DIGITAL EXPANSIONS WITH NEGATIVE REAL BASES

WOLFGANG STEINER

ABSTRACT. Similarly to Parry's characterization of β -expansions of real numbers in real bases $\beta > 1$, Ito and Sadahiro characterized digital expansions in negative bases, by the expansions of the endpoints of the fundamental interval. Parry also described the possible expansions of 1 in base $\beta > 1$. In the same vein, we characterize the sequences that occur as $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. These sequences also describe the itineraries of 1 by linear mod one transformations with negative slope.

1. INTRODUCTION

Digital expansions in real bases $\beta > 1$ were introduced by Rényi [Rén57]: The (greedy) β -expansion of a real number $x \in [0, 1)$ is

$$x = \frac{\varepsilon_1(x)}{\beta} + \frac{\varepsilon_2(x)}{\beta^2} + \cdots$$
 with $\varepsilon_n(x) = \lfloor \beta T_{\beta}^{n-1}(x) \rfloor$,

where $\lfloor \cdot \rfloor$ denotes the floor function and T_{β} is the β -transformation

 $T_{\beta}: [0,1) \to [0,1), \quad x \mapsto \beta x - \lfloor \beta x \rfloor.$

Rényi suggested representing arbitrary $x \in \mathbb{R}$ by

$$x = \lfloor x \rfloor + \frac{\varepsilon_1(\lfloor x \rfloor)}{\beta} + \frac{\varepsilon_2(\lfloor x \rfloor)}{\beta^2} + \cdots,$$

whereas nowadays it is more usual (for $x \ge 0$) to multiply the β -expansion of $x\beta^{-k}$ by β^k , with k an arbitrary integer satisfying $x\beta^{-k} \in [0, 1)$. Anyway, the possible expansions can be described by those of $x \in [0, 1)$. A sequence $b_1b_2\cdots$ is called β -admissible if and only if it is (the digit sequence of) the β -expansion of a number $x \in [0, 1)$, i.e., $b_n = \varepsilon_n(x)$ for all $n \ge 1$. Parry [Par60] showed that an integer sequence $b_1b_2\cdots$ is β -admissible if and only if

$$00 \cdots \leq_{\text{lex}} b_k b_{k+1} \cdots <_{\text{lex}} a_1 a_2 \cdots$$
 for all $k \geq 1$,

where $<_{\text{lex}}$ denotes the lexicographic order and $a_1 a_2 \cdots$ is the (quasi-greedy) β -expansion of 1, i.e., $a_n = \lim_{x \to 1^-} \varepsilon_n(x)$. Moreover, a sequence of integers $a_1 a_2 \cdots$ is the (quasi-greedy) β -expansion of 1 for some $\beta > 1$ if and only if

$$00 \cdots <_{\text{lex}} a_k a_{k+1} \cdots \leq_{\text{lex}} a_1 a_2 \cdots$$
 for all $k \ge 2$.

Part of this research was conducted while the author was visiting academic at the Department of Computing of the Macquarie University, Sydney.

(These results are stated in a slightly different way in [Par60]; quasi-greedy β -expansions were introduced by Daróczy and Kátai [DK95] under the name "quasi-regular" and got the present name from Komornik and Loreti [KL07].)

Following [Rén57] and [Par60], a lot of papers were dedicated to the study of β -expansions and β -transformations, but surprisingly little attention was given to digital expansions in negative bases. This changed only in recent years, after Ito and Sadahiro [IS09] considered $(-\beta)$ -expansions, $\beta > 1$, defined for $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ by

(1.1)
$$x = \frac{\varepsilon_1(x)}{-\beta} + \frac{\varepsilon_2(x)}{(-\beta)^2} + \cdots \text{ with } \varepsilon_n(x) = \left\lfloor \frac{\beta}{\beta+1} - \beta T_{-\beta}^{n-1}(x) \right\rfloor,$$

where the $(-\beta)$ -transformation is defined by

$$T_{-\beta}: \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right) \to \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right), \quad x \mapsto -\beta x - \left\lfloor\frac{\beta}{\beta+1} - \beta x\right\rfloor.$$

A sequence $b_1b_2\cdots$ is $(-\beta)$ -admissible if and only if it is the $(-\beta)$ -expansion of some $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, i.e., $b_n = \varepsilon_n(x)$ for all $n \ge 1$. Since the map $x \mapsto -\beta x$ is order-reversing, the $(-\beta)$ -admissible sequences are characterized using the alternating lexicographic order. By [IS09], a sequence $b_1b_2\cdots$ is $(-\beta)$ -admissible if and only if

(1.2)
$$a_1 a_2 \cdots \geq_{\text{alt}} b_k b_{k+1} \cdots >_{\text{alt}} 0 a_1 a_2 \cdots$$
 for all $k \geq 1$,

where $a_1 a_2 \cdots$ is the $(-\beta)$ -expansion of the left endpoint $\frac{-\beta}{\beta+1}$, i.e., $a_n = \varepsilon_n \left(\frac{-\beta}{\beta+1}\right)$, which is supposed not to be periodic with odd period length. If $a_1 a_2 \cdots = \overline{a_1 a_2 \cdots a_{2\ell+1}}$ for some $\ell \ge 0$, and ℓ is minimal with this property, then the condition (1.2) is replaced by

(1.3)
$$a_1 a_2 \cdots \ge_{\text{alt}} b_k b_{k+1} \cdots >_{\text{alt}} \overline{0a_1 \cdots a_{2\ell}(a_{2\ell+1}-1)} \quad \text{for all } k \ge 1.$$

Recall that the alternating lexicographic order is defined on sequences $x_1x_2\cdots$, $y_1y_2\cdots$ with $x_1\cdots x_{k-1} = y_1\cdots y_{k-1}$ and $x_k \neq y_k$ by

$$x_1 x_2 \cdots <_{\text{alt}} y_1 y_2 \cdots$$
 if and only if $\begin{cases} x_k < y_k & \text{when } k \text{ is odd,} \\ y_k < x_k & \text{when } k \text{ is even.} \end{cases}$

The main result of this paper is a characterization of the sequences $a_1a_2\cdots$ that are the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. This turns out to be more complicated than the corresponding problem for β -expansions, and we will see that several proofs cannot be directly carried over from positive to negative bases. From (1.2) and (1.3), one deduces that

(1.4)
$$a_k a_{k+1} \cdots \leq_{\text{alt}} a_1 a_2 \cdots$$
 for all $k \geq 2$.

