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Abstract. We consider digit systems (A,D), where A ∈ Qn×n is an expanding matrix and

the digit set D is a suitable subset of Qn. To such a system, we associate a self-affine set
F = F(A,D) that lives in a certain representation space KA. If A is an integer matrix, then

KA = Rn, while in the general rational case KA contains an additional solenoidal factor. We

give a criterion for F to have positive Haar measure, i.e., for being a rational self-affine tile. We
study topological properties of F and prove some tiling theorems. Our setting is very general

in the sense that we allow (A,D) to be a nonstandard digit system. A standard digit system

(A,D) is one in which we require D to be a complete system of residue class representatives
w.r.t. a certain naturally chosen residue class ring. Our tools comprise the Frobenius normal

form and character theory of locally compact abelian groups.

1. Introduction

This paper is a contribution to the theory of self-affine tiles whose foundations were established
in the early 1990s by Bandt [3], Kenyon [12], Gröchenig and Haas [8], as well as Lagarias and
Wang [16, 17, 18] and which has gained a lot of attention in the past decades.

We recall the definition of a self-affine tile. Let A ∈ Rn×n be an expanding matrix (i.e., all
its eigenvalues lie outside the unit circle) with integer determinant, and let D ⊂ Rn be a digit set
with |D| = |detA|. Then we call the pair (A,D) a digit system. By Hutchinson [9], there exists a
unique nonempty compact subset F = F(A,D) of Rn that satisfies the set equation

(1.1) AF =
⋃
d∈D

(F + d).

If F has positive Lebesgue measure, it is called a self-affine tile. Of special interest are the
so-called integral self-affine tiles (see [16]), which are obtained when the matrix and the digits
have integer coefficients. By Bandt [3], the Lebesgue measure of an integral self-affine tile F is
certainly positive if (A,D) is a standard digit system, meaning that D is a complete set of residue
class representatives of Zn/AZn. One very famous example of such an integral self-affine tile is
Knuth’s twin dragon (see [14, p. 206]), whose boundary is a fractal set. Lagarias and Wang [16, 17]
also regarded the matter of (A,D) being nonstandard. In this case, for a given matrix A ∈ Zn×n
it is a highly nontrivial problem to characterize all digit sets D for which F(A,D) has positive
Lebesgue measure (cf. [2, 19]).

Rational self-affine tiles are introduced by the second and thirds authors in [26]. They constitute
a natural generalization of integral self-affine tiles to rational matrices which no longer need to have
an integer determinant. In particular, a rational self-affine tile is defined in terms of an expanding
matrix in Qn×n with irreducible characteristic polynomial and a digit set taken from a Z-module
defined in terms of this matrix. In the present paper we extend the theory of rational self-affine tiles
by taking arbitrary expanding rational matrices (this includes the “reducible case”, as is referred
to in [26]), and allowing nonstandard digit systems, as well as defining a representation space in
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a somewhat more general way. We provide results in the spirit of Lagarias and Wang [16, 17] for
this setting.

Let A ∈ Qn×n be an expanding matrix and let

Zn[A] :=

∞⋃
k=1

(
Zn +AZn + · · ·+Ak−1Zn

)
be the smallest nontrivial A-invariant Z-module containing Zn. We first define a digit system
(A,D) where A acts as a base and D ⊂ Zn[A] is some finite digit set, and explore its properties. In
this digit system, the set Zn[A] plays the role of Zn in the sense that (A,D) can be used to represent
elements of Zn[A]. We will always assume that the digit set D satisfies |D| = |Zn[A]/AZn[A]|,
which turns out to be a natural size for a digit set (such digit systems are studied for instance
in [10]). After that, in order to set up the definition of our tiles, we introduce a representation
space of the form KA := Rn × Zn((A−1)), where Zn((A−1)) is a valuation ring of certain Laurent
series of powers of A−1 with coefficients in Zn. The ring Zn((A−1)) is a solenoid, and in the
one-dimensional case it is isomorphic to the ring of b-adic numbers for some b ∈ N (which is even
a field when b is a prime number). We establish a suitable “diagonal” embedding ϕ that maps the
elements of Zn[A] into KA in a natural way. This allows us to define the main object of study of
this paper: the rational self-affine tile F = F(A,D) ⊂ KA, which arises as the unique nonempty
compact solution of the set equation

AF =
⋃
d∈D

(F + ϕ(d)),

and can be interpreted as the set of “fractional parts” of expansions in base A with digits in D
(embedded in KA). Since we want to study tilings of KA induced by F , we require rational self-
affine tiles to have positive measure, which always holds when D is a complete set of residue class
representatives of Zn[A]/AZn[A], and in this case we call (A,D) a standard digit system. However,
we also allow (A,D) to be nonstandard, and give a criterion in terms of the digits to guarantee
positive measure of F in this general setting. We prove some topological properties of rational
self-affine tiles, as well as the existence of two tilings given by translations of F : the first one has
a translation set defined in terms of the digits D, and the second one is a multiple tiling where
the translation set is a lattice obtained from the ring Zn[A] by embedding it into the space KA.
Before arriving to the proof of the existence of the multiple tiling, we present a careful analysis of
the character group of the locally compact abelian group KA. The article [24] deals with a special
one-dimensional case of what we present in this paper. It is accessible to a general audience and
serves as an introduction to the topic.

Our theory presents three main features that make its study difficult and rich. First of all, we
treat the n-dimensional case: when dealing with matrices, computing quotients is not always so
simple, and we make use of some machinery of linear algebra (like the Frobenius normal form)
to solve some of these issues. Secondly, we deal with a space that has a A−1-adic factor, and
on it we define an ultrametric. More challenges arrive when we study the character group of the
representation space. Finally, we consider nonstandard digit sets. This implies that sometimes
we lose the group structure when considering certain digit expansions, which makes it harder to
define tilings.

2. Setting and definitions

In this section we introduce digit sets and present a way to compute their cardinality. After
that we define the representation space, and finally arrive at the definition of a rational self-affine
tile.

What we are doing generalizes well-known facts on “ordinary” α-ary expansions. In particular,
let α be an integer with |α| > 1. Every real number has an expansion

±(dmdm−1 . . . d0.d−1d−2 . . .)α := ±
m∑

j=−∞
djα

j
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in base α, where every dj is a digit taken from the set {0, 1, . . . , |α| − 1} (the sign “±” is required
only for positive α). We can associate to this digit system the set of integer expansions, that is,
the set of numbers that can be expressed using only nonnegative powers of the base α; it equals
the lattice Z. Besides that there is the set of fractional parts, namely, the numbers that can
be expressed using only negative powers of the base α (excluding the added “ − ” sign at the
beginning). This set is a compact interval given by J = [0, 1] for α > 0 and J =

[
α

1−α ,
1

1−α
]

for

α < 0. The collection {J + z | z ∈ Z} forms a tiling of R, and this property geometrically reflects
the fact that almost every real has a unique α-ary expansion. In our general setting, Zn[A] will
play the role of Z, the rational self-affine tile F will play the role of [0, 1], and KA will play the
role of R.

2.1. Digit systems with rational matrices. Many generalizations of α-ary expansions (also
known as radix expansions or radix representations) have been studied. Kempner [11] and later
Rényi [22] proposed expansions with respect to nonintegral real bases. Knuth [13] introduced
complex bases and related them to fractal sets. Tilings of Rn arising form radix expansions were
studied by Vince [27], and Kovács [15] considered digit systems in finite dimensional Euclidean
spaces. Akiyama et al. [1] introduced a type of expansion where the base is a rational number, and
generalizations have been studied in [4] and [25]. In [26], the authors considered digit expansions
where the base is an algebraic number, which is equivalent to taking expansions w.r.t. rational
matrices with irreducible characteristic polynomial. The setting from the present paper is a
generalization of the one in [26] for arbitrary expanding rational matrices.

Following Kovács [15], given an integer matrix A ∈ Zn×n, we can consider expansions in base
A with digits in a certain set D ⊂ Zn, meaning we look at ways of expanding a vector x ∈ Rn in
the form

(2.1) x =

k∑
j=−∞

Ajdj , dj ∈ D,

and this is linked to the study of integral self-affine tiles that we have mentioned before (see [16]).
We need the assumption that A is expanding in order for this series to converge.

If we consider a rational matrix A ∈ Qn×n, then Zn[A] is the natural generalization of Zn (we
refer to [10] for more on rational matrix digit systems). This leads to the following definition.

Definition 2.1 (Digit system). Let A ∈ Qn×n be an expanding matrix and let D ⊂ Zn[A] be
such that |D| = |Zn[A]/AZn[A]|. Then we say that (A,D) constitutes a digit system, where A
is the base and D is the digit set. When D is a complete set of residue class representatives of
Zn[A]/AZn[A], we say that (A,D) is a standard digit system (following [16, p. 163]). Otherwise,
we say that (A,D) is a nonstandard digit system.

In connection with digit systems, finite expansions are desirable. For digit systems (A,D),
the finiteness property, stating that every vector x ∈ Zn[A] has a finite expansion of the form
x = Akdk + · · ·+Ad1 + d0 has been studied extensively (see [10] and the references given there).
It is easily seen that the requirement that D is a complete system of residue class representatives
of Zn[A]/AZn[A] is a necessary, but in general not sufficient, condition for (A,D) to have the
finiteness property. Eventually periodic expansions have also been investigated.

Computing the size of a digit set for a given expanding matrix A ∈ Qn×n amounts to computing
the order of the quotient group Zn[A]/AZn[A], and this is not always straightforward. From here
onwards, set

(2.2) a := |Zn[A]/AZn[A]|, b := |Zn[A−1]/A−1Zn[A−1]|.

