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Abstract. The Knuth Twin Dragon is a compact subset of the plane with
fractal boundary of Hausdorff dimension s = (log λ)/(log

√
2), λ3 = λ2 + 2.

Although the intersection with a generic line has Hausdorff dimension s−1, we
prove that this does not occur for lines with rational parameters. We further
describe the intersection of the Twin Dragon with the two diagonals as well
as with various axis parallel lines.

1. Introduction

We investigate the intersections of the Knuth Twin Dragon with rational lines.
Let α = −1 + i, then

K =

{ ∞∑
k=1

dk
αk

: dk ∈ {0, 1}
}

is the Knuth Twin Dragon. The Hausdorff dimension of its boundary ∂K is
s = log λ

log
√
2
≈ 1.5236, where λ is the real number satisfying λ3 = λ2 + 2. For lines

(1.1) ∆p,q,r = {x+ iy ∈ C : px+ qy = r}
with p, q, r ∈ Z, we show that the α-expansions of K ∩∆p,q,r are recognized by a
finite automaton.

By a result of John Marstrand [5], the intersection of ∂K with Lebesgue almost
all lines going through K has Hausdorff dimension s− 1, meaning that in the set
of all parameter triples (p, q, r) ∈ R3 for which ∆p,q,r ∩ K 6= ∅, the exceptional
cases form a Lebesgue null set. We obtain here that the Hausdorff dimension of
the intersection of the boundary of the Twin Dragon with rational lines is never
equal to s− 1.

Further we revisit results by Shigeki Akiyama and Klaus Scheicher [1] and add
uncountably many examples of horizontal, vertical, and diagonal lines.

We mention that similar results were obtained in [4] for lines intersecting the

Sierpinski carpet F . The set F has Hausdorff dimension log 8
log 3 . Manning and

Simon showed that, given a slope α ∈ Q, the intersection of F with the line
y = αx+ β is strictly less than log 8

log 3 − 1 for Lebesgue almost every β.
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2. Main statement and proof

We first recall the notions of a canonical number system and its fundamental
domain. Let β be an algebraic integer and N = {0, 1, . . . , |N(β)| − 1}, where
N(x) denotes the norm of x over Q(β)/Q. The pair (β,N ) is called a canonical
number system (CNS) if each γ ∈ Z[β] admits a representation of the form

(2.1) γ =

n∑
k=0

dkβ
k, dk ∈ N .

We call β the radix or base and N the set of digits. The representation (2.1) is
unique up to leading zeros.

The Knuth Twin Dragon K appears as the fundamental domain of the CNS
(α,N ), where α = −1+i is the root of the polynomial x2−2x−2 and N = {0, 1}.
The fundamental domain of a CNS is the set of all numbers that can be expressed
with purely negative exponents. Since α4 = −4, it is often useful to consider
groups of four digits:

∞∑
k=1

dk
αk

=
∞∑
k=1

∑3
j=0 d4k−jα

j

α4k
=
∞∑
k=1

bk
(−4)k

,

with the possibilities for bk =
∑3

j=0 d4k−jα
j being

[0000]α = 0, [0001]α = 1, [0010]α = −1+i, [0011]α = i,
[0100]α = −2i, [0101]α = 1−2i, [0110]α = −1−i, [0111]α = −i,
[1000]α = 2+2i, [1001]α = 3+2i, [1010]α = 1+3i, [1011]α = 2+3i,
[1100]α = 2, [1101]α = 3, [1110]α = 1+i, [1111]α = 2+i.

In other words, we have

K =

{ ∞∑
k=1

bk
(−4)k

: bk ∈ D
}
,

with

D = {−1−i,−1+i,−2i,−i, 0, i, 1−2i, 1, 1+i, 1+3i, 2, 2+i, 2+2i, 2+3i, 3, 3+2i}
Points in the intersection of K with lines ∆p,q,r = {x+ iy : px+ qy = r} can now
be characterized by their digit expansion in the following way.

Lemma 2.1. We have z ∈ K ∩ ∆p,q,r if and only if there is a digit sequence
b1b2 · · · ∈ DN with

z =

∞∑
k=1

bk
(−4)k

and r =

∞∑
k=1

pR(bk) + q I(bk)

(−4)k
.

