Directional dynamics for cellular automata

Mathieu Sablik

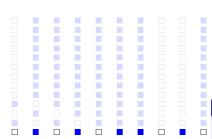
05 october 2007

e-mail:msablik@umpa.ens-lyon.fr

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PROBLEMATIC

Cellular automata (CA) were introduced by von Neumann-1951 as simplified models of biological systems.



A cellular automaton is defined by :

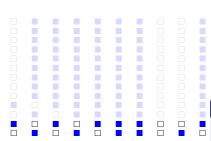
- a finite alphabet : \mathcal{A}
- a semi-group : \mathbb{M} (here \mathbb{Z}),
- a neighborhood : $\mathbb{U} = [r,s] \subset \mathbb{M},$
- a local function : $\overline{F} : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$.

Definition

One defines
$$F : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$$
 by :

$$F(x)_m = \overline{F}((x_{m+u})_{u \in \mathbb{U}})$$

Cellular automata (CA) were introduced by von Neumann-1951 as simplified models of biological systems.



A cellular automaton is defined by :

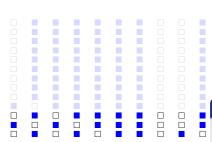
- a finite alphabet : \mathcal{A}
- a semi-group : \mathbb{M} (here \mathbb{Z}),
- a neighborhood : $\mathbb{U} = [r,s] \subset \mathbb{M},$
- a local function : $\overline{F} : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$.

Definition

One defines
$$F : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$$
 by :

$$F(x)_m = \overline{F}((x_{m+u})_{u \in \mathbb{U}})$$

Cellular automata (CA) were introduced by von Neumann-1951 as simplified models of biological systems.



A cellular automaton is defined by :

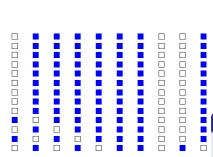
- a finite alphabet : \mathcal{A}
- a semi-group : \mathbb{M} (here \mathbb{Z}),
- a neighborhood : $\mathbb{U} = [r,s] \subset \mathbb{M},$
- a local function : $\overline{F} : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$.

Definition

One defines
$$F: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$$
 by :

$$F(x)_m = \overline{F}((x_{m+u})_{u \in \mathbb{U}})$$

Cellular automata (CA) were introduced by von Neumann-1951 as simplified models of biological systems.



A cellular automaton is defined by :

- a finite alphabet : \mathcal{A}
- a semi-group : \mathbb{M} (here \mathbb{Z}),
- a neighborhood : $\mathbb{U} = [r, s] \subset \mathbb{M},$

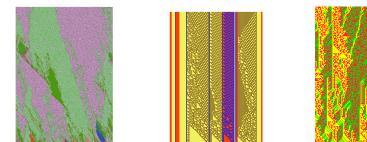
• a local function :
$$\overline{F} : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$$
.

Definition

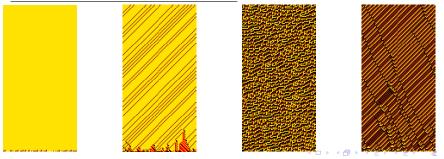
One defines
$$F : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$$
 by :

$$F(x)_m = \overline{F}((x_{m+u})_{u \in \mathbb{U}})$$

Some examples of space-time diagrams



Classification of Wolfram (1982) :



Topological characterisation

• $\mathcal{A}^{\mathbb{Z}}$ is compact for the product topology. One define the cantor distance as :

$$d_C(x,y) = 2^{-\min\{|i| : x_i \neq y_i\}}$$

• $\mathbb Z$ acts on $\mathcal A^{\mathbb Z}$ by shift defined for all $m\in \mathbb Z$ by :

$$\sigma^m: \begin{array}{ccc} \mathcal{A}^{\mathbb{Z}} & \longrightarrow & \mathcal{A}^{\mathbb{Z}} \\ (x_i)_{i \in \mathbb{Z}} & \longmapsto & (x_{i+m})_{i \in \mathbb{Z}}. \end{array}$$

Hedlund-69

A CA is a continuous function $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ which commutes with the shift σ .

Applications :

- Give a topological framework to study CA.
- Allows to show easly combinatory results.
- Allows to consider CA as dynamical systems...

Dynamics for the action of a semi-group ${\mathbb M}$

Definition

A dynamical system is a metric space (X,d) and a continuous $\mathbb{M}\text{-}action$ T on X.

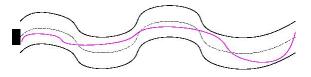
Let
$$B(x, \delta) = \{y \in X : d(x, y) < \delta\}$$
 and
 $E^{\mathbb{M}}(x, \varepsilon) = \{y \in X : d(T^m(x), T^m(y)) < \varepsilon, \forall m \in \mathbb{M}\}.$

Definitions around the equicontinuity :

•
$$x \in Eq^{\mathbb{M}}(X,T) \iff \forall \varepsilon > 0, \exists \delta > 0, \ B(x,\delta) \subset E^{\mathbb{M}}(x,\varepsilon)$$
;

• (X,T) is \mathbb{M} -equicontinuous if

$$\forall \varepsilon > 0, \exists \delta > 0 \forall x \in X, \ B(x, \delta) \subset E^{\mathbb{M}}(x, \varepsilon);$$



Dynamics for the action of a semi-group ${\mathbb M}$

Definition

A dynamical system is a metric space (X, d) and a continuous \mathbb{M} -action T on X.