The proof of Proposition 3.5 in [LS] (see also Theorem 3 below) shows that

(1.5)
$$a_1 a_2 \cdots >_{\text{alt}} u_1 u_2 \cdots = 100111001001001110011 \cdots$$

where $u_1 u_2 \cdots$ is the sequence starting with $\varphi^n(1)$ for all $n \ge 0$, with φ being the morphism of words on the alphabet $\{0, 1\}$ defined by $\varphi(1) = 100$, $\varphi(0) = 1$. (See the remarks following Theorem 3 and note that the alphabet is shifted by 1 in [LS].) Our first result states that a sequence satisfying (1.4) and (1.5) is "almost" the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. **Theorem 1.** Let $a_1a_2\cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). Then there exists a unique $\beta > 1$ such that

(1.6)
$$\sum_{j=1}^{\infty} \frac{a_j}{(-\beta)^j} = \frac{-\beta}{\beta+1} \quad and \quad \sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right] \quad for \ all \ k \ge 1.$$

For a $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$, we have to exclude the possibility that $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$ for some $k \ge 1$. If $\overline{a_1 \cdots a_k} >_{\text{alt}} u_1 u_2 \cdots$, then out of $\{a_1 \cdots a_k, a_1 \cdots a_{k-1} (a_k - 1)0\}^{\omega}$, which is the set of infinite sequences composed of blocks $a_1 \cdots a_k$ and $a_1 \cdots a_{k-1} (a_k - 1)0$, only the periodic sequence $\overline{a_1 \cdots a_k}$ is possibly the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$, see Section 4. This implies that

$$(1.7) \qquad a_{1}a_{2}\cdots \not\in \{a_{1}\cdots a_{k}, a_{1}\cdots a_{k-1}(a_{k}-1)0\}^{\omega} \setminus \{\overline{a_{1}\cdots a_{k}}\}$$
for all $k \geq 1$ with $\overline{a_{1}\cdots a_{k}} \succ u_{1}u_{2}\cdots$,
$$(1.8) \qquad a_{1}a_{2}\cdots \not\in \{a_{1}\cdots a_{k}0, a_{1}\cdots a_{k-1}(a_{k}+1)\}^{\omega}$$
for all $k \geq 1$ with $\overline{a_{1}\cdots a_{k-1}(a_{k}+1)} \succ u_{1}u_{2}\cdots$.

The main result states that there are no other conditions on $a_1a_2\cdots$.

Theorem 2. A sequence of non-negative integers $a_1a_2\cdots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some (unique) $\beta > 1$ if and only if it satisfies (1.4), (1.5), (1.7), and (1.8).

It is easy to see that the natural order of bases $\beta > 1$ is reflected by the lexicographical order of the (quasi-greedy) β -expansions of 1 [Par60]. For negative bases, a similar relation with the alternating lexicographic order holds, although it is a bit harder to prove.

Theorem 3. Let $a_1 a_2 \cdots$ be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and $a'_1 a'_2 \cdots$ be the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, with $\beta, \beta' > 1$. Then $\beta < \beta'$ if and only if $a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots$.

It is often convenient to study a slightly different $(-\beta)$ -transformation,

$$T_{-\beta}: (0,1] \to (0,1], \quad x \mapsto -\beta x + \lfloor \beta x \rfloor + 1.$$

As already noted in [LS], the transformations $T_{-\beta}$ and $\widetilde{T}_{-\beta}$ are conjugate via the involution $\phi(x) = \frac{1}{\beta+1} - x$, i.e.,

$$T_{-\beta} \circ \phi(x) = \phi \circ \widetilde{T}_{-\beta}(x) \text{ for all } x \in (0,1].$$

Setting $\tilde{\varepsilon}_n(x) = \lfloor \beta \widetilde{T}_{-\beta}^{n-1}(x) \rfloor$ for $x \in (0, 1]$, we have $x = -\sum_{n=1}^{\infty} \frac{\tilde{\varepsilon}_n(x)+1}{(-\beta)^n} = \frac{1}{\beta+1} - \sum_{n=1}^{\infty} \frac{\tilde{\varepsilon}_n(x)}{(-\beta)^n}$, and $\tilde{\varepsilon}_n(x) = \varepsilon_n(\phi(x))$. Note that $\widetilde{T}_{-\beta}(x) = -\beta x - \lfloor -\beta x \rfloor$ except for finitely many points, hence $\widetilde{T}_{-\beta}$ is a natural generalization of the beta-transformation. The map $\widetilde{T}_{-\beta}$ was studied e.g. by Góra [Gór07], where it corresponds to the case $E = [1, 1, \dots, 1]$, and in [LS]. The following corollary is an immediate consequence of Theorems 1 and 2.

Corollary 1. Let $a_1a_2\cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). Then there exists a unique $\beta > 1$ such that

(1.9)
$$-\sum_{j=1}^{\infty} \frac{a_j+1}{(-\beta)^j} = 1 \quad and \quad -\sum_{j=1}^{\infty} \frac{a_{k+j}+1}{(-\beta)^j} \in [0,1] \quad for \ all \ k \ge 1$$

Moreover, $\sum_{j=1}^{\infty} \frac{a_{k+j+1}}{(-\beta)^j} \neq 0$ for all $k \ge 1$ if and only if (1.7) and (1.8) hold.

With the notation of [Gór07], this means, for E = [1, 1, ..., 1], that $a_1a_2\cdots$ is the itinerary It_{β}(1) for some $\beta > 1$ if and only if (1.4), (1.5), (1.7), and (1.8) hold. Note that Góra [Gór07, Theorems 25 and 28] claims that already (1.4) is sufficient when $a_1 \ge 2$, and he has a less explicit statement for $a_1 = 1$. However, his proof deals only with the first part of the theorem, i.e., that there exists a unique $\beta > 1$ satisfying (1.9). To see that this is not sufficient, consider the sequences $a_1a_2 \cdots \in \{2, 10\}^{\omega}$. They all satisfy (1.9) with $\beta = 2$, and there are uncountably many of them satisfying (1.4) and $a_1 = 2$. All these uncountably many sequences would have to be equal to It₂(1) by [Gór07, Theorem 25], which is of course not true. (See also [DMP11].) Moreover, Góra's proof of the existence of a unique $\beta > 1$ satisfying (1.9) is incorrect when β is small; see Remark 1.

2. Proof of Theorem 3

Let $\beta > 1$. For a sequence of digits $b_1 \cdots b_n$, set

$$I_{b_1\cdots b_n} = \left\{ x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1} \right) : \varepsilon_1(x) \cdots \varepsilon_n(x) = b_1 \cdots b_n \right\},\$$

with $\varepsilon_j(x)$ as in (1.1). Let $L_{\beta,n}$ be the number of different sequences $b_1 \cdots b_n$ such that $I_{b_1 \cdots b_n} \neq \emptyset$, and let $L'_{\beta,n}$ be the number of different sequences $b_1 \cdots b_n$ such that $I_{b_1 \cdots b_n}$ is an interval of positive length. (The latter is called the lap number of $T^n_{-\beta}$.)

Lemma 1. For any $\beta > 1$, we have that $\lim_{n\to\infty} \frac{1}{n} \log L_{\beta,n} = \lim_{n\to\infty} \frac{1}{n} \log L'_{\beta,n} = \log \beta$.

Proof. It is well known that the entropy of $T_{-\beta}$, which is a piecewise linear map of constant slope $-\beta$, is $\log \beta$. The lemma can be derived from this fact, see [FL11], but we prefer giving a short elementary proof, following Faller [Fal08, Proposition 3.6]. As $\left|\frac{d}{dx}T_{-\beta}^{n}(x)\right| = \beta^{n}$ at all points of continuity of $T_{-\beta}^{n}$, the length of any interval $I_{b_{1}\cdots b_{n}}$ is at most β^{-n} . Since the intervals $I_{b_{1}\cdots b_{n}}$ form a partition of an interval of length 1, we obtain that $L_{\beta,n} \geq L'_{\beta,n} \geq \beta^{n}$.

To get an upper bound for $L'_{\beta,n}$, let m be the smallest positive integer such that $\beta^m > 2$, and let δ be the minimal positive length of an interval $I_{b_1\cdots b_m}$. Consider an interval $I_{b_1\cdots b_n}$, n > m, such that $b_1 \cdots b_n$ is neither the minimal nor the maximal sequence (with respect to the alternating lexicographic order) starting with $b_1 \cdots b_{n-m}$ and satisfying $I_{b_1\cdots b_n} \neq \emptyset$. Then each prolongation $b_1b_2\cdots$ satisfies the inequalities in (1.2) and (1.3), respectively, for $1 \le k \le n-m$. Therefore, $b_1b_2\cdots$ is $(-\beta)$ -admissible if and only if $b_{n-m+1}b_{n-m+2}\cdots$ is $(-\beta)$ -admissible. This implies that $T^{n-m}_{-\beta}(I_{b_1\cdots b_n}) = I_{b_{n-m+1}\cdots b_m}$, and the length of $I_{b_1\cdots b_n}$ is β^{m-n} times the length of $I_{b_{n-m+1}\cdots b_m}$, thus at least $\beta^{m-n}\delta$ when the length is positive. There are at least $L'_{\beta,n} - 2L'_{\beta,n-m}$ sequences $b_1 \cdots b_n$ such that $I_{b_1\cdots b_n}$ has positive length and $b_1 \cdots b_n$ is neither the minimal nor the maximal sequence starting with $b_1 \cdots b_{n-m}$ and satisfying $I_{b_1 \cdots b_n} \neq \emptyset$. This yields that $(L'_{\beta,n} - 2L'_{\beta,n-m})\beta^{m-n}\delta \leq 1$ for all n > m, thus

$$L_{\beta,n}' \leq \frac{\beta^{n-m}}{\delta} + 2L_{\beta,n-m}' \leq \frac{\beta^{n-m}}{\delta} + \frac{2\beta^{n-2m}}{\delta} + 4L_{\beta,n-2m}' \leq \cdots$$
$$\leq \frac{\beta^{n-m}}{\delta} \sum_{j=0}^{\lceil n/m \rceil - 2} \left(\frac{2}{\beta^m}\right)^j + 2^{\lceil n/m \rceil - 1}L_{\beta,n-\lceil n/m \rceil m+m}' < \frac{\beta^n}{\delta} \frac{1}{\beta^m - 2} + \beta^n L_{\beta,m}' \leq \frac{\beta^n}{\delta} \frac{\beta^m - 1}{\beta^m - 2}$$

This shows that $\lim_{n\to\infty} \frac{1}{n} \log L'_{\beta,n} = \beta$.

An interval $I_{b_1\cdots b_n}$ consists only of one point if and only if $I_{b_1\cdots b_k} = \left\{\frac{-\beta}{\beta+1}\right\}$ and $b_{k+1}\cdots b_n = a_1\cdots a_{n-k}$ for some $k \leq n$. (This can happen only in case that $a_1a_2\cdots$ is periodic with odd period length.) Therefore, we can estimate $L_{\beta,n} - L'_{\beta,n} \leq L'_{\beta,0} + L'_{\beta,1} + \cdots + L'_{\beta,n} \leq C\beta^n$ for some constant C > 0, thus $\lim_{n\to\infty} \frac{1}{n} \log L_{\beta,n} = \lim_{n\to\infty} \frac{1}{n} \log L'_{\beta,n}$.

For the proof of Theorem 3, let $a_1a_2\cdots$ be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and $a'_1a'_2\cdots$ be the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, $\beta, \beta' > 1$. If $\beta = \beta'$, then we clearly have that $a_1a_2\cdots = a'_1a'_2\cdots$. If $a_1a_2\cdots = a'_1a'_2\cdots$, then the $(-\beta)$ -admissible sequences are equal to the $(-\beta')$ -admissible sequences, thus $L_{\beta,n} = L_{\beta',n}$ for all $n \ge 1$, and $\beta = \beta'$ by Lemma 1. Therefore, the equations $\beta = \beta'$ and $a_1a_2\cdots = a'_1a'_2\cdots$ are equivalent. Hence, it suffices to show that $a_1a_2\cdots = a'_1a'_2\cdots$ implies that $\beta < \beta'$, as the other direction follows by contraposition.