Here, R(b) denotes the real part and I(b) denotes the imaginary part of b ∈ C.
We will show that we can characterize the digit expansion of the points in

the intersection ∆p,q,r ∩ K via a Büchi automaton, that is a finite automaton
that accepts infinite paths. Using this representation we will be able to calculate
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the Hausdorff dimension of the intersection K ∩ ∆p,q,r as well as the Hausdorff
dimension of ∂K ∩∆p,q,r.

Definition 2.2. A Büchi automaton is a 5-tuple (Q,A,E, I, T ), where Q =
{q1, . . . , qN} is a finite set of states, A is a finite alphabet, E ⊂ Q × A × Q is a
set of edges and I, T ⊂ Q the set of initial and terminal states. Let A∗ denote
the set of all (finite) words and Aω denote the set of all (right) infinite words.
A word w ∈ A∗, w = w1 · · ·wn, is accepted by the automaton if and only if there
are states qi0 , . . . , qin such that qi0 ∈ I, qin ∈ T and (qik−1

, wk, qik) ∈ E for all k.
We call such a finite path successful, and we call an infinite path successful if
and only if infinitely many subpaths are successful. An infinite word w ∈ Aω is
accepted by the automaton if there exists an infinite successful path with label w.
The set of all w ∈ Aω that are accepted by the automaton is called its ω-language.

Büchi automata are really helpful to describe self-similar sets. The automaton
in Figure 1 characterizes all infinite sequences of digits 0, 1 in base α that give
rise to boundary points in ∂K; see [3, 7].

g1 g2

g3

g4

g5 g6

1

0 0,1

0 1

0,1

0

1

Figure 1. An automaton characterizing ∂K (in base α).

Let L1, L2 two ω-languages in the same alphabet accepted by A respectively B.
It can be necessary to create automata accepting the union of the languages or
their intersection. The union is not difficult: one just uses the union of states
and edges, as well as the union of terminal and initial states. The intersection
generally requires heavy computations, especially in the non-deterministic case,
where a larger framework than Büchi automata needs to be used. But it becomes
easy in some cases. We prove one particular case that will be useful to prove our
main statements.

Lemma 2.3. Let L1, L2 be two ω-languages on the same alphabet A accepted by
Büchi automata. If one of the automata has only terminal states, then there is a
Büchi automaton accepting L1 ∩ L2.
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Proof. Define A × B = (QA × QB, A,E, IA × IB, TA × TB), where E consists of

the edges (a, b)
d→ (a′, b′) with a

d→ a′ and b
d→ b′. Let w ∈ Aω be a word

that is accepted by A× B. Then there exists an infinite path in the automaton.
Projecting to the first coordinate gives an infinite path through A. Therefore,
we have w ∈ L1 and with the same reasoning w ∈ L2. Now let w ∈ L1 ∩ L2.
There exists a path a0a1 · · · through A and a path b0b1 · · · through B. Then
(a0, b0)(a1, b1) · · · is a path in the product automaton. Assume w.l.o.g. that all
states of A are terminal. Then, for every finite subpath b0b1 · · · bk accepted by B,
the corresponding path a0a1 · · · ak in A is also accepted, hence (a0, b0)(a1, b1) · · ·
is successful. �

In general, if ∆p,q,r ∩ K is described by a Büchi automaton A and the bound-
ary ∂K by a Büchi automaton G, then ∂K ∩ ∆p,q,r is described by the product
automaton A × G. Interpreting this Büchi automaton as a graph directed con-
struction for ∂K∩∆p,q,r, we will have a way to compute the Hausdorff dimension
of this set via results of Mauldin and Williams [6]. Let us state and prove our
main statements.

Theorem 2.4. Let p, q, r ∈ Z, ∆p,q,r as in (1.1) and K the Knuth Twin Dragon.
Then the intersection K ∩∆p,q,r can be described by a Büchi automaton.

Proof. For s, s′ ∈ Z we define an edge relation by

(2.2) s
b→ s′ ⇐⇒ s′ = pR(b) + q I(b)− 4s.

Now consider a path −r = s0
b1→ s1

b2→ · · · bn→ sn. Then

sn = (−4)n(−r) +
n∑
k=1

(−4)n−k
(
pR(bk) + q I(bk)

)
,

i.e.,

sn
(−4)n

= −r +

n∑
k=1

pR(bk) + q I(bk)

(−4)k
.

Using Lemma 2.1, we immediately get that

(x, y) = [0.b1b2b3 · · · ]−4 ∈ K ∩∆p,q,r if and only if lim
n→∞

sn
(−4)n

= 0.

