Regularity and Optimization, Part 2

Nicolas Gast - Bruno Gaujal

INRIA

SDA, 2007

Sturmian Words: 3 equivalent definitions

Consider an infinite word:

00101001001010010100100...

- minimal complexity : $n+1$ factors of length n. example: 4 factors of length 3: 001, 010, 100 and 101.
- balanced : number of 1 only differ by 1 in factors of same length.
- length 3: 1 or 2 .
- length 4: 1 or 2 .
- . .
- mechanical:
- for all $i: w_{i}=\lfloor\alpha *(i+1)+\theta\rfloor-\lfloor\alpha * i+\theta\rfloor$ or for all $i: w_{i}=\lceil\alpha *(i+1)+\theta\rceil-\lceil\alpha * i+\theta\rceil$

Problem

Can we extend theses notions to trees?

- sturmian
- balanced
- mechanical

Previous Work

Definition (Berstel, Boasson, Carton and Fagnot, 2007)

A Sturmian tree is a tree with $n+1$ subtrees of size n.
Simple example:

Example: The uniform tree corresponding to $0100101 \ldots$

Properties

- There is a natural bijection between binary trees and binary languages.
- This provides interesting examples, like the Dyck tree.

But

- the balanced property is lost (important in optimization problems),
- no simple equivalent characterization.

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite
- Non-planar (\neq original definition of Sturmian Trees)

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite
- Non-planar (\neq original definition of Sturmian Trees)

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite
- Non-planar (\neq original definition of Sturmian Trees)

Subtrees and Density

We define:

- Subtree of height n.
- Difftree of width k and height n.
- Density of a subtree $=$ average number of 1 .
- If d_{n} is the density of the rooted subtree of height n :

- density $=\lim _{n} d_{n}$
- average density $=$ $\lim _{n} \frac{1}{n} \sum_{k=1}^{n} d_{k}$

First simple case

What is a non-planar Rational Tree?

Rational Trees: Definition

We call $P(n)=$ number of subtrees of size n.

Rational Trees: 3 equivalent definitions:

- $P(n)$ bounded.
- $\exists n / P(n)=P(n+1)$
- $\exists n / P(n) \leq n$.

Rational Trees: average Density

Theorem

- A rational Tree has an average density α which is rational.
α is not necessarily a density but:
- If the associated Markov chain is aperiodic then there exists a density.

Example of density

- Periodic $=$ average density $d_{\text {average }}=\frac{1}{2}$

- Aperiodic: density $d=\frac{2}{9} \ell_{A}+\frac{1}{3} \ell_{B}+\frac{4}{9} \ell_{C}$

Second case

Balanced and Mechanical Trees

Balanced Trees and Strongly Balanced Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1 .
- Strongly balanced tree:
same property with difftrees of height n and width k.

Balanced Trees and Strongly Balanced Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1 .
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

Balanced Trees and Strongly Balanced Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1 .
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

Balanced Trees and Strongly Balanced Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1 .
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

Balanced Trees and Strongly Balanced Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1 .
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Strongly balanced tree

Density of a Balanced Tree

Theorem

- A balanced tree has a density.

Sketch of the proof
(1) A tree of size n has a density α_{n} or $\alpha_{n}+\frac{1}{2^{n}-1}$
(2)

If blue has a density α_{2} and red $\alpha_{2}+\frac{1}{3}$ then $\alpha_{2} \leq \alpha_{4} \leq \alpha_{2}+\frac{1}{3}$
(3) Take limits.

Mechanical Trees

- Subtree of size n has $2^{n}-1$ nodes.
- We want density α

Mechanical Trees

- Subtree of size n has $2^{n}-1$ nodes.
- We want density α

Mechanical tree of density α :

- For all node i, there is a phase $\phi_{i} \in[0 ; 1)$ such that the number of 1 in a subtree of height n and root i is $\left\lfloor\left(2^{n}-1\right) \alpha+\phi_{i}\right\rfloor$ (resp. for all i: $\left\lceil\left(2^{n}-1\right) \alpha+\phi_{i}\right\rceil$)

$\alpha=0.3, \phi=0.55$.	
n	$\left(2^{n}-1\right) \alpha+\phi$
1	0.85
2	1.45
3	2.65
4	5.05

Uniqueness of a mechanical Tree

Theorem

- There exists a unique mechanical tree if $\left(\alpha, \phi_{0}\right)$ is fixed.

Uniqueness of a mechanical Tree

Theorem

- There exists a unique mechanical tree if $\left(\alpha, \phi_{0}\right)$ is fixed.

