Beta - conjugates of algebraic numbers

Jean-Louis Verger-Gaugry

Institut Fourier

AUSSOIS Workshop

Digital expansions, Dynamics and Tilings, April 4-11th 2010

Contents

1 Motivation
■ Boyd '96
■ Boyd '77 and Bertin Boyd '95
2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series

- Rationality questions

■ Factorization of the Parry polynomial
5 Lehmer's number

Contents

1 Motivation
■ Boyd '96
■ Boyd '77 and Bertin Boyd '95
2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series

- Rationality questions

■ Factorization of the Parry polynomial
5 Lehmer's number

Motivation

What is a beta-conjugate?

The present work takes its origin in :

1) Boyd '96 : introduction of

> "beta-conjugates",
2) Boyd '77 and Bertin/Boyd '95 : introduction of
a second variable " t "
to obtain new families of polynomials $Q(z, t)$; Generalization of Salem's construction of Salem polynomials.
in 2) : no dynamics.

Boyd '96

Assume β is a Parry number, with preperiod m and period p,

$$
P_{n}(x):=x^{n}-c_{1} x^{n-1}-\ldots-c_{n}
$$

where

$$
T_{\beta}^{n}(1)=\beta^{n}-c_{1} \beta^{n-1}-\ldots-c_{n} .
$$

Then β satisfies the polynomial equation $R(\beta)=0$, where
$R(x)=P_{m+p}(x)-P_{m}(x)$ if $m>0$, and $R(x)=P_{p}(x)$ if $m=0$.
(Characteristic polynomial of the beta-number β in Parry '60)

The zeros of $R(x)$ lie in Solomyak's fractal Ω and are of modulus $\leq \frac{1+\sqrt{5}}{2}$.
Zeros of this polynomial, which are not Galois conjugates of β, are called beta-conjugates.

Beta-conjugates

-Motivation
LBoyd '77 and Bertin Boyd '95

Boyd '77

Theorem (Salem '45)

Every P.V. number β is a limit point of numbers of the class (T) on both sides.
with Salem's construction : if β is not a quadratic Pisot unit, $P_{\beta}(X)$ its minimal polynomial, consider

$$
Q_{m}(z):=z^{m} P_{\beta}(z)+P_{\beta}^{*}(z)
$$

or

$$
W_{m}(z)=\left(z^{m} P_{\beta}(z)-P_{\beta}^{*}(z)\right) /(X-1)
$$

\rightarrow cancel at Salem numbers when m large enough. Not irreducible in general : are $=$ a Salem polynomial \times a product of cyclotomic polynomials.

Boyd's new families : m large enough, $\epsilon= \pm 1, t$ varying

$$
\begin{gathered}
Q_{m}(z, t):=z^{m} P_{\beta}(z)+\epsilon t P_{\beta}^{*}(z) \\
\in \mathbb{Q}[z, t]
\end{gathered}
$$

"it is profitable to add a new variable..." : branches, varying collection of zeros, lying within the open unit disc, on $|z|=1, \ldots$

-Motivation

-Boyd '77 and Bertin Boyd '95

$$
m=1, q \geq 2
$$

Theorem (Bertin Boyd '95)

Let τ be a Salem number with minimal polynomial P_{τ}. Then τ is such that $\epsilon=-\operatorname{sgn} P_{\beta}(0)$ and $\left|P_{\beta}(0)\right|=q$ if and only if there is a cyclotomic polynomial K with simple roots and $K(1) \neq 0$ and a reciprocal polynomial L with the following properties :
(a) $L(0)=q-1$,
(b) $\operatorname{deg}(L)=\operatorname{deg}\left(K P_{\tau}\right)-1$,
(c) $L(1) \geq-K(1) P_{\tau}(1)$,
(d) L has all its zeros on $|z|=1$ and they interlace the zeros of $K P_{\tau}$ on $|z|=1$ in the following sense: let $e^{i \psi_{1}}, \ldots, e^{i \psi_{r}}$ be the zeros of L with $\operatorname{Imz} \geq 0$, excluding $z=-1$, with
$0<\psi_{1}<\ldots<\psi_{r}<\pi$, and let $e^{i \phi_{1}}, \ldots, e^{i \phi_{r}}$ be the zeros of $K P_{\tau}$ on $|z|=1$, Imz ≥ 0, with $0<\phi_{1}<\ldots<\phi_{r} \leq \pi$, then

