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1. Introduction

Every non-negative integer n has at least one digital expansion

n =
∑
k≥2

εkFk,

with digits εk ∈ {0, 1}. The maximal expansion with respect to the lexicographic

order on (. . . , ε4, ε3, ε2) is the Zeckendorf expansion or, more generally, the greedy ex-

pansion, which has been studied by Zeckendorf [7] and many others. (Lexicographic

order means (. . . , ε3, ε2) < (. . . , ε′3, ε
′
2) if εk < ε′k for some k ≥ 2 and εj ≤ ε′j for all

j ≥ k.) The minimal expansion with respect to this order is the less known lazy

expansion, which was introduced by Erdős and Joó [4] (for q-ary expansions of 1,

1 < q < 2). For example, 100 has greedy expansion 100 = 89+8+3 = F11 +F6 +F4

and lazy expansion 100 = 55+21+13+5+3+2+1 = F10+F8+F7+F5+F4+F3+F2.

Denote the digits of the greedy expansion by εgk(n) and those of the lazy expansion

by ε`k(n).

The aim of this work is to study the structure of the possible digit sequences in

order to obtain distributional results for the sum-of-digits functions

sg(n) =
∑
k≥2

εgk(n) and s`(n) =
∑
k≥2

ε`k(n).
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2. Results

It is well known that Zeckendorf expansions have no two subsequent ones (be-

cause the pattern (0, 1, 1) could be replaced by (1, 0, 0)) and that every finite se-

quence with no two subsequent ones is a Zeckendorf expansion of some integer

(see Zeckendorf [7]). Symmetrically, lazy expansions have no two subsequent zeros

preceeded by a one, because (1, 0, 0) could be replaced by (0, 1, 1), and it is not

difficult to see that every such sequence is the lazy expansion of some integer (see

Lemma 1).

For sg(n), Grabner and Tichy [5] proved (in the context of digital expansion

related to linear recurrences) that its mean value is given by

1
N

∑
n<N

sg(n) =
1

α2 + 1
logαN + f1(logαN) +O

(
logN
N

)
,

where f1 is periodic with period 1, continuous and nowhere differentiable and α

denotes the golden number 1+
√

5
2 . For the variance, Dumont and Thomas [2] ob-

tained (in the more general context of numeration systems associated with primitive

substitutions on finite alphabets)

1
N

∑
n<N

(
sg(n)− 1

α2 + 1
logαN

)2

=
1

5
√

5
logαN + f2(logαN) logαN + o(1),

where f2 is again periodic with period 1, continuous and nowhere differentiable.

In [3], they showed that the distribution is asymptotically normal, i.e.

1
N

#

{
n < N

∣∣∣∣∣sg(n)− 1
α2+1 logαN

5−3/4
√

logαN
< x

}
→ 1√

2π

∫ x

−∞
e−t

2/2dt.

This is also a special case of a result of Drmota and Steiner [1], where generalizations

of the sum-of-digits functions are studied.

The distribution of s`(n) has not been studied yet, but it is easy to replace

the greedy expansions in [1] by lazy expansions and to obtain similar asymptotics

(with expected value α2

α2+1 logαN). Instead of doing this, we will directly prove the

following central limit theorem for the joint distribution of sg(n) and s`(n).

Theorem 1. We have, as N →∞,

1
N

#

{
n < N

∣∣∣∣∣sg(n)− µg logαN
σ
√

logαN
< xg,

s`(n)− µ` logαN
σ
√

logαN
< x`

}

→ 1
2π
√

1− C2

∫ x`

−∞

∫ xg

−∞
e
− 1

2(1−C2)
(t2g+t2`−2Ctgt`)dtgdt`



THE JOINT DISTRIBUTION OF GREEDY AND LAZY FIBONACCI EXPANSIONS 3

with α = 1+
√

5
2 , µg = 1

α2+1 , µ` = α2

α2+1 , σ = 5−3/4 and C = 9− 5α ≈ 0.90983.

This means that the two sum-of-digits functions are strongly correlated. If one

of them is large for some n, the probability of the other one to be large is very high.

(The distribution is the Gaussian distribution with covariance matrix
(

1 C
C 1

)
.)

Similarly to [1], corresponding results can be proved for F -additive functions,

for sequences of primes and for polynomial sequences P (n), n ∈ N, or P (p), p ∈ P.

