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1. INTRODUCTION

Every non-negative integer n has at least one digital expansion

n = Zeka,

k>2

with digits €, € {0,1}. The maximal expansion with respect to the lexicographic
order on (..., €y, €3, €3) is the Zeckendorf expansion or, more generally, the greedy ex-
pansion, which has been studied by Zeckendorf [7] and many others. (Lexicographic
order means (..., e€3,€2) < (...,€3,€5) if ex < € for some k > 2 and ¢; < ¢ for all
j > k.) The minimal expansion with respect to this order is the less known lazy
expansion, which was introduced by Erdés and Joé [4] (for g-ary expansions of 1,
1 < ¢ < 2). For example, 100 has greedy expansion 100 = 89+8+3 = Fy; + Fs+ F}
and lazy expansion 100 = 554+214+134+5434+2+1 = Fig+ Fs+Fr+F5+Fy+F3+F5.
Denote the digits of the greedy expansion by €} (n) and those of the lazy expansion
by €t (n).

The aim of this work is to study the structure of the possible digit sequences in
order to obtain distributional results for the sum-of-digits functions

Sq(n) = Z el(n) and se(n) = Z et (n).

k>2 k>2
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2. RESULTS

It is well known that Zeckendorf expansions have no two subsequent ones (be-
cause the pattern (0,1,1) could be replaced by (1,0,0)) and that every finite se-
quence with no two subsequent ones is a Zeckendorf expansion of some integer
(see Zeckendorf [7]). Symmetrically, lazy expansions have no two subsequent zeros
preceeded by a one, because (1,0,0) could be replaced by (0,1,1), and it is not
difficult to see that every such sequence is the lazy expansion of some integer (see
Lemma 1).

For s4(n), Grabner and Tichy [5] proved (in the context of digital expansion

related to linear recurrences) that its mean value is given by

1 1
N Y se(n) = a2+110gaN+f1(10gaN)+0(

logN>
n<N

N

where f; is periodic with period 1, continuous and nowhere differentiable and «
denotes the golden number 1+2—‘/5 For the variance, Dumont and Thomas [2] ob-
tained (in the more general context of numeration systems associated with primitive

substitutions on finite alphabets)

1 1 2 1
— — | N|] =—=1 N | N) 1 N 1
N Z (89 (n) a2 +1 08 ) 5\/5 O8q + f2( O8q ) 08« + 0( )7

n<N

where f5 is again periodic with period 1, continuous and nowhere differentiable.

In [3], they showed that the distribution is asymptotically normal, i.e.

1 Sg (n) 21_|_]_ loga N 1 /:l: —42
— n<N @ LT p— — et /2y,
N# { 5-3/4,/log, N V2 J_ oo

This is also a special case of a result of Drmota and Steiner [1], where generalizations

of the sum-of-digits functions are studied.
The distribution of sy(n) has not been studied yet, but it is easy to replace
the greedy expansions in [1] by lazy expansions and to obtain similar asymptotics

o2
aZ+1

(with expected value log,, N). Instead of doing this, we will directly prove the

following central limit theorem for the joint distribution of s,(n) and s¢(n).

Theorem 1. We have, as N — oo,

%# {n<N sg(n) — pglog, N se(n) — pelog, N <$é}

< X4,
oy/log, N I o+/log, N
1 e /mg — L (24t2-2Ctyt,)
. e 20-c%) gl I dt dty
27T\/ ]_ — 02 /—oo —00 g
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with o = Y35 g = Lo py= 90 0 =534 and C = 9 — ba ~ 0.90983.

This means that the two sum-of-digits functions are strongly correlated. If one
of them is large for some n, the probability of the other one to be large is very high.
(The distribution is the Gaussian distribution with covariance matrix ( é (f) )

Similarly to [1], corresponding results can be proved for F-additive functions,

for sequences of primes and for polynomial sequences P(n), n € N, or P(p), p € P.

3. PROOFS
First we prove the characterization of lazy expansions given in Section 2.

Lemma 1. The lazy expansions are exactly those sequences (ex)r>2 € {0, 1} with

(€ky€k—1,€x—2) # (1,0,0) for all k > 4 and only a finite number of ¢, = 1.

Proof. As already noted, the pattern (1,0,0) does not occur because it could be

replaced by (0,1,1) and it suffices therefore to show that no two such sequences

represent the same number. For an integer n € {Fj, — 1, Fy, ..., Fr41 — 2}, we must
¢ ¢

have €;(n) = 0 for all j > k since €;(n) = 1 implies

J
N () > Fy+ Fyg+ Fja+--- = Fjpq — L.
1=2

On the other hand, we have €f,_,(n) = 1 since the sum over all F},2 < j < k—2, is

2

-2
Fj = (Fk—2+Flc—4‘|‘---)+(Fk_3—|—Fk—5+...) =F, 1 —1+F,_9—1=F,—2

.
I
[\)

and hence too small. The number of possible expansions with these properties is
easily seen to be Fj,_1 (by induction on k), thus equal to #{Fy—1, Fx, ..., Fx11—2},

and the lemma is proved.

In order to study the joint structure of the greedy and lazy digits, we show that

k—1 00
Di(n) = (¢j(n) = €f(n)Fj =Y (e (n) — ¢j(n))F;
Jj=2 j=k

can only take three values.
Lemma 2. Dg(n), k > 3, can only take the values 0, Fy, and Fj_1.

Proof. We show that

(=P => ¢F; (1)

Jj=3 Jj=2
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with €, €}, €/ € {0,1} implies

Y (=P =) e;Fyi— 0, (2)
>3 i>2

for all ¢ > 0 with 6 € {0,1}. It suffices to prove (2) for i = 1. Then the general

equation follows then by induction on ¢ with Fji; = Fj1;—1 + Fjti—2.

Since F} is given by F}; = %oﬂ' — % (—%)J, we obtain

e (v (2) - (2)

Hence “(2) — a x (1)” with i = 1 yields

and ¢ is bounded by

0 < 2 + L + 2 + L -+ 2 + L 1 1 1
J— _ J— J— JR— “ e e — JR— —_— = —Q = .
ad ot ad  af a3 at)l1—a?2 «

Since ¢ is an integer, we have thus ¢ > 0. For the lower bound, we get
1 1 2 1 2 2 1 1 1 1
> ——— == [ S+ S ot S =—at S5 =-1-—
«

a?  « a? a3’

Hence ¢ € {0,1} and (2) is proved. If either e =0 or ¢; = 0 for all j > 4, then we
obtain —4 > —1 and thus 6 = 0.

Clearly we have

D (ed(n) = €5(n)Fj_kys| = > & F;

i>k j>2

for some ¢; € {0, 1}, since the term on the left side is a non-negative integer. By

(2), we get

1Di(n)] = > (9(n) — €5(n))Fj| = €;Fjph-s — 0Fi_3

Jizk Jj=2

for all £ > 4. Since Dy (n) is bounded by

k—1
[Dr(n)| <Y Fy = Frya = 2,

=2
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€; must be zero for all j > 5 and, if e; = 1, for j > 4. Hence we have § = 0, €; must
be zero for all j > 4 and the only possible values for |Dy(n)| are 0, Fj, and Fj_1.
Since greedy expansions have no two subsequent ones and lazy expansions have

no two subsequent zeros (in the range of its ones), we have, for k > 4,
Dk(n) > (Fk,2+Fk,4+. .. ) — (Fk,1 —f—Fk,g—i—. . ) = (Fk,1 —1) — (Fk—l) = —Fk,Q

k—1
and thus Dy (n) > 0 if e?(n) = 1 for some j > k. Otherwise we have 322 eﬁ (n)Fj =n.
Hence Dy(n) is non-negative for k > 4. Clearly |Ds(n)] € {0,1} and
D3(n) = Dy(n) — 2(e5(n) — €3(n)). Because of Dy(n) € {0,2,3}, D3(n) is non-

negative and the lemma is proved.

Remark. §in (2) canbe 1, e.g. F3+F5—Fy = Fy+Fy and Fy+Fg—F5 = F5+F5—1.
This is due to 2F), = Fy11 + Fx_2, but for k = 3 we also have 2F5 = F; + F5.

Lemma 3. For Fx < n < Fgi1 — 2, the digits €}(n), e (n) have the following

properties:

1. e =0foralk>K, e =1,¢,_,=0

2. ¢k =0foralk>K, e =1

3. (e],€t) = (1,0) implies (¢]_,, €, 1) = (0,1).

4. If (€] 1 e q) # (0,1), then (€], €;) = (0,1) implies (¢]_,,ef,_) = (0,1) with
probability ’“ 3+1 and (€ _,,eb_1) =(0,0), (¢]_,,€et_y) = (1,1) with probabili-
ties F;;ill.

5. 1If (€], 1, €4p1) = (0,1), then (ef,€;,) = (0,1) implies (€]_y,€,_;) = (1,0) with
probability & P o 1 and (e]_,,eb_1) = (0,0), (€] _,,€e_;) = (1,1) with probabil-

ities m. In the latter cases, the (€7, e?) are alternately (0,0) and (1,1) for
j<k.
6. (e, €)= (1,1) resp. (e, €)= (0,0) imply (] _,,et._1) = (0,1), if the digits are

not determined by 4. and k < K.

Proof. 1. is obvious and 2. follows from the proof of Lemma 1. Furthermore,
these n are the only integers with these properties (and their number is Fx_1 —1).
3. follows directly from the properties of greedy and lazy expansions. For the other
properties, we use Lemma 2 and Dy_1 = Dy, + (€] — ei)Fk.

In 5., we must have Dyya = Fiio, Dyy1 = Fy and Dy = 0. Hence (e_,, €t ;)

cannot be (0, 1). Furthermore, (€] _,, et ;) = (0,0) implies Dy_; = 0 and €}, , = 1.
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Thus €/ _, = 1. Similarly (e ,, e ;) = (1,1) implies (¢} _,, et _5) = (0,0). Induc-

tively, we get the alternating sequence, i.e. only one possibility for the last digits.
For (e]_,,et_,) = (1,0), the situation is similar to that of k — 1 = K and we have
therefore Fj_o — 1 possibilities. This gives the stated probabilities.

In 4., we must have Dy = Fy41 and Dy = Fy_;. Then we have Fj_3 + 1 pos-
sibilities for (€] et ;) = (0,1) (see 5.). (ef_,,et_1) = (1,1) and (e |, eb ;) =

(0,0) imply, with Dy_1 = Fy_1, (€] _,, €5 ) = (0,1) and hence Fy_» — 1 possibili-

ties. This also proves 6.

Remark. For n = F1 — 1, the unique digital expansion is given by ex_o; = 1 for
all j < K/2—1and ex_1_2; =0 for all j < K/2 — 1. Note that for these n, s4(n)
is as large as possible whereas sy(n) is as small as possible (in the “neighbourhood”
of n) while, for “typical” n, large s,(n) entails large s;(n).

Lemma 3 shows that we get simple transition probabilities from e to €, if
we exclude those n whose digital expansions terminate by alternating (1,1)’s and

(0,0)’s. Thus define the sets
Six={ne{Fg,...,Fxqy1 — 1} | (e](n), ex(n)) ¢ {(0,0), (1,1)} for some k < J}
for K > J + 3. The number of excluded n is

#({Fr, Fx +1,...,Fk41 —2}\ Syk) = Fx—y41.

(In case (€%, €5) = (0,0), we have Fx_; possibilities for €_,,...,e%_,, and in case
(¢9,€5) = (1,1), we have Fx_;_1 possibilities for €% ,,... €% _,.)

Define a sequence of random vectors (X s x)r>2 by

1
#S71.K

Lemma 3 shows that this is a Markov chain, i.e.

PI'[X]CJ,K = (bg,bg)] =

#{ne S,k |€(n)= bg,e,ﬁ(n) = bé}.

Pr(Xi 1k = (0f 1, b )Xk sk = 00, 00), Xepr,0x = (0115 bsn)s -]
= Pr[Xy 15k = (01, b)) Xk.s i = (b7, 01)],
if we make a distinction between Xy11,7x = (0,1) and Xxy1 sk # (0,1) in case

X7k = (0,1) (otherwise we had a Markov chain of order 2), say X s x = (0,1)!
if Xesx=0(0,1)%# X105 and Xg jx = (0,1)? if Xp sk = (0,1) = Xpt1,51-
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The transition matrix Py ; defined by

Pr(Xy_1 5k = (0,0)] Pr( Xy 7k = (0,0)]
Pr(X;_1.5x = (0,1)!] Pr(Xy s x = (0,1)1]
Pr(Xs_1kx =(0,1)%] | = Pey | Pr[Xk x = (0,1)?]
Pr(Xy_1,5x = (1,0)] Pr( Xy sk = (1,0)]
Pr(Xi 15k = (1,1)] Pr[Xy x = (1,1)]

is, for k > J + 3,

F_Q—F_ 1 —
0 775> 000 0 2+O0(a™) 0 0 0
1 0 011 1 0 01 1
. Fy_3—Fr_j_ . 1 —k
Poy=|0 G55t 00 0 =10 5+0( ™) 00 0],
0 0 1 00 0 0 100
Fyp_o—Fy_ 1 —k
0 FFm oo 000 0 =+0(™®) 00 0

i.e. the Markov chain is almost homogeneous. Denote the limit of this matrix

for k — oo by P. Its eigenvalues are 1, —é, —% and 0. Thus the probability

distribution is almost stationary with

PI’[X]C7J,K = (07 O)] — + O (O[_ min(k,K—k))

a(e? +1)
Pr[X, = (0,1)1] = aZLH L0 (af min(k,ka)>
Pr[X; ;. x = (0, 1)%] = m +0 <@— min(ka—k’)>
Pr[X;,x = (1,0)] = m +0 <&—min(k,K—k))
1

PI'[Xk’J’K = (1, 1)] = + 0O (Oé_ min(k:,K—k:))

ala? 4+ 1)
for J <k < K.

For a given N = Y1, €/ (N)F}, with €4 (N) =1 (i.e. L~ log, N), define

L k—1 L
Sy = U U Sk + Z Ggg'(N)Fj
k=L—[L"] K=L—[L"] j=k+1

and a sequence of random vectors (Y n)r>2 by
1
PrYin = (09,0°)] = ——#{n € Sy | €}(n) = b9, ¢;(n) = b*}.
’ #SN
This sequence is close to what we need because of

(log N)"N
#({0,...,N =1} \Sn) = O (L"Fy_(pn) + L*"Fy_op1m) = O (m (3)

and, for [L"] < k < [L — L"], the Yj ny are a Markov chain with transition matrices

Py (). For [L"] < k < L —2[L"], the distribution of Y% x is thus almost stationary

with the probabilities of X, ; x and error terms O (oz_Ln).



8 WOLFGANG STEINER

Lemmad. TheY, y = (Y]gN, Y,iN) satisfy a central limit theorem for L" < k < L — 2L".
More precisely, we have, for all ag,a, € R, as N — oo,

L—2[L"
z[: } ag(Ykg,N — Hg) + af(YIf,N — i)

oVL

= N(0, a?] + ai + 2a,4a,0),
k=IL7)

where N (M, V') denotes the normal law with mean value M and variance V.

Proof. For the mean value, we have

EY/y =Pr[Yy = (1,0)] + Pr[Y)/ = (1,1)]

- 042(04i +1) * oz(oz21+ 1) +0 (a—L") =g T O (a—L">

and
EYk{N =+ 0 (a*m) .

Hence the mean value of the sum converges to zero. The variance is given by

L—2[L"]
Var [ 37 ay(0 — ) + eV — )
k=[L7)
L—2[L"] L—2[L"] L—2[L"] L—2[L"]
= Var Z a,Y) y+Var Z CLeY]ﬁN—I—Q Cov Z agYy v, Z ang,N
k=[Ln] k=[Ln] [L7) =[L"]

L—2[L"] L—2[L"]—k
= L02(a§ +a3) + O (L") + 2a,a, Z Z Cov (Ykg’N, Y,erj’N) :
k=[Ln] j=[L"]—k
(The calculation of the variance of Y,y and > Y,ﬁ  is similar to that in [1] and
to that of the covariance hereafter.) The covariance is given by

Cov(Y{y, Y n) =Pr[Y!y =1V}, vy =1] - Pr[Yy = 1|Pr[Y{,,; v = 1].

