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Stolarsky’s conjecture
A computational example

K. Stolarksy, “The binary digits of a power”, Proc. of the
AMS, vol. 71, no. 1, 1978.

Let h ≥ 2 be fixed and denote by B(n) the number of 1’s in the
binary expansion of integers.

Is it true that

lim inf
n→∞

B(nh)

B(n)
= 0?
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For h = 3 the smallest n such that B(n) > B(n3) is

407182835067 = (1011110110011011111110011111101011
11011)2

4071828350673 = (1101000000001000000010001010010001
1100000011000010010011000000000000
0101000000110000000101000001000001
000010000000011)2

Hence

B(407182835067) = 29, B(4071828350673) = 28.
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Some context for the conjecture

Let q ≥ 2 and denote by sq(n) the sum of digits in base q of n,
i.e.,

sq(n) =
∑
j≥0

εj

where n =
∑

j≥0 εjqj with εj ∈ {0,1, . . . ,q − 1}.

What can be said about the distribution of sq(p(n)), where p(n)
is some integer-valued polynomial of degree h ≥ 2?

mean value and other parameters,

distribution in arithmetic progressions,

distribution modulo 1,

extremal orders,

limit distributions etc.
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Distribution in arithmetic progressions

Theorem (Mauduit/Rivat (2009), Dartyge/Tenenbaum (2006))

Let r ≥ 2 and put m = (r ,q − 1).
1 For all a ∈ Z,

#{n < N : sq(n2) ≡ a mod r} =
N
r

Q(a,m) + o(N),

where Q(a,m) = #{0 ≤ n < m : n2 ≡ a mod r}.

2 If m = 1 then for N sufficiently large,

#{n < N : sq(p(n)) ≡ a mod r} ≥ CNmin(1, 2
h!).
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Mean value

Theorem (Davenport/Erdős (1952), Delange (1975),
Peter (2002) etc.)

As N →∞,∑
n<N

sq(n) ∼ 1
h

∑
n<N

sq(nh) ∼ q − 1
2

N logq N.

In other words, an average power nh has sum of digits the
average digit times the length of the expansion.
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Denote

p(x) = ahxh + ah−1xh−1 + . . .+ a0 ∈ Z[x ]

of degree h ≥ 2 and ah ≥ 1.

Theorem (Lindström (1997))
We have

lim sup
n→∞

s2(p(n))

log2 n
= h.

Other constructions for p(n) = n2 were given by M. Drmota and
J. Rivat (2005) with constructions due to J. Cassaigne and G. Baron.

Thomas Stoll The sum of digits of n and nh



Introduction
Sum of digits of polynomial values

Extremal orders of sq(p(n))/sq(n)

A “local” Diophantine problem
Open questions

Upper extremal order
Lower extremal order

Stolarsky considered the case q = 2 and p(n) = nh.

Theorem (Stolarsky (1978))
Let h ≥ 1. Then for all n ≥ 2,

s2(nh)

s2(n)
≤ 2(h log2 n)1−1/h.

This is best possible in that there is a constant C > 0
depending only on h such that

s2(nh)

s2(n)
> C(log2 n)1−1/h

infinitely often.
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Theorem (K. Hare, S. Laishram, T. Stoll (2010))

(1) If p(n) has only nonnegative coefficients then there exists
C1 such that for all n ≥ 2,

sq(p(n))

sq(n)
≤ C1(logq n)1−1/h.

This is best possible in that there is a constant C′1 such that

sq(p(n))

sq(n)
> C′1(logq n)1−1/h

infinitely often.
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Theorem (contin.)

(2) If p(n) has at least one negative coefficient then there
exists C2 and N0 such that for all n ≥ N0,

sq(p(n))

sq(n)
≤ C2 logq n.

This is best possible in that for all ε > 0 we have

sq(p(n))

sq(n)
> (q − 1− ε) logq n

infinitely often.
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The proof relies on a notable result in additive number theory.

Theorem (Bose/Chowla (1962/63))
Let h ≥ 2. Then there are infinitely many integers M for which
there exists integers a1, . . . ,aM+1 such that

1 ≤ a1 < a2 < · · · < aM+1 = Mh,

while every sum of the form

aj1 + · · ·+ ajh , 1 ≤ j1 ≤ · · · ≤ jh ≤ M + 1

is distinct.
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Theorem (Stolarsky (1978))
For all n > 1 we have

s2(n2)

s2(n)
≥ 1
blog2 nc+ 1

.

On the other hand, there are infinitely many integers n such that

s2(n2)

s2(n)
≤ 4(log2 log2 n)2

log2 n
.

Conjecture: For every h ≥ 2 we have

lim inf
n→∞

s2(nh)

s2(n)
= 0.
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Theorem (K. Hare, S. Laishram, T. Stoll (2010))
There exist explicitly computable constants C1 and C2,
dependent only on p(x) and q, such that for all ε with
0 < ε < h(4h + 1) there exists an n < C1 · C

1/ε
2 with

sq(p(n))

sq(n)
< ε.

Corollary

There exists a constant C3, dependent only on p(x) and q,
such that there exist infinitely many n with

sq(p(n))

sq(n)
≤ C3

log n
.
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Corollary
1 For any ε > 0 there exists an explicitly computable α > 0,

dependent only on ε, p(x) and q, such that

#

{
n < N :

sq(p(n))

sq(n)
< ε

}
� Nα.

2 There exists an explicitly computable γ > 0, dependent
only on q and p(x), such that

#

{
n < N : |sq(p(n))− sq(n)| ≤ q − 1

2

}
� Nγ .

3 We have #
{

n < N : s2(n2) = s2(n)
}
� N1/19.
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Theorem (K. Hare, S. Laishram, T. Stoll (2010))
1 Let

Ak = #{n odd : s2(n2) = s2(n) = k}.

(i) If k ≤ 8 then Ak <∞.
(ii) If k ≥ 16 or k ∈ {12,13} then Ak =∞.

2 Let q ≥ 3 and assume k ≥ 94(q − 1). Then the equation

sq(n2) = sq(n) = k

has infinitely many solutions in n with q - n if and only if

k(k − 1) ≡ 0 mod (q − 1).
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1 Let k ∈ {9,10,11,14,15}. Is the set

{n odd : s2(n2) = s2(n) = k}

finite or infinite?
2 Is (s2(n2)/s2(n))n≥1 dense in R?
3 A second conjecture of Stolarsky (1978): As N →∞,

1
N

N∑
n=1

s2(nh)

s2(n)
→ h′,

where 1 < h′ ≤ h.
4 Generalizations: block counting functions, other

numeration systems, quasi-polynomials etc.
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