We now show that the elements sn lying on paths starting with s0 = −r and
limn→∞

sn
(−4)n = 0 are bounded by a constant c(p, q). Indeed, we have

sn
(−4)n

= −r +

n∑
k=1

pR(bk) + q I(bk)

(−4)k
= −

∞∑
k=n+1

pR(bk) + q I(bk)

(−4)k
,

and therefore

|sn| = 4n

∣∣∣∣∣
∞∑

k=n+1

pR(bk) + q I(bk)

(−4)k

∣∣∣∣∣ ≤ max{|pR(b) + q I(b)| : b ∈ D}
3

= c(p, q).
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Defining the set of states Q = {s ∈ Z : |s| ≤ c(p, q)} ∪ {−r}, I = {−r}, T = Q
and edges as in 2.2, gives us the desired Büchi automaton. �

Theorem 2.5. Let p, q, r ∈ Z, ∆p,q,r as in (1.1) and K the Knuth Twin Dragon.
Then the Hausdorff dimension of the intersection ∂K∩∆p,q,r is never s−1, where
s is the Hausdorff dimension of ∂K.

Proof. The Büchi automaton of Theorem 2.4 gives rise to a description of the
intersection K ∩∆p,q,r as the attractor of a graph directed construction (GIFS ):

K ∩∆p,q,r = K−r, with Ks =
⋃

s
b→s′∈A

Ks′ + b

−4
(s ∈ Q).

As mentioned above, ∂K is also the attractor of a GIFS:

∂K =
⋃
g∈Q′

Kg, with Kg =
⋃

g
b→g′∈G

Kg′ + b

−4
(g ∈ Q′),

where G is the automaton characterizing ∂K in base −4. The automaton G can
be obtained from the automaton G′ of Figure 1 as follows.

• The set of states Q′ is the same as for G′; all states are initial and terminal.
• There is an edge from g to g′ in G whenever there is a path of length 4 from
g to g′ in G′. The label of this edge in G is the digit vector [d1d2d3d4]α
corresponding to the labels d1, d2, d3, d4 in G′ along the path of length 4.

In that way, A and G are built on the same alphabet. By Lemma 2.3, the inter-
section A× G is a Büchi automaton describing the intersection ∆p,q,r ∩ ∂K. By
Mauldin and Williams [6], the Hausdorff dimension of a GIFS attractor can be
computed from the spectral radius β of the incidence matrix of a strongly con-
nected component of the associated automaton; see further details in Remark 2.6.
In particular, in our case,

dimH(∂K ∩∆p,q,r) =
log β

log 4
,

where the involved number β is an algebraic integer.
Now, the dimension of the boundary of the Twin Dragon is s = log λ

log
√
2
, with

λ3 = λ2 + 2. To have log β
log 4 = s − 1, we need β = λ4

4 . However, the minimal

polynomial of λ4

4 is 4x3 − 9x2 + 2x− 1, thus λ4

4 is not an algebraic integer. �

Remark 2.6. We shortly explain why the results of Mauldin and Williams [6]
indeed apply to our setting. All the similarities in our graphs are contractions
of the form T (x) = x+b

−4 , with the same ratio −1
4 . Therefore, if G denotes any of

our graphs, we only need to check the existence of nonoverlapping compact sets
J1, . . . , Jn (one for each node 1, . . . , n of G) with the property

∀ i ∈ {1, . . . , n}, Ji ⊃
⋃

i
T−→j∈G

T (Jj),

each union being nonoverlapping.
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For the graph G = G of our paper (with states g ∈ Q′), the intersections of K
with its six neighboring tiles in the plane tiling generated by K are compact sets
playing the role of the Ji’s, that is, satisfying the above nonoverlapping conditions;
see for example [2]. These intersections are exactly the sets Kg defined in the
proof of Theorem 2.5.

Now, the graph G = A×G of our paper can be interpreted as a subgraph of G:
taking the product of A and G means to select paths of G. The states of A× G
are of the form (r, g), for some integers r and g ∈ Q′. Defining

Kr,g := ∆p,q,−r ∩Kg,

we obtain compact sets fulfilling the nonoverlapping requirements mentioned
above.

3. Further results of intersections of the Twin Dragon with
rational lines

In this section, we want to extend the work of [1], where the intersections with
the x-and the y-axis are calculated. The intersections of these lines with ∂K are
significatively different from the expected result for intersections of fractals and
lines, as they consist only of two points. First, we show that their result extends
to uncountably many axis-parallel lines (where we do not have finite automata),
and using the self-similar structure, to diagonal lines. Then we give one example
of a more complicated intersection.