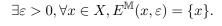
Let
$$B(x, \delta) = \{y \in X : d(x, y) < \delta\}$$
 and
 $E^{\mathbb{M}}(x, \varepsilon) = \{y \in X : d(T^m(x), T^m(y)) < \varepsilon, \ \forall m \in \mathbb{M}\}.$

Definitions around the sensitivity :

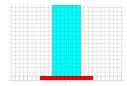
• (X,T) is \mathbb{M} -sensitive if

$$\exists \varepsilon > 0, \forall x \in X, \forall \delta > 0, \ \exists y \in B(x, \delta) \setminus E^{\mathbb{M}}(x, \varepsilon);$$

• (X,T) is \mathbb{M} -expansive if



Dynamic of the \mathbb{N} -action F on $\mathcal{A}^{\mathbb{Z}}$



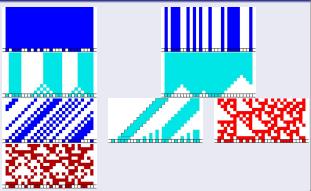
$$E_{\mathcal{A}^{\mathbb{Z}}}^{\mathbb{N}}(x,\varepsilon) = \left\{ y \in \mathcal{A}^{\mathbb{Z}} : d_{C}(F^{n}(x),F^{n}(y)) < \varepsilon \ \forall n \in \mathbb{N} \right.$$
$$B_{\mathcal{A}^{\mathbb{Z}}}(x,\delta) = \left\{ y \in \mathcal{A}^{\mathbb{Z}} : d_{C}(x,y) < \delta \right\}$$

Theorem : Classification of CA of Kurka-97

• $(\mathcal{A}^{\mathbb{Z}}, F)$ equicontinuous • $\emptyset \subsetneq Eq^0(\mathcal{A}^{\mathbb{Z}}, F) \subsetneq \mathcal{A}^{\mathbb{Z}}$

• $(\mathcal{A}^{\mathbb{Z}}, F)$ sensitive

• $(\mathcal{A}^{\mathbb{Z}}, F)$ expansive



DIRECTIONAL DYNAMICS FOR UNIDIMENSIONAL CA

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

It is possible to consider the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) . Classification of P. Kůrka : restriction of (σ, F) at $\{0\} \times \mathbb{N}$ -action !

Question

Which sub-semi-group we must consider to study the $\mathbb{Z} imes\mathbb{N} ext{-action }(\sigma,F)$?

Let \mathbb{M} be a sub-semi-group of $\mathbb{Z} \times \mathbb{N}$. There is two options :

• $\underline{\mathbb{M}}$ contains a sub-semi-group of $\mathbb{Z} \times \{0\}$: the \mathbb{M} -action (σ, F) contains the dynamic of a power of σ ,

The dynamic is so strong;

• $\mathbb{M} = p\mathbb{Z} \times q\mathbb{N}$ with $q \neq 0$: dynamics according to the slope $\alpha = \frac{p}{q}$.

Question

How is it possible to define dynamics according to every direction $\alpha \in \mathbb{R}$?

It is possible to consider the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) . Classification of P. Kůrka : restriction of (σ, F) at $\{0\} \times \mathbb{N}$ -action !

Question

Which sub-semi-group we must consider to study the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) ?

Let \mathbb{M} be a sub-semi-group of $\mathbb{Z} \times \mathbb{N}$. There is two options :

• $\underline{\mathbb{M}}$ contains a sub-semi-group of $\mathbb{Z} \times \{0\}$: the \mathbb{M} -action (σ, F) contains the dynamic of a power of σ ,

The dynamic is so strong;

• $\mathbb{M} = p\mathbb{Z} \times q\mathbb{N}$ with $q \neq 0$: dynamics according to the slope $\alpha = \frac{p}{q}$.

Question

How is it possible to define dynamics according to every direction $\alpha \in \mathbb{R}$?

It is possible to consider the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) . Classification of P. Kůrka : restriction of (σ, F) at $\{0\} \times \mathbb{N}$ -action !

Question

Which sub-semi-group we must consider to study the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) ?

Let $\mathbb M$ be a sub-semi-group of $\mathbb Z\times\mathbb N.$ There is two options :

• $\frac{\mathbb{M} \text{ contains a sub-semi-group of } \mathbb{Z} \times \{0\} :}{\text{contains the dynamic of a power of } \sigma,} \text{ the } \mathbb{M} \text{-action } (\sigma, F)$

The dynamic is so strong;

• $\underline{\mathbb{M}} = p\mathbb{Z} \times q\mathbb{N}$ with $q \neq 0$: dynamics according to the slope $\alpha = \frac{p}{q}$.

Question

How is it possible to define dynamics according to every direction $\alpha \in \mathbb{R}$?

It is possible to consider the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) . Classification of P. Kůrka : restriction of (σ, F) at $\{0\} \times \mathbb{N}$ -action !

Question

Which sub-semi-group we must consider to study the $\mathbb{Z} \times \mathbb{N}$ -action (σ, F) ?

Let $\mathbb M$ be a sub-semi-group of $\mathbb Z\times\mathbb N.$ There is two options :

• $\frac{\mathbb{M} \text{ contains a sub-semi-group of } \mathbb{Z} \times \{0\} :}{\text{contains the dynamic of a power of } \sigma,} \text{ the } \mathbb{M} \text{-action } (\sigma, F)$

The dynamic is so strong;

• $\underline{\mathbb{M}} = p\mathbb{Z} \times q\mathbb{N}$ with $q \neq 0$: dynamics according to the slope $\alpha = \frac{p}{q}$.

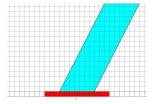
Question

How is it possible to define dynamics according to every direction $\alpha \in \mathbb{R}$?