$$
0<\psi_{1}<\phi_{1}<\ldots<\psi_{r}<\phi_{r}
$$

Contents

1 Motivation
■ Boyd '96

- Boyd '77 and Bertin Boyd '95

2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series

- Rationality questions
- Factorization of the Parry polynomial

5 Lehmer's number

Problem Reformulation

Let $\beta>1$. The Rényi β-expansion of 1

$$
d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots \quad \text { and corresponds to } \quad 1=\sum_{i=1}^{+\infty} t_{i} \beta^{-i}
$$

$t_{1}=\lfloor\beta\rfloor, t_{2}=\lfloor\beta\{\beta\}\rfloor=\left\lfloor\beta T_{\beta}(1)\right\rfloor, t_{3}=\lfloor\beta\{\beta\{\beta\}\}\rfloor=$
$\left\lfloor\beta T_{\beta}^{2}(1)\right\rfloor, \ldots$ The digits t_{i} belong to $\mathcal{A}_{\beta}:=\{0,1,2, \ldots,\lceil\beta-1\rceil\}$.

Beta-transformation : $T_{\beta}:[0,1] \rightarrow[0,1], x \rightarrow\{\beta x\}$.
Iterates : $T_{\beta}^{0}=\mathrm{ld}, \quad T_{\beta}^{j}=T_{\beta}\left(T_{\beta}^{j-1}\right), \quad j \geq 0$.

Parry number: $\beta>1$ for which $d_{\beta}(1)$ eventually periodic.

For any $\beta>1$, define the Parry upper function :

$$
f_{\beta}(z):=-1+\sum_{i=1}^{+\infty} t_{i} z^{i}
$$

Since $f_{\beta}(z)$ is a rational fraction if and only if β is a Parry number (Szegö-Carlson-Polya Theorem), the meromorphic function $f_{\beta}(z)$ admits, as domain of definition \mathcal{D}_{β}, either
$\mathbb{C} \quad$ for a Parry number,
or

$$
\begin{array}{r}
\mathbb{D}=\{z| | z \mid<1\} \quad \text { for a nonParry number } \\
\\
(|z|=1 \text { as natural boundary }) .
\end{array}
$$

Definition : Let $\beta>1$ be an algebraic number. A beta-conjugate of β, say ω, is a complex number which satisfies

$$
f_{\beta}\left(\omega^{-1}\right)=0
$$

with $\omega^{-1} \in \mathcal{D}_{\beta}$ s.t. $\omega \neq$ a Galois conjugate of β (Recall : $\left.f_{\beta}\left(\frac{1}{\beta}\right)=0\right)$.

Claim : this definition is equivalent to that of Boyd '96 if β is a Parry number.

Objective : for $\beta>1$ any algebraic number, characterize

$$
\text { all zeros of } f_{\beta}(z):=-1+\sum_{i=1}^{+\infty} t_{i} z^{i}
$$

in its domain of definition \mathcal{D}_{β}.
Problem : express canonically $f_{\beta}(z)$ as a product, so that the zeros exactly arise from the factors of this product : expected by analogy with the Riemann zeta function developped into Euler product - recall that, if β is a nonsimple Parry number, a Theorem of Ito and Takahashi shows that $f_{\beta}(z)=-1 / \zeta_{\beta}(z)$, where $\zeta_{\beta}(z)$ is the Artin-Mazur zeta function of the beta-transformation T_{β}.