We now show how to make use of the Frobenius normal form of A to compute a and b, and we
prove that |detA| = a

b , which will be crucial later. Let A ∈ Qn×n with characteristic polynomial
χA be given. Consider the space Qn regarded as a finitely generated Q[t]-module with the action
of t given by multiplication by A, that is, if v ∈ Qn then t · v := Av, and the action can be linearly
extended to all elements in Q[t]. According to the structure theorem for finitely generated modules
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over principal ideal domains (see [5, Chapter 12, Theorem 6]), there exists an isomorphism of the
form

Qn '
k⊕
i=1

Q[t]/(pi),

where pi ∈ Q[t] are the so-called invariant factors of Qn, with the divisibility properties p1 | p2 |
. . . | pk | χA. The polynomials pi are assumed to be monic, and with this assumption they are
unique. This implies that A is similar to a block diagonal matrix F = diag(C1, . . . .Ck), where
Ci is the companion matrix of pi (1 6 i 6 k). F is the well-known Frobenius normal from of A,
also called rational canonical form, see [5, Section 12.2]. Using this notation, we get the following
result which shows how to compute the value of a.

Proposition 2.2. Let A ∈ Qn×n be given, let pi (1 6 i 6 k) be the corresponding invariant
factors, and consider the integer polynomials qi = cipi ∈ Z[t], where each ci ∈ Z is chosen
so that qi has coprime coefficients. Let q∗i ∈ Z[t] be the reciprocal polynomial of qi, namely
q∗i (t) := tdeg (qi)qi(t

−1). Then

(2.3) a =

k∏
i=1

|qi(0)|, b =

k∏
i=1

|q∗i (0)|,

and |detA| = a
b .

Proof. Let F = diag(C1, . . . , Ck) be the Frobenius normal form of A. Then it is clear that

(2.4) a =

k∏
i=1

|Zdeg(qi)[Ci]/CiZdeg(qi)[Ci]|.

Let C ∈ Qm×m be the companion matrix of some polynomial p ∈ Q[t] and let q = cp ∈ Z[t], where
c ∈ Z is chosen so that q has coprime coefficients. We claim that

(2.5) Zm[C] ' Z[t]/(q).

To prove this, let v ∈ Zm[C] be given; then it can be expressed as v =
∑L
j=0 C

jvj with vj ∈ Zm,
L > 0. For 1 6 j 6 m, denote by ej ∈ Qm the j-th canonical basis vector. Clearly, each vj can
be expressed in the canonical basis with integer coefficients. Because C is a companion matrix, it
follows that Cej = ej+1 for 1 6 j < m, so all this yields that v is of the form

(2.6) v =
∑̀
j=0

bjC
je1,

for some ` ∈ N minimal and b0, . . . , b` ∈ Z. If ` > m, we will show that we can take bm, . . . , b` ∈
{0, . . . , |q∗(0)| − 1} (here, q∗ ∈ Z[t] is the reciprocal polynomial of q, so q∗(0) corresponds to the
leading coefficient of q). Indeed, note that q(C) = 0 because C is the companion matrix of q.
Suppose that b` is not in {0, . . . , |q∗(0)|−1}; then one can add or subtract C`−mq(C) = 0 in order
to obtain another expression on the right side of (2.6), without altering the value of v. This can
be done the appropriate number of times, so we can assume w.l.o.g. that b` ∈ {0, . . . , |q∗(0)| − 1}.
Repeating this for ` − 1, ` − 2, . . . ,m, one arrives at bm, . . . , b` ∈ {0, . . . , |q∗(0)| − 1}, and the
representation (2.6) with this property and ` minimal is unique.

By [25, Lemma 4.1] each polynomial r ∈ Z[t]/(q) can be expressed uniquely as r = r′ +∑`
j=m rjt

j mod q, with r′ ∈ Z[x], deg(r′) < m, ` ∈ N and rm, . . . , r` ∈ {0, . . . , |q∗(0)| − 1}. Using
this, one easily checks that

h : Zm[C]→ Z[t]/(q);
∑̀
i=0

biC
ie1 7→

∑̀
i=0

bit
i

is an isomorphism and the claim in (2.5) is proved.
Because t h(G) = h(CG) for any G ∈ Zm[C], this isomorphism implies that

Zm[C]/CZm[C] ' Z[t]/(q, t).
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It is easy to check that |Z[t]/(q, t)| = |q(0)| (see [25, p. 1460]) and, hence, we have that

(2.7) |Zm[C]/CZm[C]| = |q(0)|.
Applying (2.7) for q = qi (1 6 i 6 k) in (2.4), the left equation of (2.3) follows. The right equation
of (2.3) is proved in the same way by replacing A by A−1. The assertion detA = a

b follows from
(2.3) (recall the definition of qi and the fact that each pi is monic), because

|detA| =
k∏
i=1

|detCi| =
k∏
i=1

|pi(0)| =
k∏
i=1

|qi(0)|
|q∗i (0)|

=
a

b
. �

2.2. The representation space. Properties of digit systems and digit expansions can be reflected
geometrically via self-affine sets and tilings. The space KA, defined in what follows for a given
A ∈ Qn×n, will turn out to be a natural space where these sets and tilings can be defined. Suppose
that we wanted to define a set F(A,D) ⊂ Rn satisfying (1.1). In order to define a tiling, we would
require the union on the right side of (1.1) to be essentially disjoint. We know that the action of
A scales the Lebesgue measure of a set by |detA|, so if A has a nonintegral determinant and F
has positive measure, we would need D to have a nonintegral amount of digits, which is of course
not doable. We will show that the action of A in KA multiplies the Haar measure of a set by a,
where a ∈ N is as in (2.2).

Standard digit systems (A,D) where the characteristic polynomial χA of A ∈ Qn×n is irreducible
are considered in [26]. Rational self-affine tiles are introduced as subsets of a representation space
of the form Rn ×

∏
pKp, where each Kp is a completion of a number field K (defined in terms of

χA) with respect to a certain absolute value | · |p. The representation space KA from the present
paper is a generalization of this, and can be defined in a simpler way. In the irreducible case, both
settings are isomorphic.

Let A ∈ Qn×n be expanding. For convenience of notation, from here onwards we set

B := A−1.

Consider the ring

Zn(B) =
⋃
k>1

(B−kZn +B−k+1Zn + · · ·+BkZn)

(note that Zn(A) = Zn(B)). We define on Zn(B) the B-adic valuation ν : Zn(B)→ Z ∪ {∞} as

(2.8) ν(y) :=

{
min{k ∈ Z | y ∈ BkZn[B] \Bk+1Zn[B]}, y 6= 0,

∞, y = 0.

On Zn(B) the B-adic metric is defined by

(2.9) dB(y, y′) := b−ν(y−y′),

for b as in (2.2) and y, y′ ∈ Zn(B), with the convention that b−∞ = 0.

Definition 2.3 (B-adic series). We define the space Zn((B)) of B-adic series as the completion
of Zn(B) with respect to the metric dB .

We extend the metric dB to the completion Zn((B)), and hence we extend the B-adic valuation
ν to Zn((B)) so that it satisfies (2.9). Then, every nonzero y ∈ Zn((B)) can be expressed as
Laurent series

(2.10) y =

∞∑
j=ν(y)

Bjyj , yj ∈ Zn,

of powers of B with coefficients in Zn, which converges w.r.t. the metric dB . Then ν(y) is the
smallest index such that y has an expansion (2.10) with yν(y) 6= 0. We denote by Zn[[B]] the
subring of Zn((B)) consisting of points y ∈ Zn((B)) with ν(y) > 0, the ring of power series in B
with coefficients in Zn. The B-adic metric satisfies the ultrametric inequality, namely

dB(y, y′) 6 max{dB(y, y′′),dB(y′′, y′)}
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for every y, y′, y′′ ∈ Zn((B)). This metric turns Zn((B)) into a complete separable space, which
is also a locally compact topological group. Thus there is a Haar measure µB on Zn((B)) which
is normalized in a way that µB(Zn[[B]]) = 1, and we call it the B-adic measure. If M ⊂ Zn((B))
is a measurable set, then

(2.11) µB(AkM) = bkµB(M).

Remark 2.4. Let n = 1. In this case, A = a
b where a and b are coprime integers. Suppose b > 2.

We obtain that Zn((B)) ' Qb, where Qb is the ring of b-adic numbers, and Zn[[B]] ' Zb, where
Zb is the ring of b-adic integers.

Definition 2.5 (The representation space). Given an expanding matrix A ∈ Qn×n, define the
representation space KA as

KA := Rn × Zn((B)).

We endow the space KA with the following structures:

(1) It inherits the structure of an additive group from its cartesian factors.
(2) Consider the group of matrices given by

Z[A] :=
⋃
k>1

(ZA−k + ZA−k+1 + · · ·+ ZAk).

Then Z[A] acts on KA by multiplication, i.e., G (x, y) = (Gx,Gy) if G ∈ Z[A] and (x, y) ∈
KA.

(3) We define the metric

d((x, y), (x′, y′)) := max{‖x− x′‖,dB(y, y′)},

for (x, y), (x′, y′) ∈ KA, where ‖·‖ denotes the Euclidean norm in Rn and dB is the B-adic
metric in Zn((B)). This turns KA into a locally compact topological group. It is easy to
check that, for every closed ball Br(x, y) of radius r > 0 and center (x, y) ∈ KA, there is
a decomposition

Br(x, y) = Br(x)×Br(y),

into closed balls on each respective space. This characterizes the topology of KA.
(4) We define a measure µ in KA as the product measure

µ := λ× µB ,

with λ being the Lebesgue measure in Rn and µB the B-adic measure in Zn((B)). Then
µ is the Haar measure on KA satisfying µ([0, 1]× Zn[[B]]) = 1.

Remark 2.6. Note that, when A ∈ Zn×n is an integer matrix, the space Zn((B)) is trivial and
plays no role, and hence KA = Rn. However, KA = Rn may also happen in the noninteger case:

for example, if A =

(
2 1

2
0 3

)
we have b = 1. Suppose b = 1, i.e., that Zn[B]/BZn[B] is trivial.

Then by Lemma 2.2 detA = a is an integer. The results presented in Section 3 are proven by
Lagarias and Wang in [17] for real expanding matrices with integer determinant. For this reason,
in all that follows we assume b > 2.

Lemma 2.7. If M ⊂ KA is a measurable set, then µ(AM) = aµ(M).

Proof. Consider a measurable subset of KA of the form M1 ×M2, where M1 ⊂ Rn and M2 ⊂
Zn((B)) are both measurable sets. We have seen in Proposition 2.2 that detA = a

b . Then

µ(A(M1 ×M2)) = λ(AM1)µB(AM2) =
a

b
λ(M1) b µB(M2) = aµ(M1 ×M2).

Since µ = λ×µB is a product measure, the σ-algebra of µ-measurable sets is generated by sets of
the form M1 ×M2. Therefore, if M ⊂ KA is measurable we have µ(AM) = aµ(M). �
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The previous lemma implies that, in some sense, the base A has “enough space” for a digits
when the digit system is embedded in KA. In fact, when considering a rational matrix A with
integer determinant, it suffices to take |D| = |detA|, because A acts in some sense like an integer
matrix: the action of A scales the measure of a set by an integer factor. When A has nonintegral
determinant, it turns turns out that A acts in KA like an integer matrix, and that is why this
space is appropriate for our purposes. This relation between the measure and the cardinality of
the digit set will be important in all that follows.

2.3. Rational self-affine tiles. We proceed to introduce a set F associated to the digit system
(A,D) that reflects features of its structure. It can be regarded as the set of “fractional parts” of
the digit system, in the sense that it plays the same role as the interval [0, 1] does for the decimal
digit system. In Section 3 we will study topological properties of F .

We need the following lemma, which is in the spirit of Lind [20].

Lemma 2.8. Let A ∈ Qn×n be expanding and assume b > 2, with b as in (2.2). Then there exists
a metric ` on KA w.r.t. which the action of B = A−1 is a contraction. In particular, there exists
0 6 κ < 1 such that

(2.12) `(B (x, y), B (x′, y′)) 6 κ `((x, y), (x′, y′)) ((x, y), (x′, y′) ∈ KA).

Proof. Let Spec(A) denote the set of eigenvalues of A. Since A is expanding, there exists ρ ∈ R
such that 1 < ρ < min{|η| | η ∈ Spec(A)}. For x ∈ Rn, define

(2.13) ‖x‖′ :=

∞∑
k=0

ρk ‖Bkx‖.

Since all the eigenvalues of ρB = ρA−1 are strictly smaller than 1 in modulus, the series on the
right hand side of (2.13) converges and ‖ · ‖′ becomes a norm in Rn that satisfies

‖B x‖′ =
1

ρ

∞∑
k=1

ρk ‖Bk x‖ 6 1

ρ
‖x‖′.

Also, for all y, y′ ∈ Zn((B)), it follows from the definition of the B-adic metric that dB(By,By′) =
1
b dB(y, y′). Let (x, y), (x′, y′) ∈ KA. Define on KA the metric ` given by

`((x, y), (x′, y′)) := max{‖x− x′‖′,dB(y, y′)}.

Then (2.12) follows with κ := max{ 1
ρ ,

1
b} < 1. �

Note that d and ` are equivalent, because ‖ · ‖′ is equivalent to ‖ · ‖.
We now introduce a suitable way to embed our digit system into the representation space KA.

Define the diagonal embedding ϕ as

ϕ : Zn(B)→ KA; x 7→ (x, x).

Definition 2.9 (Rational self-affine tile). Let (A,D) be a digit system. Define F = F(A,D) ⊂ KA
as the unique nonempty compact set satisfying the set equation

(2.14) AF =
⋃
d∈D

(F + ϕ(d)).

If µ(F) > 0, then F is called a rational self-affine tile.

Because A is expanding, Lemma 2.8 implies that the mapping

KA → KA; (x, y) 7→ A−1((x, y) + ϕ(d))

is a contraction for each d ∈ D. Let H(K) be the family of nonempty compact subsets of KA, and
consider the map

(2.15) Ψ : H(K)→ H(K); X 7→
⋃
d∈D

A−1(X + ϕ(d)).
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By Hutchinson [9], there is a unique nonempty compact set which is a fixed point of Ψ , hence F
is well defined. This set is the attractor of an iterated function system, meaning that it is the
Hausdorff limit of the sequence of compact sets {Ψk(X)}k≥1, for any compact set X.

The set F can be interpreted as the set of “fractional parts” of the digit system (A,D) embedded
in KA; that is, every point of F can be expressed in base A with digits in ϕ(D) using only negative
powers of the base. In fact, F is given explicitly by

(2.16) F =
{ ∞∑
j=1

A−jϕ(dj) | dj ∈ D
}
.

Indeed, it is easy to see that F is nonempty, bounded, and satisfies (2.14). The fact that F is
closed follows by a Cantor diagonal argument.

Note that F is self-affine in the sense that it can be written as the union of a = |D| contracted
affine copies of itself, because (2.14) is equivalent to F = A−1(F + ϕ(D)). When F has zero
measure, it is a (generalization of a) Cantor set.

Suppose F has positive measure. In order to define a tiling, we want the union
⋃
d∈D(F+ϕ(d))

to be essentially disjoint (that is, disjoint up to a µ-measure zero set); since multiplication by A on
KA enlarges the measure by a factor of a, then it is necessary for D to have exactly a elements. We
will show in the next section that, if (A,D) is a standard digit system, then F(A,D) has positive
measure.

Remark 2.10. W.l.o.g. we will always assume that 0 ∈ D. This can be done because replacing
D by D − v, where v ∈ Zn[A] is a constant vector, means that F(A,D − v) is a translation of
F(A,D), hence it is equivalent when we study the existence of tilings.

3. Results on rational self-affine tiles

Let (A,D) be a digit system and let KA be the representation space with metric d and Haar
measure µ as before. In this section, we give some equivalent topological and combinatorial
conditions for the set F(A,D) to have positive measure and we prove that, whenever F(A,D) is a
rational self-affine tile, it induces a tiling. We also study some topological properties and present
an example.

3.1. Properties of rational self-affine tiles and a tiling theorem. We introduce some defi-
nitions before stating the results. To denote blocks of digits, let

(3.1) Dk :=
{
d0 +Ad1 + · · ·+Ak−1dk−1 | d0, . . . , dk−1 ∈ D

}
and D∞ :=

⋃
k>1

Dk.

From the set equation (2.14), we deduce the iterated set equation

(3.2) AkF =
⋃
d∈Dk

(F + ϕ(d)).

Definition 3.1 (Uniform discreteness). We say that a set M ⊂ KA is uniformly discrete if there
exists r > 0 such that every open ball of radius r in KA contains at most one point of M .

Our first result is a criterion for F(A,D) to have positive measure formulated in terms of D. It
is an extension of [17, Theorem 1.1] and [12, Theorem 10] to the case of rational self-affine tiles.

Theorem 3.2. Let (A,D) be a digit system, and let F = F(A,D) ⊂ KA. Then F has positive
measure if and only if for every k > 1, all ak expansions in Dk are distinct, and ϕ(D∞) is a
uniformly discrete subset of KA.

Proof. We omit some details of the proof, since the one in [17, p. 32 – 34] is similar, although it
is provided in the setting of self-affine tiles in Rn.

Assume first that ϕ(D∞) is a uniformly discrete set and that all the elements in Dk are dis-
tinct for every k > 1. Recall the metric ` and the constant 0 6 κ < 1 defined in Lemma 2.8.
Then `(B (x, y), 0) 6 κ `((x, y), 0) for every (x, y) ∈ KA. Consider the closed ball B′r(0) :=
{(x, y) ∈ KA | `((x, y), 0) 6 r}, and let (x, y) ∈ B′r(0). Let Ψ be the map defined in (2.15);
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then by Hutchinson [9], F is the Hausdorff limit of the sequence {Ψk(B′r(0))}k>1. Suppose that
r > κ

1−κ maxd∈D{`(ϕ(d), 0)}; then Ψ(B′r(0)) ⊂ B′r(0). Consequently, by Lebesgue’s dominated
convergence theorem, we get

µ(F) = lim
k→∞

µ(Ψk(B′r(0))).

It suffices to find a set of positive measure contained in every Ψk(B′r(0)). Since ϕ(D∞) is uni-
formly discrete, there exists δ > 0 such that for every (x, y) 6= (x′, y′) in ϕ(D∞) it holds that
`((x, y), (x′, y′)) > δ. For 0 < ε < min{ δ2 , r}, consider the closed ball B′ε(0). By hypothesis, Dk
has ak distinct elements for all k, and all sets of the form B′ε(0) + ϕ(d) for d ∈ Dk are pairwise
disjoint. Therefore µ(Ψk(B′ε(0))) = µ(B′ε(0)) for every k, and hence

µ(F) > lim
k→∞

µ(Ψk(B′ε(0))) = µ(B′ε(0)) > 0.

For the converse, assume µ(F) > 0. Then

akµ(F) = µ(AkF) = µ
( ⋃
d∈Dk

(F + ϕ(d))
)
6
∑
d∈Dk

µ(F + ϕ(d)) 6 akµ(F),

so all the terms are equal. Hence, |Dk| = ak and the union is essentially disjoint, meaning that
for d 6= d′ in Dk, we get

(3.3) µ((F + ϕ(d)) ∩ (F + ϕ(d′))) = 0.

It remains to show that ϕ(D∞) is uniformly discrete. Suppose this was not the case, then we
can find a sequence {(dl, d′l)}l>1 where, dl and d′l are distinct elements of some Dkl for each l > 1,
and such that

lim
l→∞

d(ϕ(dl), ϕ(d′l)) = 0.

If µ(F) > 0, then by Federer [7, page 156, Corollary 2.9.9], there exists a Lebesgue point (x∗, y∗) ∈
F . Given ε > 0, this implies the existence of a sufficiently small r for which

(3.4) µ(Br(x
∗, y∗) ∩ F) > (1− ε)µ(Br(x

∗, y∗)).

Here, Br(x
∗, y∗) denotes the closed ball of center (x∗, y∗) and radius r w.r.t. the metric d. Let

0 < ε′ < r, and consider (x, y) ∈ KA such that d((x, y), 0) < ε′ < r. Then

µ(Br(x
∗, y∗) ∩ (F + (x, y))) > µ(Br−ε′((x

∗, y∗) + (x, y)) ∩ (F + (x, y)))

> (1− ε)µ(Br−ε′(x
∗, y∗)).

(3.5)

Recall that b satisfies (2.11). Note that Br(y
∗) = Bbblogb rc(y∗), and define K := blogb(r)c −

blogb(r − ε′)c > 0. Then y ∈ Br(y
∗) if and only if BKy ∈ Br−ε′(B

Ky∗). Hence,

µ(Br−ε′(x
∗, y∗)) = λ

(r − ε′
r

Br(x
∗)
)
µB(BKBr(y

∗)) =
(r − ε′

r

)n
b−Kµ(Br(x

∗, y∗)),

and thus for the appropriate value of ε′′ > 0 it follows from (3.5) that

(3.6) µ(Br(x
∗, y∗) ∩ (F + (x, y))) > (1− ε′′)µ(Br(x

∗, y∗)).

By inclusion-exclusion and combining (3.4) and (3.6), we get

µ((F + (x, y)) ∩ F) > (1− ε− ε′′)µ(Br(x
∗, y∗) > 0

for (x, y) sufficiently close to 0. This implies that, for large enough l,

µ((F + ϕ(dl)) ∩ (F + ϕ(d′l)) = µ(F) ∩ (F + ϕ(d′l − dl)) > 0,

which is a contradiction. �

Corollary 3.3. If (A,D) is a standard digit system, then F(A,D) has positive measure.

The second result of this section gives some topological equivalences for F being a rational
self-affine tile. It is in the spirit of [17, Theorem 1.1].

Theorem 3.4. Let (A,D) be a digit system and let F = F(A,D) ⊂ KA. The following assertions
are equivalent:
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(i) F has positive measure.
(ii) F has nonempty interior.

(iii) F is the closure of its interior, and its boundary ∂F has measure zero.

Proof. (iii)⇒ (ii)⇒ (i) is trivial.

(ii)⇒ (iii) is analogous to the proof found in [17, p. 30 – 32].

(i) ⇒ (ii) : Because F has positive measure, it has a Lebesgue point (x∗, y∗) satisfying (3.4).
This implies that we can consider a sequence εk ↘ 0 together with a sequence of radii rk ↘ 0
such that, for every l > 0,

(3.7) µ(Al(Brk(x∗, y∗) ∩ F)) > (1− εk)µ(AlBrk(x∗, y∗)).

Claim 1: For every index k there exists a large enough lk > 0 and (u(k), v(k)) ∈ KA such that
B1(u(k), v(k)) ⊂ AlkBrk(x∗, y∗) with

µ(B1(u(k), v(k)) ∩AlkF) > (1− C εk)µ(B1(u(k), v(k))),

where (x∗, y∗) is a Lebesgue point of F and C > 0 is a constant depending only on the space KA.
To prove the claim, we draw on ideas from [17, p. 35]. With a slight abuse of notation, we will

use Br(·) to denote closed balls of radius r in each respective space. Fix k, and note that, since A is
expanding, AlBrk(x∗) ⊂ Rn is an ellipsoid whose shortest axis’ length goes to infinity as l goes to
infinity. Consider lk > 0 large enough so that b−lk 6 rk, and such that the ellipsoid AlkBrk(x∗) has
a shortest axis greater than 4. Define Ek := {x ∈ AlkBrk(x∗) | d(x, ∂(AlkBrk(x∗))) > 1} as the set
of points of AlkBrk(x∗) whose (Euclidean) distance from the boundary is at least 1. Consider the
set 2Ek−x∗, obtained by doubling Ek and centering around x∗. Then Ek ( AlkBrk(x∗) ( 2Ek−x∗
and λ(AlkBrk(x∗)) 6 λ(2Ek − x∗) = 2nλ(Ek).

Consider the compact subset of KA given by Uk := Ek ×AlkBrk(y∗), which is trivially covered
by the collection of unit balls G := {B1(u, v) | (u, v) ∈ Uk}. Let {B1(u1, v1), . . . ,B1(us, vs)}
be a maximal disjoint subcollection of G. Then Uk ⊂

⋃s
j=1 B2(uj , vj) because of the following

reason: let (x, y) ∈ Uk. If B1(x, y) /∈ G, then by maximality there exists j ∈ {1, . . . , s} with
B1(x, y) ∩B1(uj , vj) 6= ∅. Take (x′, y′) ∈ B1(x, y) ∩B1(uj , vj). Then

d((x, y), (uj , vj)) 6 d((x, y), (x′, y′)) + d((x′, y′), (uj , vj)) 6 2.

This yields

µ(AlkBrk(x∗, y∗)) = λ(AlkBrk(x∗))µB(AlkBrk(y∗))

6 2nλ(Ek)µB(AlkBrk(y∗))

= 2nµ(Uk) 6 2n
s∑
j=1

µ(B2(uj , vj)).

(3.8)

Note that λ(B2(uj)) = 2nλ(B1(uj)) while µB(B2(vj)) = bblogb 2cµB(B1(vj)); hence

s∑
j=1

µ(B2(uj , vj)) = 2nbblogb 2cµ
( s⊔
j=1

B1(uj , vj)
)

because the unit balls are disjoint. Combining this with (3.8), we have

(3.9) µ(AlkBrk(x∗, y∗)) 6 C µ
( s⊔
j=1

B1(uj , vj)
)

for C := 4nbblogb 2c. We show next that all the balls B1(uj , vj) = B1(uj)×B1(vj) are contained in
AlkBrk(x∗, y∗). Fix j ∈ {1, . . . , s}. For the real part, uj ∈ Ek, meaning it is a point of AlkBrk(x∗)
which is at distance at least one from its boundary, hence B1(uj) ⊂ AlkBrk(x∗). For the B-adic
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part, consider y ∈ B1(vj) and recall that A−lkvj ∈ Brk(y∗). From the ultrametric inequality it
follows

dB(A−lky, y∗) 6 max{dB(A−lky,A−lkvj),dB(A−lkvj , y
∗)}

= max{b−lkdB(y, vj), rk}

6 max{b−lk , rk} = rk,

(3.10)

since we assumed b−lk 6 rk. Therefore, A−lky ∈ Brk(y∗) for every y ∈ B1(vj), and so B1(vj) ⊂
AlkBrk(y∗). From (3.7) it follows that

(3.11) µ(AlkBrk(x∗, y∗) \ (AlkBrk(x∗, y∗) ∩AlkF)) 6 εkµ(AlkBrk(x∗, y∗)).

Equations (3.9) and (3.11) and the fact that
⊔s
j=1 B1(uj , vj) ⊂ AlkBrk(x∗, y∗) imply

µ
( s⊔
j=1

B1(uj , vj) \
( s⊔
j=1

B1(uj , vj) ∩AlkF
))
6 εk C µ

( s⊔
j=1

B1(uj , vj)
)
.

Since the balls B1(uj , vj) are pairwise disjoint and contained in AlkBrk(x∗, y∗), then for at least
one jk ∈ {1, . . . , s} it holds that

µ(B1(ujk , vjk) ∩AlkF) 6 (1− εk C)µ(B1(ujk , vjk)),

which yields Claim 1 with (u(k), v(k)) = (ujk , vjk).
Back to the main proof, Claim 1 together with the iterated set equation (3.2) implies that, for

every k, there exists lk > 0 and (u(k), v(k)) ∈ KA such that

(3.12) µ
(
B1(u(k), v(k)) ∩

( ⋃
d∈Dlk

F + ϕ(d)
))
6 (1− εk C)µ(B1(u(k), v(k))).

Define the finite sets

Vk := {ϕ(d)− (u(k), v(k)) | d ∈ Dlk , (F + ϕ(d)− (u(k), v(k))) ∩ F 6= ∅}.

Then shifting the arguments inside the measures in (3.12) by −(u(k), v(k)) and restricting to
translates contained in Vk yields

µ(B1(0) ∩ (F + Vk)) 6 (1− εk C)µ(B1(0)).

Note that F ∩ B1(e) 6= ∅ for every e ∈ Vk. Thus, because F is bounded, all Vk ⊂ BR(0) for
a sufficiently large constant R. Recall that ϕ(D∞) is a uniformly discrete set by Theorem 3.2,
and Dlk ⊂ D∞, hence there exists δ > 0 such that d(e, e′) > δ for every e, e′ ∈ Vk for every k.
This implies that the sequence of cardinalities {|Vk|}k>1 is bounded. Therefore, {Vk}k>1 has a
convergent subsequence {Vkj}j>1 whose limit, denoted by V, is a finite set. Then

µ(B1(0) ∩ (F + V)) > lim inf
j→∞

µ(B1(0) ∩ (F + Vkj )

> lim inf
j→∞

(1− C εkj )µ(B1(0)) = µ(B1(0)).
(3.13)

Because T is closed this implies that (F + V) ∩ B1(0) = B1(0). Thus F + V is a finite union
of translates of the compact set F containing inner points. Baire’s theorem implies that F has
nonempty interior. �

In what follows, we will restrict ourselves to the case where F has positive measure. We have
referred to F in this case as a tile, because we will show that there exists a tiling of the space KA
by translates of F .

Definition 3.5 (Tiling, self-replicating tiling, multiple tiling). Assume µ(F) > 0. Let S ⊂ KA
and consider the collection {F + s | s ∈ S}, which we denote as F + S with a slight abuse of
notation.

(1) F + S is said to be a tiling of KA if it is a covering of KA such that, for any s 6= s′ in S,
it holds that µ((F + s) ∩ (F + s′)) = 0, or, equivalently, if F + s and F + s′ have disjoint
interiors. S is called a tiling set for F . We say that F + S tiles KA.
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(2) F + S is said to be a self-replicating tiling if there exists an expanding linear map T on
KA such that, for each s ∈ S, there exists a finite subset J(s) ⊂ S with

T (F + s) =
⋃

s′∈J(s)

(F + s′).

(3) F + S is said to be a multiple tiling of KA, if there exists k ∈ N such that µ-almost every
point of KA is contained in exactly k distinct sets of the form F + s with s ∈ S.

It follows that a self-replicating tiling is completely determined by the set of tiles that touch
the origin 0. We call a self-replicating tiling atomic if the origin touches exactly one tile.

We want to study the nature of the tilings of KA obtained using self-affine tiles. For any k > 1,
consider the difference sets

Dk −Dk = {d− d′ | d, d′ ∈ Dk},
and define

∆ :=

∞⋃
k=1

ϕ(Dk −Dk).

Theorem 3.6. Suppose that F contains an open set. Then:

(i) There exists a set of translations S ⊂ ∆ such that F + S tiles KA. Furthermore, there
exists a translate S ′ of S such that F + S ′ is an atomic self-replicating tiling of KA, and
the expanding linear map associated to it is of the form T = Ak for some sufficiently large
k.

(ii) If ∆ is a group, then F + ∆ is a tiling.

Proof. (i) The proof is analogous to the one in [17, Theorem 1.2].

(ii) Assume that ∆ is a group. Since by (i) there is a subset S ⊂ ∆ for which F + S tiles KA,
F + ∆ is a covering of KA. Given any s 6= s′ in ∆, then it suffices to show

0 = µ((F + s) ∩ (F + s′)) = µ(F ∩ (F + s′ − s)).
Because ∆ is a group, then s′ − s ∈ ∆. That means that there exists k > 1 and d 6= d′ in Dk such
that s′ − s = ϕ(d− d′), so the assertion is equivalent to

µ((F + ϕ(d)) ∩ (F + ϕ(d′))) = 0,

which holds by (3.3). �

3.2. Example. We give now an example of a standard and a nonstandard digit system, together
with an illustration of a rational self-affine tile.

Example 3.7. Let

A =

(
2 1
0 5

3

)
∈ Q2×2.

Since its characteristic polynomial is χA(x) = (x − 2)(x − 5
3 ), A is expanding. We proceed to

find the representation space KA. We have

B = A−1 =

(
1
2 − 3

10
0 3

5

)
,

and we get

Z2[B] =

{(
s

2n5m

t
5l

)
| n,m, l ∈ N, s, t ∈ Z

}
and

BZ2[B] =

{(
s

2n5m

3t
5l

)
| l,m, n ∈ N, s, t ∈ Z

}
.

Then, a residue set E for the quotient Zn[B]/BZn[B] is given by

E =

{(
0
0

)
,

(
0
1

)
,

(
0
2

)}
,
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hence b = 3. It is not hard to check that, for this example, it is possible to establish an isomorphism
Zn((B)) ' Q3, and thus we regard the elements of KA as points in R2 × Q3. We will consider a

digit set D̃ and in Figure 1, we will illustrate a rational self-affine tile associated to (A, D̃), and
represent it in R3 by embedding Q3 in R.

We will first find a standard digit system (A,D), and for that we compute the quotient
Z2[A]/AZ2[A]. Powers of A are of the form

Ak =

(
2k ck
0 ( 5

3 )k

)
∈ Q2×2,

where ck =
∑
i,j: i+j=k−1 2i

(
5
3

)j
. We have

Z2[A] =

{(
s

3n

t
3m

)
| n,m ∈ N, s, t ∈ Z

}
,

hence, an element of AZ2[A] is of the form(
2 1
0 5

3

)(
s

3n

t
3m

)
=

(
2s
3n + t

3m

5t
3m+1

)
.

Note that 2s
3n + t

3m ≡ 5t
3m+1 mod 2 in Q, because if we multiply both sides by 3n+m+1 we get

3m+12s+ 3n+1t ≡ t mod 2, and 3n5t ≡ t mod 2. This yields

AZ2[A] =

{(
s

3n

5t
3m

)
| n,m ∈ N, s, t ∈ Z, s ≡ t mod 2

}
.

A complete set of residue class representatives of Z2[A]/AZ2[A] is given by

D =

{(
0
0

)
,

(
0
1

)
,

(
0
2

)
,

(
0
3

)
,

(
0
9

)
,

(
1
0

)
,

(
1
1

)
,

(
1
2

)
,

(
1
3

)
,

(
1
9

)}
,

and so (A,D) is a standard digit system. Note that a = 10 and so |detA| = 10
3 = a

b , as expected.
Next, we want to find a nonstandard digit system. Note that we can write D = R1 +R2, where

R1 =

{(
0
0

)
,

(
0
1

)
,

(
0
2

)
,

(
0
3

)
,

(
0
9

)}
, R2 =

{(
0
0

)
,

(
1
0

)}
,

and the decomposition of the digits as a sum is unique. Consider

D̃ := R1 +AR2 =

{(
0
0

)
,

(
0
1

)
,

(
0
2

)
,

(
0
3

)
,

(
0
9

)
,

(
2
0

)
,

(
2
1

)
,

(
2
2

)
,

(
2
3

)
,

(
2
9

)}
,

which is not a residue set for Zn[A] mod A. We show that F(A, D̃) has positive measure. Let

E1 :=
{ ∞∑
j=1

A−jϕ(ej) | ej ∈ R1

}
and E2 :=

{ ∞∑
j=1

A−jϕ(e′j) | e′j ∈ R2

}
.

Now, the unique decomposition of the elements of D̃ yields that

F(A, D̃) = E1 +AE2 = E1 +
{ ∞∑
j=0

A−jϕ(e′j+1) | e′j ∈ R2

}
= E1 + E2 + ϕ(R2) = F(A,D) + ϕ(R2).

Since (A,D) is a standard digit system, the set F(A,D) has positive measure (see Corollary 3.3),

and hence so does F(A, D̃), meaning it is rational self-affine tile associated to a nonstandard digit
system. We illustrate it in Figure 1. Recall that the representation space is not Euclidean, so we
embedded the points of KA into R3 in order to draw the picture. We did that so the figure still
reflects some of the properties of the set, but it is not a completely faithful representation, since
this is not possible due to the B-adic factor.
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Figure 1. The tile F(A, D̃).

4. Characters and multiple tiling

The main result of this section states that, whenever F(A,D) is a tile, it gives a multiple tiling
of KA. Before arriving to the proof, we introduce some definitions in order to find the Pontryagin
dual of KA, and we give a complete description of its characters. We make use of the character
theory of locally compact abelian groups to show that the multiplication by A is ergodic on a
certain torus in KA, and use this to prove the existence of the multiple tiling.

4.1. Some basic results and definitions. The module Zn[A] plays a principal role in the study
of tilings by rational self-affine tiles. We will prove first that, embedded into the representation
space KA, this module becomes a lattice, and we show later that it is a translation set for a
multiple tiling given by copies of F . First, we formalize the notion of lattice in our setting.

Definition 4.1 (Lattice). A subset Λ of KA is a lattice if it satisfies the three following conditions:

(1) Λ is a group.
(2) Λ is uniformly discrete, meaning there exists r > 0 such that every open ball of radius r

in KA contains at most one point of Λ.
(3) Λ is relatively dense, meaning there exists R > 0 such that every closed ball of radius R

in KA contains at least one point of Λ.

We show next that ϕ(Zn[A]) satisfies these properties. We state a lemma first.

Lemma 4.2. There exists an integer K > 1 such that

(4.1) Zn ∩BZn[B] = Zn ∩
(
BZn +B2Zn + · · ·+BKZn

)
.

Proof. For k > 1, define the lattices

Lk[B] :=

k∑
j=1

BjZn.

Since Lk[B] contains BZn and B is invertible, the lattice Lk[B] has full rank. Consider a
nonzero integer mk such that mkLk[B] ⊂ Zn. Then mkLk[B] has finite index in Zn. From this
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fact, one deduces that the intersection Zn∩Lk[B] has finite index in Zn for every k > 1. Therefore,
the chain of nested lattices

(Zn ∩ L1[B]) ⊂ (Zn ∩ L2[B]) ⊂ · · · ⊂ (Zn ∩BZn[B]) ⊂ Zn

must eventually stabilize after some K > 1. �

Proposition 4.3. The set ϕ(Zn[A]) is a lattice in KA.

Proof. The fact that ϕ(Zn[A]) is a group follows from the additive group structure of Zn[A] because
ϕ is a group homomorphism.

To prove the uniform discreteness of ϕ(Zn[A]), we claim that there exists 0 < r 6 1 such that
d(ϕ(z), 0) > r for every nonzero z ∈ Zn[A]. If d(ϕ(z), 0) > 1 then we are done. Suppose on the
contrary that d(ϕ(z), 0) < 1. Since z ∈ Zn[A], we can write it as

(4.2) z =

k∑
j=0

Ajzj , zj ∈ Zn,

with zk 6= 0, and there is a minimal index k with this property. If zk /∈ BZn[B], then Bkz ∈
Zn[B]\BZn[B], so one has dB(z, 0) = bkdB(Bkz, 0) > 1, in contradiction to d(ϕ(z), 0) < 1. Thus,
zk ∈ Zn ∩BZn[B]. By Lemma 4.2, there are vectors w1, w2, . . . , wK ∈ Zn such that

zk = Bw1 +B2w2 + · · ·+BKwK .

We claim that, in such case, one must have k ≤ K. Suppose that k > K. Then

z = Akzk +

k−1∑
j=0

Ajzj =

k−K−1∑
j=0

Ajzj +

k−1∑
j=k−K

(zj + wk−j)A
j =

k−1∑
j=0

Ajz′j , z′j ∈ Zn.

However, that would contradict the minimality of k. Therefore, k ≤ K. Now, let m denote the
least common multiple of the denominators of the entries of A. Since z is a sum of integer vectors
multiplied by Ak, 0 6 k 6 K, the non-zero entries of z are at least 1/mK in absolute value. Hence,
d(ϕ(z), 0) > ‖z‖ > 1/mK = r.

We now turn to the proof of relative denseness. Let (x, y) ∈ KA be arbitrary. Choose x′ ∈ Zn to
be the closest integer vector to x, so that ‖x−x′‖ < 1, and choose y′ ∈ Zn[A] such that dB(y, y′) 6
1 (this holds by taking y′ = {y}B , see Definition 4.6 below). Hence, d((x, y), (x′, y′)) 6 1. Choose
y′′ ∈ Zn to be the closest integer vector to x′ − y′ ∈ Rn. Let z := y′ + y′′ ∈ Zn[A]. Then
‖x′ − z‖ = ‖x′ − y′ − y′′‖ < 1. Moreover, dB(z, y′) = dB(y′′, 0) 6 1 because y′′ ∈ Zn. Therefore,
d((x′, y′), ϕ(z)) 6 1. This yields d((x, y), ϕ(z)) 6 2, which proves the Lemma. �

The next step is to define a space Zn((B∗)) that will be crucial later when we study the
characters of KA. Prior to that, we prove the following Lemma.

Lemma 4.4. The group Zn[A] ∩ Zn[B] is a lattice in Rn.

Proof. We show that Zn[A] ∩ Zn[B] ⊂ Zn + AZn + · · · + AKZn for some K > 1. Let z ∈
Zn[A] ∩ Zn[B]. Since z ∈ Zn[A], write z =

∑k
j=0A

jzj , with zj ∈ Zn, zk 6= 0 and k minimal.

If k = 0, then z ∈ Zn. Assume k > 1. Since z ∈ Zn[B], from solving for zk it follows that
zk ∈ Zn ∩BZn[B]. By Lemma 4.2, one can find vectors w1, w2, . . . , wK ∈ Zn such that

(4.3) zk = Bw1 +B2w2 + · · ·+BKwK ,

and by proceeding like in the proof of Proposition 4.3, one shows k 6 K. Therefore the inclusion
follows. This implies that Zn[A]∩Zn[B] is contained in a lattice, and also it trivially contains the
lattice Zn. Since it is a group, it is itself a lattice. �

For an arbitrary lattice Λ ⊂ Rn, define its dual lattice by

Λ∗ := {x ∈ Zn | 〈x, z〉 ∈ Z for every z ∈ Λ},
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where 〈·, ·〉 denotes the usual scalar product in Rn. Denote by A∗ the transpose of A, and let Λ
and Γ be full rank lattices such that

(4.4) Zn[A] ∩ Zn[B] ⊂ Λ and Γ[A∗] ∩ Γ[B∗] ⊂ Λ∗ ⊂ Zn.
This is possible because Zn[A]∩Zn[B] is a lattice by Lemma 4.4, and the proof that Γ[A∗]∩Γ[B∗]
is also a lattice is analogous.

Definition 4.5 (B-adic and B∗-adic expansions). Let E ⊂ Zn be a complete set of residue classes
of Zn[B]/BZn[B] with 0 ∈ E . Then every y ∈ Zn((B)) has a unique expansion of the form

(4.5) y =

∞∑
j=ν(y)

Bjyj , yj ∈ E ,

which we call the B-adic expansion of y with coefficients in E . Recall that ν(0) =∞, so the B-adic
expansion of 0 is the empty sum.

Let B∗ denote the transpose of B. Consider the full rank integer lattice Γ satisfying (4.4)
and let E∗ ⊂ Γ ⊂ Zn be a complete set of coset representatives of Γ[B∗]/B∗Γ[B∗] with 0 ∈ E∗.
Consider the space Zn((B∗)) defined analogously to Zn((B)). Then every s ∈ Zn((B∗)) has a
unique expansion of the form

(4.6) s =

∞∑
j=ν∗(s)

B∗jsj , sj ∈ E∗,

where ν∗ is the valuation in Zn((B∗)) defined in the same way as ν. We call this the B∗-adic
expansion of s with coefficients in E∗.

Definition 4.6 (B-adic and B∗-adic fractional and integer part). Given y ∈ Zn((B)) with B-adic
expansion 4.5, we define the B-adic fractional part and the B-adic integer part of y, respectively,
as

{y}B :=

−1∑
j=ν(y)

Bjyj , bycB :=

∞∑
j=0

Bjyj .

Given s ∈ Zn((B∗)) with B∗-adic expansion 4.6, we define the B∗-adic fractional part and the
B∗-adic integer part of s, respectively, as

{s}∗B :=

−1∑
j=ν∗(s)

B∗jsj , bsc∗B :=

∞∑
j=0

B∗jsj .

From here onwards, whenever we have a B-adic series (resp. B∗-adic series), we assume the
coefficients to lie in E (resp. E∗).

Remark 4.7. Recall that b = |E|. We claim that, if b = 1, then the multiple tiling theorem holds.
Note that, in this case, detA = a is an integer. Indeed, an analogous version of Theorem 4.16 is
proven by Lagarias and Wang in [16] for integer matrices. However, they show in [16, Lemma 2.1]
that this results also holds for self-affine tiles associated to expanding real matrices A ∈ Rn×n with
integer determinant, as long as there exists an A-invariant lattice in Rn containing the difference
set D − D. If F(A,D) is a rational self-affine tile and b = 1, then Zn[A] ∩ Zn[B] is a lattice by
Lemma 4.4, and it is A-invariant because Zn[B]/BZn[B] is trivial and hence AZn[B] ⊂ Zn[B].
Consider c ∈ Z \ {0} such that cD ⊂ Zn; then D−D ⊂ 1

c (Zn[A]∩Zn[B]), which is an A-invariant
lattice. Therefore, the assumption that b > 2 made in Remark 2.6 also applies to this section.

Remark 4.8. We can assume without loss of generality that E has a subset {c1, . . . , cn} such
that the lattice Θ := 〈c1, . . . , cn〉Z has full rank in Rn. To show this, suppose first that b > n.
Take a matrix R ∈ Zn×n whose columns are distinct elements {c1, . . . , cn} of E . Consider the
integer matrix N(t) := tB − R, where t ∈ N is chosen so that tB ∈ Zn×n. Its determinant is
det (N(t)) = det (B) det(t · Id− AR) = det (B)χAR(t), where χAR(t) ∈ Q[t] is the characteristic
polynomial of AR. For all but finitely many t ∈ N, it holds that χAR(t) 6= 0. Hence, we can choose
t in a way that the column vectors {c̃1, . . . , c̃n} of N(t) are linearly independent, and hence they
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span a full rank integer lattice. Note that cj − c̃j ∈ BZn for j = 1, . . . , n, so we can replace each

cj by c̃j , and this produces a new residue set Ẽ with the required property.
Suppose now that 1 < b < n. Choose k > 1 so that bk > n. Note that a complete set of

residues for Zn[Bk]/BkZn[Bk] is given by E +BE + · · ·+Bk−1E , so |Zn[Bk]/BkZn[Bk]| = bk > n.
Suppose that we consider the digit system (Ak,Dk) with Dk as in (3.1); then Ek satisfies the
assumption of the previous paragraph. Note that from the iterated set equation (3.2) it follows
that F(Ak,Dk) = F(A,D). Hence, whenever |E| < n we can work with (Ak,Dk) instead of (A,D)
and with E +BE + · · ·+Bk−1E instead of E .

4.2. Character theory. In order to prove the multiple tiling theorem, we use some results on the
characters of KA. For more on the topic of character theory on locally compact abelian groups,
we refer the reader to [21, Chapter 4].

Definition 4.9 (Character). A character χ on an abelian group G is a continuous function
χ : G→ S1 such that χ(x+ y) = χ(x)χ(y) for all x, y ∈ G.

Lemma 4.10. The set of all characters of G constitutes a group, called the Pontryagin dual of

G, denoted by Ĝ. It satisfies the following properties:

(1) The Pontryagin dual of Ĝ is isomorphic to G.

(2) The Pontryagin dual of the product G1 ×G2 is isomorphic to Ĝ1 × Ĝ2 and the characters

are of the form χ = χ1 · χ2 with χ1 ∈ Ĝ1 and χ2 ∈ Ĝ2.
(3) Given a subgroup H ⊂ G, define the annihilator of H on G as

Ann(H) := {χ ∈ Ĝ | χ(H) = 1}.

Then (̂G/H) ' Ann(H) and Ĥ ' Ĝ/Ann(H).

Proof. See [21, Chapter 4]. �

It is well known that the characters on Rn are given by

χr : Rn → S1; x 7→ exp(2πi〈x, r〉),

where r ∈ Rn, and R̂n ' Rn via the isomorphism r 7→ χr.
For any s =

∑∞
j=ν∗(s)B

∗jsj ∈ Zn((B∗)) with sj ∈ E∗, define the map

(4.7) χs : Zn((B))→ S1; y 7→ exp(2πiSs(y)),

where

(4.8) Ss(y) :=

∞∑
j=ν∗(s)

〈{Bjy}B , sj〉.

The map is well defined because {Bjy}B = 0 for all but finitely many indices j. We show next
that this map is indeed a character.

Proposition 4.11. For every s ∈ Zn((B∗)), the map χs defined in (4.7) is continuous and
multiplicative, that is, χs(y + y′) = χs(y)χs(y

′).

Proof. Fix s =
∑∞
j=ν∗(s)B

∗jsj ∈ Zn((B∗)) with sj ∈ E∗. For the multiplicativity, if suffices

to show that Ss(y + y′) = Ss(y) + Ss(y
′) mod Z. We prove first the following claim: given

ω, ω′ ∈ Zn((B)), it holds that

(4.9) {ω}B + {ω′}B − {ω + ω′}B ∈ Λ,

where Λ is the lattice satisfying (4.4). By definition of the B-adic fractional part, {ω}B +{ω′}B−
{ω + ω′}B ∈ Zn[A]. Also,

{ω}B + {ω′}B − {ω + ω′}B = ({ω}B − ω) + ({ω′}B − ω′) + (ω + ω′ − {ω + ω′}B)

= −bωcB − bω′cB + bω + ω′cB ∈ Zn[A−1].
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Since Zn[A] ∩ Zn[A−1] ⊂ Λ by definition of Λ, this yields the claim. Now, for any y, y′ we have

(4.10) Ss(y) + Ss(y
′)− Ss(y + y′) =

∞∑
j=ν∗(s)

〈{Bjy}B + {Bjy′}B − {Bj(y + y′)}B , sj〉

where {Bjy}B + {Bjy′}B − {Bj(y + y′)}B ∈ Λ by (4.9). The summands in (4.10) are nonzero
only for a finite number of j’s. For every index j, we have sj ∈ E∗ ⊂ Γ ⊂ Λ∗, thus by definition
of dual lattice,

〈{Bjy}B + {Bjy′}B − {Bj(y + y′)}B , sj〉 ∈ Z
and the multiplicativity of χs is established.

For the continuity, let y, y′ ∈ Zn((B)) such that dB(y, y′) 6 bν
∗(s). Then, for every j > ν∗(s),

it holds that dB(Bjy,Bjy′) 6 1, and so Bj(y − y′) ∈ Zn[[B]] which implies {Bj(y − y′)}B = 0.
Then Ss(y − y′) = 0 and hence, by multiplicativity, χs(y) = χs(y

′). Thus χs is locally constant
and, hence, continuous. �

We will show that the Pontryagin dual of KA is isomorphic to Rn × Zn((B∗)). To do so, we
prove some lemmas first.

Lemma 4.12. Let y =
∑∞
k=ν(y)B

kyk ∈ Zn((B)) with yk ∈ E and s =
∑∞
j=ν∗(s)B

∗jsj ∈ Zn((B∗))

with sj ∈ E∗ be given. Then

Ss(y) =

∞∑
j=ν∗(s)

〈{Bjy}B , sj〉 =

∞∑
k=ν(y)

〈yk, {B∗ks}∗B〉.

Proof. From direct calculation, we obtain

Ss(y) =

∞∑
j=ν∗(s)

〈{Bjy}B , sj〉 =

∞∑
j=ν∗(s)

〈
−j−1∑
k=ν(y)

Bj+kyk, sj〉

=

∞∑
j=ν∗(s)

−j−1∑
k=ν(y)

〈yk, B∗j+ksj〉 =

∞∑
k=ν(y)

−k−1∑
j=ν∗(s)

〈yk, B∗j+ksj〉

=

∞∑
k=ν(y)

〈yk,
−k−1∑
j=ν∗(s)

B∗j+ksj〉 =

∞∑
k=ν(y)

〈yk, {B∗ks}∗B〉. �

Our next step is to establish a Pontryagin duality between Zn((B)) and Zn((B∗)). For that
purpose, we express both sets in terms of projective limits. For more on the topic we refer the
reader to [23]. For each k ∈ N, consider the quotients

Ek := Zn[B]/BkZn[B].

Clearly, Ek ⊂ Ek+1 for every k, so we can define the canonical projections

πk : Ek+1 → Ek, x 7→ x mod Bk.

Therefore, we have a projective system

· · · −→ Ek+1
πk−→ Ek

πk−1−→ Ek−1 −→ . . .
π1−→ E1,

which entitles the existence of the projective limit

lim←−
k∈N
Ek = {(Mk)k∈N |Mk ∈ Ek and πk(Mk+1) = Mk for every k},

and it holds that

(4.11) Zn((B)) ' lim−→
j∈N

lim←−
k∈N

B−jEk.

Analogously, for k ∈ N consider

E∗k := Γ[B∗]/B∗kΓ[B∗].
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Then
Zn((B∗)) ' lim−→

j∈N
lim←−
k∈N

B∗−jE∗k .

Proposition 4.13. The characters of KA are of the form

χr,s : KA → S1, χr,s(x, y) = χr(x)χs(y) = exp(2πi〈x, r〉) exp(2πiSs(y)),

for r ∈ Rn, s ∈ Zn((B∗)), with Ss(y) as in (4.8). Moreover, there is a group morphism given by
(r, s) 7→ χr,s.

Proof. In view of Lemma 4.10 we have the isomorphism K̂A ' R̂n× ̂Zn((B)). It is known that there

is an isomorphism Rn ' R̂n given by r 7→ χr. Consider the map Zn((B∗)) → ̂Zn((B)), s 7→ χs;
we show that it is an isomorphism. We first prove that the group operations are compatible on
both sets, that is, χs+s′(y) = χs(y)χs′(y) for every y =

∑∞
j=ν(y)B

jyj ∈ Zn((B)) with yj ∈ E . It

is enough to show that Ss+s′(y) = Ss(y) + Ss′(y) mod Z. Applying Lemma 4.12, we get

Ss(y) + Ss′(y)− Ss+s′(y) =

∞∑
j=ν(y)

〈yj , {B∗js}∗B + {B∗js′}∗B − {B∗
j(s+ s′)}∗B〉.

Proceeding in analogy to the proof of Proposition 4.11 and using the definition of B∗-adic fractional
part, we can see that, for every index j > ν(y),

{B∗js}∗B + {B∗js′}∗B − {B∗
j(s+ s′)}∗B ⊂ Γ[B∗] ∩ Γ[B∗−1] ⊂ Λ∗ ⊂ Zn,

with Λ∗ as in (4.4). Since yj ∈ E ⊂ Zn for every j > ν(y) and is finite only for a finite number of
indices, this yields the first part of the proof.

Next, we show the injectivity. In view of the first part of the proof, it suffices to show that
χs 6= 1 for s 6= 0. Let s =

∑∞
j=ν∗(s)B

∗jsj ∈ Zn((B∗)) \ {0} with sj ∈ E∗, and consider a point

of the form B−lc ∈ Zn((B)) for 0 6= c ∈ E and l ∈ N. Note that {Bj−lc}B = 0 whenever j > l.
Therefore, applying again Lemma 4.12 we get

Ss(B
−lc) =

l−1∑
j=ν∗(s)

〈Bj−lc, sj〉 =

l−1∑
j=ν∗(s)

〈c,B∗j−lsj〉 =

〈
c,

l−1∑
j=ν∗(s)

B∗j−lsj

〉
.

Suppose χs = 1, then Ss(B
−lc) ∈ Z for every l ∈ N and every c ∈ E . Recall that in Remark 4.8 we

assumed w.l.o.g. that E has a subset {c1, . . . , cn} such that Θ := 〈c1, . . . , cn〉Z is a full rank lattice

in Rn. Thus Ss(B
−lΘ) ⊂ Z and hence, by the definition of dual lattice,

∑l−1
j=ν∗(s)B

∗l−jsj ∈ Θ∗
holds for all l ∈ N. Since s 6= 0, we have that

l−1∑
j=ν∗(s)

B∗l−jsj ∈ (B∗l−ν
∗(s)Γ + · · ·+B∗Γ) \ (B∗l−ν

∗(s)−1Γ + · · ·+B∗Γ).

Then (B∗l−ν
∗(s)Γ + · · ·+B∗Γ)l>1 is a strictly nested sequence of lattices in Qn. Given l, consider

the entries of all the vectors of B∗l−ν
∗(s)Γ + · · · + B∗Γ expressed as irreducible fractions, and

define ml to be the maximum of the denominators of these fractions. It is clear that ml 6 ml+1.
However, note that (ml)l>1 does not stabilize: this would imply that, for some lattice Λl, there
are infinitely many steps in which we can add a point and form a strictly larger lattice, while not
increasing the bound on the denominators, which is not possible. This means that Θ∗ contains
points with entries having arbitrarily large denominators, which is a contradiction.

For the surjectivity, consider a character χ ∈ ̂Zn((B)). By classical arguments following [21, p.
139], we obtain from (4.11) that

(4.12) ̂Zn((B)) ' lim←−
j∈N

lim−→
k∈N

B̂−jEk.

Since B−jEk = B−jZn[B]/Bk−jZn[B] is a finite group of cardinality bk, so is its dual. Consider
the group

Gj,k := B∗j−kΓ[B∗]/B∗jΓ[B∗],
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and note that |Gj,k| = bk because Γ is a full rank lattice (and hence, isomorphic to Zn). Given
s ∈ Gj,k, we can regard it as an element in B∗j−kE∗ + · · · + B∗j−1E∗ and consider the character
χs as in (4.7). Note that χs ∈ Ann(Bk−jZn[B]) (see Lemma 4.10); hence, χs is a character of
B−jEk. Also, for s 6= 0 in Gj,k, there is y ∈ B−jEk such that Ss(y) 6= 0: in fact, there exists l
with j− k 6 l 6 j− 1 with sl 6= 0; since E spans a full rank lattice, find c ∈ E such that 〈c, sl〉 6= 0
and take y = B−lc. Hence all the characters χs for s ∈ Gj,k are distinct over B−jEk, and since

|B−jEk| = bk = |Gj,k|, this implies that B̂−jEk ' Gj,k, so (4.12) yields

̂Zn((B)) ' lim←−
j∈N

lim−→
k∈N

Gj,k

It is not hard to establish an isomorphism Gj,k ' B∗−jE∗k , and so

χ ∈ lim←−
j∈N

lim−→
k∈N
{χs | s ∈ Gj,k} ' lim←−

j∈N
lim−→
k∈N

B∗−jE∗k ' Zn((B∗)),

therefore every character χ is of the form χ = χs for some s ∈ Zn((B∗)). �

4.3. Multiple tiling theorem. In this final section, we will prove that rational self-affine tiles
give a multiple tiling of the representation space. We will make use of the character theory we
have developed in the previous section.

Recall that the set ϕ(Zn[A]) is a lattice by Lemma 4.3, hence the torus T := KA/ϕ(Zn[A]) is
well defined and compact. We endow it with the normalized quotient measure µ̄, which is the
Haar measure on T. Denote the multiplication by A on T as

τA : T→ T; (x, y) 7→ A(x, y) mod ϕ(Zn[A]),

which is well defined because ϕ(Zn[A]) is A-invariant. We will prove that this map is ergodic by
using the following lemma.

Lemma 4.14. If G is a compact abelian group with normalized Haar measure and τ : G→ G is
a surjective continuous endomorphism of G, then τ is ergodic if and only if the trivial character
χ = 1 is the only character of G that satisfies χ ◦ τk = χ for some k > 1.

Proof. See [28, Theorem 1.10.1]. �

We are in position to prove the following result.

Lemma 4.15. The map τA is ergodic.

Proof. Because A is an invertible matrix, τA is a continuous surjective homomorphism. We first
prove that it is measure preserving. Note that ϕ(Zn[A]) is a sublattice of index a of A−1ϕ(Zn[A]).
This implies that, for any measurable set E ⊂ T,

µ̄(τ−1
A (E)) = µ̄({(x, y) ∈ T | A(x, y) mod ϕ(Zn[A]) ∈ E})

= µ̄({(x, y) ∈ T | (x, y) mod A−1ϕ(Zn[A]) ∈ A−1E})
= a µ̄({(x, y) ∈ T | (x, y) mod ϕ(Zn[A]) ∈ A−1E})
= a µ̄(A−1E) = µ̄(E).

By Proposition 4.13, the characters of KA are of the form χr,s for r ∈ Rn, s ∈ Zn((B∗)). Since

T = KA/ϕ(Zn[A]), by Lemma 4.10 there is an isomorphism T̂ ' Ann(ϕ(Zn[A])); this means that
a character of T is of the form χr,s and satisfies χr,s(ϕ(z)) = 1 for every z ∈ Zn[A]. Suppose there

exists a character χr,s ∈ T̂ satisfying χr,s ◦ τkA = χr,s for some k > 1. In view of Lemma 4.14, it
suffices to show that χr,s is constantly equal to 1. We have that, for every (x, y) ∈ T,

χr,s ◦ τkA(x, y) = χr,s(x, y),

meaning
exp(2πi(〈r,Akx〉+ Ss(A

ky))) = exp(2πi(〈r, x〉+ Ss(y)))

with Ss defined in (4.8). Letting y = 0 implies

〈r,Akx〉 = 〈r, x〉 mod Z
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and so, for every x ∈ [0, 1]n,

〈A∗kr − r, x〉 ∈ Z,
which can only be true if A∗kr−r = 0. Suppose r 6= 0; this implies that A∗k has 1 as an eigenvalue,
and so therefore A has 1 as an eigenvalue, which contradicts the fact that A is expanding. Hence,
r = 0.

Next, we prove that χ(0,s) ∈ T̂ implies s = 0. For every z ∈ Zn[A] we have 1 = χ(0,s)(ϕ(z)) =

χ0(z)χs(z) = χs(z). Consider points of the form z = Alc = B−lc with l > 1, c ∈ E . Then
Ss(B

−lc) = 〈c, {B∗−ls}∗B〉 ∈ Z. Recall that E contains a subset that spans a full rank lattice
Θ. By the definition of dual lattice, this implies that {B∗−ls}∗B ∈ Θ∗ for every l > 1. Suppose
s 6= 0, then the leading B∗-adic coefficient satisfies sν∗(s) ∈ Γ \ B∗Γ, because the coefficients live
in E∗ ⊂ Γ which is defined to be a residue set for Γ[B∗]/B∗Γ[B∗]. Moreover, we have that

{B∗−ls}∗B ∈ (B∗−lΓ + · · ·+B∗−1Γ + Γ) \ (B∗−l+1Γ + · · ·+B∗−1Γ + Γ).

Define inductively Λ0 := Γ and Λl+1 the lattice spanned by Λl and {B∗−ls}∗B . Then (Λl)l>1 is a
strictly nested sequence of lattices in Qn, all of which are contained in Θ∗. Given l, consider the
entries of all the vectors of Λl expressed as irreducible fractions, and define ml to be the maximum
of the denominators of these fractions. It is clear that ml 6 ml+1. However, note that (ml)l>1

does not stabilize: this would imply that, for some lattice Λl, there are infinitely many steps in
which we can add a point and form a strictly larger lattice, while not increasing the bound on
the denominators, which is not possible. Hence the sequence of denominators (ml)l>1 tends to
infinity. This contradicts the uniform discreteness of the lattice Θ∗. �

We arrive at our final result. The proof is based on the one of [16, Theorem 1.1]. For complete-
ness, we include it here. We recall the reader of the definition of multiple tiling given in Definition
3.5.

Theorem 4.16. Let F = F(A,D) be a rational self-affine tile. Then F + ϕ(Zn[A]) is a multiple
tiling of KA.

Proof. Let µ̄ be the normalized Haar measure on the torus T = KA/ϕ(Zn[A]). Consider the
canonical projection π : KA → T, and define the function Φ : T→ Z>0 as

Φ(x, y) := |π−1(x, y) ∩ F|,
meaning Φ counts the points on F that are congruent to (x, y) modulo ϕ(Zn[A]). Since F is
compact, Φ is finite everywhere, hence it is well defined. Also, Φ is positive in a set of positive
measure since µ(F) > 0. If we prove that Φ(x, y) is equal almost everywhere to some k ∈ N, this
implies the statement of the theorem: it means that almost every point of KA gets covered by
exactly k translates of F when translating via the set ϕ(Zn[A]). Note that Φ is constant almost
everywhere if and only if there exists k such that every S ⊂ T satisfies

(4.13)

∫
S

Φ(x, y) dµ̄(x, y) = k µ̄(S).

To obtain this, we show first that Φ satisfies

(4.14) Φ(x, y) =
1

a

∑
(x′,y′)∈τ−1

A (x,y)

Φ(x′, y′),

where τA is the multiplication by A on the torus.
Using the set equation (2.14) of F and the fact that ϕ(D) ⊂ ϕ(Zn[A]), we have

|π−1(x, y) ∩AF| =
∣∣∣π−1(x, y)

⋂( ⋃
d∈D

(F + ϕ(d))
)∣∣∣

=
∣∣∣ ⋃
d∈D

(π−1(x, y)− ϕ(d)) ∩ F
∣∣∣

=
∑
d∈D

|π−1(x, y) ∩ F| = aΦ(x, y).

(4.15)
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Recall that the index of the sublattice Aϕ(Zn[A]) of ϕ(Zn[A]) is a, which implies that |τ−1
A (x, y)| =

a, and so

(4.16) |π−1(x, y) ∩AF| = 1

a

∑
(x′,y′)∈τ−1

A (x,y)

|π−1(τA(x′, y′)) ∩AF|.

Also, for any (u, v) ∈ KA, it holds that |((u, v)+ϕ(Zn[A]))∩AF| = a|((u, v)+Aϕ(Zn[A]))∩AF|,
and hence, for each (x′, y′) ∈ τ−1

A (x, y),

(4.17) |π−1(τA(x′, y′)) ∩AF| = a |Aπ−1(x′, y′) ∩AF| = a |π−1(x′, y′) ∩ F| = aΦ(x′, y′).

Thus from (4.16) and (4.17) follows that

|π−1(x, y) ∩AF| =
∑

(x′,y′)∈τ−1
A (x,y)

Φ(x′, y′).
(4.18)

Combining (4.15) and (4.18) yields (4.14). Applying (4.14) and doing the change of variables
(x, y) 7→ τA(x, y) we get∫

S

Φ(x, y)dµ̄(x, y) =

∫
S

1

a

∑
(x′,y′)∈τ−1

A (x,y)

Φ(x′, y′) dµ̄(x, y)

=

∫
τ−1
A (S)

1

a

∑
τA(x′,y′)=τA(x,y)

Φ(x′, y′) a dµ̄(x, y)

=

∫
τ−1
A (S)

Φ(x, y) dµ̄(x, y).

(4.19)

Because the map τA is ergodic by Lemma 4.15, iterating (4.19) j > 1 times and afterwards applying
the ergodic theorem (see [6, Theorem 3.20]), yields∫

S

Φ(x, y)dµ̄(x, y) =

∫
τ−j
A (S)

Φ(x, y)dµ̄(x, y)

=

∫
T

1s(τ
j
A(x, y))Φ(x, y)dµ̄(x, y)

=

∫
T

( 1

N

N∑
j=1

1s(τ
j
A(x, y))

)
Φ(x, y)dµ̄(x, y)

−−−−→
N→∞

µ̄(S)

∫
T
Φ(x, y)dµ̄(x, y) = k µ̄(S),

(4.20)

and this concludes the proof. �
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