Dynamic of slope α

Consider the suspension of (σ, F) defined for all $(m, n) \in \mathbb{R} \times \mathbb{R}^+$ by :

$$\begin{array}{rcccc} T^{(m,n)}: & \mathcal{A}^{\mathbb{Z}} \times \mathbb{T} \times \mathbb{T} & \longrightarrow & \mathcal{A}^{\mathbb{Z}} \times \mathbb{T} \times \mathbb{T} \\ & & (x,\beta_1,\beta_2) & \longmapsto & (\sigma^{\lfloor m+\beta_1 \rfloor} \circ F^{\lfloor n+\beta_2 \rfloor}(x), \{m+\beta_1\}, \{n+\beta_2\}) \end{array}$$

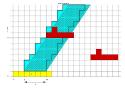


$$E_{\Sigma}^{\boldsymbol{\alpha}}(x,\varepsilon) = \left\{ y \in \Sigma : d_C(\sigma^{\lfloor n\alpha \rfloor} \circ F^n(x), \sigma^{\lfloor n\alpha \rfloor} \circ F^n(y)) < \varepsilon \ \forall n \in \mathbb{N} \right\}$$
$$B_{\Sigma}(x,\delta) = \left\{ y \in \Sigma : d_C(x,y) < \delta \right\}$$

Definition

 $x \in Eq^{\alpha}(\Sigma, F) \iff \forall \varepsilon > 0, \ \exists \delta > 0 \quad B_{\Sigma}(x, \delta) \subset E_{\Sigma}^{\alpha}(x, \varepsilon)$

Dynamic of slope α



 $u \in \mathcal{L}_{\Sigma}$ is a Σ -blocking word of slope α if :

 $\forall x \in [u]_0 \cap \Sigma$, one has $[u]_0 \subset E_{\Sigma}^{\alpha}(x, 2^{-\max\{|u|+|\alpha|:u\in\mathbb{Z}\}})$

Characterisation of equicontinuous points

If Σ is a transitive subshift then : $x \in Eq^{\alpha}(\Sigma, F) \iff \exists u \in \mathcal{L}_{\Sigma}$ which is a blocking word.

- <u>Some recall :</u>
- $-(\Sigma, \sigma)$ is *transitive* if $\forall u, v \in \mathcal{L}_{\Sigma}$, $\exists w \in \mathcal{L}_{\Sigma}$ such that $uwv \in \mathcal{L}_{\Sigma}$.

 $-(\Sigma, \sigma)$ is *weakly-specified* if $\exists N \in \mathbb{N}$ such that $\forall u, v \in \mathcal{L}_{\Sigma}$, $\exists n \leq N$ and $\exists w \in \mathcal{L}_{\Sigma}(n)$ such that $uwv \in \mathcal{L}_{\Sigma}$.

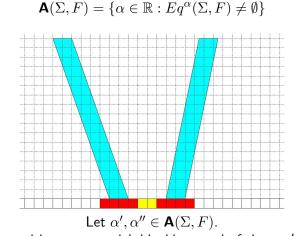
Dynamic of slope α

$$E_{\Sigma}^{\alpha}(x,\varepsilon) = \left\{ y \in \Sigma : d_C(\sigma^{\lfloor n\alpha \rfloor} \circ F^n(x), \sigma^{\lfloor n\alpha \rfloor} \circ F^n(y)) < \varepsilon \; \forall n \in \mathbb{N} \right\}$$

$$B_{\Sigma}(x,\delta) = \left\{ y \in \Sigma : d_C(x,y) < \delta \right\}$$

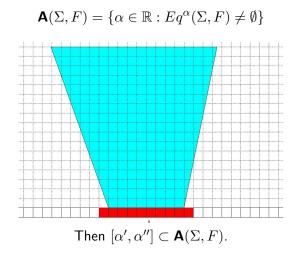
Theorem : Classification of CA under the slope α Let Σ be a transitive subshift. One of the following case holds : • (Σ, F) equicontinuous of slope α • $\emptyset \subsetneq Eq^{\alpha}(\Sigma, F) \subsetneq \mathcal{A}^{\mathbb{Z}}$ • (Σ, F) sensible of slope α • (Σ, F) expansive of slope α

Convexity of $\mathbf{A}(\Sigma, F)$

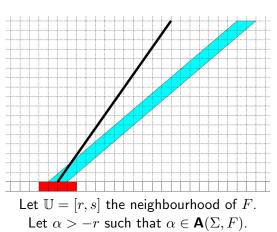


If Σ is transitive we can stick blocking word of slope α' and α'' .

Convexity of $\mathbf{A}(\Sigma, F)$

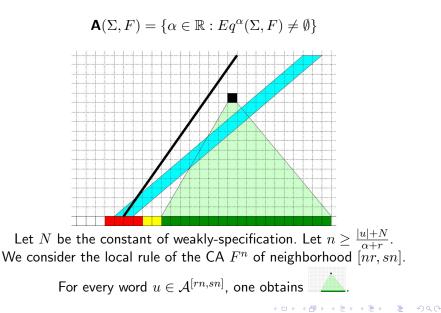


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

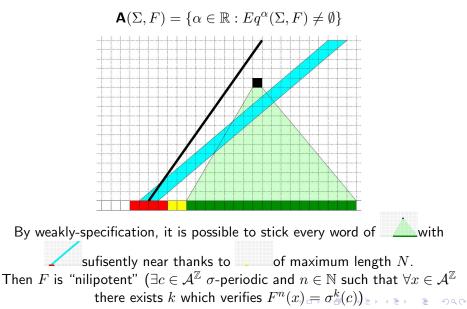


$\mathbf{A}(\Sigma, F) = \{ \alpha \in \mathbb{R} : Eq^{\alpha}(\Sigma, F) \neq \emptyset \}$

$\mathbf{A}(\Sigma,F)\subset]-s,-r[$



$\mathbf{A}(\Sigma, F) \subset] - s, -r[$



Directions with equicontinuous points

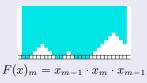
Theorem

Let Σ be a weakly specified subshift and $(\mathcal{A}^{\mathbb{Z}}, F)$ be a CA of neighborhood $\mathbb{U} = [r, s]$.