- The phase ϕ_{0} of the root is unique, for almost all α.

Equivalences?

What are the equivalences between definitions?

Equivalences between Definitions

Theorem (Mechanical ~ strongly balanced)

- A mechanical tree is strongly balanced
- A strongly balanced tree with irrational density is mechanical
- A strongly balanced tree with rational density is ultimately mechanical.

Example: Ultimately mechanical tree

Sketch of Proof

Mechanical implicates strongly balanced.

The number of 1 in a subtree of size n and width k is bounded by $\left\lfloor\left(2^{n}-2^{k}\right) \alpha\right\rfloor$ and $\left\lfloor\left(2^{n}-2^{k}\right) \alpha\right\rfloor+1$

Strongly Balanced implicates mechanical.

$\forall \tau \in[0 ; 1)$, if h_{n} is the number of 1 in the subtree of size n, at least one of these properties is true:
(1) for all $n: h_{n} \leq\left\lfloor\left(2^{n}-1\right) \alpha+\tau\right\rfloor$,
(2) for all $n: h_{n} \geq\left\lfloor\left(2^{n}-1\right) \alpha+\tau\right\rfloor$.

We choose ϕ the maximal τ such that 1 is true.

Theorem

- An irrational mechanical tree is a sturmian tree: it has $n+1$ subtrees of height n.

Proof.

- A subtree of size n depends only on its phase
- In fact, it depends on $\left(\left(2^{1}-1\right) \alpha+\phi, \ldots,\left(2^{n}-1\right) \alpha+\phi\right)$ which takes $n+1$ values when $\phi \in[0 ; 1)$.

Limit of the Equivalences

- Balanced \nRightarrow strongly balanced (whether the density is rational or not).
- Sturmian \nRightarrow balanced.
- Irrational Balanced tree \nRightarrow sturmian.

Example: Balanced tree not str. bal.

Limit of the Equivalences

- Balanced \nRightarrow strongly balanced (whether the density is rational or not).
- Sturmian \nRightarrow balanced.
- Irrational Balanced tree \nRightarrow sturmian.

Example: Dyck Tree

Limit of the Equivalences

- Balanced \nRightarrow strongly balanced (whether the density is rational or not).
- Sturmian \nRightarrow balanced.
- Irrational Balanced tree \nRightarrow sturmian.

Example: Balanced tree non sturmian

Optimization Issues

Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function. For each node n and each height $k>0$, we define a cost $C_{[n, k]}$:

$$
C_{[n, k]}=g\left(d\left(\mathcal{A}_{[n, k]}\right)\right)
$$

cost of order k of the tree is:

$$
C_{k}=\limsup _{\ell} \frac{\sum_{n \mathcal{A}_{[0, \eta}} C_{[n, k]}}{2^{\ell}-1} .
$$

Optimization Issues

Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function. For each node n and each height $k>0$, we define a cost $C_{[n, k]}$:

$$
C_{[n, k]}=g\left(d\left(\mathcal{A}_{[n, k]}\right)\right)
$$

cost of order k of the tree is:

$$
C_{k}=\limsup _{\ell} \frac{\sum_{n \mathcal{A}_{[0, \eta}} C_{[n, k]}}{2^{\ell}-1} .
$$

If g has a minimum in α, C_{k} is minimized when the number of 1 in a tree of height k is between $\alpha\left(2^{k}-1\right)$ and $\alpha\left(2^{k}-1\right)$. That means that a balanced tree will minimize any increasing function of all C_{k}.

Optimization Issues

Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function. For each node n and each height $k>0$, we define a cost $C_{[n, k]}$:

$$
C_{[n, k]}=g\left(d\left(\mathcal{A}_{[n, k]}\right)\right)
$$

cost of order k of the tree is:

$$
C_{k}=\limsup _{\ell} \frac{\sum_{n \mathcal{A}_{[0, \eta}} C_{[n, k]}}{2^{\ell}-1} .
$$

If g has a minimum in α, C_{k} is minimized when the number of 1 in a tree of height k is between $\alpha\left(2^{k}-1\right)$ and $\alpha\left(2^{k}-1\right)$. That means that a balanced tree will minimize any increasing function of all C_{k}.

This has potential applications in optimization problem in distributed systems with a binary causal structure and generalizes some results presented in Part 1, based on the same principle.

Conclusion

- Non-planar definition better?
- Constructive definition
- Strict inclusions
- Good characterization
but:
- what are exactly balanced trees?
- how many balanced trees of size n ?

