Institut de Recherche en Informatique Fondamentale (IRIF)

CNRS

Université Paris Cité

L'IRIF est une unité mixte de recherche (UMR 8243) entre le CNRS et l'Université Paris Cité, et héberge une équipe-projet Inria.

Les recherches menées à l'IRIF reposent sur l’étude et la compréhension des fondements de toute l’informatique, afin d’apporter des solutions innovantes aux défis actuels et futurs des sciences numériques.

L'IRIF regroupe près de deux cents personnes. Sept de ses membres ont été lauréats de l'European Research Council (ERC), trois sont membres de l'Institut Universitaire de France (IUF), deux sont membres de l'Academia Europæa, et un est membre de l'Académie des sciences.

Suivez nous sur Mastodon, Twitter/X et LinkedIn :

LinkedIn Twitter/X Mastodon

12.4.2024
La rediffusion de la conférence (en anglais) de Véronique Cortier, qui s'est tenue en février, est désormais disponible sur la chaîne YouTube de l'IRIF. Son sujet était : “Le vote électronique : conception et vérification formelle”.

quentin_aristote.jpg

29.3.2024
Bravo à Quentin Aristote, doctorant, qui a reçu le prix Helena Rasiowa pour le meilleur papier étudiant, lors de la 32ème conférence EACSL : Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids.

logopintofscience2024.jpg

10.4.2024
Trois projets de médiation scientifique de chercheurs à l'IRIF ont été sélectionnés pour l'édition 2024 de Pint of Science France-Paris. Le principe : découvrir une thématique ou un sujet scientifique, dans un bar. Nos chercheurs parleront protection des données, graphes et informatique quantique.

dts_omer_reingold.jpg

10.4.2024
L'IRIF a le plaisir d'annoncer son deuxième Distinguished Talk de l'année ! Notre conférencier invité est Omer Reingold, professeur d'informatique à l'université de Stanford et directeur de la Simons Collaboration sur la théorie de l'Équité algorithmique (Simons Foundation). Il parlera de l'équité algorithmique. Toute personne intéressée est invitée à se joindre à nous pour cette conférence !

mirna-dzamonja.jpeg

28.3.2024
La Société mathématique de Belgique (SMB) a décerné à Mirna Džamonja (CNRS, IRIF, Université de Paris) le “Prix Godeaux” de la SMB. “Ce prix est décerné chaque année, sur proposition d'un membre du conseil d'administration de la BMS, à un-e mathématicien-ne belge ou international-e de renom qui est invité-e à donner une conférence en Belgique”. Toutes nos félicitations !

15.3.2024
La deuxième conférence “On éteint, on réfléchit, on discute”, organisée à l'Université Paris Cité par François Laroussinie, portera sur “Les communs numériques”. Serge Abiteboul et Valérie Peugeot sont les conférenciers invités. Elle se tiendra le 19 mars 2024, de 16h à 18h. Cet événement est gratuit.

podcast_recherche_cm.jpg

19.3.2024
Après avoir été augmenté en septembre 2023, le budget alloué à l’Enseignement supérieur et à la Recherche est finalement réduit de 904 millions d’euros. Le podcast “La Science, CQFD” de France Culture s'est demandé comment se porte la recherche française et quelle direction elle prend. Claire Mathieu, directrice de recherche au CNRS à l'IRIF, intervient.

12.3.2024
Hugo Herbelin, directeur de recherche Inria à l'IRIF, organise la prochaine journée Horizon Maths sur le sujet : Preuve mathématique et sûreté logicielle. Elle aura lieu le mercredi 27 mars 2024 de 9h à 18h à l'institut Henri Poincaré (5 rue Pierre et Marie Curie, Paris 5e), amphithéâtre Hermite. Inscription gratuite mais obligatoire :


(Ces actualités sont présentées selon un classement mêlant priorité et aléatoire.)

Preuves, programmes et systèmes
Jeudi 25 avril 2024, 11 heures, Salle 3052
Vikraman Choudhury (Università di Bologna) The Duality of Abstraction

There are well-known dualities of computation in both functional and concurrent programming: input/output, expression/context, strict/lazy, sender/receiver, forward/backwards, and several others. When viewed through an algebraic lens, these can be understood as metaphysical interpretations of rigorous mathematical dualities.