Theorem 3.1. Let a1a2 · · · be a sequence in {0, 1}ω not ending in (01)ω, and

r =
∞∑
k=1

2ak
(−4)k

.

Then
∂K ∩∆1,0,r =

{
r +

(
r − 2

5

)
i, r +

(
r + 3

5

)
i
}
,

and K ∩∆1,0,r is the closed line segment r +
[
r − 2

5 , r + 3
5

]
i.

Proof. We first use Lemma 2.1 to describe K ∩ ∆1,0,r, i.e., we determine the

sequences b1b2 · · · ∈ D such that R
(∑∞

k=1 bk(−4)−k
)

= r, i.e.,

∞∑
k=1

2ak −R(bk)

(−4)k
= 0.

Since R(bk) ∈ {−1, 0, 1, 2, 3}, we have 2ak −R(bk) ∈ {−3,−2, . . . , 2, 3} and thus∣∣∣∣∣
∞∑

k=n+1

2ak −R(bk)

(−4)k

∣∣∣∣∣ ≤ 1

4n
for all n ≥ 0.

Moreover, equality holds if and only if 2ak−R(bk) is alternately 3 and −3, which
implies that ak is alternately 1 and 0, which we have excluded. This gives that∣∣∣∣∣

∞∑
k=n+1

2ak −R(bk)

(−4)k

∣∣∣∣∣ < 1

4n
and

∞∑
k=n+1

2ak −R(bk)

(−4)k
=

n∑
k=1

R(bk)− 2ak
(−4)k

∈ Z
4n



INTERSECTING THE TWIN DRAGON WITH RATIONAL LINES 7

�1

�1

Figure 2. The Knuth Twin Dragon K and its intersection with
∆1,0,r for some r as in Theorem 3.1 (red) and with ∆1,0,−1/5 (blue).

for all n ≥ 1, hence R(bk) = 2ak for all k ≥ 1. For the corresponding sequences

d1d2 · · · (with
∑3

j=0 d4k−jα
j = bk) this implies that

(3.1) d4k−3d4k−2d4k−1d4k ∈ {ak000, ak011, ak100, ak111} for all k ≥ 1.

Now consider sequences d1d2 · · · of the form (3.1) in the boundary automaton G
given in Figure 1. The only paths labeled by abcc, a, b, c ∈ {0, 1}, starting from
g1, g2, g5 and g6 respectively are

g1
0000−→ g6, g1

0011−→ g2, g2
1000−→ g5, g2

1011−→ g1, g5
0100−→ g6, g5

0111−→ g2, g6
1100−→ g5, g6

1111−→ g1.

Therefore, for an infinite successful path of the form (3.1) starting from g1, g2,
g5 or g6, the sequence a1a2 · · · is alternately 0 and 1, which we have excluded.
Hence, it suffices to consider paths that are in g3 and g4 after 4k steps for all
k ≥ 0. From

g3
a100−→ g4 and g4

a011−→ g3 (a ∈ {0, 1}),
we see that the only points in ∂K ∩∆1,0,r are

∞∑
k=1

akα
3

(−4)k
+

∞∑
k=1

α6 + α+ 1

16k
= r (1 + i) +

3i

5
,

∞∑
k=1

akα
3

(−4)k
+
∞∑
k=1

α5 + α4 + α2

16k
= r (1 + i)− 2i

5
.
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Since r (1 + i) ∈ K, K ∩∆1,0,r is the line segment between these points. �

Theorem 3.2. For − 8
15 < r < 2

15 , we have

−2i (K ∩∆0,1,r/2) = (K ∩∆1,0,r) + {0, i},
(−1 + i) (K ∩∆1,1,−r) = K ∩∆1,0,r ,

(−1 + i) (K ∩∆1,−1,r/2) = (K ∩∆0,1,r/2) + {0, 1},
2 (1 + i) (K ∩∆1,−1,r/2) = (K ∩∆1,0,r) + {−2i,−i, 0, i}.