Assume that $a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots$, and let $b_1 b_2 \cdots$ be a $(-\beta)$ -admissible sequence. By (1.2) and (1.3) respectively, we have that

$$(2.1) b_k b_{k+1} \cdots \leq_{\text{alt}} a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots$$

Furthermore, as $\overline{0a_1\cdots a_{2\ell}(a_{2\ell+1}-1)} >_{\text{alt}} 0a_1a_2\cdots$ for all $\ell \ge 0$, we obtain that

$$(2.2) b_k b_{k+1} \cdots >_{\text{alt}} 0a_1 a_2 \cdots >_{\text{alt}} 0a'_1 a'_2 \cdots .$$

If $a'_1a'_2\cdots$ is not periodic with odd period length, then (2.1) and (2.2) show that $b_1b_2\cdots$ is $(-\beta')$ -admissible, thus $L_{\beta,n} \leq L_{\beta',n}$ for all $n \geq 1$, and $\beta \leq \beta'$ by Lemma 1. Since $a_1a_2\cdots \neq a'_1a'_2\cdots$, this yields that $\beta < \beta'$. In case $a'_1a'_2\cdots = \overline{a'_1\cdots a'_{2\ell'+1}}$, we show that

(2.3)
$$a_1 a_2 \cdots \leq_{\text{alt}} \overline{a'_1 \cdots a'_{2\ell'} (a'_{2\ell'+1} - 1)0}.$$

This is clearly true when $a_1 \cdots a_{2\ell'+1} <_{\text{alt}} a'_1 \cdots a'_{2\ell'} (a'_{2\ell'+1}-1)$. If $a_1 \cdots a_{2\ell'+1} = a'_1 \cdots a'_{2\ell'+1}$, then $a_{2\ell'+2}a_{2\ell'+3} \cdots >_{\text{alt}} a'_{2\ell'+2}a'_{2\ell'+3} \cdots = a'_1a'_2 \cdots >_{\text{alt}} a_1a_2 \cdots$, contradicting (1.4). It remains to consider the case that $a_1 \cdots a_{2\ell'+1} = a'_1 \cdots a'_{2\ell'} (a'_{2\ell'+1}-1)$. If $a_{2\ell'+1} > 0$, then (2.3) holds, otherwise $a_1 \cdots a_{2\ell'+2} = a'_1 \cdots a'_{2\ell'} (a'_{2\ell'+1}-1)0$. In the latter case, (1.4) implies that $a_{2\ell'+3} \cdots a_{4\ell'+4} \leq_{\text{alt}} a_1 \cdots a_{2\ell'+2} = a'_1 \cdots a'_{2\ell'} (a'_{2\ell'+1}-1)0$, and we obtain inductively that (2.3) holds. Now, (2.1), (2.2), and (2.3) show that $b_1b_2 \cdots$ is $(-\beta')$ -admissible, which yields as above that $\beta < \beta'$.

3. Proof of Theorem 1

Let $a_1 a_2 \cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). We show that there exists a unique $\beta > 1$ satisfying (1.9), which is equivalent to (1.6). For $n \ge 1$, set

$$P_n(x) = (-x)^n + \sum_{j=1}^n (a_j + 1) (-x)^{n-j},$$

$$J_n = \{x > 1 \mid P_j(x) \in [0, 1] \text{ for all } 1 \le j \le n\}.$$

Then $J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots$, and J_n is compact if and only if $I_n \neq 1$.

First note that, for $\beta > 1$, (1.9) is equivalent to $\beta \in \bigcap_{n \ge 1} J_n$. Indeed, if (1.9) holds, then $P_n(\beta) = -\sum_{j=1}^{\infty} \frac{a_{n+j+1}}{(-\beta)^j} \in [0,1]$ for all $n \ge 1$. On the other hand, if $P_n(\beta) \in [0,1]$ for all $n \ge 1$, then $\left|1 + \sum_{j=1}^{\infty} \frac{a_j+1}{(-\beta)^j}\right| = \lim_{n \to \infty} \frac{P_n(\beta)}{(-\beta)^n} = 0$, thus (1.9) holds.

Inductively for $n \ge 1$, we show the following statements, where we use the abbreviations $v_{[j,k]}$ for $v_j v_{j+1} \cdots v_k$ and $v_{[j,k)}$ for $v_j v_{j+1} \cdots v_{k-1}$:

- (1) J_n is a non-empty interval, with $\inf J_n = 1$ if and only if $a_{[1,n]} = u_{[1,n]}$. If $P_n(\beta) = P_n(\beta') \in \{0,1\}$ with $\beta, \beta' \in J_n$, then $\beta = \beta'$.
- (2) If n is even, $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m)}$ for all $1 \le m \le n/2$, and $a_{[1,n]} \ne u_{[1,n]}$, then $P_n(\min J_n) = 0$.
 - If n is odd and $a_{[n-2m+2,n]} \neq a_{[1,2m)}$ for all $1 \leq m \leq n/2$, then $P_n(\max J_n) = 0$.
- (3) If n is even, $a_{[1,n-2m+1]} \neq u_{[1,n-2m+1]}$ and $a_{[n-2m+2,n]} = a_{[1,2m)}$ for some $1 \leq m \leq n/2$, and m is maximal with this property, then $P_n(\min J_n) = P_{2m-1}(\min J_n)$. If n is odd, $a_{[n-2m+2,n]} = a_{[1,2m)}$ for some $1 \leq m \leq n/2$, and m is maximal with this property, then $P_n(\max J_n) = P_{2m-1}(\max J_n)$.
- (4) If n is even and $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, then $P_n(\max J_n) = 1$. If n is odd, $a_{[1,n-2m]} = u_{[1,n-2m]}$ or $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, and $a_{[1,n]} \neq u_{[1,n]}$, then $P_n(\min J_n) = 1$.
- (5) If n is even, $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \le m < n/2$, and m is maximal with this property, then $P_n(\max J_n) = P_{2m}(\max J_n)$. If n is odd, $a_{[1,n-2m]} \ne u_{[1,n-2m]}$ and $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \le m < n/2$, and m is maximal with this property, then $P_n(\min J_n) = P_{2m}(\min J_n)$.