Four cases are possible for $A(\Sigma, F) = \{ \alpha \in \mathbb{R} : Eq^{\alpha}(\Sigma, F) \neq \emptyset \}$:

$$F(x)_m = 1$$

• $\mathbf{A}(\Sigma, F) = \{\alpha\} \ \alpha \in \mathbb{Q}$?



•
$$\mathbf{A}(\Sigma, F) = \emptyset$$

 $F(x)_m = x_{m-1} + x_m + x_{m+1} \mod 2$

What happen if Σ is not weakly specified?

Let
$$\mathcal{A} = \{0, 1\}$$
 and $F(x)_i = x_{i-1} \cdot x_i \cdot x_{i+1}$. Consider $\Sigma \subset \mathcal{A}^{\mathbb{Z}}$ such that
 $\mathcal{L}_{\Sigma} \cap (\{0^m 1^n : f(n) \ge m\} \cup \{1^n 0^m : f(n) \ge m\}) = \emptyset.$
For all $h : \mathbb{N} \to \mathbb{N}$ such as $f(n) \ge h(n) \ge f(n)$ one has

$$[100001] \subset E^h(^{\infty}0^{\infty}, 2^{-2})$$

where

$$E^{h}(^{\infty}0^{\infty}, 2^{-2}) = \left\{ y \in \Sigma : d_{C}(\sigma^{h(n)} \circ F^{n}(^{\infty}0^{\infty}), \sigma^{h(n)} \circ F^{n}(y)) < \varepsilon \; \forall n \in \mathbb{N} \right\}$$

Remark

It is possible to define dynamics of slope $h:\mathbb{N}\to\mathbb{N}$ considering the following tube around the orbit of x :

$$E^{h}(x,\varepsilon) = \left\{ y \in \Sigma : d_{C}(\sigma^{h(n)} \circ F^{n}(x), \sigma^{h(n)} \circ F^{n}(y)) < \varepsilon \ \forall n \in \mathbb{N} \right\}$$

Equicontinuous directions

$$\mathbf{A'}(\Sigma,F) = \{\alpha \in \mathbb{R} : Eq^{\alpha}(\Sigma,F) = \Sigma\} \subset \mathbf{A}(\Sigma,F)$$

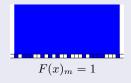
Theorem

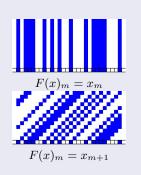
 $A'(\Sigma, F)$

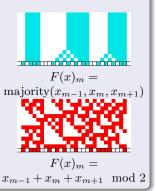
Let Σ be a weakly specifed subshift and F of neighborhood $\mathbb{U} = [r, s]$. Three case are possible :

$$\bullet \mathbf{A'}(\Sigma, F) = \{\alpha\} \quad \bullet \quad \mathbf{A'}(\Sigma, F) = \emptyset$$

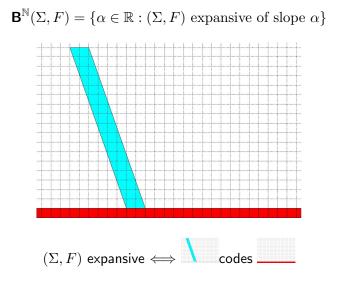
$$\alpha \in \mathbb{Q} \cap [-s, -r]$$



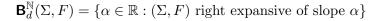


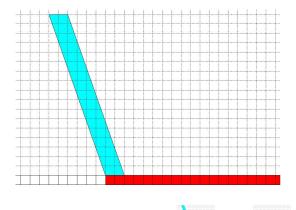


Cone of expansivity



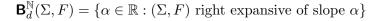
<ロ> < 団> < 団> < 団> < 団> < 団> < 団> < </p>

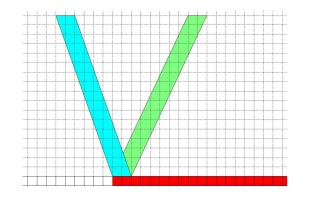




 (Σ, F) right expansive \iff codes

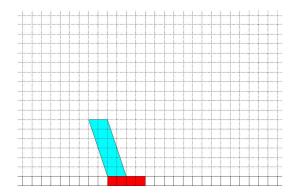
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで





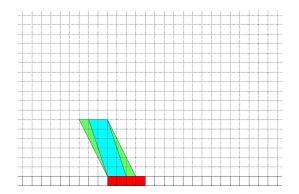
 $\forall \alpha' \geq \alpha \text{ one has } \alpha' \in \mathbf{B}_d^{\mathbb{N}}(\Sigma, F) \text{ since } \mathbf{C} \text{ codes }$

$\mathbf{B}_{d}^{\mathbb{N}}(\Sigma, F) = \{ \alpha \in \mathbb{R} : (\Sigma, F) \text{ right expansive of slope } \alpha \}$

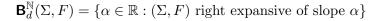


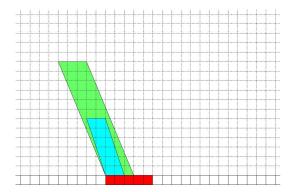
 $\mathbf{B}_d^{\mathbb{N}}(\Sigma, F)$ is open