In particular, for r as in Theorem 3.1, the sets K ∩ ∆0,1,r/2, K ∩ ∆1,1,−r and
K ∩∆1,−1,r/2 are closed line segments with endpoints

∂K ∩∆0,1,r/2 = ∂(K ∩∆0,1,r/2) =
{
−4

5 − r
2 + r

2 i,
1
5 − r

2 + r
2 i
}
,

∂K ∩∆1,1,−r = ∂(K ∩∆1,1,−r) =
{
−1

5 +
(
1
5 − r

)
i, 3

10 −
(

3
10 + r

)
i
}
,

∂K ∩∆1,−1,r/2 = ∂(K ∩∆1,−1,r/2) =
{
−3

5 + r
2 − 3

5 i,
2
5 + r

2 + 2
5 i
}
.

�1

�1

Figure 3. The intersection of K = α−1 (K ∪ (K + 1)) with lines
∆0,1,r/2, ∆1,1,−r, and ∆1,−1,r/2 for some r as in Theorem 3.1.

Proof. Note that αK = K ∪ (K + 1) and

α∆1,1,−r = ∆1,0,−r, α∆0,1,r/2 = ∆1,1,−r, α∆1,−1,r/2 = ∆0,1,r/2.

Moreover, we have

(K + 1) ∩∆1,0,r = ∅ = (K − 1) ∩∆1,0,r = (K + α) ∩∆1,0,r
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since − 8
15 < r < 2

15 and

min{x : x+ iy ∈ K} =

∞∑
k=1

(
3

(−4)2k−1
+
−1

(−4)2k

)
= −

∞∑
k=1

13

16k
= −13

15
,

max{x : x+ iy ∈ K} =

∞∑
k=1

( −1

(−4)2k−1
+

3

(−4)2k

)
=

∞∑
k=1

7

16k
=

7

15
.

Using these geometric properties, we obtain that

α (K ∩∆1,1,−r) = (K ∪ (K + 1)) ∩∆1,0,r = K ∩∆1,0,r ,

α2 (K ∩∆0,1,r/2) =
(
K ∪ (K + 1) ∪ (K + α) ∪ (K + α+ 1)

)
∩∆1,0,r

= (K ∩∆1,0,r) ∪
(
(K + i) ∩∆1,0,r) = (K ∩∆1,0,r) + {0, i},

α (K ∩∆1,−1,r/2) =
(
K ∪ (K + 1)

)
∩∆0,1,r/2 = (K ∩∆0,1,r/2) + {0, 1},

α3 (K ∩∆1,−1,r/2) = α2 (K ∩∆0,1,r/2)− {0, 2i} = (K ∩∆1,0,r) + {−2i,−i, 0, i}.
For r as in Theorem 3.1, we have − 8

15 < r < 2
15 since

min

{ ∞∑
k=1

2ak
(−4)k

: a1a2 · · · ∈ {0, 1}ω
}

= −
∞∑
k=1

8

16k
= − 8

15
,

max

{ ∞∑
k=1

2ak
(−4)k

: a1a2 · · · ∈ {0, 1}ω
}

=
∞∑
k=1

2

16k
=

2

15
,

and the minimum and maximum are attained only for the sequences (10)ω and
(01)ω, which we have excluded. Therefore, Theorem 3.1 and the formulae above
give that

K ∩∆1,1,−r = −1+i
2

(
r (1 + i) +

[
−2

5 ,
3
5

]
i
)

= −r i+
[
−1

5 ,
3
10

]
(1− i),

K ∩∆0,1,r/2 = i
2

(
r (1 + i) +

[
−2

5 ,
8
5

]
i
)

= r −1+i2 +
[
−4

5 ,
1
5

]
,

K ∩∆1,−1,r/2 = 1−i
4

(
r (1 + i) +

[
−12

5 ,
8
5

]
i
)

= r
2 +

[
−3

5 ,
2
5

]
(1 + i),

which proves the statements for the intersection of K with lines. For the inter-
sections of ∂K with lines, it only remains to check that the points in

α−2
(
(K ∩∆1,0,r) ∩ ((K ∩∆1,0,r) + i)

)
=
{

1
α2

(
r (1 + i) + 3i

5

)}
and

α−1
(
(K ∩∆0,1,r/2) ∩ ((K ∩∆0,1,r/2) + 1)

)
=
{

1
α3

(
r (1 + i)− 2

5 i
)}

are not in ∂K. By the proof of Theorem 3.1, the digit expansion

[.a1100a2011a3100a4011 · · · ]α = r (1 + i) + 3
5 i

is given by a path starting only from g3 in the boundary automaton G. Dividing
by α2 adds 00 in front of the expansion, but g3 cannot be reached by 00, hence
1
α2

