervals. With respect to
that set, our algorithm is a deterministic preemptive online algorithm, adding an inter-
val to A only when that interval arrives, and possibly preempting it later. By Corollary
3.8, the cardinality of the set A is at least half the cardinality of the optimal solution
of the input seen so far. Moreover, combining Lemma 3.4(P6) and Lemma 3.4(P7), we
conclude that every interval added to A intersects with at most 2 previous intervals
in A. Therefore, A is online 3-colorable: upon addition into A, each interval can be as-
signed one of three colors, such that any two intersecting intervals always have two
different colors.

Our preemptive algorithm is now simple. We initially pick a random color c in
{1, 2, 3}. We then run the streaming algorithm on each received interval I, adding I
to A, and preempting intervals from A as does the streaming algorithm. If I is added
to A we assign it a valid color from {1, 2, 3} in a first-fit manner. Our solution ALG
consists of every interval J in A whose color is c. Clearly, E[|ALG|] = |A|/3 ≥ |OPT |/6,
that is, the algorithm is 6-competitive.
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Cat. ϕt−1 ϕt Fig.
C1 α 〈0, 0〉β α 〈0, 0〉 〈1, 0〉 〈0, 0〉β 4

C2
α 〈0, 0〉 〈0, 1〉 〈0, 0〉β α 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 5
α 〈0, 0〉 〈0, 1〉 〈0, 0〉β α 〈0, 0〉 〈1, 0〉 〈0, 0〉β 6

C3

α 〈1, 0〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β 7
α 〈1, 0〉 〈1, 1〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β 8

α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉β 9
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β 10

α 〈1, 0〉β α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β′ 11
α 〈1, 0〉 〈1, 1〉 〈0, 0〉β α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β 12
α 〈1, 0〉 〈2, 1〉 〈1, 0〉β α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β′ 13
α 〈1, 0〉 〈1, 1〉 〈0, 0〉β α′ 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 14
α 〈1, 0〉 〈2, 1〉 〈1, 0〉β α′ 〈0, 0〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 15

α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 16
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 17
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 18

C4
α 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 19

α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 20
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 21

C5

α 〈1, 0〉 〈0, 0〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 22
α 〈1, 0〉 〈1, 1〉 〈0, 0〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 23

α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 24
α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 25

α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 26
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 27

α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 28
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β 29
α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β 30

Table I.

Table 1: The different types of intersections of interval I with the portions correspond-
ing to ϕt−1 and the resulting ϕt.
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APPENDIX

A. LIFTING THE DISTINCT ENDPOINTS ASSUMPTION
Recall that our analysis assumes that all the intervals in the stream S are closed and
that their endpoints are distinct. In this section we show that these assumptions can
be lifted. A quick glance at our algorithm reveals that it is essentially comparison-
based, namely, it can be implemented via a comparison oracle C : R2 → {−1, 0,+1}
without accessing the interval’s endpoints in any other way; given two endpoints p, q
of intervals in S, the comparison oracle returns

C(p, q) =

{ −1 if p < q
0 if p = q
+1 if p > q .

The assumption that all endpoints are distinct means that the algorithm and its anal-
ysis rely on a comparison oracle C′ : R2 → {−1, 0,+1} with the additional guarantee
that C′(p, q) 6= 0 whenever p 6= q. We shall refer to such a comparison oracle C′ as a
distinct-endpoints comparison oracle.

We show that for every stream S of intervals (the endpoints of these intervals may
be arbitrarily open or closed) associated with a comparison oracle C, there exists a
distinct-endpoints comparison oracle C′ such that for every two intervals I, J ∈ S, the
closure of I and the closure of J intersect under C′ if and only if I and J intersect under
C. Moreover, given an access to the comparison oracle C, the distinct-endpoints compar-
ison oracle C′ can be implemented under our streaming model’s space requirements.

The distinct-endpoints comparison oracle C′ is designed as follows. Consider an end-
point p of an interval I ∈ S and an endpoint q of an interval J ∈ S, I 6= J . If C(p, q) 6= 0,
then we set C′(p, q) = C(p, q), so assume hereafter that C(p, q) = 0. Consider first the
case in which p is a right endpoint and q is a left endpoint (the converse case is anal-
ogous). If at least one of the endpoints is open, then set C′(p, q) = −1; otherwise (both
endpoints are closed), set C′(p, q) = +1.

Now, consider the case in which both p and q are left endpoints (the converse case
is analogous). If p is open and q is closed, then set C′(p, q) = +1; if p is closed and q is
open, then set C′(p, q) = −1; if both p and q are open or both are closed, then we set

C′(p, q) =
{

+1 if I (the interval of p) arrived before J (the interval of J)
−1 if I (the interval of p) arrived after J (the interval of J).

It is easy to verify that the closures of every two intervals intersect under C′ if and
only if the intervals themselves intersect under C. Therefore, it remains to show that
C′ can be implemented in the streaming model. Apart from an access to the original
comparison oracle C, the implementation of C′(p, q) is based on: (1) knowing for each
endpoint whether it is a left endpoint or a right endpoint; (2) knowing for each end-
point whether it is open or closed; and (3) knowing the order of arrival of intervals
that share a left (respectively, right) endpoint. The first two requirements are clearly
satisfied by the information provided in the input. For the third requirement, we note
that if two intervals share a left (resp., right) endpoint p, then they must intersect.
Thus, Lemma 3.4(P5) and Lemma 3.4(P6) guarantee that at any given time, our algo-
rithm maintains O(1) intervals that have p as their left (resp., right) endpoint. A data
structure that tracks the arrival order of these intervals can therefore be implemented
with O(1) additional bits per interval.
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B. PROOF OF LEMMA 5.3
Let n be sufficiently large so that n(1 + log(e)) ≤ αn log(n). Suppose toward a contra-
diction that there exist two functions f̂ : Pn → {0, 1}m and ĝ : {0, 1}m × [n] → [n] such
that P(ĝ(f̂(π), i) = π(i)) ≥ 2α. We shall use these functions to construct a uniquely de-
codable coding scheme s : Pn → {0, 1}∗ so that Eπ∈rPn [|s(π)|] < log(n!). This contradicts
Shannon’s source coding theorem as the entropy of choosing π uniformly at random
from Pn is log(n!).