$\mathbf{B}_{d}^{\mathbb{N}}(\Sigma, F) = \{ \alpha \in \mathbb{R} : (\Sigma, F) \text{ right expansive of slope } \alpha \}$

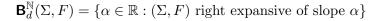


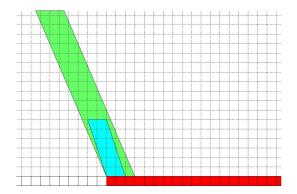
 $\mathbf{B}_d^{\mathbb{N}}(\Sigma, F)$ is open





 $\mathbf{B}_d^{\mathbb{N}}(\Sigma, F)$ is open





 $\mathbf{B}_d^{\mathbb{N}}(\Sigma, F)$ is open

Directions of expansivity

- $\mathbf{B}_{a}^{\mathbb{N}}(\Sigma, F) = \{ \alpha \in \mathbb{R} : (\Sigma, F) \text{ expansive of slope } \alpha \}.$
- **B**^N_d(Σ, F) = {α ∈ ℝ : (Σ, F) left expansive of slope α}. **B**^N(Σ, F) = {α ∈ ℝ : (Σ, F) right expansive of slopeα}.

Theorem

Let Σ be a subshift and $(\mathcal{A}^{\mathbb{Z}}, F)$ of neighborhood $\mathbb{U} = [r, s]$.

• $\mathbf{B}_d^{\mathbb{N}}(\Sigma, F) =]\alpha', +\infty[\subset] - s, +\infty[. \quad \alpha' \in \mathbb{Q}?$

•
$$\mathbf{B}_{g}^{\mathbb{N}}(\Sigma, F) =] - \infty, \alpha''[\subset] - \infty, -r[. \quad \alpha'' \in \mathbb{Q}?$$

$$\mathbf{B}^{\mathbb{N}}(\Sigma,F) = \mathbf{B}^{\mathbb{N}}_d(\Sigma,F) \cap \mathbf{B}^{\mathbb{N}}_g(\Sigma,F) =]\alpha', \alpha''[\subset] - s, -r[.$$

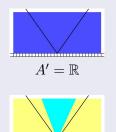
Example : F is right permutative if $\forall u \in \mathcal{A}^{[r,s-1]}, \overline{F}(u \cdot) : \mathcal{A} \to \mathcal{A} \text{ is bijective.}$ One has $\mathbf{B}_{d}^{\mathbb{N}}(\mathcal{A}^{\mathbb{Z}}, F) =]-s, +\infty[.$ There is other type of propagation of informations?

In short

$$\begin{split} A &= \{ \alpha \in \mathbb{R} : \emptyset \varsubsetneq Eq^{\alpha}(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}} \} \\ A' &= \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ equicontinuous of slope } \alpha \} \\ B &= \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ expansif of slope } \alpha \} \\ \text{right or left expansive directions} \\ & \text{Sensitive directions} \end{split}$$

Theorem

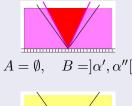
Let Σ be a weakly-specified subshift and $(\mathcal{A}^{\mathbb{Z}}, F)$ be a CA.

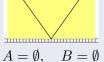


 $A = [\alpha', \alpha'']$

 $A' = \{\alpha\} \subset \mathbb{Q}$

 $A = \{\alpha\}$



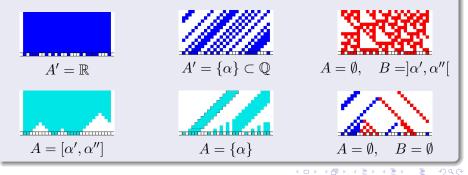


In short

$$A = \{ \alpha \in \mathbb{R} : \emptyset \subsetneq Eq^{\alpha}(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}} \}$$
$$A' = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ equicontinuous of slope } \alpha \}$$
$$B = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ expansif of slope } \alpha \}$$

Theorem

Let Σ be a weakly-specified subshift and $(\mathcal{A}^{\mathbb{Z}}, F)$ be a CA.



Some applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Notion of directional attractors
- Notion of directional entropy
- (F, σ) -invariant measures

Notion of attractor

• Limit set of $Y \subset \mathcal{A}^{\mathbb{Z}}$ is :

$$\Lambda_F(Y) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{m \ge n} F^m(Y)}.$$

• $Y \subset \mathcal{A}^{\mathbb{Z}}$ is an **attractor** if there exists an open set $U \subset \mathcal{A}^{\mathbb{Z}}$ such that :

$$F^n(\overline{U}) \subset U \ \forall n \in \mathbb{N} \text{ and } Y = \Lambda_F(U).$$

Theorem : Attractor's classification of Kurka and Hurley

 A_1^0 $(\mathcal{A}^{\mathbb{Z}},F)$ has a pair of disjoint attractors;

 A_2^0 $(\mathcal{A}^{\mathbb{Z}},F)$ has a unique minimal quasi-attractor;

 A_3^0 $(\mathcal{A}^{\mathbb{Z}}, F)$ has a unique minimal attracteur different from $\Lambda_F(\mathcal{A}^{\mathbb{Z}})$; A_4^0 $(\mathcal{A}^{\mathbb{Z}}, F)$ has a unique attracteur : $\Lambda_F(\mathcal{A}^{\mathbb{Z}})$;

Directional attractor

• Limit set of $Y \subset \mathcal{A}^{\mathbb{Z}}$ of slope α is :

$$\Lambda_F^{\alpha}(Y) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{m \ge n} F^m \circ \sigma^{\lfloor m \alpha \rfloor}(Y)}.$$

