Regularity and Optimization, Part 2

Nicolas Gast - Bruno Gaujal

INRIA

SDA, 2007

Sturmian Words: 3 equivalent definitions

Consider an infinite word:

00101001001010010100100 . . .

- minimal complexity: n + 1 factors of length n.
 example: 4 factors of length 3: 001, 010, 100 and 101.
- balanced: number of 1 only differ by 1 in factors of same length.
 - ▶ length 3: 1 or 2.
 - ▶ length 4: 1 or 2.
 - **.** . . .
- mechanical:
 - ▶ for all i: $w_i = \lfloor \alpha * (i+1) + \theta \rfloor \lfloor \alpha * i + \theta \rfloor$ or for all i: $w_i = \lceil \alpha * (i+1) + \theta \rceil - \lceil \alpha * i + \theta \rceil$

Problem

Can we extend theses notions to trees?

- sturmian
- balanced
- mechanical

Previous Work

Definition (Berstel, Boasson, Carton and Fagnot, 2007)

A Sturmian tree is a tree with n + 1 subtrees of size n.

Simple example:

Example: The uniform tree corresponding to 0100101...

Properties

- There is a natural bijection between binary trees and binary languages.
- This provides interesting examples, like the Dyck tree.

But

- the balanced property is lost (important in optimization problems),
- no simple equivalent characterization.

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite

Infinite Labeled Binary Trees

Our trees are:

- rooted
- labeled by 0 or 1
- infinite

Subtrees and Density

We define:

- Subtree of height n.
- Difftree of width k and height n.
- Density of a subtree = average number of 1.
- If d_n is the density of the rooted subtree of height n:
 - density = $\lim_{n} d_n$
 - average density = $\lim_{n} \frac{1}{n} \sum_{k=1}^{n} d_k$

First simple case

What is a non-planar Rational Tree?

Rational Trees: Definition

We call P(n) = number of subtrees of size n.

Rational Trees: 3 equivalent definitions:

- P(n) bounded.
- $\exists n/P(n) = P(n+1)$
- $\exists n/P(n) \leq n$.

Rational Trees: average Density

Theorem

- ullet A rational Tree has an average density lpha which is rational.
 - α is not necessarily a density but:
- If the associated Markov chain is aperiodic then there exists a density.

Example of density

• Periodic = average density $d_{average} = \frac{1}{2}$

• Aperiodic : density $d = \frac{2}{9}\ell_A + \frac{1}{3}\ell_B + \frac{4}{9}\ell_C$

Second case

Balanced and Mechanical Trees

- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with difftrees of height n and width k.

- Balanced tree: number
 of 1 in subtrees of height
 n only differ by 1.
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

- Balanced tree: number
 of 1 in subtrees of height
 n only differ by 1.
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

- Balanced tree: number
 of 1 in subtrees of height
 n only differ by 1.
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Balanced tree not strongly balanced

- Balanced tree: number
 of 1 in subtrees of height
 n only differ by 1.
- Strongly balanced tree: same property with difftrees of height n and width k.

Example: Strongly balanced tree

Density of a Balanced Tree

Theorem

• A balanced tree has a density.

Sketch of the proof

1 A tree of size *n* has a density α_n or $\alpha_n + \frac{1}{2^n-1}$

2

Take limits.

If blue has a density α_2 and red $\alpha_2 + \frac{1}{3}$ then $\alpha_2 \leq \alpha_4 \leq \alpha_2 + \frac{1}{3}$

Mechanical Trees

- Subtree of size n has $2^n 1$ nodes.
- \bullet We want density α

Mechanical Trees

- Subtree of size n has $2^n 1$ nodes.
- ullet We want density lpha

Mechanical tree of density α :

• For all node i, there is a phase $\phi_i \in [0;1)$ such that the number of 1 in a subtree of height n and root i is $\lfloor (2^n-1)\alpha+\phi_i \rfloor$ (resp. for all i: $\lceil (2^n-1)\alpha+\phi_i \rceil$)

$\alpha =$ 0.3, $\phi =$ 0.55.		
	n	$(2^n-1)\alpha+\phi$
	1	0.85
	2	1.45
	3	2.65
	4	5.05

Uniqueness of a mechanical Tree

Theorem

• There exists a unique mechanical tree if (α, ϕ_0) is fixed.