For j = 0, we obtain, with (a? + 1)? = 50?2,

1 a? 1
g 0 _ . —L" — —L"
(:OV(}kaaik,N)_a(ag_i_l) (a2+1)2+(’)(a ) ——i—O(a >

The approximated transition matrix has the form P = QDQ ™!

s ! o—atm 11 L 0 0 00y /1 1 11
2 —a £ 0 o f]o L 0o oot -1 —a 1
e 2 - 0 o [foo0 L ool -k —e? 1 1
e -l 2 -1 =2ffo 0o 0o ooff1 0o 0 o0
o 1 o-a5 0 1/ N0 0 0 00/ N0 0 -a 0
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and the transition matrix of order j (P/ = QD’Q~1!) is given by

i 1 1 1 1 1 1 1 —a 1
(07 0% (0% « « 0%
a o a o @« | —« 1 —a o> -«
J
pi—_ Lt | 2o o | (L 111 g o1
- 042+1 a? a? a? a? a? a a a? a a
1 1 1 1 1 1
e S S -1 -1 a -l
1 1 1 1 1 1
@ a @a @& a 1 s I —a 1
a2 a —-ao o -af
| o* —a? o* —ab o?
1 1\’
+ 5 —— o - ad —o® o
as+1 @
—a? 1 —a? ot —a?
—a® a - o o
Clearly

PriY?y =LY ;v =1]
= PrlYirsv = (0.1))(PrlYew = (1,0)Yirsw = (0.1)' 4 Pr(Yen = (1, D] Yewsw = (0.1)'])
FPr{Yipsn = (0,12 (PrlYew = (1,0) Vi = (0,1)F+PrYew = (1,1)Verjn = (0,1)%])

+PrYi; v = (1, 1)]<P1‘[Yk,N = (1,0)[Yiyjn = (L, )]+Pr[Ye v = (1, 1)|[Yirjn = (1, 1)])-

Note that the contribution of the first matrix of P? to this probability is just ppu

and that of the second matrix is zero. Hence we have, for j > 0,

1 1V (a(l4+a) —-a*-—a® —a2-—ad i
Covyio vt = L (.1 0 (a1")
ov(Yin: Vi) ( ) ( a?+1 + a?(a? +1) + ala? +1) el

For j < 0, we get similarly
¢ 1 1 |51 I

Therefore we have

L—2[L"]—k
> Cov (YPx Vi)
j=[L7]—k
_ ! 1 + Qi _ L ’ +0 <La‘L") L0 (a_zmin(k—[m],L—2[m]_k))
5\ ot a?
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With
c 1 1+2§: 1Y)’ a2+1 /1 2 o5
= —-— —_— _—— = — _— = g — o0
552 | a4 = a? « ar  a?2+1 ’
we obtain
L—2[L"]
Var Z ag(Ye n — tg) + ag(Y,f’N —ue) | = LUQ(aZ +aj + 2a,a,C) + O (L").

k=[L"]

We apply the central limit theorem for Markov chains or mixing sequences (e.g.

Theorem 2.1 of Peligrad [6]) and the lemma is proved.

Because of (3), we have

Sg(n) — pglogy N se(n) — pelog, N

oy/log, N < %o oy/log, N

1
N# n<N < xy

1 Sq(n) — pglog, N se(n) — pelog, N
— — n e Sy|-2 g 20" <o, <z
#SN N oy/log, N I oy/log, N ‘
L—2[L" L—2[L"]
1 € (n) —p €r(n) — pe
——#nes A AN
#SN N k:z[;n] oV'L 7 k:z[;n] oL ‘

With Lemma 4, the theorem is proved.
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