We have that $P_1(x) = a_1 + 1 - x$, and $a_1 \ge 1$ by (1.5). If $a_1 \ge 2$, then $J_1 = [a_1, a_1 + 1]$, $P_1(a_1) = 1$ and $P_1(a_1 + 1) = 0$; if $a_1 = 1$, then $J_1 = (1, 2]$ and $P_1(2) = 0$. Therefore, the statements hold for n = 1. Assume that they hold for n - 1, and set

$$B = \left\{ b \in \{0, 1, \dots, a_1\} : b + 1 - x P_{n-1}(x) \in [0, 1] \text{ for some } x \in J_{n-1} \right\},\$$

i.e., $J_n \neq \emptyset$ if and only if $a_n \in B$.

Assume first that $a_{[1,n]} \neq u_{[1,n]}$, i.e., $\inf J_{n-1} = \min J_{n-1} > 1$, and that n is even.

(i) If $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, then $P_{n-1}(\max J_{n-1}) = 0$, thus

 $1 - (\max J_{n-1}) P_{n-1}(\max J_{n-1}) = 1.$

This implies that $0 \in B$, and $P_n(\max J_n) = P_n(\max J_{n-1}) = 1$ if $a_n = 0$. Since the map $x \mapsto xP_{n-1}(x)$ is continuous and J_{n-1} is an interval, we get that $P_n(\max J_n) = 1$

for $a_n > 0$ as well, when $J_n \neq \emptyset$. Moreover, we clearly have that $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, thus (4) holds when $a_n \in B$.

(ii) If $a_{[n-2m+1,n]} = a_{[1,2m)}$ for some $1 \le m < n/2$, and *m* is maximal with this property, then $P_{n-1}(\max J_{n-1}) = P_{2m-1}(\max J_{n-1})$, thus

$$a_{2m} + 1 - (\max J_{n-1}) P_{n-1}(\max J_{n-1}) = P_{2m}(\max J_{n-1}) \in [0, 1],$$

where we have used that $J_{n-1} \subseteq J_{2m}$ and $P_{2m}(J_{2m}) \subseteq [0,1]$. This gives $a_{2m} \in B$. If $a_n = a_{2m}$, then $\max J_n = \max J_{n-1}$ and $P_n(\max J_{n-1}) = P_{2m}(\max J_{n-1})$, thus $P_n(\max J_n) = P_{2m}(\max J_n)$ and $a_{[n-2m+1,n]} = a_{[1,2m]}$. By the maximality of m, we have that $a_{[n-2\ell+1,n]} \neq a_{[1,2\ell]}$ for all $m < \ell < n/2$, thus (5) holds. If $a_n \neq a_{2m}$, then the equation $a_{[n-2m+1,n]} = a_{[1,2m]}$ and (1.4) yield that $a_n > a_{2m}$, thus $P_n(\max J_n) = 1$ when $J_n \neq \emptyset$, similarly to (i). If $a_{[1,2\ell]} = a_{[n-2\ell+1,n]}$, $1 \le \ell < m$, then we also have that $a_{[1,2\ell]} = a_{[2m-2\ell+1,2m)}$, thus $a_{2\ell} \le a_{2m} < a_n$. This implies

that $a_{[n-2\ell+1,n]} \neq a_{[1,2\ell]}$ for all $1 \leq \ell < n/2$, thus (4) holds when $a_n \in B$. (iii) If $a_{[1,n-2m)} = u_{[1,n-2m)}$ or $a_{[n-2m,n]} \neq a_{[1,2m]}$ for all $1 \leq m \leq n/2 - 1$, then we have that $P_{n-1}(\min J_{n-1}) = 1$, thus

$$a_1 + 1 - (\min J_{n-1}) P_{n-1}(\min J_{n-1}) = P_1(\min J_{n-1}) \in [0, 1],$$

and $a_1 \in B$. If $a_n = a_1$, then $\min J_n = \min J_{n-1}$ and $P_n(\min J_{n-1}) = P_1(\min J_{n-1})$, thus $P_n(\min J_n) = P_1(\min J_n)$, and $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m)}$ for all $2 \leq m \leq n/2$. Therefore, (3) holds. If $a_n < a_1$, then $P_n(\min J_n) = 0$ when $J_n \neq \emptyset$, $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m)}$ for all $1 \leq m \leq n/2$, thus (2) holds when $a_n \in B$.

(iv) If $a_{[1,n-2m)} \neq u_{[1,n-2m)}$ and $a_{[n-2m,n)} = a_{[1,2m]}$ for some $1 \le m \le n/2 - 1$, and *m* is maximal with this property, then $P_{n-1}(\min J_{n-1}) = P_{2m}(\min J_{n-1})$, thus

$$a_{2m+1} + 1 - (\min J_{n-1}) P_{n-1}(\min J_{n-1}) = P_{2m+1}(\min J_{n-1}) \in [0, 1],$$

hence $a_{2m+1} \in B$. If $a_n = a_{2m+1}$, then $\min J_n = \min J_{n-1}$ and $P_n(\min J_{n-1}) = P_{2m+1}(\min J_{n-1})$, thus $P_n(\min J_n) = P_{2m+1}(\min J_n)$, and $a_{[n-2m,n]} = a_{[1,2m+1]}$. The maximality of m yields that $a_{[1,n-2\ell+1]} = u_{[1,n-2\ell+1]}$ or $a_{[n-2\ell+2,n]} \neq a_{[1,2\ell)}$ for all $m+1 < \ell \le n/2$, thus (3) holds. If $a_n \ne a_{2m+1}$, then $a_n < a_{2m+1}$ by (1.4). If moreover $a_{[1,2\ell-2]} = a_{[n-2\ell+2,n]}$, $1 \le \ell \le m$, then we have that $a_{[1,2\ell-2]} = a_{[2m-2\ell+3,2m]}$, thus $a_{2\ell-1} \ge a_{2m+1} > a_n$. Then we get that $P_n(\min J_n) = 0$ when $J_n \ne \emptyset$, $a_{[1,n-2\ell+1]} = u_{[1,n-2\ell+1]}$ and $a_{[n-2\ell+2,n]} \ne a_{[1,2\ell)}$ for all $1 \le \ell \le n/2$, thus (2) holds when $a_n \in B$.