(
r (1 + i) + 3i

5

)
is not on the boundary of K. Similarly, the digit expansion

[.a1011a2100a3011a4100 · · · ]α = r (1 + i)− 2
5 i
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is given by a path starting from g4 in the boundary automaton G, and g4 cannot
be reached by 000, thus 1

α3

(
r (1 + i)− 2

5 i
)

is not on the boundary of K. This
proves that all intersections of K with the given lines are line segments. �

We can use this method to find a vertical line with a more interesting inter-
section. For example, if we look at ∆1,0,−1/4, we see that the only expansion∑∞

k=1
bk

(−4)k with bk ∈ D having real part −1/4 is b1b2 · · · = 100 · · · . In base α,

we must therefore have d1d2d3d4 ∈ {0001, 0101, 1010, 1110}, which correspond to
the digits 1, 1− 2i, 1 + 3i, 1 + i ∈ D. The remaining digit sequences d5d6 · · · give
points in 1

α4 (K ∩∆1,0,0), thus

K ∩∆1,0,−1/4 = −1
4 +

([
− 9

10 ,−13
20

]
∪
[
−2

5 ,
1
10

]
∪
[
7
20 ,

3
5

])
i.

We go on with ∆1,0,−1/4+1/16 and see that points in the intersection have imag-
inary part with an expansion in base −4 starting with two digits in {−2, 0, 1, 3}
and ending with digits in {−1, 0, 1, 2}. For the limit ∆1,0,−1/5 of lines of this
form, we obtain the following intersection with K, see Figure 2.

Theorem 3.3. We have

K ∩∆1,0,−1/5 =

{
−1

5
+

∞∑
k=1

dk
(−4)k

i : dk ∈ {−2, 0, 1, 3} for all k ≥ 1

}
,

and a point is in ∂K∩∆1,0,−1/5 if and only if it is of the form −1
5+
∑∞

k=1 dk(−4)−k i,
where d1d2 · · · is a path in the automaton in Figure 4.

Proof. Since −1
5 =

∑∞
k=1(−4)−k, we obtain in the same way as in the proof of

Theorem 3.1 that R
(∑∞

k=1 bk(−4)−k
)

= −1
5 with bk ∈ D if and only if R(bk) = 1

for all k ≥ 1, i.e., bk ∈ {1−2i, 1, 1+i, 1+3i}. The corresponding 4-digit blocks
in base α are 0101, 0001, 1110, and 1010. This proves the characterization of
K ∩∆1,0,−1/5.

In the boundary automaton, the digit blocks 0101, 0001, 1110, and 1010 are
accepted only from g3 and g4, and we have the transitions

g3
0101−→ g3, g3

0001−→ g4, g3
0101−→ g4, g4

1010−→ g4, g4
1010−→ g3, g4

1110−→ g3.

Taking imaginary parts of the corresponding numbers in D gives the automaton
in Figure 4. �

g3 g4-2

-2,0

3

1,3

Figure 4. Automaton recognizing the imaginary parts of points
in ∂K ∩∆1,0,−1/5 in base −4.



INTERSECTING THE TWIN DRAGON WITH RATIONAL LINES 11

Theorem 3.4. The Hausdorff dimension of K ∩∆1,0,−1/5 is 1 and

dimH(∂K ∩∆1,0,−1/5) = log 3
log 4 ≈ 0.7925 > s− 1.

Proof. We can interpret the intersection with ∆1,0,−1/5 as the self-similar digit
tile in R with A = −4 and D = {−2, 0, 1, 3}. Since D is a complete residue
system modulo 4, this tile has non empty interior and therefore is of dimension 1.

For the boundary, we have ∂K ∩∆1,0,−1/5 = K3 ∪K4, with

−4K3 = (K3 − 2) ∪ (K4 − 2) ∪K4, −4K4 = (K3 + 1) ∪ (K3 + 3) ∪ (K4 + 3).

Therefore, by [6], the Hausdorff dimension of ∂K∩∆1,0,−1/5 is log β/ log 4, where

β is the Perron-Frobenius eigenvalue of the matrix
(
1 2
2 1

)
, i.e., β = 3. �
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Tsukuba University, Institute of Mathematics, Tennodai-1-1-1, Tsukuba 350-
8571, Japan

Email address: akiyama@math.tsukuba.ac.jp
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