• $Y \subset \mathcal{A}^{\mathbb{Z}}$ is an **attractor** of slope α if there exists an open set $U \subset \mathcal{A}^{\mathbb{Z}}$ such that :

$$F^n \circ \sigma^{\lfloor n \alpha \rfloor}(\overline{U}) \subset U \ \forall n \in \mathbb{N} \quad \text{and} \quad Y = \Lambda_F^{\alpha}(U).$$

Theorem : Classification according a direction

- $A_1^\alpha \ (\mathcal{A}^{\mathbb{Z}},F)$ has a pair of disjoint attractors of slope α ;
- $A_2^\alpha \ \ (\mathcal{A}^{\mathbb{Z}},F)$ has a unique minimal quasi-attractor of slope α ;
- $A^\alpha_3~(\mathcal{A}^\mathbb{Z},F)$ has a unique minimal attracteur of slope α different from $\Lambda^\alpha_F(\mathcal{A}^\mathbb{Z})$;
- A_4^{lpha} $(\mathcal{A}^{\mathbb{Z}},F)$ has a unique attracteur de pente $lpha:\Lambda_F^{lpha}(\mathcal{A}^{\mathbb{Z}})$;

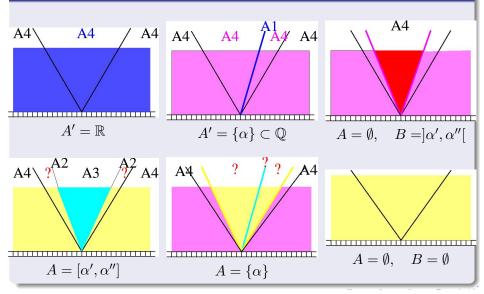
Links between sensitivity to initial conditions and attractors

Links according a direction Kurka

	A_{1}^{0}	A_{2}^{0}	A_{3}^{0}	A_{4}^{0}
$(\mathcal{A}^{\mathbb{Z}},F)$ equicontinuous	ок	Ø	Ø	ок
$\emptyset \varsubsetneq Eq^0(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}}$	ок	ОК	ОК	ОК
$(\mathcal{A}^{\mathbb{Z}},F)$ sensitive	ок	ОК	ОК	ОК
$(\mathcal{A}^{\mathbb{Z}},F)$ expansive	Ø	Ø	Ø	ОК

Links between sensitivity to initial conditions and attractors

Theorem



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Notion of directional attractors
- Notion of directional entropy
- (F, σ) -invariant measures

Directionnal entropy

Definition and study of $\alpha \to h_{top}(F, \alpha)$ by Milnor-96 and Boyle-Lind-97. Let $\mathcal{P} = \{U_1, ..., U_p\}$ be a partition :

$$H_{\text{top}}(\mathcal{P}) = \log(\min\{n \in \mathbb{N} : \exists i_1, \dots i_n \in [1, p], \mathcal{A}^{\mathbb{Z}} = U_{i_1} \cup \dots \cup U_{i_p}\}).$$

Definition

Let $\mathcal{P}_{[-l,l]}$ be the partition on centred words of length l.

$$h_{top}(F,\alpha) = \lim_{l \to \infty} \lim_{N \to \infty} \frac{1}{N} H_{top} \left(\bigvee_{n=0}^{N-1} F^{-n} \circ \sigma^{-\lfloor n\alpha \rfloor} \mathcal{P}_{[-l,l]} \right)$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Majoration

 $h_{top}(F, \alpha) \leq (\max(s + \alpha) - \min(r + \alpha, 0)) h_{top}(\sigma)$ where $\mathbb{U} = [r, s]$ is the neighbour of $(\mathcal{A}^{\mathbb{Z}}, F)$. We have equality if F is bipermutative.

Ask

There is other case of equality?

Some links with directional dynamics

• If
$$\alpha \in \mathbf{A}'(\Sigma, F)$$
 then $h_{top}(F, \alpha) = 0$.

- $\alpha \to h_{top}(F, \alpha)$ is convexe on $\mathbf{B}_g^{\mathbb{N}}(\mathcal{A}^{\mathbb{Z}}, F) \cup \mathbf{B}_d^{\mathbb{N}}(\mathcal{A}^{\mathbb{Z}}, F)$.
- $h_{top}(\sigma) > 0$ iff $h_{top}(F, \alpha) > 0 \ \forall \alpha \in \mathbf{B}_{g}^{\mathbb{N}}(F) \cup \mathbf{B}_{d}^{\mathbb{N}}(F)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Notion of directional attractors
- Notion of directional entropy
- (F, σ) -invariant measures

(F, σ) -invariant measures

 $A = \{ \alpha \in \mathbb{R} : \emptyset \subsetneq Eq^{\alpha}(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}} \}$ $A' = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ équicontinue de pente } \alpha \}$ $B = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ expansif de pente } \alpha \}$ right or left expansive directions

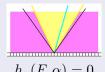
Soit $\mu \in \mathcal{M}_{F,\sigma}^{\mathrm{erg}}(\mathcal{A}^{\mathbb{Z}})$



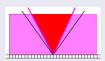
$$\mu = \delta_{\infty_a \infty}$$

 $\mu(B) > 0 \Rightarrow \mu = \delta_{\infty a^{\infty}}$

$$\mathcal{M}_{F,\sigma} = \sum_{i=0}^{p-1} F^{m+i} \mathcal{M}_{\sigma}$$



 $h_{\mu}(F,\alpha) = 0$



 $Ah_{\mu}(\sigma) \leq h_{\mu}(F,\alpha) \leq Bh_{\mu}(\sigma)$

The case of algebraic CA

A CA is said algebraic if $\mathcal{A}^{\mathbb{Z}}$ is a group and $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is a morphism. An algebraic CA is in the class \checkmark . Moreover, one has :

$$h_{\mu}(F,\alpha) = \left(\max(s+\alpha,0) - \min(r+\alpha,0)\right)h_{\mu}(\sigma)$$

There is a lot of rigidity results :

- General agebraic action : Furstenberg-67, Schmidt-95, Eisiendler-05
- Cellular automata : Host-Maass-Martínez-03, Pivato-05

Theorem Sablik-06

Let $(\mathcal{A}^{\mathbb{Z}}, F)$ be an algebraic CA, $\Sigma \subset \mathcal{A}^{\mathbb{Z}}$ a subgroup and $\mu \in \mathcal{M}_{\sigma, F}(\Sigma)$.