Does this theory, analog to Euler products, exist? How?

Contents

1 Motivation
■ Boyd '96

- Boyd '77 and Bertin Boyd '95

2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series - Rationality questions

■ Factorization of the Parry polynomial
5 Lehmer's number

Fractional power series - Puiseux Expansions

Let $g \in \mathbb{C}[[x, y]]$. We are interested in solving for x the equation

$$
g(x, y)=0
$$

This question goes back to Newton. This means that we want to find some sort of series in y, say $x(y)$, such that

$$
g(x(y), y)=0
$$

$g(x(y), y)$ being the series in y obtained by substituting $x(y)$ for x in g. We need to deal with series in fractionary powers of y.

Denote $\mathbb{C}((x))$ the field of the formal Laurent series

$$
\sum_{i=d}^{\infty} a_{i} x^{i}, \quad d \in \mathbb{Z}, a_{i} \in \mathbb{C}
$$

An element of $\mathbb{C}\left(\left(x^{1 / n}\right)\right)$ has the form

$$
s=\sum_{i \geq r} a_{i} x^{i / n}
$$

The field of fractionary power series is denoted by $\mathbb{C} \ll x \gg$ and by definition is the direct limit of the system

$$
\left\{\mathbb{C}\left(\left(x^{1 / n}\right)\right), \phi_{n, n^{\prime}}\right\}
$$

where, for n dividing n^{\prime} (with $n^{\prime}=d n$),

$$
\phi_{n, n^{\prime}}: \mathbb{C}\left(\left(x^{1 / n}\right)\right) \rightarrow \mathbb{C}\left(\left(x^{1 / n^{\prime}}\right)\right)
$$

maps

$$
\sum a_{i} x^{i / n} \text { to } \sum a_{i} x^{d i / d n^{\prime}}
$$

A Puiseux series is by definition a fractionary power series

$$
s=\sum_{i \geq r} a_{i} x^{i / n}
$$

for which the order in x

$$
o_{x}(s):=\frac{\min \left\{i \mid a_{i} \neq 0\right\}}{n}
$$

is >0. Choice : n and $\operatorname{gcd}\left\{i \mid a_{i} \neq 0\right\}$ have no common factor. Then n is called the ramification index, or the polydromy order, of s.

If $s \in \mathbb{C}\left(\left(x^{1 / n}\right)\right)$ is a Puiseux series, the series $\sigma_{\epsilon}(s), \epsilon^{n}=1$, will be called the conjugates of s. Then

$$
\sigma_{\epsilon}(s)=\sum_{i \geq r} \epsilon^{i} a_{i} z^{i / n}
$$

The set of all conjugates of s is called the conjugacy class of s. The number of different conjugates of \boldsymbol{s} is denoted by $\nu(s)$.

Newton polygon of g : let

$$
g=\sum_{\alpha>0, j>0} A_{\alpha, j} x^{\alpha} y^{j} \quad \in \mathbb{C}[[x, y]]
$$

and obtain the discrete set of points with nonnegative integral coefficients

$$
\Delta(g):=\left\{(\alpha, j) \mid A_{\alpha, j} \neq 0\right\}
$$

called the Newton diagram of g. Take

$$
\Delta^{\prime}(g):=\Delta(g)+\left(\mathbb{R}^{+}\right)^{2}
$$

Then the convex hull of $\Delta^{\prime}(g)$ admits a border which is composed of two half-lines (vertical/ horizontal, coordinate axes) and a polygonal line, called the Newton polygon of g, joining them (denoted $N(g)$).

The height $h(N(g))$ of g is by definition the maximal ordinate of the vertices of the Newton polygon $N(g)$.

A branch of s is the set of Puiseux series which compose a given conjugacy class of s.

If y is a Puiseux series, write $g_{y}=\prod_{i=1}^{\nu(y)}\left(X-y_{i}(Y)\right)$, the
$y_{i}, i=1, \ldots, \nu(y)$ being the conjugates of y.