3. Proofs

First we prove the characterization of lazy expansions given in Section 2.

Lemma 1. The lazy expansions are exactly those sequences (εk)k≥2 ∈ {0, 1}N with

(εk, εk−1, εk−2) 6= (1, 0, 0) for all k ≥ 4 and only a finite number of εk = 1.

Proof. As already noted, the pattern (1, 0, 0) does not occur because it could be

replaced by (0, 1, 1) and it suffices therefore to show that no two such sequences

represent the same number. For an integer n ∈ {Fk−1, Fk, . . . , Fk+1−2}, we must

have ε`j(n) = 0 for all j ≥ k since ε`j(n) = 1 implies

j∑
i=2

ε`i(n)Fi ≥ Fj + Fj−2 + Fj−4 + · · · = Fj+1 − 1.

On the other hand, we have ε`k−1(n) = 1 since the sum over all Fj , 2 ≤ j ≤ k− 2, is

k−2∑
j=2

Fj = (Fk−2 +Fk−4 + . . . )+(Fk−3 +Fk−5 + . . . ) = Fk−1−1 +Fk−2−1 = Fk−2

and hence too small. The number of possible expansions with these properties is

easily seen to be Fk−1 (by induction on k), thus equal to #{Fk−1, Fk, . . . , Fk+1−2},

and the lemma is proved.

In order to study the joint structure of the greedy and lazy digits, we show that

Dk(n) =
k−1∑
j=2

(ε`j(n)− εgj (n))Fj =
∞∑
j=k

(εgj (n)− ε`j(n))Fj

can only take three values.

Lemma 2. Dk(n), k ≥ 3, can only take the values 0, Fk and Fk−1.

Proof. We show that ∑
j≥3

(ε′j − ε′′j )Fk =
∑
j≥2

εjFj (1)
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with εj , ε
′
j , ε
′′
j ∈ {0, 1} implies

∑
j≥3

(ε′j − ε′′j )Fj+i =
∑
j≥2

εjFj+i − δFi (2)

for all i > 0 with δ ∈ {0, 1}. It suffices to prove (2) for i = 1. Then the general

equation follows then by induction on i with Fj+i = Fj+i−1 + Fj+i−2.

Since Fj is given by Fj = 1√
5
αj − 1√

5

(
− 1
α

)j , we obtain

Fj+1 − αFj =
1

α
√

5

(
− 1
α

)j
+

α√
5

(
− 1
α

)j
=
(
− 1
α

)j
.

Hence “(2)− α× (1)” with i = 1 yields

−δ =
∑
j≥3

(ε′j − ε′′j − εj)
(
− 1
α

)j
− ε2

1
α2

and δ is bounded by

−δ < 2
α3

+
1
α4

+
2
α5

+
1
α6

+ · · · =
(

2
α3

+
1
α4

)
1

1− α−2
=

1
α
α = 1.

Since δ is an integer, we have thus δ ≥ 0. For the lower bound, we get

−δ > − 1
α2
− 1
α3
− 2
α4
− 1
α5
− 2
α6
−· · · = −

(
2
α2

+
1
α3

)
α+

1
α2

= −α+
1
α2

= −1− 1
α3
.

Hence δ ∈ {0, 1} and (2) is proved. If either ε2 = 0 or εj = 0 for all j ≥ 4, then we

obtain −δ > −1 and thus δ = 0.

Clearly we have ∣∣∣∣∣∣
∑
j≥k

(εgj (n)− ε`j(n))Fj−k+3

∣∣∣∣∣∣ =
∑
j≥2

εjFj

for some εj ∈ {0, 1}, since the term on the left side is a non-negative integer. By

(2), we get

|Dk(n)| =

∣∣∣∣∣∣
∑
j≥k

(εgj (n)− ε`j(n))Fj

∣∣∣∣∣∣ =
∑
j≥2

εjFj+k−3 − δFk−3

for all k ≥ 4. Since Dk(n) is bounded by

|Dk(n)| ≤
k−1∑
j=2

Fj = Fk+1 − 2,
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εj must be zero for all j ≥ 5 and, if ε2 = 1, for j ≥ 4. Hence we have δ = 0, εj must

be zero for all j ≥ 4 and the only possible values for |Dk(n)| are 0, Fk and Fk−1.