In order to construct the coding scheme, we first define the vector vπ ∈ {0, 1}n for
every π ∈ Pn by setting vπ(i) = 1 if ĝ(f̂(π), i) = π(i); and vπ(i) = 0 otherwise. Let
Wπ = {i ∈ [n] | vπ(i) = 0}. The coding scheme s is now defined by setting the codeword
of each π ∈ Pn to be

s(π) = vπ ◦ f̂(π) ◦ 〈π(i)〉i∈Wπ ,

where ©i∈Wπ
π(i) denotes a concatenation of the standard binary representations of

π(i) for all i ∈Wπ listed in increasing order of the index i.
We first argue that s is indeed a uniquely decodable code. To that end, notice that for

every π ∈ Pn and for every i ∈ [n], we can extract the value of π(i) from s(π) as follows:
(1) Check in vπ if the correct value of π(i) can be extracted from f̂(π), that is, if vπ(i) = 1.
(2) If it can (vπ(i) = 1), then π(i) is extracted by computing ĝ(f̂(π), i) (recall that f̂(π)
is found in the second segment of s(π)).
(3) Otherwise (vπ(i) = 0), π(i) is extracted from the third segment of s(π).
Moreover, the coding scheme s is prefix-free (and hence uniquely decodable) since vπ =
vπ′ implies that |s(π)| = |s(π′)| for every two permutations π, π′ ∈ Pn. Thus, if the
codewords s(π) and s(π′) agree on the first n bits, then they must have the same length,
which means that s(π) cannot be a proper prefix of s(π′).

It remains to show that Eπ∈rPn [|s(π)|] < log(n!). By definition, |s(π)| = n+m+log(n) ·
|Wπ| for every π ∈ Pn, so

Eπ∈rPn [|s(π)|] = n+m+ log(n) · Eπ∈rPn [|Wπ|] .

The assumption that Pπ∈rPn,i∈r[n](ĝ(f̂(π), i) = π(i)) ≥ 2α implies that Pπ∈rPn,i∈r[n](i ∈
Wπ) ≤ 1 − 2α, hence Eπ∈rPn [|Wπ|] ≤ (1 − 2α)n. Plugging m = αn log(n), we conclude
that

Eπ∈rPn [|s(π)|] ≤ n+ (1− α)n log(n) .

By the choice of n (satisfying n(1+log(e)) ≤ αn log(n)), we derive the desired inequality
since log(n!) > n log(n)− n log(e). The assertion follows.
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C. FIGURES ILLUSTRATING TABLE I
In the following figures, the solid lines depict actual intervals, the dashed two-sided
arrows depict the virtual intervals, and the gray rectangle depicts the newcoming in-
terval I. The top part illustrates the situation in ϕt−1 and the bottom part illustrates
the situation in the resulting ϕt; these two parts are separated by a dotted line.

Category C1

α β

α β

Fig. 4. From α 〈0, 0〉β to α 〈0, 0〉 〈1, 0〉 〈0, 0〉β.

Category C2

α β

α β

Fig. 5. From α 〈0, 0〉 〈0, 1〉 〈0, 0〉β to α 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 6. From α 〈0, 0〉 〈0, 1〉 〈0, 0〉β to α 〈0, 0〉 〈1, 0〉 〈0, 0〉β.
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Category C3

α β

α β

Fig. 7. From α 〈1, 0〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β.

α β

α β

Fig. 8. From α 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β.

α β

α β

Fig. 9. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉β.

α β

α β

Fig. 10. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉β.
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α β

α′ β′

Fig. 11. From α 〈1, 0〉β to α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β′.

α β

α′ β

Fig. 12. From α 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β.

α

β

α′ β′

Fig. 13. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉β to α′ 〈0, 0〉 〈1, 0〉 〈0, 0〉β′.

α β

α′ β

Fig. 14. From α 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α′ 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α

β

α′

β

Fig. 15. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉β to α′ 〈0, 0〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.
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α β

α β

Fig. 16. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 17. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 18. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.
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Category C4

α β

α β

Fig. 19. From α 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 20. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 21. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.
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Category C5

α β

α β

Fig. 22. From α 〈1, 0〉 〈0, 0〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.

α β

α β

Fig. 23. From α 〈1, 0〉 〈1, 1〉 〈0, 0〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.

α β

α β

Fig. 24. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.

α β

α β

Fig. 25. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.
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α β

α β

Fig. 26. From α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.

α β

α β

Fig. 27. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.

α β

α β

Fig. 28. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.

α β

α β

Fig. 29. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈1, 1〉 〈0, 0〉β.
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α β

α β

Fig. 30. From α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈0, 0〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β to α 〈1, 0〉 〈2, 1〉 〈1, 0〉 〈2, 1〉 〈1, 0〉β.
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