Theorem

For any $g(X, Y) \in \mathbb{C}[[X, Y]]$,
(i) there are Puiseux series $y_{1}, y_{2}, \ldots, y_{m}, m \geq 0$, so that g decomposes in the form

$$
g=u Y^{r} g_{y_{1}} g_{y_{2}} \ldots g_{y_{m}}
$$

where $r \in \mathbb{N}$, and u is an invertible series in $\mathbb{C}[[X, Y]]$,
(ii) the height of the Newton polygon of g is

$$
h(N(g))=\nu\left(y_{1}\right)+\nu\left(y_{2}\right)+\ldots+\nu\left(y_{m}\right)
$$

and the X-roots of g are the conjugates of the $y_{j}(Y), j=1, \ldots, m$.

Contents

1 Motivation
■ Boyd '96

- Boyd '77 and Bertin Boyd '95

2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series

- Rationality questions

■ Factorization of the Parry polynomial
5 Lehmer's number

Beta-conjugates as Puiseux series

Let \mathbb{K} be a commutative field and $g(X, Y) \neq 0$ an element of $\mathbb{K}[[X, Y]]$ such that $g(0,0)=0$.

Definition

A parametrization of g is a couple $[\alpha(T), \gamma(T)]$ of elements of $\mathbb{K}[[T]]$ which satisfies
(i) α and γ are not simultaneously identically zero,
(ii) $\alpha(0)=\gamma(0)=0$,
(iii) $g(\alpha(T), \gamma(T))=0 \in \mathbb{K}[[T]]$.

Let $\beta>1$ be an algebraic number.
key observation : the three functions

$$
\begin{gathered}
z-1 / \beta \\
P_{\beta}^{*}(z) \\
f_{\beta}(z)
\end{gathered}
$$

cancel at $1 / \beta \in(0,1) \in \mathbb{D}$.
Change our vision into a view of a germ of analytical function over a surface, and decompose it according to Puiseux.

Let $\beta>1$ be an algebraic number, and \mathbb{K}_{β} the Galois closure of $\mathbb{Q}(\beta)$. Here the parametrization

$$
\left[X-\frac{1}{\beta}, P_{\beta}^{*}(X)\right]
$$

is fixed.
Origin in \mathbb{C}^{2}, for the germ:

$$
(1 / \beta, 0) \text { in } \mathbb{C}^{2}
$$

The class

$$
\left\{g(X, Y) \in \mathbb{K}_{\beta}[[X, Y]] \left\lvert\, g\left(X-\frac{1}{\beta}, P_{\beta}^{*}(X)\right)=f_{\beta}(X)\right.\right\}
$$

is not empty (by identification of coefficients).

Rk : sufficient to consider a representant g of this class in

$$
\mathbb{K}_{\beta}[[Y]][X]
$$

with $\operatorname{deg}_{x}(g)<\operatorname{deg}(\beta)$ (the Euclidean division of $\left(X-\frac{1}{\beta}\right)^{k}, k>$ $\operatorname{deg}(\beta)$, by $P_{\beta}^{*}(X)$ provides a remainder of degree less than $\operatorname{deg}(\beta))$.

Since

$$
\mathbb{K}_{\beta}[[X, Y]] \subset \mathbb{C}[[X, Y]]
$$

decompose g according to Puiseux's Theorem :

$$
g=u y^{r} g_{y_{1}} g_{y_{2}} \ldots g_{y_{m}}
$$

with $g_{y_{j}}=\prod_{i=1}^{\nu\left(y_{j}\right)}\left(X-y_{i, j}(Y)\right)$, the $y_{i, j}, i=1, \ldots, \nu\left(y_{j}\right)$ being the conjugates of y_{j}.

