On Stolarsky's conjecture: The sum of digits of n and n^h

Thomas Stoll

(IML, Marseille)

Aussois

(joint work with K. Hare and S. Laishram)

April 7, 2010

・ロット (雪) () () () ()

Introduction

- Stolarsky's conjecture
- A computational example
- Sum of digits of polynomial values
 - Some context for the conjecture
- 3 Extremal orders of $s_q(p(n))/s_q(n)$
 - Upper extremal order
 - Lower extremal order
- 4 "local" Diophantine problem
- 5 Open questions

★ E → ★ E →

< 🗇 >

Stolarsky's conjecture A computational example

K. Stolarksy, "The binary digits of a power", Proc. of the AMS, vol. 71, no. 1, 1978.

Let $h \ge 2$ be fixed and denote by B(n) the number of 1's in the binary expansion of integers.

Is it true that

$$\liminf_{n\to\infty}\frac{B(n^h)}{B(n)}=0?$$

イロト イポト イヨト イヨト

Stolarsky's conjecture A computational example

For h = 3 the smallest *n* such that $B(n) > B(n^3)$ is

 $\begin{array}{l} 407182835067 = (10111101100110111111000111111100011\\ 11011)_2 \end{array}$

Hence

B(407182835067) = 29,

 $B(407182835067^3) = 28.$

・ロト ・ 理 ト ・ ヨ ト ・

Some context for the conjecture

Let $q \ge 2$ and denote by $s_q(n)$ the sum of digits in base q of n, i.e.,

$$s_q(n) = \sum_{j\geq 0} \varepsilon_j$$

where $n = \sum_{j\geq 0} \varepsilon_j q^j$ with $\varepsilon_j \in \{0, 1, \dots, q-1\}$.

What can be said about the distribution of $s_q(p(n))$, where p(n) is some integer-valued polynomial of degree $h \ge 2$?

mean value and other parameters,

- distribution in arithmetic progressions,
- distribution modulo 1,
- extremal orders,
- Iimit distributions etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some context for the conjecture

Distribution in arithmetic progressions

Theorem (Mauduit/Rivat (2009), Dartyge/Tenenbaum (2006))

Let
$$r \ge 2$$
 and put $m = (r, q - 1)$.

) For all
$$a \in \mathbb{Z}$$
,

$$\#\{n < N : s_q(n^2) \equiv a \bmod r\} = \frac{N}{r} Q(a,m) + o(N),$$

where $Q(a, m) = \#\{0 \le n < m : n^2 \equiv a \mod r\}.$

2 If m = 1 then for N sufficiently large,

 $\#\{n < N : s_q(p(n)) \equiv a \bmod r\} \ge CN^{\min\left(1,\frac{2}{h}\right)}.$

・ロト ・ 理 ト ・ ヨ ト ・

Some context for the conjecture

Mean value

Theorem (Davenport/Erdős (1952), Delange (1975), Peter (2002) etc.)

As $N
ightarrow \infty$,

$$\sum_{n < N} s_q(n) \sim rac{1}{h} \sum_{n < N} s_q(n^h) \sim rac{q-1}{2} N \log_q N.$$

In other words, an average power n^h has sum of digits the average digit times the length of the expansion.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some context for the conjecture

Denote

$$p(x) = a_h x^h + a_{h-1} x^{h-1} + \ldots + a_0 \in \mathbb{Z}[x]$$

of degree $h \ge 2$ and $a_h \ge 1$.

Theorem (Lindström (1997))

We have

$$\limsup_{n\to\infty}\frac{s_2(p(n))}{\log_2 n}=h.$$

Other constructions for $p(n) = n^2$ were given by M. Drmota and J. Rivat (2005) with constructions due to J. Cassaigne and G. Baron.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Upper extremal order Lower extremal order

Stolarsky considered the case q = 2 and $p(n) = n^h$.

Theorem (Stolarsky (1978))

Let $h \ge 1$. Then for all $n \ge 2$,

$$\frac{s_2(n^h)}{s_2(n)} \le 2(h\log_2 n)^{1-1/h}.$$

This is best possible in that there is a constant C > 0 depending only on h such that

$$\frac{s_2(n^h)}{s_2(n)} > C(\log_2 n)^{1-1/h}$$

infinitely often.

ヘロン ヘアン ヘビン ヘビン

Upper extremal order Lower extremal order

Theorem (K. Hare, S. Laishram, T. Stoll (2010))

(1) If p(n) has only nonnegative coefficients then there exists C_1 such that for all $n \ge 2$,

$$\frac{s_q(p(n))}{s_q(n)} \le C_1 (\log_q n)^{1-1/h}.$$

This is best possible in that there is a constant C'_1 such that

$$\frac{s_q(p(n))}{s_q(n)} > C_1' (\log_q n)^{1-1/h}$$

infinitely often.