Since $x \mapsto xP_{n-1}(x)$ is continuous and J_{n-1} is an interval, the set B is an interval of integers. The paragraphs (i) and (ii) show that a_n is not smaller than the smallest element of B, (iii) and (iv) show that a_n is not larger than the largest element of B, thus $a_n \in B$. We have therefore proved that $J_n \neq \emptyset$ and (2)–(5) hold, when $a_{[1,n)} \neq u_{[1,n)}$ and n is even. For odd n, the proof runs along the same lines and is left to the reader.

If $a_{[1,n)} = u_{[1,n)}$, then $\inf J_{n-1} = 1$. From [LS, Proposition 3.5], we know that $u_n \in B$, that $\inf J_n = 1$ when $a_n = u_n$, and that $\min J_n > 1$ when $u_n \neq a_n \in B$. Let first n be even, thus $a_n \leq u_n$ by (1.5). If $a_{[n-2m+1,n)} \neq a_{[1,2m)}$ for all $1 \leq m < n/2$, then we obtain as in (i) that $0 \in B$, thus $a_n \in B$, and (4) holds. If $a_{[n-2m+1,n)} = a_{[1,2m)}$ for some $1 \leq m < n/2$, and

m is maximal with this property, then (ii) yields that $a_{2m} \in B$ and $a_{2m} \leq a_n$, thus $a_n \in B$. If $a_n = a_{2m}$, then (5) holds; if $a_n > a_{2m}$, then (4) holds. Moreover, if $a_n < u_n$, then we get that $P_n(\min J_n) = 0$, thus (2) holds. Again, if *n* is odd, then similar arguments apply. Hence, we have proved that $J_n \neq \emptyset$ and (2)–(5) hold for the case that $a_{[1,n]} = u_{[1,n]}$ too.

If J_n is not an interval, then the continuity of $x \mapsto xP_{n-1}(x)$ on the interval J_{n-1} implies that P_n meets the lower bound 0 or the upper bound 1 at least twice within J_n . Therefore, suppose that $P_n(\beta) = P_n(\beta') \in \{0,1\}$ for $\beta, \beta' \in J_n$. If $P_j(\beta) \in (0,1]$ and $P_j(\beta') \in (0,1]$ for all $1 \leq j < n$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$ are both $\overline{a_{[1,n]}}$ (if $P_n(\beta) = 1$) or $\overline{a_{[1,n)}(a_n+1)}$ (if $P_n(\beta) = 0$), thus $\beta = \beta'$ by Theorem 3.

Suppose in the following that $P_j(\beta') = 0$ for some $1 \leq j < n$, and let $\ell \geq 1$ be minimal such that $P_\ell(\beta') \in \{0, 1\}$. If $P_\ell(\beta') = 0$, then $a_{\ell+1} = 0$ and $P_{\ell+1}(\beta') = 1$, hence $a_{[1,n]}$ is a concatenation of blocks $a_{[1,\ell]}0$ and $a_{[1,\ell)}(a_\ell+1)$, except possibly for the last block, which is $a_{[1,\ell]}$ when $P_n(\beta') = 0$. If $P_\ell(\beta') = 1$, then $a_{[1,n]}$ is a concatenation of blocks $a_{[1,\ell]}$ and $a_{[1,\ell)}(a_\ell-1)0$, ending with $a_{[1,\ell)}(a_\ell-1)$ when $P_n(\beta') = 0$. We obtain that

$$P_n(x) = P_n(\beta') + \left(P_\ell(x) - P_\ell(\beta')\right)Q(x)$$

for some polynomial $Q(x) = \sum_{j=0}^{n-\ell} q_j (-x)^j$ with coefficients $q_j \in \{0, 1\}$, and $q_{j-1} = q_{j-2} = \cdots = q_{j-\ell+1} = 0$ whenever $q_j = 1$. If $P_{\ell}(\beta) = P_{\ell}(\beta')$, then the induction hypotheses yield that $\beta = \beta'$. If $P_{\ell}(\beta) \neq P_{\ell}(\beta')$, then $Q(\beta) = 0$, which implies that $1 < \frac{1}{\beta^{\ell+1}} + \frac{1}{\beta^{2\ell+1}} + \cdots = \frac{1}{\beta^{\ell+1}-\beta}$ when ℓ is even, $1 < \frac{1}{\beta^{\ell}} + \frac{1}{\beta^{2\ell+1}} + \cdots = \frac{\beta}{\beta^{\ell+1}-1}$ when ℓ is odd, i.e., $\beta^{\ell+1} < \beta + 1$.