- μ (F, σ)-ergodic and $\mathcal{I}_{\mu}(\sigma) = \mathcal{I}_{\mu}(\sigma^{|\mathcal{A}|p_1})$
- $h_{\mu}(F) > 0$

• $D_{\infty}(F) = \bigcup_{n \in \mathbb{N}} \operatorname{Ker}(F^n)$ has dense infinite subgroupes σ -invariants Then $\mu = \lambda_{A\mathbb{Z}}$.

It is possible to obtain rigidity results for the class

(F, σ) -invariant measures

 $A = \{ \alpha \in \mathbb{R} : \emptyset \subsetneq Eq^{\alpha}(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}} \}$ $A' = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ équicontinue de pente } \alpha \}$ $B = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ expansif de pente } \alpha \}$ right or left expansive directions

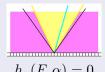
Soit $\mu \in \mathcal{M}_{F,\sigma}^{\mathrm{erg}}(\mathcal{A}^{\mathbb{Z}})$



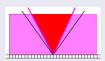
$$\mu = \delta_{\infty_a \infty}$$

 $\mu(B) > 0 \Rightarrow \mu = \delta_{\infty a^{\infty}}$

$$\mathcal{M}_{F,\sigma} = \sum_{i=0}^{p-1} F^{m+i} \mathcal{M}_{\sigma}$$



 $h_{\mu}(F,\alpha) = 0$

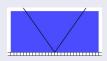


 $Ah_{\mu}(\sigma) \leq h_{\mu}(F,\alpha) \leq Bh_{\mu}(\sigma)$

(F, σ) -invariant measures

 $A = \{ \alpha \in \mathbb{R} : \emptyset \subsetneq Eq^{\alpha}(F) \varsubsetneq \mathcal{A}^{\mathbb{Z}} \}$ $A' = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ équicontinue de pente } \alpha \}$ $B = \{ \alpha \in \mathbb{R} : (\mathcal{A}^{\mathbb{Z}}, F) \text{ expansif de pente } \alpha \}$ right or left expansive directions Sensitive directions

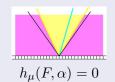
Soit $\mu \in \overline{\mathcal{M}_{F,\sigma}^{\operatorname{erg}}(\mathcal{A}^{\mathbb{Z}})}$

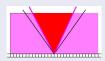


$$\mu = \delta_{\infty_a \infty}$$

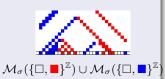
 $\mu(B) > 0 \Rightarrow \mu = \delta_{\infty a^{\infty}}$

$$\mathcal{M}_{F,\sigma} = \sum_{i=0}^{p-1} F^{m+i} \mathcal{M}_{\sigma}$$





 $Ah_{\mu}(\sigma) \le h_{\mu}(F,\alpha) \le Bh_{\mu}(\sigma)$

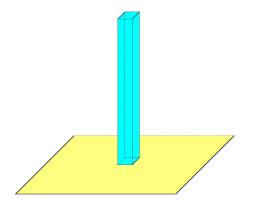


WHAT HAPPEN IN OTHER DIMENSIONS ?

Joint work with G. Theyssier

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

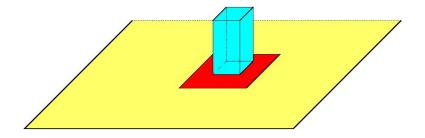
$$E_{\Sigma}^{\mathbb{N}}(x,\varepsilon) = \left\{ y \in \Sigma : \forall n \in \mathbb{N} \text{ on a } d_{C}(F^{n}(x),F^{n}(y)) < \varepsilon \right\}$$



 $B_{\Sigma}(x,\delta)\{y\in\Sigma: d_C(x,y)<\delta\}$

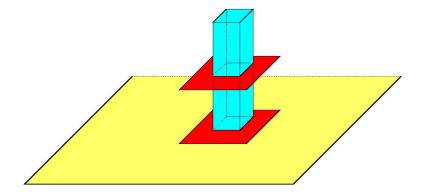
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$F:\mathcal{A}^{\mathbb{Z}^d} o \mathcal{A}^{\mathbb{Z}^d}$ cannot be expansive



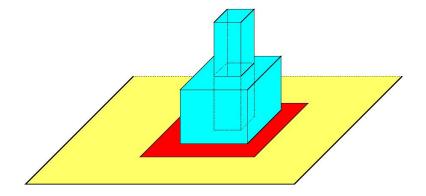
(ロ)、(型)、(E)、(E)、 E) の(の)

$F:\mathcal{A}^{\mathbb{Z}^d} o \mathcal{A}^{\mathbb{Z}^d}$ cannot be expansive



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$F:\mathcal{A}^{\mathbb{Z}^d} o \mathcal{A}^{\mathbb{Z}^d}$ cannot be expansive

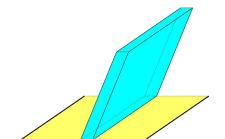


◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Expansivity as a $Z^d \times \mathbb{N}$ -action