Since greedy expansions have no two subsequent ones and lazy expansions have

no two subsequent zeros (in the range of its ones), we have, for k ≥ 4,

Dk(n) ≥ (Fk−2 +Fk−4 + . . . )−(Fk−1 +Fk−3 + . . . ) = (Fk−1−1)−(Fk−1) = −Fk−2

and thus Dk(n) ≥ 0 if ε`j(n) = 1 for some j ≥ k. Otherwise we have
k−1∑
j=2

ε`j(n)Fj = n.

Hence Dk(n) is non-negative for k ≥ 4. Clearly |D3(n)| ∈ {0, 1} and

D3(n) = D4(n) − 2(ε`3(n) − εg3(n)). Because of D4(n) ∈ {0, 2, 3}, D3(n) is non-

negative and the lemma is proved.

Remark. δ in (2) can be 1, e.g. F3+F5−F4 = F4+F2 and F4+F6−F5 = F5+F3−1.

This is due to 2Fk = Fk+1 + Fk−2, but for k = 3 we also have 2F3 = F4 + F2.

Lemma 3. For FK ≤ n ≤ FK+1 − 2, the digits εgk(n), ε`k(n) have the following

properties:

1. εgk = 0 for all k > K, εgK = 1, εgK−1 = 0

2. ε`k = 0 for all k ≥ K, ε`K−1 = 1

3. (εgk, ε
`
k) = (1, 0) implies (εgk−1, ε

`
k−1) = (0, 1).

4. If (εgk+1, ε
`
k+1) 6= (0, 1), then (εgk, ε

`
k) = (0, 1) implies (εgk−1, ε

`
k−1) = (0, 1) with

probability Fk−3+1
Fk−1 and (εgk−1, ε

`
k−1) = (0, 0), (εgk−1, ε

`
k−1) = (1, 1) with probabili-

ties Fk−2−1
Fk−1 .

5. If (εgk+1, ε
`
k+1) = (0, 1), then (εgk, ε

`
k) = (0, 1) implies (εgk−1, ε

`
k−1) = (1, 0) with

probability Fk−2−1
Fk−2+1 and (εgk−1, ε

`
k−1) = (0, 0), (εgk−1, ε

`
k−1) = (1, 1) with probabil-

ities 1
Fk−2+1 . In the latter cases, the (εgj , ε

`
j) are alternately (0, 0) and (1, 1) for

j < k.

6. (εgk, ε
`
k) = (1, 1) resp. (εgk, ε

`
k) = (0, 0) imply (εgk−1, ε

`
k−1) = (0, 1), if the digits are

not determined by 4. and k < K.

Proof. 1. is obvious and 2. follows from the proof of Lemma 1. Furthermore,

these n are the only integers with these properties (and their number is FK−1− 1).

3. follows directly from the properties of greedy and lazy expansions. For the other

properties, we use Lemma 2 and Dk−1 = Dk + (εgk − ε`k)Fk.

In 5., we must have Dk+2 = Fk+2, Dk+1 = Fk and Dk = 0. Hence (εgk−1, ε
`
k−1)

cannot be (0, 1). Furthermore, (εgk−1, ε
`
k−1) = (0, 0) implies Dk−1 = 0 and ε`k−2 = 1.
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Thus εgk−2 = 1. Similarly (εgk−1, ε
`
k−1) = (1, 1) implies (εgk−2, ε

`
k−2) = (0, 0). Induc-

tively, we get the alternating sequence, i.e. only one possibility for the last digits.

For (εgk−1, ε
`
k−1) = (1, 0), the situation is similar to that of k − 1 = K and we have

therefore Fk−2 − 1 possibilities. This gives the stated probabilities.

In 4., we must have Dk+1 = Fk+1 and Dk = Fk−1. Then we have Fk−3 + 1 pos-

sibilities for (εgk−1, ε
`
k−1) = (0, 1) (see 5.). (εgk−1, ε

`
k−1) = (1, 1) and (εgk−1, ε

`
k−1) =

(0, 0) imply, with Dk−1 = Fk−1, (εgk−2, ε
`
k−2) = (0, 1) and hence Fk−2 − 1 possibili-

ties. This also proves 6.