To exclude the latter case, suppose that $P_n(\beta) = P_n(\beta') \in \{0,1\}$ for $\beta, \beta' \in J_n, \beta \neq \beta'$, and that $\beta^{\ell+1} < \beta + 1$ for the minimal $\ell \ge 1$ such that $P_{\ell}(\beta') \in \{0,1\}$. Set $g_k = \lfloor 2^{k+1}/3 \rfloor$, and let, for $k \ge 1$, γ_k and η_k be the real numbers greater than 1 satisfying $\gamma_k^{g_k+1} = \gamma_k + 1$, $\eta_k^{g_k+1} = \eta_k^{g_{k-1}+1} + 1$ when k is even, $\eta_k^{g_k} = \eta_k^{g_{k-1}} + 1$ when k is odd, as in [LS]. For the positive integer *m* satisfying $g_m \leq \ell < g_{m+1}$, we have that $\beta < \gamma_m < \eta_m$. By Proposition 3.5 in [LS] and its proof, $\beta < \eta_m$ implies that the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ starts with $\varphi^m(1)$ and that $\widetilde{T}^{j}_{-\beta}(1) \notin \{0,1\}$ for all $1 \leq j \leq |\varphi^{m}(1)| = g_{m+1} + \frac{1-(-1)^{m}}{2}$, where |w| denotes the length of the word w. Since $\beta \in J_n$ and $P_n(\beta) \in \{0,1\}$, we obtain that $a_1 a_2 \cdots$ starts with $\varphi^m(1)$ and that $n > |\varphi^m(1)|$. By equation (3.2) in [LS], we have that $P_{2^m}(x) > 1$ for all $x > \eta_m$ (note that $2^m = |\varphi^{m-1}(10)| < |\varphi^m(1)|$), thus $J_{2^m} = (1, \eta_m]$, and $\ell < g_{m+1}$ yields that $\beta' = \eta_m, \ \ell = 2^m$. As β and β' are in the interval J_{n-1} , we also have that $\gamma_m \in J_{n-1}$. The $(-\gamma_m)$ -expansion of $\frac{-\gamma_m}{\gamma_m+1}$ is $\varphi^{m-1}(1) \overline{\varphi^{m-1}(0)}$ by [LS, Theorem 2.5]. Since $n \ge 2\ell$ by the above block decomposition of $a_{[1,n]}$, we obtain that $a_1a_2\cdots$ starts with $\varphi^{m-1}(1000)$ if $m \geq 2$, and with 100 if m = 1. In case m = 1, we get that $P_3(2) \notin J_3$, contradicting that $2 = \eta_1 = \beta' \in J_n$. For $m \ge 2$, we have that $P_{|\varphi^{m-1}(1000)|}(\eta_m) > P_{|\varphi^{m-1}(10)|}(\eta_m) = 1$ because $P_{|\varphi^{m-1}(100)|}(\eta_m) = P_{|\varphi^m(1)|}(\eta_m) < P_{|\varphi^{m-1}(1)|}(\eta_m)$ by equation (3.4) in [LS] and, using the notation of [LS], the function $f_{\gamma_m,\varphi^{m-1}(0)}$ is order-reversing. Again, this contradicts that $\eta_m = \beta' \in J_n$. Therefore, we have shown that $\beta = \beta'$ whenever $P_n(\beta) = P_n(\beta') \in \{0, 1\}$, $\beta, \beta' \in J_n$. Hence, J_n is an interval, and (1)–(5) hold for all $n \geq 1$.

As the J_n form a sequence of nested non-empty intervals that are compact for sufficiently large n, we have that $\bigcap_{n>1} J_n \neq \emptyset$, thus there exists some $\beta > 1$ satisfying (1.9), which is

9

equivalent to (1.6). To show that β is unique, suppose that $\bigcap_{n\geq 1} J_n$ is not a single point. Then $\bigcap_{n\geq 1} J_n$ is an interval of positive length, thus there exist $\beta, \beta' \in \bigcap_{n\geq 1} J_n, \beta \neq \beta'$, such that $P_n(\beta) \in (0,1]$ and $P_n(\beta') \in (0,1]$ for all $n \geq 1$. This means that $a_1a_2\cdots$ is both the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, which contradicts that $\beta \neq \beta'$ by Theorem 3. This concludes the proof of Theorem 1.

Remark 1. Some parts of the proofs of Theorems 1 and 3 can be simplified when one is only interested in $\beta > 1$ not too close to 1. Since $P_n(x) = a_n + 1 - xP_{n-1}(x)$ for $n \ge 2$, and $P'_1(x) = -1$, the derivative of $P_n(x)$ is

$$P'_{n}(x) = (-1)\left(P_{n-1}(x) + xP'_{n-1}(x)\right) = \dots = (-1)^{n}x^{n-1}\left(1 + \sum_{j=1}^{n-1}\frac{P_{j}(x)}{(-x)^{j}}\right)$$

If $x \in J_{n-1}$, then $1 + \sum_{j=1}^{n-1} \frac{P_j(x)}{(-x)^j} > 1 - \frac{1}{x} - \frac{1}{x^3} - \dots = \frac{x^2 - x - 1}{x^2 - 1}$. If moreover $x \ge (1 + \sqrt{5})/2$, then we get that $(-1)^n P'_n(x) > 0$, hence P_n is a strictly increasing (decreasing) function on $J_{n-1} \cap [(1 + \sqrt{5})/2, \infty)$ when n is even (odd). Moreover, $\lim_{n\to\infty} |P'_n(x)| = \infty$ if $x \ge (1 + \sqrt{5})/2$ and $x \in J_n$ for all $n \ge 1$.

However, it is not true that P_n is always increasing (decreasing) on J_{n-1} when n is even (odd). For instance, if $a_1a_2\cdots$ starts with 1001, then $P_4(x) = x^4 - 2x^3 + x^2 - x + 2$ and $J_3 = (1,\beta]$ with $\beta^3 = 2\beta^2 - \beta + 1$ ($\beta \approx 1.755$). The function P_4 decreases on $(1,\beta']$, with $\beta' \approx 1.261$, and increases on $[\beta',\infty)$. Note that this is a major flaw in the proof of Theorem 28 of [Gór07] (besides the fact that the statement is incorrect, as explained in the Introduction). This lack of monotonicity is what makes Theorems 1 and 3 more difficult to prove than the corresponding statements for β -expansions.

4. Proof of Theorem 2

Let $a_1 a_2 \cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). We have already seen in the Introduction that these conditions are necessary to be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. Moreover, β can only be the number given by Theorem 1. Then $a_1 a_2 \cdots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ if and only if $\sum_{i=1}^{\infty} \frac{a_{k+j}}{(-\beta)i} \neq \frac{1}{\beta+1}$ for all $k \geq 1$.