Let Γ be a sub-vectorial space of $\mathbb{R}^d \times \mathbb{R}_+$. Denote $\Gamma^T = \{t \in \mathbb{R}^d \times \mathbb{R}_+ : \exists t' \in \Gamma \text{ tel que } ||t - t'|| < 1\}.$

 $E_{\Sigma}^{\Gamma}(x,\varepsilon) = \left\{ y \in \Sigma : \forall n \in \Gamma^{T} \cap \mathbb{Z}^{d} \times \mathbb{N} \quad d_{C}((\sigma,F)^{n}(x),(\sigma,F)^{n}(y)) < \varepsilon \right\}$



Definition

 (Σ,F) is expansive of slope Γ if $\exists \varepsilon > 0$ such that

$$\forall x \in \Sigma \quad E_{\Sigma}^{\Gamma}(x,\varepsilon) = \{x\}.$$

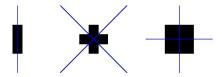
The direction of expansivity is defined by :

- the base, denoted $\Gamma_0 = \Gamma \cap \mathbb{R}^d \times \{0\}$
- the angle according the direction of the CA

Some properties

Such examples :

 $\overline{A} = \mathbb{Z}/p\mathbb{Z}$ and $F : A^{\mathbb{Z}^d} \to A^{\mathbb{Z}^d}$ is defined as the addition according the following neighborhood :



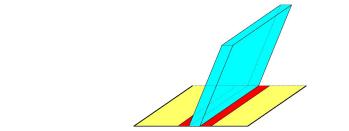
Some properties

- If a base is fixed, one obtains the results of unidimensional CA.
- Expansivity is possible just according a slpoe of codim 1
- The set of expansive direction is open.

Which directions are possible for the bases?

CA with equicontinuous points and sensitive CA

 $E_{\Sigma}^{\Gamma}(x,\varepsilon) = \{ y \in \Sigma : \forall n \in \Gamma^{T} \cap \mathbb{Z}^{d} \times \mathbb{N} \quad d_{C}((\sigma,F)^{n}(x),(\sigma,F)^{n}(y)) < \varepsilon \}$



 $B_{\Sigma}^{\Gamma_0}(x,\delta) = \{ y \in \Sigma : \forall n \in \Gamma_0^T \cap \mathbb{Z}^d \times \mathbb{N} \quad d_C((\sigma,F)^n(x), (\sigma,F)^n(y)) < \delta \}$

Définition

- $x \in Eq^{\Gamma}(\Sigma, F) \iff \forall \varepsilon > 0 \ \exists \delta \text{ such that } B^{\Gamma_0}(x, \delta) \subset E_{\Sigma}^{\Gamma}(x, \varepsilon).$
- (Σ, F) is sensitive if $\exists \varepsilon > 0$, $\forall \delta > 0, \exists y \in B^{\Gamma_0}(x, \delta) \cap \tilde{E}_{\Sigma}^{\Gamma}(x, \varepsilon)$.

Some properties

Let Γ be a sub-vectorial space. One defines :

- \mathcal{E}^{Γ} the set of CA which have equicontinuous points according to Γ ,
- \mathcal{S}^{Γ} the set of sensitive CA according to $\Gamma,$
- \mathcal{N}^{Γ} the set of CA which are neither in \mathcal{E}^{Γ} nor in \mathcal{S}^{Γ} .

$\boxed{\operatorname{codim}(\Gamma) = 1}$	$\operatorname{codim}(\Gamma) \geq 2$
• $\mathcal{N}^{\Gamma} = \emptyset$ • \mathcal{E}^{Γ} and \mathcal{S}^{Γ} are neither r.e. nor co-r.e. • If $F \in \mathcal{S}^{\Gamma}$ then the sensitivity constant is recursive.	• $\mathcal{N}^{\Gamma} \neq \emptyset$ • \mathcal{E}^{Γ} , \mathcal{S}^{Γ} and \mathcal{N}^{Γ} are neither r.e. nor co-r.e. • If $F \in \mathcal{S}^{\Gamma}$ then the sensitive constant cannot be recursive.

Equicontinuous CA as a $Z^d \times \mathbb{N}$ -action

 $E_{\Sigma}^{\Gamma}(x,\varepsilon) = \{ y \in \Sigma : \forall n \in \Gamma^{T} \cap \mathbb{Z}^{d} \times \mathbb{N} \quad d_{C}((\sigma,F)^{n}(x),(\sigma,F)^{n}(y)) < \varepsilon \}$

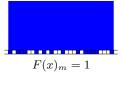
 $B_{\Sigma}^{\Gamma_0}(x,\delta) = \{y \in \Sigma : \forall n \in \Gamma_0^T \cap \mathbb{Z}^d \times \mathbb{N} \quad d_C((\sigma,F)^n(x),(\sigma,F)^n(y)) < \delta\}$

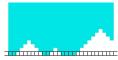
Définition

• (Σ, F) equicontinuous of slope Γ if and only if $\iff \forall \varepsilon > 0 \quad \exists \delta \text{ tel que } \forall x \in \Sigma \qquad B^{\Gamma_0}(x, \delta) \subset E_{\Sigma}^{\Gamma}(x, \varepsilon).$

Some properties for equicontinuity of slope Γ :

- If (Σ, F) is equicontinuous of slope Γ then (Σ, F) is equicontinuous of slope Γ' for every sub-vectorial space Γ' ⊃ Γ.
- If F is an equicontinuous CA according to a Γ (Γ maximal) then Γ is a rational subvectorial space.





 $F(x)_m = x_{m-1} \cdot x_m \cdot x_{m+1}$