Then $\quad g\left(X-\frac{1}{\beta}, P_{\beta}^{*}(X)\right)=$
$u\left(P_{\beta}^{*}(X)\right)^{r} \prod_{i=1}^{\nu\left(y_{1}\right)}\left(X-\frac{1}{\beta}-y_{i, 1}\left(P_{\beta}^{*}(X)\right)\right) \ldots \prod_{i=1}^{\nu\left(y_{m}\right)}\left(X-\frac{1}{\beta}-y_{i, m}\left(P_{\beta}^{*}(X)\right)\right)=$

$$
f_{\beta}(X)=-1+\sum_{j \geq 1} t_{j} X^{j}
$$

Rk: (i) $f_{\beta}\left(\frac{1}{\beta}\right)=0$ and $f_{\beta}^{\prime}\left(\frac{1}{\beta}\right)>0$ imply: $r=0$ or $r=1$,
(ii) this identity provides the exhaustive list of zeros of $f_{\beta}(z)$, and an alternate definition of beta-conjugates.

Definition:
A beta-conjugate of β is a complex number ω which satisfies

$$
\omega=\frac{1}{\beta}+\sum_{i \geq 0} a_{i}\left(P_{\beta}^{*}(\omega)\right)^{i / n}
$$

for all Puiseux series deduced computed from g, i.e. from f_{β}.

Beta-conjugates

-Beta-conjugates as Puiseux series
-Rationality questions

Rationality questions

(i) Computation of the branches $y_{i, j}(X)$ from $g(X, Y)$ using the Newton-Puiseux algorithm (from the Newton polygon of g).
D. Duval "Rational Puiseux expansions" : Puiseux expansions have coefficients in \mathbb{K}_{β}.
(ii) Computation of the ramification indices (polydromy orders) : integers ≥ 1.

Factorization of the Parry polynomial

If β is a Parry number, with $p=$ period in $d_{\beta}(1)$ if β is not simple,

$$
f_{\beta}(X)=-1+\sum_{j \geq 1} t_{j} X^{j} \quad \text { is a rational fraction }
$$

written

$$
f_{\beta}(X)=-\frac{1}{1-X^{p}} P_{p, \beta}^{*}(X)
$$

where $P_{p, \beta}(z)$ is the Parry polynomial of β (characteristic polynomial of the beta-number β, in Parry '60).
If β is simple, $f_{\beta}(X)$ is the polynomial formed from the preperiod in d_{β}.

We will make reference to

$$
x(y)=\sum_{k=0}^{\infty} a_{k}\left(y^{1 / e}\right)^{k}
$$

which is one of the Puiseux series given above.
Let ζ_{e} denote a primitive e-th root of unity. The branch of the series $x(y)$ is the set of series

$$
B(x(y))=\left\{\sum_{k \geq 0} a_{k}\left(\zeta_{e}^{j} y^{1 / e}\right)^{k} \mid j=0,1, \ldots, e-1\right\} .
$$

$B(x(y))$ contains precisely e distinct series. Let
$L=\mathbb{Q}\left(a_{0}, a_{1}, a_{2}, \ldots\right), s=[L: \mathbb{Q}]$ and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{v}$ the v embeddings of L into $\overline{\mathbb{Q}}$. We have : $L=\mathbb{K}_{\beta}$ and $s=\operatorname{deg}(\beta)$.

The conjugacy class of $x(y)$ is

$$
C(x(y))=\left\{\sum_{k \geq 0} \sigma_{i}\left(a_{k}\right)\left(\zeta_{e}^{j} y^{1 / e}\right)^{k} \mid i=1, \ldots, v, j=0,1, \ldots, e-1\right\}
$$

Theorem (Walsh '94)

(i) The product $\prod_{B(x(y))}\left(x-x_{i}(y)\right)$ is irreducible in $\overline{\mathbb{Q}}((y))[x]$, of degree e in x,
(ii) the product $\prod_{C(x(y))}\left(x-x_{i}(y)\right)$ is irreducible in $\mathbb{Q}((y))[x]$ of degree $e\left(s / s_{0}\right)$ in x, where $s_{0}:=\#\left\{\sigma: L \rightarrow \overline{\mathbb{Q}} ; \exists t \in \mathbb{Z}\right.$ such that $\sigma\left(a_{k}\right)=a_{k} \zeta_{e}^{t k}$ for all $k \geq 0\}$.