ヘロト 人間 ト ヘヨト ヘヨト

Upper extremal order Lower extremal order

Theorem (contin.)

(2) If p(n) has at least one negative coefficient then there exists C_2 and N_0 such that for all $n \ge N_0$,

$$\frac{s_q(p(n))}{s_q(n)} \le C_2 \log_q n.$$

This is best possible in that for all $\varepsilon > 0$ we have

$$\frac{s_q(p(n))}{s_q(n)} > (q-1-\varepsilon)\log_q n$$

infinitely often.

ヘロト 人間 ト ヘヨト ヘヨト

Upper extremal order Lower extremal order

The proof relies on a notable result in additive number theory.

Theorem (Bose/Chowla (1962/63))

Let $h \ge 2$. Then there are infinitely many integers M for which there exists integers a_1, \ldots, a_{M+1} such that

$$1 \leq a_1 < a_2 < \cdots < a_{M+1} = M^h$$
,

while every sum of the form

$$a_{j_1}+\cdots+a_{j_h}, \qquad 1\leq j_1\leq\cdots\leq j_h\leq M+1$$

is distinct.

ヘロト 人間 ト ヘヨト ヘヨト

Upper extremal order Lower extremal order

Theorem (Stolarsky (1978))

For all n > 1 we have

$$\frac{s_2(n^2)}{s_2(n)} \geq \frac{1}{\lfloor \log_2 n \rfloor + 1}$$

On the other hand, there are infinitely many integers n such that

$$\frac{s_2(n^2)}{s_2(n)} \le \frac{4(\log_2 \log_2 n)^2}{\log_2 n}.$$

Conjecture: For every $h \ge 2$ we have

$$\liminf_{n\to\infty}\frac{s_2(n^h)}{s_2(n)}=0.$$

・ロト ・ 理 ト ・ ヨ ト ・

Upper extremal order Lower extremal order

Theorem (K. Hare, S. Laishram, T. Stoll (2010))

There exist explicitly computable constants C_1 and C_2 , dependent only on p(x) and q, such that for all ε with $0 < \varepsilon < h(4h+1)$ there exists an $n < C_1 \cdot C_2^{1/\varepsilon}$ with

$$\frac{s_q(p(n))}{s_q(n)} < \varepsilon.$$

Corollary

There exists a constant C_3 , dependent only on p(x) and q, such that there exist infinitely many n with

$$rac{s_q(p(n))}{s_q(n)} \leq rac{C_3}{\log n}.$$

Upper extremal order Lower extremal order

Corollary

For any ε > 0 there exists an explicitly computable α > 0, dependent only on ε, p(x) and q, such that

$$\#\left\{ n < \mathsf{N}: \quad rac{s_q(\mathcal{p}(n))}{s_q(n)} < arepsilon
ight\} \gg \mathsf{N}^lpha.$$

There exists an explicitly computable γ > 0, dependent only on q and p(x), such that

$$\#\left\{n < \mathcal{N}: \quad |s_q(p(n)) - s_q(n)| \leq rac{q-1}{2}
ight\} \gg \mathcal{N}^\gamma.$$

We have $\# \{ n < N : s_2(n^2) = s_2(n) \} \gg N^{1/19}.$

ヘロン ヘアン ヘビン ヘビン

Theorem (K. Hare, S. Laishram, T. Stoll (2010))

Let

$$A_k = \#\{n \text{ odd}: s_2(n^2) = s_2(n) = k\}.$$

(i) If
$$k \le 8$$
 then $A_k < \infty$.
(ii) If $k \ge 16$ or $k \in \{12, 13\}$ then $A_k = \infty$.

2 Let $q \ge 3$ and assume $k \ge 94(q-1)$. Then the equation

$$s_q(n^2) = s_q(n) = k$$

has infinitely many solutions in n with $q \nmid n$ if and only if

$$k(k-1) \equiv 0 \mod (q-1).$$

= 900

ヘロン 人間 とくほ とくほ とう

1 Let
$$k \in \{9, 10, 11, 14, 15\}$$
. Is the set

$$\{n \text{ odd}: s_2(n^2) = s_2(n) = k\}$$

finite or infinite?

2 Is
$$(s_2(n^2)/s_2(n))_{n\geq 1}$$
 dense in \mathbb{R} ?

③ A second conjecture of Stolarsky (1978): As $N \to \infty$,

$$\frac{1}{N}\sum_{n=1}^{N}\frac{s_2(n^h)}{s_2(n)}\to h',$$

where $1 < h' \leq h$.

Generalizations: block counting functions, other numeration systems, quasi-polynomials etc.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …