REGULARITIES OF THE DISTRIBUTION OF β-ADIC VAN DER CORPUT SEQUENCES

WOLFGANG STEINER*

Abstract

For Pisot numbers β with irreducible β-polynomial, we prove that the discrepancy function $D(N,[0, y))$ of the β-adic van der Corput sequence is bounded if and only if the β-expansion of y is finite or its tail is the same as that of the expansion of 1 . If β is a Parry number, then we can show that the discrepancy function is unbounded for all intervals of length $y \notin \mathbb{Q}(\beta)$. We give explicit formulae for the discrepancy function in terms of lengths of iterates of a reverse β-substitution.

1. Introduction

Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence with $x_{n} \in[0,1)$ and

$$
D(N, I)=\#\left\{0 \leq n<N: x_{n} \in I\right\}-N \lambda(I)
$$

its discrepancy function on the interval I, where $\lambda(I)$ denotes the length of the interval. Then $\left(x_{n}\right)_{n \geq 0}$ is uniformly distributed if and only if $D(N, I)=o(N)$ for all intervals $I \subseteq[0,1)$. Van Aardenne-Ehrenfest [25] proved that the discrepancy function cannot be bounded (in N) for all intervals $I \subseteq[0,1$). W.M. Schmidt showed in [23] that the set of lengths of intervals with bounded discrepancy function, $\left\{\lambda(I): \sup _{N \geq 0} D(N, I)<\infty\right\}$, is at most countable and in [22] that $\sup _{I \subseteq[0,1)} D(N, I) \geq C \log N$ for some constant $C>0$. For more details on the discrepancy, see Drmota and Tichy [4].

For some special sequences, the intervals with bounded discrepancy function were determined. If $x_{n}=\{n \alpha\}$, then $D(N, I)$ is bounded if and only if $\lambda(I)=\{m \alpha\}$ for some $m \geq 0$ (Hecke [10] and Kesten [13]). More generally, Rauzy [18] and Ferenczi [8] characterized bounded remainder sets for irrational rotations on the torus \mathbb{T}^{s}. Liardet [14] extended Hecke's and Kesten's result on these rotations and studied bounded remainder sets for $x_{n}=\{p(n)\}$, where $p(n)$ is a real polynomial with irrational leading coefficient, as well as for q-multiplicative sequences.

If $\left(x_{n}\right)_{n \geq 0}$ is the van der Corput sequence in base q, then $D(N, I)$ is bounded if and only if $\lambda(\bar{I})$ has finite q-ary expansion (W.M. Schmidt [23] and Shapiro [24] for $q=2$, Hellekalek [11] for integers $q \geq 2$). Faure extended this result in [6] on generalized van

[^0]der Corput sequences and recently in $[7]$ on digital $(0,1)$-sequences over \mathbb{Z}_{q} generated by a nonsingular upper triangular matrix where q is a prime number (see also Drmota, Larcher and Pillichshammer [3]). Hellekalek [12] considered generalizations of the Halton sequences in higher dimensions.
The aim of this article is to determine the intervals with bounded discrepancy function for the β-adic van der Corput sequences, which were introduced by Ninomiya [15] who proved that these sequences are low discrepancy sequences, i.e. $\sup _{I \subseteq[0,1)} D(N, I)=\mathcal{O}(\log N)$, if β is a Pisot number with irreducible β-polynomial.

For a given real number $\beta>1$, the expansion of 1 with respect to β is the sequence of nonnegative integers $\left(a_{j}\right)_{j \geq 1}$ satisfying

$$
1=. a_{1} a_{2} \ldots=\frac{a_{1}}{\beta}+\frac{a_{2}}{\beta^{2}}+\cdots \text { with } a_{j} a_{j+1} \ldots<a_{1} a_{2} \ldots \text { for all } j \geq 2
$$

(Throughout this article, let $<$ denote the lexicographical order for words.) For $x \in[0,1$), the β-expansion of x, introduced by Rényi [19] and characterized by Parry [16], is given by

$$
x=. \epsilon_{1} \epsilon_{2} \ldots=\frac{\epsilon_{1}}{\beta}+\frac{\epsilon_{2}}{\beta^{2}}+\cdots \text { with } \epsilon_{j} \epsilon_{j+1} \ldots<a_{1} a_{2} \ldots \text { for all } j \geq 1
$$

The elements of the β-adic van der Corput sequence $\left(x_{n}\right)_{n \geq 0}$ are the real numbers $x \in$ $[0,1)$ with finite β-expansion,
$\left\{x_{n}: n \geq 0\right\}=\left\{. \epsilon_{1} \epsilon_{2} \ldots: \epsilon_{j} \epsilon_{j+1} \ldots<a_{1} a_{2} \ldots\right.$ for all $j \geq 1, \epsilon_{\ell} \epsilon_{\ell+1} \ldots=0^{\infty}$ for some $\left.\ell \geq 1\right\}$, ordered lexicographically with respect to the (inversed) word $\ldots \epsilon_{2} \epsilon_{1}$, i.e. for $x_{n}=. \epsilon_{1} \epsilon_{2} \ldots$ and $x_{n^{\prime}}=. \epsilon_{1}^{\prime} \epsilon_{2}^{\prime} \ldots$, we have $n<n^{\prime}$ if we have some $k \geq 1$ such that $\epsilon_{k}<\epsilon_{k}^{\prime}$ and $\epsilon_{j}=\epsilon_{j}^{\prime}$ for all $j>k$.
If the expansion of 1 is finite, $a_{1} a_{2} \ldots=a_{1} \ldots a_{d} 0^{\infty}$, or eventually periodic, $a_{1} a_{2} \ldots=$ $a_{1} \ldots a_{d-p}\left(a_{d-p+1} \ldots a_{d}\right)^{\infty}$, then β is a Parry number and it is the dominant root of the β-polynomial $x^{d}-a_{1} x^{d-1}-\cdots-a_{d}\left(\right.$ with $\left.a_{d}>0\right)$ and $\left(x^{d}-a_{1} x^{d-1}-\cdots-a_{d}\right)-\left(x^{d-p}-\right.$ $a_{1} x^{d-p-1}-\cdots-a_{d-p}$) (where p is assumed to be minimal) respectively. In this case, we obtain results for the discrepancy function.
Theorem 1. If β is a Parry number and $D(N, I)$ is bounded (in N), then $\lambda(I) \in \mathbb{Q}(\beta)$.
Bertrand [1] and K. Schmidt [21] proved that all Pisot numbers (algebraic integers for which all algebraic conjugates have modulus <1) are Parry numbers. If furthermore the β-polynomial is the minimal polynomial of β, then we can completely characterize the intervals $[0, y)$ with bounded discrepancy function.
Theorem 2. If β is a Pisot number with irreducible β-polynomial, then $D(N,[0, y))$ is bounded (in N) for $y \in[0,1$) if and only if the β-expansion of y is finite or its tail is the same as that of the expansion of 1 with respect to β, i.e. if $y=. y_{1} y_{2} \ldots$ with $y_{k} y_{k+1} \ldots=0^{\infty}$ or $y_{k} y_{k+1} \ldots=\left(a_{d-p+1} \ldots a_{d}\right)^{\infty}$ for some $k \geq 1$.

Remark. Another way to formulate the condition on y is: the infinite β-expansion of y has the same tail as the infinite expansion of 1 (which is $1=.\left(a_{1} \ldots a_{d-1}\left(a_{d}-1\right)\right)^{\infty}$ if $\left.1=. a_{1} \ldots a_{d}\right)$.

The classification for general intervals I seems to be more difficult. Of course, $D\left(N,\left[y, y^{\prime}\right)\right)$ is bounded if $D(N,[0, y))$ and $D\left(N,\left[0, y^{\prime}\right)\right)$ are bounded because of $D\left(N,\left[y, y^{\prime}\right)\right)=D\left(N,\left[0, y^{\prime}\right)\right)-D(N,[0, y))$. From the proof of Theorem 2 we see that $D\left(N,\left[y, y^{\prime}\right)\right)$ is bounded if $y=. y_{1} y_{2} \ldots$ and $y^{\prime}=. y_{1}^{\prime} y_{2}^{\prime} \ldots$ with $y_{k} y_{k+1} \ldots=y_{k}^{\prime} y_{k+1}^{\prime} \ldots$ for some $k \geq 1$.

The boundedness of $D(N, I)$ is not necessarily invariant under translation of the interval. E.g. for $1=.31^{\infty}, D\left(N,\left[0, .1^{\infty}\right)\right)$ is bounded, but $D\left(N,\left[.1^{\infty}, .2^{\infty}\right)\right)$ is unbounded. It is also possible that $D\left(N,\left[y, y^{\prime}\right)\right)$ is bounded and $D\left(N,\left[0, y^{\prime}-y\right)\right)$ is unbounded: $D(N,[.02,1))$ is bounded and $D(N,[0,1-.02))=D\left(N,\left[0, .2^{\infty}\right)\right)$ is unbounded.

This article is organised as follows. In Section 2 we recapitulate some facts about number systems defined by substitutions (due to Dumont and Thomas [5]) and define a reverse β-substitution which determines x_{n}. Theorem 1 is proved in Section 3 similarly to Shapiro [24]. The remaining parts of Theorem 2 are proved in Section 4, where explicit formulae for the discrepancy function in terms of lengths of iterates of the reverse β-substitution are given.

2. Number systems defined by substitutions

2.1. Generalities. Let σ be a substitution on the alphabet $\mathcal{A}=\{1, \ldots, d\}$, i.e. a mapping from \mathcal{A} into the set of nonempty finite words on \mathcal{A}, which is extended to a mapping on words by concatenation, $\sigma\left(w w^{\prime}\right)=\sigma(w) \sigma\left(w^{\prime}\right)$. A sequence of words m_{k}, \ldots, m_{1} is called σ-b-admissible if we have a companion sequence of letters b_{j} with $b_{k+1}=b$ such that $m_{j} b_{j} \leq_{p} \sigma\left(b_{j+1}\right)$ for all $j \leq k$ (where $w \leq_{p} w^{\prime}$ means that w is a prefix of w^{\prime}). For a given sequence m_{k}, \ldots, m_{1}, clearly the sequence b_{k}, \ldots, b_{1} is unique.

If $\sigma(1)=1 w$ for some word w, then the limit $\sigma^{\infty}(1)=\lim _{k \rightarrow \infty} \sigma^{k}(1)$ exists because of $\sigma^{k+1}(1)=\sigma^{k}(1 w)=\sigma^{k}(1) \sigma^{k}(w)$ and we have

$$
\begin{equation*}
\sigma^{k-1}\left(m_{k}\right) \ldots \sigma^{0}\left(m_{1}\right) \leq_{p} \sigma^{k}(1) \leq_{p} \sigma^{\infty}(1) \tag{1}
\end{equation*}
$$

for all σ-1-admissible sequences m_{k}, \ldots, m_{1}. Furthermore, every prefix $u_{1} \ldots u_{n} \leq_{p} \sigma^{\infty}(1)$, $n \geq 1$, can be written as the left hand side of (1) with a unique σ - 1 -admissible sequence m_{k}, \ldots, m_{1} with $\left|m_{k}\right|>0$ (where $|m|$ denotes the length of m). Denote these m_{j} by $m_{j, \sigma}(n)$ and set $m_{j, \sigma}(n)=\varepsilon$ (the empty word) for all $j>k$. For $n=0$, set $m_{j, \sigma}(0)=\varepsilon$ for all $j \geq 1$. Then

$$
n=\sum_{j=1}^{\infty}\left|\sigma^{j-1}\left(m_{j, \sigma}(n)\right)\right|=\sum_{j=1}^{\infty} \sum_{b=1}^{d}\left|m_{j, \sigma}(n)\right|_{b}\left|\sigma^{j-1}(b)\right|
$$

where $|m|_{b}$ denotes the number of b 's in m. If $m_{j, \sigma}\left(n^{\prime}\right)=m_{j, \sigma}(n)$ for all $j>k$ and $\left|m_{k, \sigma}\left(n^{\prime}\right)\right|>\left|m_{k, \sigma}(n)\right|$, i.e. $m_{k, \sigma}\left(n^{\prime}\right)=m_{k, \sigma}(n) b_{j} w$ for some word w, then $\sigma^{k-2}\left(m_{k-1, \sigma}(n)\right) \ldots \sigma^{0}\left(m_{1, \sigma}(n)\right)$ is a strict prefix of $\sigma^{k-1}\left(b_{k}\right)$, hence $\sum_{j=1}^{k-1}\left|\sigma^{j-1} m_{j, \sigma}(n)\right|<$ $\sigma^{k-1}\left(b_{j}\right)$ and we have

$$
n^{\prime} \geq \sum_{j=k}^{\infty}\left|\sigma^{j-1}\left(m_{j, \sigma}\left(n^{\prime}\right)\right)\right| \geq \sum_{j=k}^{\infty}\left|\sigma^{j-1}\left(m_{j, \sigma}(n)\right)\right|+\left|\sigma^{k-1}\left(b_{k}\right)\right|>n
$$

thus

$$
\begin{equation*}
n<n^{\prime} \text { if } \ldots\left|m_{2, \sigma}(n)\right|\left|m_{1, \sigma}(n)\right|<\ldots\left|m_{2, \sigma}\left(n^{\prime}\right)\right|\left|m_{1, \sigma}\left(n^{\prime}\right)\right| \tag{2}
\end{equation*}
$$

2.2. β-substitution. If β is a Parry number, then the β-substitution σ is defined by

$$
\sigma(b)=\left\{\begin{array}{cl}
1^{a_{b}}(b+1) & \text { if } 1 \leq b<d \\
1^{a_{d}} & \text { if } b=d, 1=. a_{1} \ldots a_{d} \\
1^{a_{d}}(d-p+1) & \text { if } b=d, 1=. a_{1} \ldots a_{d-p}\left(a_{d-p+1} \ldots a_{d}\right)^{\infty}
\end{array}\right.
$$

(where $1^{a_{j}}$ denotes the concatenation of a_{j} letters 1).
If we set $G_{k}=\left|\sigma^{k}(1)\right|$ for all $k \geq 0$, then

$$
G_{k}=\sum_{j=1}^{k} a_{j} G_{k-j}+ \begin{cases}1 & \text { if } a_{j}=0 \text { for all } j>k \\ 0 & \text { else }\end{cases}
$$

(in particular $G_{k}=\sum_{j=1}^{d} a_{j} G_{k-j}$ if $1=. a_{1} \ldots a_{d}$ and $k>d$) and

$$
n=\sum_{j=1}^{\infty}\left|m_{j, \sigma}(n)\right|\left|\sigma^{j-1}(1)\right|=\sum_{j=1}^{\infty}\left|m_{j, \sigma}(n)\right| G_{j-1}
$$

since the words $m_{j, \sigma}(n)$ consist only of ones. Thus the $\left|m_{j, \sigma}(n)\right|$ are the digits in the G-ary expansion of n with $G=\left(G_{j}\right)_{j \geq 0}$ and the σ-1-admissible sequences m_{k}, \ldots, m_{1} are exactly those sequences consisting only of ones with $\left|m_{j}\right| \ldots\left|m_{1}\right| 0^{\infty}<a_{1} a_{2} \ldots$ for all $j \leq k$.

Example. If $1=.402$, then

$$
\sigma(1)=11112, \quad \sigma(2)=3, \quad \sigma(3)=11 .
$$

An example of a σ-1-admissible sequence with $k=5$ is

$$
\left(m_{5}, b_{5}\right), \ldots,\left(m_{1}, b_{1}\right)=(11,1),(1111,2),(\varepsilon, 3),(\varepsilon, 1),(1,1)
$$

which corresponds to

$$
n=\left|\sigma^{4}(11) \sigma^{3}(1111) \sigma^{2}(\varepsilon) \sigma(\varepsilon) 1\right|=2 G_{4}+4 G_{3}+1=1053
$$

2.3. Reverse β-substitution. For a Parry number β, set $t_{1}=0^{\infty}$ and let $\left\{t_{2}, \ldots, t_{d+1}\right\}$ be the set of words $\left\{a_{j} a_{j+1} \ldots: j \geq 2\right\}$ with

$$
0^{\infty}=t_{1}<t_{2}<\cdots<t_{d}<t_{d+1}=a_{1} a_{2} \ldots
$$

For $1 \leq b \leq d$ set

$$
\tau(b)=\left\{\begin{array}{cl}
u_{0}(b) \ldots u_{a_{1}}(b) & \text { if } a_{1} t_{b}<a_{1} a_{2} \ldots \\
u_{0}(b) \ldots u_{a_{1}-1}(b) & \text { else }
\end{array}\right.
$$

with

$$
u_{j}(b)=b^{\prime} \text { if } t_{b^{\prime}} \leq j t_{b}<t_{b^{\prime}+1}
$$

We clearly have $u_{0}(1)=1$, thus $\tau^{\infty}(1)$ exists and every $n \geq 1$ corresponds to a unique τ-1-admissible sequence m_{k}, \ldots, m_{1} with $\left|m_{k}\right|>0$.

The following example and proposition show (for $b=1$) that the possible sequences of "digits" $\left|m_{j, \tau}(n)\right|$ are the same as for $\left|m_{j, \sigma}(n)\right|$, but in reversed order. Therefore we call τ reverse β-substitution.

Example. For $1=.402$, we have $t_{1}=0^{\infty}, t_{2}=020^{\infty}, t_{3}=20^{\infty}, t_{4}=4020^{\infty}$, thus

$$
\tau(1)=12333, \quad \tau(2)=1233, \quad \tau(3)=2233 .
$$

We have a τ-1-admissible sequence with $\left|m_{5}\right| \ldots\left|m_{1}\right|=10042$,

$$
\left(m_{5}, b_{5}\right), \ldots,\left(m_{1}, b_{1}\right)=(1,2),(\varepsilon, 1),(\varepsilon, 1),(1233,3),(22,3)
$$

which corresponds to

$$
n=\left|\tau^{4}(1) \tau^{3}(\varepsilon) \tau^{2}(\varepsilon) \tau(1233) 22\right|=G_{4}+19=373 .
$$

Proposition 1. Each τ-b-admissible sequence m_{k}, \ldots, m_{1} satisfies

$$
\begin{equation*}
\left|m_{j}\right| \ldots\left|m_{k}\right| t_{b}<a_{1} a_{2} \ldots \text { for all } j \leq k \tag{3}
\end{equation*}
$$

Conversely, for each sequence $\epsilon_{1} \ldots \epsilon_{k}$ with $\epsilon_{j} \ldots \epsilon_{k} t_{b}<a_{1} a_{2} \ldots$ for all $j \geq 1$, we have a (unique) τ-b-admissible sequence m_{k}, \ldots, m_{1} with $\left|m_{1}\right| \ldots\left|m_{k}\right|=\epsilon_{1} \ldots \epsilon_{k}$.
Proof. Assume first that m_{k}, \ldots, m_{1} is $\tau-b$-admissible and let b_{k}, \ldots, b_{1} be its companion sequence ($\left.m_{j} b_{j} \leq_{p} \tau\left(b_{j+1}\right), b_{k+1}=b\right)$. Assume further

$$
\left|m_{j}\right| \ldots\left|m_{\ell-1}\right|=a_{1} \ldots a_{\ell-j} \text { and } t_{b_{\ell}}<a_{\ell-j+1} a_{\ell-j+2} \ldots
$$

(which is trivially true for $j=\ell$). We have $b_{\ell}=u_{\left|m_{\ell}\right|}\left(b_{\ell+1}\right)$, hence

$$
\left|m_{\ell}\right| t_{b_{\ell+1}}<t_{b_{\ell}+1} \leq a_{\ell-j+1} a_{\ell-j+2} \ldots
$$

This implies $\left|m_{j}\right| \ldots\left|m_{\ell}\right|<a_{1} \ldots a_{\ell-j+1}$ or

$$
\left|m_{j}\right| \ldots\left|m_{\ell}\right|=a_{1} \ldots a_{\ell-j+1} \text { and } t_{b_{\ell+1}}<a_{\ell-j+2} a_{\ell-j+3} \ldots
$$

In the latter case, we proceed inductively and obtain

$$
\left|m_{j}\right| \ldots\left|m_{k}\right| t_{b_{k+1}}=\left|m_{j}\right| \ldots\left|m_{k}\right| t_{b}<a_{1} a_{2} \ldots
$$

Hence, (3) is proved.
For the converse, assume $\epsilon_{j} \ldots \epsilon_{k} t_{b}<a_{1} a_{2} \ldots$ for all $j \geq 1$ and

$$
t_{b_{\ell+1}} \leq \epsilon_{\ell+1} t_{b_{\ell+2}} \text { for all } \ell \in\{j+1, \ldots, k\}
$$

(which is trivially true for $j=k$). Then we have

$$
\epsilon_{j} t_{b_{j+1}} \leq \epsilon_{j} \epsilon_{j+1} t_{b_{j+2}} \leq \cdots \leq \epsilon_{j} \ldots \epsilon_{k} t_{b_{k+1}}=\epsilon_{j} \ldots \epsilon_{k} t_{b}<a_{1} a_{2} \ldots,
$$

thus $b_{j}=u_{\epsilon_{j}}\left(b_{j+1}\right)$ exists and $m_{j}=u_{0}\left(b_{j+1}\right) \ldots u_{\epsilon_{j}-1}\left(b_{j+1}\right)$. Furthermore, we have $t_{b_{j}} \leq \epsilon_{j} t_{b_{j}+1}$ and obtain, by induction, a (unique) τ - b-admissible sequence m_{k}, \ldots, m_{1} with $\left|m_{1}\right| \ldots\left|m_{k}\right|=\epsilon_{1} \ldots \epsilon_{k}$.

By Proposition $1(b=1)$, every finite β-expansion $\epsilon_{1} \ldots \epsilon_{k} 0^{\infty}$ corresponds to some $n<$ $\left|\tau^{k}(1)\right|$ such that $\epsilon_{1} \ldots \epsilon_{k}=\left|m_{1, \tau}(n)\right| \ldots\left|m_{k, \tau}(n)\right|$. By (2), we have $n<n^{\prime}$ for $n, n^{\prime}<\left|\tau^{k}(1)\right|$ if

$$
\epsilon_{k} \ldots \epsilon_{1}=\left|m_{k, \tau}(n)\right| \ldots\left|m_{1, \tau}(n)\right|<\left|m_{k, \tau}\left(n^{\prime}\right)\right| \ldots\left|m_{1, \tau}\left(n^{\prime}\right)\right|=\epsilon_{k}^{\prime} \ldots \epsilon_{1}^{\prime} .
$$

Therefore the β-adic van der Corput sequence is given by

$$
x_{n}=\sum_{j=1}^{\infty}\left|m_{j, \tau}(n)\right| \beta^{-j} .
$$

Note that we have $\left|\tau^{k}(1)\right|=\left|\sigma^{k}(1)\right|=G_{k}$ for all $k \geq 0$.

3. Proof of Theorem 1

Let \mathcal{D} be the set of all sequences $\left(m_{j}, b_{j}\right)_{j \geq 1}$ of words m_{j} and letters b_{j} with $m_{j} b_{j} \leq_{p}$ $\tau\left(b_{j+1}\right)$ for all $j \geq 1$. Set

$$
\delta\left(\left(m_{j}, b_{j}\right)_{j \geq 1},\left(m_{j}^{\prime}, b_{j}^{\prime}\right)_{j \geq 1}\right)=1 / k
$$

if $\left(m_{j}, b_{j}\right)=\left(m_{j}^{\prime}, b_{j}^{\prime}\right)$ for all $j<k$ and $\left(m_{j}, b_{j}\right) \neq\left(m_{j}^{\prime}, b_{j}^{\prime}\right)$. Then \mathcal{D} is a compact metric space with the metric δ.

In order to extend the addition of 1 in the number system defined by $\tau,\left(m_{j, \tau}(n)\right)_{j \geq 1} \mapsto$ $\left(m_{j, \tau}(n+1)\right)_{j \geq 1}$, define the successor function (or odometer or adic transformation) on \mathcal{D} by

$$
S\left(\left(m_{j}, b_{j}\right)_{j \geq 1}\right)=\left(m_{j}^{\prime}, b_{j}^{\prime}\right)_{j \geq 1} \text { with }\left(m_{j}^{\prime}, b_{j}^{\prime}\right)=\left\{\begin{array}{cc}
\left(m_{j}, b_{j}\right) & \text { if } j>k \\
\left(m_{k} b_{k}, b_{k}^{\prime}\right) & \text { if } j=k \\
\left(\varepsilon, u_{0}\left(b_{j+1}^{\prime}\right)\right) & \text { if } j<k
\end{array}\right.
$$

where $k \geq 1$ is the smallest integer such that $\tau\left(b_{k+1}\right)=m_{k} b_{k} b_{k}^{\prime} w$ for some letter b_{k}^{\prime} and some word w. If $\left(m_{j}, b_{j}\right)_{j \geq 1}$ is a maximal sequence, i.e. $m_{k} b_{k}=\tau\left(b_{k+1}\right)$ for all $k \geq 1$, then let its successor be the (unique) minimal sequence $(\varepsilon, 1),(\varepsilon, 1), \ldots$

If the maximal sequence is unique, then S is a homeomorphism and (\mathcal{D}, S) is a transformation group, but in many cases the maximal sequence is not unique. In particular if $a_{2} a_{3} \ldots>\left(a_{1}-1\right)^{\infty}$, then every maximal sequence satisfies $\left|m_{j}\right|=a_{1},\left|m_{j^{\prime}}\right|=a_{1}-1$ for some $j, j^{\prime} \geq 1$, and we obtain a different maximal sequence by shifting this sequence. Hence (\mathcal{D}, S) is only a transformation semigroup.

Define a continuous function $f: \mathcal{D} \rightarrow[0,1)$ by

$$
f\left(\left(m_{j}, b_{j}\right)_{j \geq 1}\right)=\sum_{j=1}^{\infty}\left|m_{j}\right| \beta^{-j} .
$$

Then we have $x_{n}=f\left(S^{n}((\varepsilon, 1),(\varepsilon, 1), \ldots)\right)$. If S is invertible, then $\left(x_{0}, x_{1}, \ldots\right)$ can be extended to a bisequence $\left(x_{n}\right)_{n \in \mathbb{Z}}$ by this definition.

Let X denote the orbit closure of $\left(x_{0}, x_{1}, \ldots\right)$ under the shift T, and define $\varphi: \mathcal{D} \rightarrow X$ by

$$
\left(\varphi\left(\left(m_{j}, b_{j}\right)_{j \geq 1}\right)\right)_{k}=f\left(S^{k}\left(\left(m_{j}, b_{j}\right)_{j \geq 1}\right)\right)
$$

Then φ is a homeomorphism and $\varphi \circ S=T \circ \varphi$. Hence the transformation (semi)group (X, T) is isomorphic to (\mathcal{D}, S). If S is invertible, then (X, T) is minimal by Theorem 2.2 of Shapiro [24] and we can apply Theorem 5.1 of this article, which states that $\exp (2 \pi i \lambda(I))$ is an eigenvalue of T and thus of S if $D(N, I)$ is bounded. Lemma 1 shows that Shapiro's proof is valid for our transformation semigroup as well.

By Théorème 5.2 of Canterini and Siegel [2], we have a continuous and surjective "desubstitution map" $\Gamma: \Omega \rightarrow \mathcal{D}$, where Ω is the set of biinfinite words which have the same language as $\tau^{\infty}(1)$. Let Δ be the shift on Ω. By Théorème 5.1 of this article and since the minimal sequence in \mathcal{D} is unique, we have $S \circ \Gamma=\Gamma \circ \Delta$. Therefore the eigenvalues of S are a subset of the eigenvalues of Δ and, by Proposition 5 of Ferenczi, Mauduit and Nogueira [9], these eigenvalues are of the form $\exp (2 \pi i y)$ with $y \in \mathbb{Q}(\beta)$, This concludes the proof of Theorem 1.

Remarks. Ferenczi, Mauduit and Nogueira [9] gave a more precise description of the set of eigenvalues of Δ in their Proposition 4, which is too complicated to be cited here.

For more details on the spectrum of these dynamical systems, see Chapter 7.3 in Pytheas Fogg [17], but note that the result of [9] is cited uncorrectly: According to Theorem 7.3.28 of [17], the eigenvalues of Δ associated with the trivial coboundary are in $\exp (2 \pi i \mathbb{Z}[\beta])$, but $\mathbb{Z}[\beta]$ should be $\mathbb{Q}[\beta]$ and the condition on the coboundary is unnecessary. Nevertheless, the author considered the coboundary and showed that all reverse β-substitutions τ have only the trivial coboundary, but the proof is rather lengthy and technical and therefore not given in this article.

Lemma 1. If $D(N, I)$ is bounded, then $\exp (2 \pi i \lambda(I))$ is an eigenvalue of S.
Proof. Set

$$
g\left(\left(m_{j}, b_{j}\right)_{j \geq 1}\right)=\chi_{I}\left(\sum_{j=1}^{\infty}\left|m_{j}\right| \beta^{-j}\right)-\lambda(I)
$$

where χ_{I} denotes the indicator function of I. Let $\omega=\left(m_{j}, b_{j}\right)_{j \geq 1}$ be a sequence with $\left|m_{1}\right|\left|m_{2}\right| \ldots=y_{1} y_{2} \ldots$, hence $\sum_{j=0}^{N-1} g\left(S^{j} \omega\right)=D(N, I)$ is bounded. Set $U(x, \eta)=(S x, \eta+$ $g(x))$ for $x \in \mathcal{D}, \eta \in \mathbb{R}$. Then we have

$$
U^{k}(x, \eta)=\left(S^{k} x, \eta+\sum_{j=0}^{k-1} g\left(S^{j} x\right)\right)
$$

The positive semi-orbit $\left\{U^{k}(\omega, 0): k \geq 0\right\}$ is bounded and has therefore compact closure. Denote by M the set of limit points of this semi-orbit. Then M is nonempty, closed and invariant under U (NCI). It is easy to see that $\left\{S^{k} x: k \geq 0\right\}$ is dense in \mathcal{D} for all $x \in \mathcal{D}$. Since M is NCI, we must therefore have some point $(x, \eta) \in M$ for all $x \in \mathcal{D}$.

Below we show that, for a given x, this η is unique, i.e. $\eta=\eta(x)$. Then the graph $(x, \eta(x))$ is the compact set M, therefore η is continuous. Since $U(x, \eta(x))=(S x, \eta(x)+$
$g(x))$, we have

$$
\begin{gathered}
\eta(S x)=\eta(x)+g(x) \\
\exp (-2 \pi i \lambda(I))=\exp (2 \pi i g(x))=\exp (2 \pi i \eta(S x)) / \exp (2 \pi i \eta(x)) .
\end{gathered}
$$

Therefore $K(x)=\exp (-2 \pi i \eta(x))$ is a continuous function with

$$
K(S x)=\exp (2 \pi i \lambda(I)) K(x)
$$

and $\exp (2 \pi i \lambda(I))$ is an eigenvalue of S.
To prove that $\eta(x)$ is unique, we show first $\eta(\omega)=0$. Suppose $(\omega, \eta) \in M$. Since M consists of limit points of $\left\{U^{k}(\omega, 0): k \geq 0\right\}$, we have a sequence $k_{j} \rightarrow \infty$ with

$$
\lim _{j \rightarrow \infty} U^{k_{j}}(\omega, 0)=(\omega, \eta)
$$

This implies

$$
\lim _{j \rightarrow \infty} S^{k_{j}} \omega=\omega \text { and } \lim _{j \rightarrow \infty} \sum_{i=0}^{k_{j}-1} g\left(S^{i} \omega\right)=\eta
$$

hence

$$
\lim _{j \rightarrow \infty} U^{k_{j}}(\omega, \eta)=\left(\lim _{j \rightarrow \infty} S^{k_{j}} \omega, \eta+\lim _{j \rightarrow \infty} \sum_{i=0}^{k_{j}-1} g\left(S^{i} \omega\right)\right)=(\omega, \eta+\eta)
$$

Since M is invariant, we have $U^{k_{j}}(\omega, \eta) \in M$ for all j and, since M is closed, $(\omega, 2 \eta) \in M$. Inductively we obtain $(\omega, k \eta) \in M$ for all M, which implies $\eta=0$ since M is bounded.

Next suppose $(x, \eta) \in M$ and $\left(x, \eta^{\prime}\right) \in M$. Since $\left\{S^{k} x: k \geq 0\right\}$ is dense, we have some $k_{j} \rightarrow \infty$ such that

$$
\lim _{j \rightarrow \infty} S^{k_{j}} x=\omega
$$

Since M is compact, we can refine the sequence k_{j} so that the sequences $U^{k_{j}}(x, \eta)$ and $U^{k_{j}}\left(x, \eta^{\prime}\right)$ converge (to points in M). Since the first coordinate of the limit points is ω, the second coordinate must be 0 for both points. Therefore

$$
\lim _{j \rightarrow \infty}\left(\eta+\sum_{\ell=0}^{k_{j}-1} g\left(S^{\ell} x\right)\right)=\lim _{j \rightarrow \infty}\left(\eta^{\prime}+\sum_{\ell=0}^{k_{j}-1} g\left(S^{\ell} x\right)\right)
$$

hence $\eta=\eta^{\prime}$ and we have proved that $\eta(x)$ is unique.

4. Proof of Theorem 2

Because of Theorem 1, we just have to consider $y \in \mathbb{Q}(\beta)$ for Theorem 2, but first we compute formulae for the discrepancy function of arbitrary intervals $[0, y)$. Let $A(N, I)=$ $\#\left\{x_{n} \in I: 0 \leq n<N\right\}$. Then we have, for $y=. y_{1} y_{2} \ldots$,

$$
D(N,[0, y))=\sum_{k=1}^{\infty}\left(A\left(N,\left[. y_{1} \ldots y_{k-1}, . y_{1} \ldots y_{k}\right)\right)-N y_{k} \beta^{-k}\right)
$$

Lemma 2. We have

$$
A\left(N,\left[. y_{1} \ldots y_{k-1}, . y_{1} \ldots y_{k}\right)\right)=y_{k} \sum_{\ell=k+1}^{\infty} \sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left|\tau^{\ell-k-1}(b)\right|+\mu_{k}(N, y)
$$

with

$$
\mu_{k}(N, y)=\left\{\begin{array}{cl}
y_{k} & \text { if }\left|m_{k, \tau}(N)\right| \geq y_{k} \\
\left|m_{k, \tau}(N)\right|+1 & \text { if }\left|m_{k, \tau}(N)\right|<y_{k}, \\
& \left|m_{k-1, \tau}(N)\right| \ldots\left|m_{1, \tau}(N)\right|>y_{k-1} \ldots y_{1} \\
\left|m_{k, \tau}(N)\right| & \text { else. }
\end{array}\right.
$$

Proof. For $G_{L} \leq N<G_{L+1}$, we have

$$
\begin{aligned}
& \left\{\left(m_{1, \tau}(n), \ldots, m_{L, \tau}(n)\right): 0 \leq n<N\right\} \\
= & \bigcup_{\ell=1}^{L} \bigcup_{m: m b p_{p} m_{\ell, \tau}(N)}\left\{\left(m_{1}, \ldots, m_{\ell-1}, m, m_{\ell+1, \tau}(N), \ldots, m_{L, \tau}(N)\right): m_{\ell-1}, \ldots, m_{1} \text { is } \tau \text {-b-adm. }\right\}
\end{aligned}
$$

and $x_{n} \in\left[. y_{1} \ldots, y_{k-1}, . y_{1} \ldots y_{k}\right)$ if and only if

$$
\left|m_{1, \tau}(n)\right| \ldots\left|m_{k-1, \tau}(n)\right|=y_{1} \ldots y_{k-1},\left|m_{k, \tau}(n)\right|<y_{k} .
$$

Thus, for $\ell>k$, we have to count the τ - b-admissible sequences $m_{\ell-1}, \ldots, m_{1}$ with $\left|m_{1}\right| \ldots\left|m_{k-1}\right|=y_{1} \ldots y_{k-1},\left|m_{k}\right|<y_{k}$. By Proposition 1 , every τ - b-admissible sequence $m_{\ell-1}, \ldots, m_{k+1}$ can be prolongated to such a sequence for all $\left|m_{k}\right|<y_{k}$ because of

$$
\left|m_{j}\right| \ldots\left|m_{\ell-1}\right| t_{b}<y_{j} \ldots y_{k} \leq a_{1} a_{2} \ldots \text { for } j \leq k
$$

Therefore we have $y_{k}\left|\tau^{\ell-k-1}(b)\right|$ such sequences for every letter b in $m_{\ell, \tau}(N)$.
For $\ell=k$, we need $|m|<\left|m_{k, \tau}(N)\right|$ and $|m|<y_{k}$. For each such $|m|$ (and the corresponding b), there is one τ-b-admissible sequence m_{k-1}, \ldots, m_{1} with $\left|m_{1}\right| \ldots\left|m_{k-1}\right|=y_{1} \ldots y_{k-1}$. Thus, the contribution is $\max \left(\left|m_{k, \tau}(N)\right|, y_{k}\right)$.

Finally, for $\ell<k$, we need $|m|=y_{\ell}<\left|m_{\ell, \tau}(N)\right|,\left|m_{k, \tau}(N)\right|<y_{k}$ and $\left|m_{\ell+1, \tau}(N)\right| \ldots\left|m_{k-1, \tau}(N)\right|=y_{\ell+1} \ldots y_{k-1}$. Thus the contribution is 1 if $\left|m_{k, \tau}(N)\right|<y_{k}$, $\left|m_{k-1, \tau}(N)\right| \ldots\left|m_{1, \tau}(N)\right|>y_{k-1} \ldots y_{1}$ and 0 else.

The characteristic polynomial of the incidence matrix of the β-substitution σ is the β polynomial. Hence σ is of Pisot type (one eigenvalue is >1 and all other eigenvalues have modulus <1) if and only if β is a Pisot number and the β-polynomial is irreducible. Since $\left|\sigma^{k}(1)\right|=\left|\tau^{k}(1)\right|$ for all $k \geq 0, \beta$ is an eigenvalue of τ as well. Furthermore, τ is of Pisot type because the alphabet has the same size as the alphabet of σ. Hence we have some constants $c_{b, j}$ and $\rho<1$ such that

$$
\left|\tau^{k}(b)\right|=c_{b, 1} \beta^{k}+c_{b, 2} \beta_{2}^{j}+\cdots+c_{b, d} \beta_{d}^{k}=c_{b, 1} \beta^{k}+\mathcal{O}\left(\rho^{k}\right),
$$

where the $\beta_{j}, 2 \leq j \leq d$ are the conjugates of β. Thus

$$
\begin{aligned}
& D(N,[0, y))=\sum_{k=1}^{\infty}\left(y_{k} \sum_{\ell=k+1}^{\infty} \sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left|\tau^{\ell-k-1}(b)\right|+\mu_{k}(N, y)\right. \\
& \left.\quad-y_{k} \sum_{\ell=1}^{\infty} \sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left|\tau^{\ell-1}(b)\right| \beta^{-k}\right) \\
& =\sum_{k=1}^{\infty}\left(y_{k} \sum_{\ell=k+1}^{\infty} \sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b} \sum_{j=2}^{d} c_{b, j}\left(\beta_{j}^{\ell-k-1}-\beta_{j}^{\ell-1} \beta^{-k}\right)+\mu_{k}(N, y)\right. \\
& \left.\quad-y_{k} \sum_{\ell=1}^{k} \sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left(c_{b, 1} \beta^{\ell-1-k}+\sum_{j=2}^{d} \beta_{j}^{\ell-1} \beta^{-k}\right)\right)=\sum_{k=1}^{\infty} y_{k} \mathcal{O}(1)
\end{aligned}
$$

and

$$
\begin{align*}
& D(N,[0, y))= \sum_{\ell=1}^{\infty}\left(\sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left(\sum_{k=1}^{\ell-1} y_{k} \sum_{j=2}^{d} c_{b, j}\left(\beta_{j}^{\ell-k-1}-\beta_{j}^{\ell-1} \beta^{-k}\right)\right)\right. \\
&\left.+\mu_{\ell}(N, y)-\sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b} \sum_{k=\ell}^{\infty} y_{k}\left(c_{b, 1} \beta^{\ell-k-1}+\sum_{j=2}^{d} c_{b, j} \beta_{j}^{\ell-1} \beta^{-k}\right)\right) \\
&=\sum_{\ell=1}^{\infty}\left(\mu_{\ell}(N, y)-\sum_{b=1}^{d}\left|m_{\ell, \tau}(N)\right|_{b}\left(c_{b, 1} \sum_{k=\ell}^{\infty} y_{k} \beta^{\ell-k-1}-\sum_{j=2}^{d} c_{b, j} \sum_{k=1}^{\ell-1} y_{k} \beta_{j}^{\ell-k-1}\right)\right)+\mathcal{O}(\tag{1}
\end{align*}
$$

By the above formulae, we easily see that $D(N,[0, y))$ is bounded if $y_{k}>0$ for only finitely many $k \geq 1$. Now we consider $y \in \mathbb{Q}(\beta)$. Bertrand [1] and K. Schmidt [21] proved independently that the elements $y \in \mathbb{Q}(\beta)$ are exactly those who have eventually periodic β-expansion. (See Rigo and Steiner [20] for an alternative proof including number systems defined by substitutions.) Furthermore, by the above formulae, a finite number of digits of the β-expansion of y as well as a shift of digits has no influence on the boundedness of $D(N,[0, y))$. Therefore we may assume that the β-expansion of y is purely periodic.

For $y=.\left(y_{1} \ldots y_{q}\right)^{\infty}$, we have

$$
\sum_{k=\ell}^{\infty} y_{k} \beta^{\ell-k-1}=\frac{y_{\ell} \beta^{p-1}+\cdots+y_{\ell+p-1}}{\beta^{p}-1}=s_{\ell, d-1} \beta^{d-1}+\cdots+s_{\ell, 0} \beta^{0}=P_{\ell}(\beta)
$$

for some $s_{\ell, j} \in \mathbb{Q}$. If we set $y_{k}=y_{k+q}$ for $k \leq 0$, then we obtain

$$
\begin{gathered}
\sum_{k=-\infty}^{\ell-1} y_{k} \beta_{i}^{\ell-k-1}=\frac{y_{\ell-p} \beta_{i}^{p-1}+\cdots+y_{\ell-1}}{1-\beta_{i}^{p}}=-P_{\ell}\left(\beta_{i}\right) \\
\gamma_{\ell}(b)=c_{b, 1} \sum_{k=\ell}^{\infty} y_{k} \beta^{\ell-k-1}-\sum_{i=2}^{d} c_{b, i} \sum_{k=-\infty}^{\ell-1} y_{k} \beta_{i}^{\ell-k-1}=s_{\ell, d-1}\left|\tau^{d-1}(b)\right|+\cdots+s_{\ell, 0}\left|\tau^{0}(b)\right|
\end{gathered}
$$

and

$$
D(N,[0, y))=\sum_{\ell=1}^{\infty}\left(\mu_{\ell}(N, y)-\gamma_{\ell}\left(m_{\ell, \tau}(N)\right)\right)+\mathcal{O}(1)
$$

by extending γ_{ℓ} naturally on words, $\gamma_{\ell}(w)=\sum_{b=1}^{d}|w|_{b} \gamma_{\ell}(b)$.
We split the remaining part of the proof into two lemmata.
Lemma 3. If β is a Pisot number with irreducible β-polynomial, then $D\left(N,\left[0, .\left(a_{d-p+1} \ldots a_{d}\right)^{\infty}\right)\right.$ is bounded.

Proof. We have

$$
. y_{\ell} y_{\ell+1} \cdots=. a_{d-p+\ell} a_{d-p+\ell+1} \cdots=\beta^{d-p+\ell-1}-a_{1} \beta^{d-p+\ell-2}-\cdots-a_{d-p+\ell-1}
$$

and, by Proposition 1, we easily see

$$
\left|\tau^{k}(b)\right|=a_{1}\left|\tau^{k-1}(b)\right|+\cdots+a_{k}\left|\tau^{0}(b)\right|+ \begin{cases}1 & \text { if } a_{1} \ldots a_{k} t_{b}<a_{1} a_{2} \ldots \\ 0 & \text { else }\end{cases}
$$

for all $k>0$, hence

$$
\gamma_{\ell}(b)= \begin{cases}1 & \text { if } t_{b}<a_{d-p+\ell} a_{d-p+\ell+1} \cdots \\ 0 & \text { else } .\end{cases}
$$

By definition, we have $t_{u_{j}\left(b_{\ell+1}\right)} \leq j t_{b_{\ell+1}}<t_{u_{j}\left(b_{\ell+1}\right)+1}$, therefore

$$
\gamma_{\ell}\left(u_{j}\left(b_{\ell+1}\right)\right)= \begin{cases}1 & \text { if } j t_{b_{\ell+1}}<a_{d-p+\ell} a_{d-p+\ell+1} \ldots \\ 0 & \text { else }\end{cases}
$$

With $m_{\ell, \tau}(N)=u_{0}\left(b_{\ell+1}\right) \ldots u_{\left|m_{\ell, \tau}(N)\right|-1}\left(b_{\ell+1}\right)$, we obtain

$$
\gamma_{\ell}\left(m_{\ell, \tau}(N)\right)=\left\{\begin{array}{cl}
\left|m_{\ell, \tau}(N)\right| & \text { if }\left|m_{\ell, \tau}(N)\right| \leq a_{d-p+\ell} \\
a_{d-p+\ell} & \text { if }\left|m_{\ell, \tau}(N)\right|>a_{d-p+\ell} \\
& t_{b_{\ell+1}} \geq a_{d-p+\ell+1} a_{d-p+\ell+2} \ldots \\
a_{d-p+\ell}+1 & \text { else }
\end{array}\right.
$$

and

$$
\begin{aligned}
\Delta_{\ell} & =\mu_{\ell}\left(N, .\left(a_{d-p+1} \ldots a_{d}\right)^{\infty}\right)-\gamma_{\ell}\left(m_{\ell, \tau}(N)\right) \\
& =\left\{\begin{array}{cl}
-1 & \text { if }\left|m_{\ell, \tau}(N)\right|>a_{d-p+\ell}, t_{b_{\ell+1}}<a_{d-p+\ell+1} a_{d-p+\ell+2} \ldots \\
1 & \text { if }\left|m_{\ell, \tau}(N)\right|<a_{d-p+\ell}, \\
0 & \left|m_{\ell-1, \tau}(N)\right| \ldots\left|m_{1, \tau}(N)\right|>a_{d-p+\ell-1} \ldots a_{d-p+1}
\end{array}\right.
\end{aligned}
$$

If $\Delta_{\ell}=-1$, then $t_{b_{\ell+1}}<a_{d-p+\ell+1} a_{d-p+\ell+2} \ldots$ and

$$
t_{b_{\ell+1}} \leq\left|m_{\ell+1, \tau}(N)\right| t_{b_{\ell+2}}<t_{b_{\ell+1}+1} \leq a_{d-p+\ell+1} a_{d-p+\ell+2} \ldots
$$

implies either $\left|m_{\ell+1, \tau}(N)\right|<a_{d-p+\ell+1}$, thus $\Delta_{\ell+1}=1$, or

$$
\left|m_{\ell+1, \tau}(N)\right|=a_{d-p+\ell+1}, t_{b_{\ell+2}}<a_{d-p+\ell+2} a_{d-p+\ell+3} \ldots \text { and } \Delta_{\ell+1}=0
$$

Inductively, we obtain some $k>\ell$ such that $\Delta_{\ell+1}=\cdots=\Delta_{k-1}=0$ and $\Delta_{k}=1$.

If $\Delta_{\ell}=1$, then $\left|m_{\ell-1, \tau}(N)\right| \ldots\left|m_{1, \tau}(N)\right|>a_{d-p+\ell-1} \ldots a_{d-p+1}$ implies either

$$
\left|m_{\ell-1, \tau}(N)\right|>a_{d-p+\ell-1} \text { and } t_{b_{\ell}} \leq\left|m_{\ell, \tau}(N)\right| t_{b_{\ell+1}}<a_{d-p+\ell}
$$

thus $\Delta_{\ell-1}=-1$, or

$$
\left|m_{\ell-1, \tau}(N)\right|=a_{d-p+\ell-1},\left|m_{\ell-2, \tau}(N)\right| \ldots\left|m_{1, \tau}(N)\right|>a_{d-p+\ell-2} \ldots a_{d-p+1}
$$

and $\Delta_{\ell-1}=0$. Inductively, we obtain some $k<\ell$ such that $\Delta_{k}=-1$ and $\Delta_{k+1}=\cdots=$ $\Delta_{\ell-1}=0$.