 $a_{1}a_{2}\cdots \text{ is the } (-\beta)\text{-expansion of } \frac{-\beta}{\beta+1} \text{ if and only if } \sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^{j}} \neq \frac{1}{\beta+1} \text{ for all } k \geq 1.$ Suppose first that $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^{j}} = \frac{1}{\beta+1}$ for some $k \geq 1$, and let $\ell \geq 1$ be minimal such that $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^{j}} \in \left\{\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right\}$. If $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^{j}} = \frac{-\beta}{\beta+1}$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ is $\overline{a_{[1,\ell]}}$. Then $a_{1}a_{2}\cdots$ is composed of blocks $a_{[1,\ell]}$ and $a_{[1,\ell)}(a_{\ell}-1)0$. Since $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^{j}} = \frac{1}{\beta+1}$ for some $k \geq 1$, we have at least one block $a_{[1,\ell]}(a_{\ell}-1)0$, i.e., $a_{1}a_{2}\cdots \in \{a_{[1,\ell]}, a_{[1,\ell]}(a_{\ell}-1)0\}^{\omega} \setminus \{\overline{a_{[1,\ell]}}\}$. As $\overline{a_{[1,\ell]}}$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$, we have that $\overline{a_{[1,\ell]}} > \text{alt } u_{1}u_{2}\cdots$, thus (1.7) does not hold. If $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^{j}} = \frac{1}{\beta+1}$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ is $\overline{a_{[1,\ell]}(a_{\ell}+1)}, a_{1}a_{2}\cdots$ is composed of blocks $a_{[1,\ell]}(a_{\ell}+1)$, and we have that $\overline{a_{[1,\ell]}(a_{\ell}+1)} > \text{alt } u_{1}u_{2}\cdots$, thus (1.8) does not hold. Therefore, (1.4), (1.5), (1.7), and (1.8) imply that $a_{1}a_{2}\cdots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $(\text{unique}) \beta > 1$.

Suppose now that (1.7) does not hold, i.e., $a_1 a_2 \cdots \in \{a_{[1,k]}, a_{[1,k]}(a_k-1)0\}^{\omega} \setminus \{\overline{a_{[1,k]}}\}$ for some $k \geq 1$ with $\overline{a_{[1,k]}} >_{\text{alt}} u_1 u_2 \cdots$. We show that the sequence $\overline{a_{[1,k]}}$ satisfies (1.4).

Suppose on the contrary that $a_{[j,k]} \overline{a_{[1,k]}} >_{\text{alt}} \overline{a_{[1,k]}}$ for some $2 \leq j \leq k$. This implies that $a_{[j,k]} a_{[1,j)} >_{\text{alt}} a_{[1,j)} >_{\text{alt}} a_{[1,k]}$. Since $a_{[k+1,2k)} = a_{[1,k)}$, we obtain that $a_{[j,j+k)} = a_{[j,k]} a_{[1,j)} >_{\text{alt}} a_{[1,k]}$, thus $a_j a_{j+1} \cdots >_{\text{alt}} a_1 a_2 \cdots$, contradicting that $a_1 a_2 \cdots$ satisfies (1.4). Therefore, $\overline{a_{[1,k]}}$ satisfies (1.4) and (1.5), and we can apply Theorem 1 for this sequence. Let $\beta' > 1$ be the number satisfying (1.6) for the sequence $\overline{a_{[1,k]}}$. Then β' also satisfies (1.6) for the original sequence $a_1 a_2 \cdots$, thus $\beta' = \beta$. Therefore, $a_1 a_2 \cdots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$.

Suppose finally that (1.8) does not hold, i.e., $a_1a_2 \cdots \in \{a_{[1,k]}0, a_{[1,k)}(a_k+1)\}^{\omega}$ for some $k \geq 1$ with $\overline{a_{[1,k)}(a_k+1)} >_{\text{alt}} u_1u_2 \cdots$. If $a_1a_2 \cdots = \overline{a_{[1,k]}0}$, then $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$, thus $a_1a_2 \cdots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$. If $a_1a_2 \cdots \neq \overline{a_{[1,k]}0}$, then we show that the sequence $\overline{a_{[1,k)}(a_k+1)}$ satisfies (1.4). Suppose that $a_{[j,k)}(a_k+1)\overline{a_{[1,k)}(a_k+1)} >_{\text{alt}} \overline{a_{[1,k)}(a_k+1)}$ for some $2 \leq j \leq k$. This implies that $a_{[j,k)}(a_k+1)a_{[1,j)} >_{\text{alt}} a_{[1,k]}$. Since $a_{[j,k)}(a_k+1)a_{[1,j)} = a_{[\ell,\ell+k)}$ for some $\ell \geq 2$, we have that $a_{\ell}a_{\ell+1} \cdots >_{\text{alt}} a_{1}a_2 \cdots$, contradicting that $a_{1}a_2 \cdots$ satisfies (1.4). As in the preceding paragraph, the number given by Theorem 1 for the sequence $\overline{a_{[1,k)}(a_k+1)}$ is β , thus $a_1a_2 \cdots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$. Therefore, (1.7) and (1.8) are necessary for $a_1a_2 \cdots$ to be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$.

Acknowledgments

The author would like to thank Edita Pelantová for many fruitful discussions.

References

- [DK95] Z. Daróczy and I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (1995), no. 3-4, 385–408.
- [DMP11] D. Dombek, Z. Masáková, and E. Pelantová, Number representation using generalized $(-\beta)$ -transformation, Theoret. Comput. Sci. **412** (2011), no. 48, 6653–6665.
- [Fal08] B. Faller, Contribution to the ergodic theory of piecewise monotone continuous maps, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2008.
- [FL11] C. Frougny and A. C. Lai, Negative bases and automata, Discrete Math. Theor. Comput. Sci. 13 (2011), no. 1, 75–94.
- [Gór07] P. Góra, Invariant densities for generalized β-maps, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1583–1598.
- [IS09] S. Ito and T. Sadahiro, *Beta-expansions with negative bases*, Integers **9** (2009), A22, 239–259.
- [KL07] V. Komornik and P. Loreti, On the topological structure of univoque sets, J. Number Theory 122 (2007), no. 1, 157–183.
- [LS] L. Liao and W. Steiner, *Dynamical properties of the negative beta-transformation*, Ergodic Theory Dynam. Systems, to appear.
- [Par60] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. **11** (1960), 401–416.
- [Rén57] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.

LIAFA, CNRS UMR 7089, UNIVERSITÉ PARIS DIDEROT – PARIS 7, CASE 7014, 75205 PARIS CEDEX 13, FRANCE

E-mail address: steiner@liafa.jussieu.fr