In this talk, I will explore the duality of values and continuations (Filinski'89) through the lens of cartesian closure/co-cartesian co-closure. The main observation is that, just as higher-order functions give exponentials, higher-order continuations give co-exponentials. Using this semantic duality, I will present a λλ~ (lambda-lambda-bar or tilde) calculus, which exhibits a duality of abstraction/co-abstraction. I will develop the syntax and semantics of this language, which gives a computational interpretation in terms of speculative execution and backtracking.

Using this language, I will show how to recover classical control operators, the computational interpretation of classical logic, and a complete axiomatisation of control effects. Finally, I will show how this dualises Lambek's functional completeness, thereby dualising Hasegawa's decomposition of λ-calculus into first-order κ/ζ-calculi.

Séminaire des membres non-permanents
Jeudi 25 avril 2024, 16 heures, Salle 3052
Etienne Objois A width-independent algorithm for approximating the $\ell_p$ norm of a nonnegative matrix and its applications.

Given a matrix $A$ with $m$ rows and $n$ columns, we want to approximate the maximum value of $||A x||_p$ when $||x||_q <= 1$. For general matrices, a $(1-\epsilon)$ approximation of the problem is hard, but for nonnegative matrices, when $q >= p >= 1$, the problem can be transformed into a concave maximization problem. In this talk, we will present a width-independent (i.e., the running time dependence on $n m$ is at most poly-logarithmic) algorithm to find $(1-\epsilon$) approximations in time nearly $O(nnz/\epsilon)$.

In the second part of the talk, we will see how such an algorithm can be used to compute competitive oblivious linear routings.

Algorithmique distribuée et graphes
Vendredi 26 avril 2024, 14 heures, 1020
Dimitri Watel (ENSIIE) Edit distance to a linegraph, application to network reconstruction

We consider the context of a network modeled by an undirected graph where the edges are known, but not the connections between these edges. This can happen in old buildings where, for example, an electrical, gas or water network has not been documented and where the network is not easily accessible. We may have access to some cables or pipes of the network either because they are visible or because it is possible to probe the building to find them. From the edges of the graph, we obtain measures of the probability that two edges are incident, in other words measures of the linegraph of the network, with possibly errors in the measurements. We aim to correct the errors by finding the linegraph closest to the measurement graph. This problem is modeled as an edit distance problem in terms of deleting and adding edges in a graph to retrieve a linegraph. We pose the question, firstly, of studying the complexity of correcting these errors and its parameterized complexity with respect to the number of possible errors and the treewidth of the graph, secondly, the relevance of such correction in relation to the desired graph based on the number of measurement errors, and thirdly, what other information could be added to the graph to aid in reconstruction as the number of measurement errors increases.

Vérification
Lundi 29 avril 2024, 11 heures, 3052 and Zoom link
Niklas Kochdumper (IRIF) Neural Network Verification using Polynomial Zonotopes

Since artificial intelligence is nowadays also increasingly applied in safety-critical applications such as autonomous driving and human robot collaboration, there is an urgent need for approaches that can efficiently verify that the corresponding neural networks are safe. In general, verification tasks involving neural networks can be classified into the two groups open-loop verification and closed-loop verification. For open-loop verification one aims to prove certain properties of a standalone neural network, while for closed-loop verification the neural network acts as a controller for a dynamic system. This presentation demonstrates a novel verification technique that is based on a polynomial abstraction of the input-output-relation of the single neurons, which proves to be beneficial for both open- as well as closed-loop neural network verification.

Combinatoire énumérative et analytique
Mardi 30 avril 2024, 11 heures, Salle 3058
Séminaire Reporté Pas de séance

Algorithmes et complexité
Mardi 30 avril 2024, 11 heures, Salle 3052
André Chailloux (INRIA Paris) The Quantum Decoding Problem

One of the founding results of lattice based cryptography is a quantum reduction from the Short Integer Solution (SIS) problem to the Learning with Errors (LWE) problem introduced by Regev. It has recently been pointed out by Chen, Liu and Zhandry [CLZ22] that this reduction can be made more powerful by replacing the LWE problem with a quantum equivalent, where the errors are given in quantum superposition. In parallel, Regev’s reduction has recently been adapted in the context of code-based cryptography by Debris, Remaud and Tillich [DRT23], who showed a reduction between the Short Codeword Problem and the Decoding Problem (the DRT reduction). This motivates the study of the Quantum Decoding Problem (QDP), which is the Decoding Problem but with errors in quantum superposition and see how it behaves in the DRT reduction.