Remark. For n = FK+1− 1, the unique digital expansion is given by εK−2j = 1 for

all j ≤ K/2− 1 and εK−1−2j = 0 for all j < K/2− 1. Note that for these n, sg(n)

is as large as possible whereas s`(n) is as small as possible (in the “neighbourhood”

of n) while, for “typical” n, large sg(n) entails large s`(n).

Lemma 3 shows that we get simple transition probabilities from εk to εk−1 if

we exclude those n whose digital expansions terminate by alternating (1, 1)’s and

(0, 0)’s. Thus define the sets

SJ,K =
{
n ∈ {FK , . . . , FK+1 − 1} | (εgk(n), ε`k(n)) 6∈ {(0, 0), (1, 1)} for some k ≤ J

}
for K ≥ J + 3. The number of excluded n is

#
(
{FK , FK + 1, . . . , FK+1 − 2} \ SJ,K

)
= FK−J+1.

(In case (εgJ , ε
`
J) = (0, 0), we have FK−J possibilities for εgJ+1, . . . , ε

g
K−2, and in case

(εgJ , ε
`
J) = (1, 1), we have FK−J−1 possibilities for εgJ+2, . . . , ε

g
K−2.)

Define a sequence of random vectors (Xk,J,K)k≥2 by

Pr[Xk,J,K = (bg, b`)] =
1

#SJ,K
#{n ∈ SJ,K | εgk(n) = bg, ε`k(n) = b`}.

Lemma 3 shows that this is a Markov chain, i.e.

Pr[Xk−1,J,K = (bgk−1, b
`
k−1)|Xk,J,K = (bgk, b

`
k), Xk+1,J,K = (bgk+1, b

`
k+1), . . . ]

= Pr[Xk−1,J,K = (bgk−1, b
`
k−1)|Xk,J,K = (bgk, b

`
k)],

if we make a distinction between Xk+1,J,K = (0, 1) and Xk+1,J,K 6= (0, 1) in case

Xk,J,K = (0, 1) (otherwise we had a Markov chain of order 2), say Xk,J,K = (0, 1)1

if Xk,J,K = (0, 1) 6= Xk+1,J,K and Xk,J,K = (0, 1)2 if Xk,J,K = (0, 1) = Xk+1,J,K .
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The transition matrix Pk,J defined by

Pr[Xk−1,J,K = (0, 0)]

Pr[Xk−1,J,K = (0, 1)1]

Pr[Xk−1,J,K = (0, 1)2]

Pr[Xk−1,J,K = (1, 0)]

Pr[Xk−1,J,K = (1, 1)]


= Pk,J



Pr[Xk,J,K = (0, 0)]

Pr[Xk,J,K = (0, 1)1]

Pr[Xk,J,K = (0, 1)2]

Pr[Xk,J,K = (1, 0)]

Pr[Xk,J,K = (1, 1)]


is, for k ≥ J + 3,

Pk,J =



0 Fk−2−Fk−J
Fk−Fk−J+2

0 0 0

1 0 0 1 1

0 Fk−3−Fk−J−1
Fk−Fk−J+2

0 0 0

0 0 1 0 0

0 Fk−2−Fk−J
Fk−Fk−J+2

0 0 0


=



0 1
α2 +O

(
α−k

)
0 0 0

1 0 0 1 1

0 1
α3 +O

(
α−k

)
0 0 0

0 0 1 0 0

0 1
α2 +O

(
α−k

)
0 0 0


,

i.e. the Markov chain is almost homogeneous. Denote the limit of this matrix

for k → ∞ by P . Its eigenvalues are 1,− 1
α ,−

1
α2 and 0. Thus the probability

distribution is almost stationary with

Pr[Xk,J,K = (0, 0)] =
1

α(α2 + 1)
+O

(
α−min(k,K−k)

)
Pr[Xk,J,K = (0, 1)1] =

α

α2 + 1
+O

(
α−min(k,K−k)

)
Pr[Xk,J,K = (0, 1)2] =

1
α2(α2 + 1)

+O
(
α−min(k,K−k)

)
Pr[Xk,J,K = (1, 0)] =

1
α2(α2 + 1)

+O
(
α−min(k,K−k)

)
Pr[Xk,J,K = (1, 1)] =

1
α(α2 + 1)

+O
(
α−min(k,K−k)

)
for J < k < K.

For a given N =
∑L
k=2 ε

g
k(N)Fk with εgL(N) = 1 (i.e. L ≈ logαN), define

SN =
L⋃

k=L−[Lη ]

k−1⋃
K=L−[Lη ]

S[Lη ],K +
L∑

j=k+1

εgj (N)Fj


and a sequence of random vectors (Yk,N )k≥2 by

Pr[Yk,N = (bg, b`)] =
1

#SN
#{n ∈ SN | εgk(n) = bg, ε`k(n) = b`}.

This sequence is close to what we need because of

#
(
{0, . . . , N − 1} \ SN

)
= O

(
LηFL−[Lη ] + L2ηFL−2[Lη ]

)
= O

(
(logN)ηN
α(logαN)η

)
(3)

and, for [Lη] ≤ k ≤ [L−Lη], the Yk,N are a Markov chain with transition matrices

Pk,[Lη]. For [Lη] ≤ k ≤ L−2[Lη], the distribution of Yk,N is thus almost stationary

with the probabilities of Xk,J,K and error terms O
(
α−L

η)
.
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Lemma 4. The Yk,N = (Y gk,N , Y
`
k,N ) satisfy a central limit theorem for Lη ≤ k ≤ L− 2Lη.

More precisely, we have, for all ag, a` ∈ R, as N →∞,

L−2[Lη ]∑
k=[Lη ]

ag(Y
g
k,N − µg) + a`(Y `k,N − µ`)

σ
√
L

⇒ N (0, a2
g + a2

` + 2aga`C),

where N (M,V ) denotes the normal law with mean value M and variance V .

Proof. For the mean value, we have

EY gk,N = Pr[Y gk,N = (1, 0)] + Pr[Y gk,N = (1, 1)]

=
1

α2(α2 + 1)
+

1
α(α2 + 1)

+O
(
α−L

η
)

= µg +O
(
α−L

η
)

and

EY `k,N = µ` +O
(
α−L

η
)
.

Hence the mean value of the sum converges to zero. The variance is given by

Var

L−2[Lη]∑
k=[Lη]

ag(Y
g
k,N − µg) + a`(Y `k,N − µ`)


= Var

L−2[Lη ]∑
k=[Lη ]

agY
g
k,N+Var

L−2[Lη ]∑
k=[Lη ]

a`Y
`
k,N+2 Cov

L−2[Lη ]∑
k=[Lη ]

agY
g
k,N ,

L−2[Lη ]∑
k=[Lη ]

a`Y
`
k,N


= Lσ2(a2

g + a2
`) +O (Lη) + 2aga`

L−2[Lη ]∑
k=[Lη ]

L−2[Lη ]−k∑
j=[Lη ]−k

Cov
(
Y gk,N , Y

`
k+j,N

)
.

(The calculation of the variance of
∑
Y gk,N and

∑
Y `k,N is similar to that in [1] and

to that of the covariance hereafter.) The covariance is given by

Cov(Y gk,N , Y
`
k+j,N ) = Pr[Y gk,N = 1, Y `k+j,N = 1]−Pr[Y gk,N = 1]Pr[Y `k+j,N = 1].

For j = 0, we obtain, with (α2 + 1)2 = 5α2,

Cov(Y gk,N , Y
`
k,N ) =

1
α(α2 + 1)

− α2

(α2 + 1)2
+O

(
α−L

η
)

= − 1
5α4

+O
(
α−L

η
)
.

The approximated transition matrix has the form P = QDQ−1

1
α(α2+1) 1 − α3

α2+1 1 1
α

α2+1 −α α3

α2+1 0 0
1

α2(α2+1)
1
α − α2

α2+1 0 0
1

α2(α2+1) −1 α4

α2+1 −1 −2
1

α(α2+1) 1 − α3

α2+1 0 1





1 0 0 0 0

0 − 1
α 0 0 0

0 0 − 1
α2 0 0

0 0 0 0 0

0 0 0 0 0





1 1 1 1 1

1 − 1
α −α 1 1

1 − 1
α2 −α2 1 1

1 0 0 0 −1

0 0 −α 0 1
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and the transition matrix of order j (P j = QDjQ−1) is given by

P j =
1

α2 + 1



1
α

1
α

1
α

1
α

1
α

α α α α α

1
α2

1
α2

1
α2

1
α2

1
α2

1
α2

1
α2

1
α2

1
α2

1
α2

1
α

1
α

1
α

1
α

1
α


+
(
− 1
α

)j


1 − 1
α 1 −α 1

−α 1 −α α2 −α
1
α − 1

α2
1
α −1 1

α

−1 1
α −1 α −1

1 − 1
α 1 −α 1



+
1

α2 + 1

(
− 1
α2

)j


−α3 α −α3 α5 −α3

α4 −α2 α4 −α6 α4

α3 −α α3 −α5 α3

−α2 1 −α2 α4 −α2

−α3 α −α3 α5 −α3


Clearly

Pr[Y gk,N = 1, Y `k+j,N = 1]

= Pr[Yk+j,N = (0, 1)1]
(
Pr[Yk,N = (1, 0)|Yk+j,N = (0, 1)1]+Pr[Yk,N = (1, 1)|Yk+j,N = (0, 1)1]

)
+Pr[Yk+j,N = (0, 1)2]

(
Pr[Yk,N = (1, 0)|Yk+j,N = (0, 1)2]+Pr[Yk,N = (1, 1)|Yk+j,N = (0, 1)2]

)
+Pr[Yk+j,N = (1, 1)]

(
Pr[Yk,N = (1, 0)|Yk+j,N = (1, 1)]+Pr[Yk,N = (1, 1)|Yk+j,N = (1, 1)]

)
.

Note that the contribution of the first matrix of P j to this probability is just µgµ`

and that of the second matrix is zero. Hence we have, for j > 0,

Cov(Y gk,N , Y
`
k+j,N ) =

1
α2 + 1

(
− 1
α2

)j (
α(1 + α)
α2 + 1

+
−α2 − α3

α2(α2 + 1)
+
−α2 − α3

α(α2 + 1)

)
+O

(
α−L

η
)

= −1
5

(
− 1
α2

)j
+O

(
α−L

η
)
.

For j < 0, we get similarly

Cov(Y gk,N , Y
`
k−|j|,N ) = −1

5

(
− 1
α2

)|j|
+O

(
α−L

η
)
.

Therefore we have

L−2[Lη ]−k∑
j=[Lη ]−k

Cov
(
Y gk,N , Y

`
k+j,N

)

= −1
5

 1
α4

+ 2
∞∑
j=1

(
− 1
α2

)j+O
(
Lα−L

η
)

+O
(
α−2 min(k−[Lη ],L−2[Lη ]−k)

)
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With

C = − 1
5σ2

 1
α4

+ 2
∞∑
j=1

(
− 1
α2

)j = −α
2 + 1
α

(
1
α4
− 2
α2 + 1

)
= 9− 5α,

we obtain

Var

L−2[Lη ]∑
k=[Lη ]

ag(Y
g
k,N − µg) + a`(Y `k,N − µ`)

 = Lσ2(a2
g + a2

` + 2aga`C) +O (Lη) .

We apply the central limit theorem for Markov chains or mixing sequences (e.g.

Theorem 2.1 of Peligrad [6]) and the lemma is proved.

Because of (3), we have

1
N

#

{
n < N

∣∣∣∣∣sg(n)− µg logαN
σ
√

logαN
< xg,

s`(n)− µ` logαN
σ
√

logαN
< x`

}

→ 1
#SN

#

{
n ∈ SN

∣∣∣∣∣sg(n)− µg logαN
σ
√

logαN
< xg,

s`(n)− µ` logαN
σ
√

logαN
< x`

}

→ 1
#SN

#

n ∈ SN
∣∣∣∣∣∣
L−2[Lη ]∑
k=[Lη ]

εgk(n)− µg
σ
√
L

< xg,

L−2[Lη]∑
k=[Lη]

ε`k(n)− µ`
σ
√
L

< x`

 .

With Lemma 4, the theorem is proved.
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in J. Théor. Nombres Bordx., http://www.geometrie.tuwien.ac.at/steiner/ze.ps.gz.

2. J. M. Dumont and A. Thomas, Digital sum moments and substitutions, Acta Arith. 64 (1993),

no. 3, 205–225.

3. J. M. Dumont and A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions,

J. Number Th. 62 (1997), 19–38.
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