Therefore we have $\sum_{\ell=1}^{\infty} \Delta_{\ell}=0$ and the discrepancy function is bounded.
$D\left(N,\left[0, .\left(a_{d-p+j} \ldots a_{d} a_{d-p+1} \ldots a_{d-p+j-1}\right)^{\infty}\right), 1<j \leq p\right.$, is bounded as well because a shift of digits does not change the boundedness.

Lemma 4. If $D(N,[0, y))$ is bounded and $y \neq 0$ has purely periodic β-expansion, then the expansion of 1 is eventually periodic and $y=. a_{L} a_{L+1} \ldots$ for some $L>d-p$.

Proof. Let the β-expansion of y be $. y_{1} y_{2} \ldots=.\left(y_{1} \ldots y_{q}\right)^{\infty}$. Consider sequences of integers N_{K} given by

$$
\left(m_{1, \tau}\left(N_{K}\right), m_{2, \tau}\left(N_{K}\right), \ldots\right)=\left(\left(m_{1}, \ldots, m_{J q}\right)^{K}, \varepsilon, \varepsilon, \ldots\right)
$$

with $m_{\ell+1}=\cdots=m_{J q}=\varepsilon$ for some $\ell \geq 1, J \geq 1$ such that $b_{\ell+1}=1$ and $y_{\ell+1} \ldots y_{J q}>$ $0 \ldots 0$. For these sequences, we have

$$
\mu_{j+k J q}\left(N_{K}, y\right)=\mu_{j}\left(N_{K}, y\right), \gamma_{j+k J q}\left(m_{j+k J q, \tau}\left(N_{K}\right)\right)=\gamma_{j}\left(m_{j}\right)
$$

for all $j \leq J q, k<K$. Thus $D\left(N_{K},[0, y)\right)$ is bounded if and only if

$$
\sum_{j=1}^{J q}\left(\mu_{j}\left(N_{1}, y\right)-\gamma_{j}\left(m_{j}\right)\right)=0
$$

Let furthermore $m_{1}=\cdots=m_{k-1}=\varepsilon$ for some $k \in\{1, \ldots, \ell\}$, hence $\mu_{j}\left(N_{1}, y\right)=\gamma_{j}\left(m_{j}\right)$ for all $j<k$. Consider simultaneously integers N_{K}^{\prime} with $m_{k}^{\prime}=\varepsilon$ and $m_{j}^{\prime}=m_{j}$ for all $j \neq k$. Then we have $\mu_{j}\left(N_{1}^{\prime}, y\right)=\gamma_{j}\left(m_{j}^{\prime}\right)=0$ for all $j<k, \gamma_{j}\left(m_{j}^{\prime}\right)=\gamma_{j}\left(m_{j}\right)$ for all $j>k$ and

$$
\sum_{j=k+1}^{J q} \mu_{j}\left(N_{1}, y\right)=\sum_{j=k+1}^{J q} \mu_{j}\left(N_{1}^{\prime}, y\right)+ \begin{cases}1 & \text { if }\left|m_{k}\right|>y_{k}, \\ & \left|m_{k+1}\right| \ldots\left|m_{J q}\right|<y_{k+1} \ldots y_{J q} \\ 0 & \text { else },\end{cases}
$$

thus

$$
\begin{aligned}
\gamma_{k}\left(m_{k}\right)-\mu_{k}\left(N_{1}, y\right) & =\sum_{j=k+1}^{J q}\left(\mu_{j}\left(N_{1}, y\right)-\gamma_{j}\left(m_{j}\right)\right) \\
& = \begin{cases}1 & \text { if }\left|m_{k}\right|>y_{k},\left|m_{k+1}\right| \ldots\left|m_{\ell}\right| \leq y_{k+1} \ldots y_{\ell} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

and

$$
\gamma_{k}\left(m_{k}\right)=\left\{\begin{array}{cl}
\left|m_{k}\right| & \text { if }\left|m_{k}\right| \leq y_{k} \\
y_{k} & \text { if }\left|m_{k}\right|>y_{k},\left|m_{k+1}\right| \ldots\left|m_{\ell}\right|>y_{k+1} \ldots y_{\ell} \\
y_{k}+1 & \text { else. }
\end{array}\right.
$$

If $m_{k} b_{k}<_{p} \tau\left(b_{k+1}\right)$, then $m_{\ell}, \ldots, m_{k+1}, m_{k} b_{k}$ is a τ-1-admissible sequence and we obtain

$$
\gamma_{k}\left(b_{k}\right)=\gamma_{k}\left(m_{k} b_{k}\right)-\gamma_{k}\left(m_{k}\right)= \begin{cases}1 & \text { if }\left|m_{k}\right| \ldots\left|m_{\ell}\right| \leq y_{k} \ldots y_{\ell} \tag{4}\\ 0 & \text { else }\end{cases}
$$

in particular $\gamma_{k}(1)=1$ for all $k \geq 1$ (with $k=\ell, m_{k}=\varepsilon$).
If $m_{k} b_{k}=\tau\left(b_{k+1}\right)$, consider

$$
. y_{k+1} y_{k+2} \ldots=\beta \times . y_{k} y_{k+1} \ldots-y_{k}=s_{k, d-1} \beta^{d}+\cdots+s_{k, 0} \beta-y_{k}
$$

hence

$$
\begin{aligned}
\gamma_{k+1}\left(b_{k+1}\right) & =s_{k, d-1}\left|\tau^{d}\left(b_{k+1}\right)\right|+\cdots+s_{k, 0}\left|\tau\left(b_{k+1}\right)\right|-y_{k} \\
& =s_{k, d-1}\left|\tau^{d-1}\left(m_{k} b_{k}\right)\right|+\cdots+s_{1,0}\left|m_{k} b_{k}\right|-y_{k}=\gamma_{k}\left(m_{k}\right)+\gamma_{k}\left(b_{k}\right)-y_{k} \\
& =\gamma_{k}\left(b_{k}\right)+\left\{\begin{array}{cl}
-1 & \text { if } \left.\left|m_{k}\right|<y_{k} \text { (i.e. }\left|m_{k}\right|=a_{1}-1, y_{k}=a_{1}\right) \\
0 & \text { if }\left|m_{k}\right|=y_{k} \text { or }\left|m_{k}\right|>y_{k},\left|m_{k+1}\right| \ldots\left|m_{\ell}\right|>y_{k+1} \ldots y_{\ell} \\
1 & \text { else. }
\end{array}\right.
\end{aligned}
$$

In case $\left|m_{k}\right|=\left|\tau\left(b_{k+1}\right)\right|-1=a_{1}-1, y_{k}=a_{1}$, we have $a_{1} t_{b_{k+1}} \geq a_{1} a_{2} \ldots$, $y_{k+1} y_{k+2} \ldots<a_{2} a_{3} \ldots$ and $t_{b_{k+1}} \leq\left|m_{k+1}\right| t_{b_{k+2}} \leq \cdots \leq\left|m_{k+1}\right| \ldots\left|m_{\ell}\right| 0^{\infty}$, hence $\left|m_{k+1}\right| \ldots\left|m_{\ell}\right| \geq a_{2} \ldots a_{\ell-k+1} \geq y_{k+1} \ldots y_{\ell}$. One of these inequalities is strict because $t_{b_{k+1}}=\left|m_{k+1}\right| \ldots\left|m_{\ell}\right| 0^{\infty}=a_{2} \ldots a_{\ell-k+1} 0^{\infty}$ implies $\left|m_{k+1}\right| \ldots\left|m_{\ell}\right|=a_{2} \ldots a_{d} 0^{\ell-k-d+1}>$ $y_{k+1} \ldots y_{\ell}$. Therefore we have, for all b_{k}, b_{k+1},

$$
\gamma_{k}\left(b_{k}\right)-\gamma_{k+1}\left(b_{k+1}\right)=\left\{\begin{array}{cl}
1 & \text { if }\left|m_{k}\right| \ldots\left|m_{\ell}\right| \leq y_{k} \ldots y_{\ell},\left|m_{k+1}\right| \ldots\left|m_{\ell}\right|>y_{k+1} \ldots y_{\ell} \\
-1 & \text { if }\left|m_{k}\right| \ldots\left|m_{\ell}\right|>y_{k} \ldots y_{\ell},\left|m_{k+1}\right| \ldots\left|m_{\ell}\right| \leq y_{k+1} \ldots y_{\ell} \\
0 & \text { else. }
\end{array}\right.
$$

and, with $\gamma_{\ell+1}\left(b_{\ell+1}\right)=\gamma_{\ell+1}(1)=1$, (4) holds for all m_{k}, b_{k}.
Now, let $k=1$ and m_{ℓ}, \ldots, m_{1} and $m_{\ell}^{\prime}, \ldots, m_{1}^{\prime}$ be τ-1-admissible sequences with companion sequences b_{ℓ}, \ldots, b_{1} and $b_{\ell}^{\prime}, \ldots, b_{1}^{\prime}$. If $b_{1}<b_{1}^{\prime}$, then we have $\left|m_{1}\right| t_{b_{2}}<t_{b_{1}+1} \leq$ $t_{b_{1}^{\prime}} \leq\left|m_{1}^{\prime}\right| t_{b_{2}^{\prime}}$, thus either $\left|m_{1}\right|<\left|m_{1}^{\prime}\right|$ or $\left|m_{1}\right|=\left|m_{1}^{\prime}\right|, b_{2}<b_{2}^{\prime}$. Inductively, we obtain $\left|m_{1}\right| \ldots\left|m_{\ell}\right|<\left|m_{1}^{\prime}\right| \ldots\left|m_{\ell}^{\prime}\right|$ and $\gamma_{1}\left(b_{1}\right) \geq \gamma_{1}\left(b_{1}^{\prime}\right)$. Therefore we have some $b^{\prime} \geq 2$ such that

$$
\gamma_{1}(b)= \begin{cases}1 & \text { if } b<b^{\prime} \\ 0 & \text { else }\end{cases}
$$

Finally, consider the system of linear equations

$$
s_{1, d-1}\left|\tau^{d-1}(b)\right|+\cdots+s_{1,0}\left|\tau^{0}(b)\right|= \begin{cases}1 & \text { if } b<b^{\prime} \\ 0 & \text { else }\end{cases}
$$

for $1 \leq b \leq d$. We have $t_{b^{\prime}}=a_{L} a_{L+1} \ldots$ for some $L \geq 2$. Then, by the proof of Lemma $3,\left(s_{1, d-1}, \ldots, s_{1,0}\right)=\left(0, \ldots, 0,1,-a_{1}, \ldots,-a_{L-1}\right)$ is a solution of this system, i.e. $y=. a_{L} a_{L+1} \ldots$ To show that these solutions are unique, consider linear combinations of
the column vectors $\left(\left|\tau^{\ell}(1)\right|, \ldots,\left|\tau^{\ell}(d)\right|\right)^{T}$ (over \mathbb{Q}). We have, with $\beta_{1}=\beta$,

$$
\sum_{\ell=0}^{d-1} r_{\ell}\left(\begin{array}{c}
\left|\tau^{\ell}(1)\right| \\
\vdots \\
\left|\tau^{\ell}(d)\right|
\end{array}\right)=\sum_{\ell=0}^{d-1} r_{\ell} M^{\ell}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\sum_{\ell=0}^{d-1} r_{\ell} \sum_{j=1}^{d} v_{j} \beta_{j}^{\ell} \mathbf{e}_{j}=\sum_{j=1}^{d} v_{j} \mathbf{e}_{j} \sum_{\ell=0}^{d-1} r_{\ell} \beta_{j}^{\ell}
$$

where M is the incidence matrix of $\tau, M=\left(|\tau(b)|_{c}\right)_{1 \leq b, c \leq d}$, and the $\mathbf{e}_{j}, 1 \leq j \leq d$, are right eigenvectors of M to the eigenvalues β_{j}. If $r_{\ell} \in \mathbb{Q}$, then all r_{ℓ} must be zero, hence the vectors $\left(\left|\tau^{\ell}(1)\right|, \ldots,\left|\tau^{\ell}(d)\right|\right), 0 \leq \ell<d$, are linearly independent and the system of linear equations has a unique solution.

To conclude the proof of the lemma, note that $a_{L} a_{L+1} \ldots$ is purely periodic if and only if $L>d-p$.

Acknowledgements. I want to thank Klaus Scheicher for bringing my attention to this subject and for many fruitful discussions.

References

[1] Bertrand A (1977) Développements en base de Pisot et répartition modulo 1. C R Acad Sci, Paris, Sér A 285: 419-421
[2] Canterini V, Siegel A (2001) Automate des préfixes-suffixes associé à une substitution primitive. J Théor Nombres Bordx 13: 353-369
[3] Drmota M, Larcher G, Pillichshammer F (to appear) Precise distribution properties of the van der Corput sequence and related sequences. Manuscr Math
[4] Drmota D, Tichy R F (1998) Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol 1651. Berlin: Springer
[5] Dumont J-M, Thomas A (1989) Systèmes de numération et fonctions fractales relatifs aux substitutions. Theoret Comput Sci 65: 153-169
[6] Faure H (1983) Étude des restes pour les suites de van der Corput généralisées. J Number Theory 16: 376-394
[7] Faure H (2005) Discrepancy and diaphony of digital (0,1)-sequences in prime base. Acta Arith 117: 125-148
[8] Ferenczi S (1992) Bounded remainder sets. Acta Arith 61: 319-326.
[9] Ferenczi S, Mauduit S, Nogueira A (1996) Substitution dynamical systems: Algebraic characterization of eigenvalues. Ann Sci Éc Norm Supér, IV Sér 29: 519-533
[10] Hecke E (1921) Analytische Funktionen und die Verteilung von Zahlen mod. eins. Abh Math Sem Univ Hamburg 1: 54-76.
[11] Hellekalek P (1980) On regularities of the distribution of special sequences. Monatsh Math 90: 291295
[12] Hellekalek P (1984) Regularities in the distribution of special sequences. J Number Theory 18: 41-55
[13] Kesten H (1966) On a conjecture of Erdős and Szüsz related to uniform distribution mod 1. Acta Arith 12: 193-212
[14] Liardet P (1987) Regularities of distribution. Compos Math 61: 267-293
[15] Ninomiya S (1998) Constructing a new class of low-discrepancy sequences by using the β-adic transformation. Math Comput Simulation 47: 403-418
[16] Parry P (1960) On the β-expansions of real numbers. Acta Math Acad Sci Hung 11: 401-416
[17] Pytheas Fogg N (2002) Substitutions in dynamics, arithmetics and combinatorics. Berthé V, Ferenczi S, Mauduit S, Siegel A (eds). Lecture Notes in Mathematics, vol 1794. Berlin: Springer
[18] Rauzy G, (1984) Ensembles à restes bornés, Sém Théor Nombres, Univ Bordeaux I 1983-1984, Exp. No. 24: 12 p.
[19] Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hung 8: 477-493
[20] Rigo M, Steiner W (2005) Abstract β-expansions and ultimately periodic representations. J Théor Nombres Bordx 17: 283-299
[21] Schmidt K (1980) On periodic expansions of Pisot numbers and Salem numbers. Bull Lond Math Soc 12: 269-278
[22] Schmidt W M (1972) Irregularities of distribution VI. Comput Math 24: 63-74
[23] Schmidt W M (1974) Irregularities of distribution VIII. Trans Am Math Soc 198: 1-22
[24] Shapiro L (1978) Regularities of distribution. In: Studies in probability and ergodic theory, Adv in Math Suppl Stud, vol 2, pp 135-154. New York-London: Academic Press
[25] Van Aardenne-Ehrenfest T (1949) On the impossibility of a just distribution. Indag Math 11: 264-269

[^0]: Date: March 26, 2007.
 2000 Mathematics Subject Classification. 11K31, 11K16, 37B10.
 Key words and phrases. discrepancy, van der Corput sequence, β-expansion, substitution.
 This work was supported by the Austrian Science Foundation, grant S8302-MAT.
 *Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria.