Substitute : $\quad x$ by $x-1 / \beta$, and y by $P_{\beta}^{*}(x)$ provides, by (ii), a polynomial in $\mathbb{K}_{\beta}[x]$, irreducible.

The irreducible factors which contain the beta-conjugates of β, in the factorization of the reciprocal of the Parry polynomial $P_{p, \beta}^{*}$, are irreducible over \mathbb{K}_{β}.
Then, the identification of these factors over $\mathbb{K}_{\beta}[x]$ provides a geometrical origin to these factors, by Walsh '94.

Contents

1 Motivation
■ Boyd '96

- Boyd '77 and Bertin Boyd '95

2 Problem Reformulation
3 Fractionary power series - Puiseux Expansions
4 Beta-conjugates as Puiseux series

- Rationality questions
- Factorization of the Parry polynomial

5 Lehmer's number

Smallest Salem number known. Lehmer's polynomial (Lehmer '33) :

$$
L(X)=X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1
$$

$\beta=1.17628 \ldots$, dominant root of $L(X)$, is a Parry number. We have:

$$
d_{\beta}(1)=0.10^{10} 10^{18}\left(10^{12} 10^{18} 10^{22} 10^{18}\right)^{\omega}
$$

The Parry polynomial of β is

$$
P_{p, \beta}(X)=L(X) \times\left[R(X) \times \Phi_{2}(X) \Phi_{4}(X) \Phi_{12}(X) \Phi_{22}(X)\right]
$$

where $R(X)$ is a reciprocal polynomial of degree 48 of height 3 . The Parry polynomial of β is of degree 75 and its height is 1 .

FIG.: Galois conjugates (big bullets) and beta-conjugates (small bullets) of Lehmer's number $\beta=1.17628 \ldots$, smallest Salem number known.

In the factorization of $P_{p, \beta}(X)$ the factors $R, \Phi_{2}, \Phi_{4}, \Phi_{12}, \Phi_{22}$ are irreducible over \mathbb{Q}, then over \mathbb{K}_{β} (Galois closure of $\mathbb{Q}(\beta)$).

See them as polynomials in

$$
\mathbb{K}_{\beta}[X]
$$

Now, for the conjugacy class $C(x(y))$, Walsh'94 Theorem implies

$$
\prod_{C(x(y))}\left(X-1 / \beta-x_{i}\left(P_{\beta}^{*}(X)\right)\right) \in \mathbb{K}_{\beta}[X]
$$

is irreducible in $\mathbb{Q}\left(\left(P_{\beta}^{*}(X)\right)\right)[X]=\mathbb{K}_{\beta}[X]$.

2 origins : identifying the irreducible factors in $\mathbb{K}_{\beta}[X]$ provides
■ one irreducible factor in $P_{p, \beta}$ exactly arises from one conjugacy class of Puiseux series relative to the germ at $(1 / \beta, 0)$, and its roots are the beta-conjugates relative to this conjugacy class,
■ the number of factors of $P_{p, \beta}$, except P_{β}, is exactly the number of conjugacy classes of Puiseux expansions in the germ,
■ the branches originate at $(1 / \beta, 0)$ and stem in spiral close or over the unit circle ; each time they cross the complex plane, the junction is a beta-conjugate. What is their radius of convergence ? Do they intersect?
Lehmer's number case : 5 classes except the Galois orbit of $1 / \beta$ by the Galois group of $\mathbb{K}_{\beta} / \mathbb{Q}$.