Uniqueness of a mechanical Tree

Theorem

• There exists a unique mechanical tree if (α, ϕ_0) is fixed.

• The phase ϕ_0 of the root is unique, for almost all α .

Equivalences?

What are the equivalences between definitions?

Equivalences between Definitions

Theorem (Mechanical \sim strongly balanced)

- A mechanical tree is strongly balanced
- A strongly balanced tree with irrational density is mechanical
- A strongly balanced tree with rational density is ultimately mechanical.

Example: Ultimately mechanical tree

Sketch of Proof

Mechanical implicates strongly balanced.

The number of 1 in a subtree of size n and width k is bounded by $|(2^n - 2^k)\alpha|$ and $|(2^n - 2^k)\alpha| + 1$

Strongly Balanced implicates mechanical.

 $\forall \tau \in [0;1)$, if h_n is the number of 1 in the subtree of size n, at least one of these properties is true:

- ② for all n: $h_n \ge \lfloor (2^n 1)\alpha + \tau \rfloor$.

We choose ϕ the maximal τ such that 1 is true.

Theorem,

• An irrational mechanical tree is a sturmian tree: it has n+1 subtrees of height n.

Proof.

- A subtree of size n depends only on its phase
- In fact, it depends on $((2^1-1)\alpha + \phi, \dots, (2^n-1)\alpha + \phi)$ which takes n+1 values when $\phi \in [0;1)$.

Limit of the Equivalences

- Balanced
 ⇒ strongly balanced (whether the density is rational or not).
- Sturmian ⇒ balanced.
- Irrational Balanced tree ⇒ sturmian.

Example: Balanced tree not str. bal.

Limit of the Equivalences

- Balanced
 ⇒ strongly balanced (whether the density is rational or not).
- Sturmian ⇒ balanced.
- Irrational Balanced tree ⇒ sturmian.

Example: Dyck Tree

Limit of the Equivalences

- Balanced
 ⇒ strongly balanced (whether the density is rational or not).
- Sturmian ⇒ balanced.
- Irrational Balanced tree ⇒ sturmian.

Example: Balanced tree non sturmian

Optimization Issues

Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function. For each node n and each height k > 0, we define a cost $C_{[n,k]}$:

$$C_{[n,k]}=g(d(\mathcal{A}_{[n,k]})).$$

cost of order *k* of the tree is:

$$C_k = \limsup_{\ell} \frac{\sum_{n \ \mathcal{A}_{[0,\ell]}} C_{[n,k]}}{2^{\ell} - 1}.$$

Optimization Issues

Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function. For each node n and each height k > 0, we define a cost $C_{[n,k]}$:

$$C_{[n,k]}=g(d(\mathcal{A}_{[n,k]})).$$

cost of order k of the tree is:

$$C_k = \limsup_{\ell} \frac{\sum_{n \ \mathcal{A}_{[0,l]}} C_{[n,k]}}{2^{\ell} - 1}.$$

If g has a minimum in α , C_k is minimized when the number of 1 in a tree of height k is between $\alpha(2^k-1)$ and $\alpha(2^k-1)$. That means that a balanced tree will minimize any increasing function of all C_k .

Optimization Issues

Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function. For each node n and each height k>0, we define a cost $C_{[n,k]}$:

$$C_{[n,k]} = g(d(A_{[n,k]})).$$

cost of order *k* of the tree is:

$$C_k = \limsup_{\ell} \frac{\sum_{n \ \mathcal{A}_{[0,l]}} C_{[n,k]}}{2^{\ell} - 1}.$$

If g has a minimum in α , C_k is minimized when the number of 1 in a tree of height k is between $\alpha(2^k-1)$ and $\alpha(2^k-1)$. That means that a balanced tree will minimize any increasing function of all C_k .

This has potential applications in optimization problem in distributed systems with a binary causal structure and generalizes some results presented in Part 1, based on the same principle.

Conclusion

- Non-planar definition better?
- Constructive definition
- Strict inclusions
- Good characterization

but:

- what are exactly balanced trees?
- how many balanced trees of size n?

= we know a counter-example
 = we think there is a counter-example