The purpose of this paper is to introduce and to lay a firm foundation for QDP. We first show QDP is likely to be easier than classical decoding, by proving that it can be solved in quantum polynomial time in a large regime of noise whereas no non-exponential quantum algorithm is known for the classical decoding problem. Then, we show that QDP can even be solved (albeit not necessarily efficiently) beyond the information theoretic Shannon limit for classical decoding. We give precisely the largest noise level where we can solve QDP giving the information theoretic limit for this new problem. Finally, we study how QDP can be used in the DRT reduction. First, we show that our algorithms can be properly used in the DRT reduction showing that our quantum algorithms for QDP beyond Shannon capacity can be used to find minimal weight codewords in a random code. On the negative side, we show that the DRT reduction cannot be, in all generality, a reduction between finding small codewords and QDP by exhibiting quantum algorithms for QDP where this reduction entirely fails. Our proof techniques include the use of specific quantum measurements, such as q-ary unambiguous state discrimination and pretty good measurements as well as strong concentration bounds on weight distribution of random shifted dual codes, which we relate using quantum Fourier analysis.

Algorithmique distribuée et graphes
Mardi 30 avril 2024, 15 heures 15, 3052 Sophie Germain
Gianlorenzo D'Angelo (GSSI) Sparse Temporal Spanners with Low Stretch

A temporal graph is an undirected graph G = (V,E) along with a function that assigns a time-label to each edge in E. A path in G such that the traversed time-labels are non-decreasing is called a temporal path. Accordingly, the distance from u to v is the minimum number of edges of a temporal path from u to v. A temporal alfa-spanner of G is a (temporal) subgraph H that preserves the distances between any pair of vertices in V, up to a multiplicative stretch factor of alfa. The size of H is measured as the number of its edges. In this work, we study the size-stretch trade-offs of temporal spanners. In particular we show that temporal cliques always admit a temporal (2k-1)-spanner with \tilde{O}(kn^{1+1/k}) edges, where k > 1 is an integer parameter of choice and n is the number of nodes in G. Choosing k = log n, we obtain a temporal O(log n)-spanner with \tilde{O}(n) edges that has almost the same size (up to logarithmic factors) as the temporal spanner given in [Casteigts et al., JCSS 2021] to preserve temporal connectivity. We then turn our attention to general temporal graphs. Since \Omega(n^2) edges might be needed by any connectivity-preserving temporal subgraph [Axiotis et al., ICALP'16], we focus on approximating distances from a single source. We show that \tilde{O}(n/log(1+epsilon)) edges suffice to obtain a stretch of (1+epsilon), for any small epsilon > 0. This result is essentially tight in the following sense: there are temporal graphs G for which any temporal subgraph preserving exact distances from a single-source must use \Omega(n^2) edges.

Algorithmique distribuée et graphes
Mardi 30 avril 2024, 11 heures, 1003 Sophie Germain
Alexis Baudin (LIP6) Non encore annoncé.

Séminaire des membres non-permanents
Jeudi 2 mai 2024, 16 heures, Salle 3052
Ulysse Lechine Non encore annoncé.

La syntaxe rencontre la sémantique
Jeudi 2 mai 2024, 14 heures, Salle 3071
Mariana Milicich (IRIF, Universite Paris Cite) Hybrid Intersection Types for PCF

I will present a type system based on non-idempotent intersection types for PCFh, a variant of PCF. Evaluation in PCFh is hybrid: call-by-name (CBN) and call-by-value (CBV) behaviours cohabit together. Specifically, function application follows CBV semantics, while recursion has a CBN flavour. This hybrid nature is reflected in the type system, which turns out to be sound and complete with respect to PCFh evaluation. This means not only that typability implies normalisation, but also that the converse holds. Moreover, the type system is quantitative, since the size of typing derivations provides upper bounds for the length of normalisation sequences. By refining this type system, we obtain a tight type system, which offers exact information regarding the length of normalisation sequences.