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Majorization

x = (x1, · · · , xn) ∈ Rn, x↓ is a permutation of x with decreasing
coordinates.

x 4 y si

{ ∑k
i=1 x↓i 6

∑k
i=1 y↓i ∀k ,1 6 k 6 n − 1,∑n

i=1 x↓i =
∑n

i=1 y↓i .

Marshall Olkin, 1979

If x = (0,−1,−3,1) and y = (3,1,−8,1) ,
x↓ = (1,0,−1,−3), y↓ = (3,1,1,−8), partial sums verify :

1 6 3
1 + 0 6 3 + 1

1 + 0− 1 6 3 + 1 + 1
1 + 0− 1− 3 = 3 + 1 + 1− 8,

which implies x 4 y .
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Majorization (II)

If P is a doubly stochastic matrix, y↓ = x↓P ⇔ y 4 x .
Using Birkhoff Theorem (doubly stochastic matrices are convex
combination of permutation matrices).

e1
e2

e3

x
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Schur convexity

f : Rn → R is Schur-convex if x 4 y ⇒ f (x) 6 f (y).

Theorem
If f (x) 6 f (y) for all Schur convex functions f , then x 4 y.

Let φ : Rn → R and g : R → R such that ψ : Rn → R is such that
ψ(x1, . . . , xn) = φ(g(x1), . . . ,g(xn)). If φ is increasing and Schur convex
and g is convex, then ψ est Schur-decreasing.
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Some applications
Polygons with n vertices inside a disk.

A1

A2

A3

A4

A5
A6

θ2

θ1

θ5

θ6

O
θ4

θ3

The surface is 1/2
∑n

i=1 sin(θi), which is Schur-concave.
(θ1, . . . θn) 4 (α1, . . . αn) implies that the surfaces Sθ > Sα. The
polygon with the largest surface S is regular.
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Some applications

Polygon with n vertices outside a disk, with the smallest k -th moment,
for all k .

A1

A2

A3

A4

A5

hr

C(r)

θ1

θ5
θ4

θ3

θ2

hr = r
∑n

i=1 max(0, θi − 2 cos−1(1/r)). is Schur convex.
The polygon with the smallest k -th moment is regular, for all k .

B. Gaujal (INRIA ) Regularity and Optimization SDA2, 2007 6 / 39



Application in Networks

Bandwidth allocation in Networks Eitan Altman
Using Shannon SINR Formula, The total throughput is a sum of a
convex function of the emited power, so that it is maximized by small
(w.r.t.majorization)power allocation.

Structure of optimal control Ger Koole
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Routing applications

Majorization and Schur convexity cannot be used when the problem
depends on the actual sequence and is not invariant up to
permutations.
Actually, the following applications will be invariant up to cyclic
permutations.
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Mechanical words

This talk will now focus on finite or periodic mechanical words.

1 Extremal properties of rational mechanical words for scheduling
problems

2 Factorizations of mechanical words using Continued Fractions and
their consequences on computational problems

3 Compute the extremal points in the scheduling problems.

There exist many ways to link continued fraction decompositions with
mechanical words. Here, we will exhibit a link which has some
algorithmic and computational interest.
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Mechanical words

Definition (Mechanical words)

A mechanical word with slope (density) 0 6 α 6 1 and intercept ρ is
the infinite word wα,ρ whose letters are

∀n > 0, wα,ρ(n) = d(n + 1)α+ ρe − dnα+ ρe,or

∀n > 0, wα,ρ(n) = b(n + 1)α+ ρc − bnα+ ρc

When α is a rational number (α = p/q), then wα,ρ is periodic of period
q (i.e. ∀n > 0, wα,ρ(n) = wα,ρ(n + q))

Definition (Finite mechanical words)
A finite word m is mechanical if w = m∞ is a mechanical word .
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Optimal properties of rational mechanical words

wλ

µ2

λ1 λ2

w

µµ1

The arrival rate(s) λ (λ1 and λ2) are arbitrary positive real numbers, the
service rates µ1, µ2 (µ) are also arbitrary. They verify the stability
property : µ1 + µ2 > λ (µ > λ1 + λ2).

Theorem
G.-Hyon 03, G.-Hordijk-Van der Laan 06 The routing (allocation)
sequence minimizing the workload is a mechanical word with a rational
density α.
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Workload
If σn is the size of packet n, δn the time between the nth arrival and the
n − 1th arrival, and an ∈ {0,1}, the routing decision to Queue 1, then
the workload verifies :

Wn = max (Wn−1 + an−1σn−1 − δn,0) .

σ
4

5
σ

σ
3

σ
2

σ 1

δδ δ δ δ

σ
6

δ

d d d d2 3 4 5d1

a a a a a1 2 3 4 5 a6

0

W(t)
32 4 5

0
t

61
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Optimality (II)

Under routing sequence w , let W 1
n (w) be the workload in queue 1 at

the n-th decision and

W 1(w) = lim sup
1
N

N∑
n=1

W 1
n (w).

Theorem (AGH)
Altman, G., Hordijk, 2000 Over all sequences w of density at least α,
W 1(w) is minimal when w = mα, the mechanical sequence of density
α.

Based on multimodularity properties.
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Convexity of α 7→ αW 1(mα)

Let α1 = p1
q1

and α2 = p2
q2

in the stability interval,J = [1− µ2, µ1].
Let m = m q2

α1 m q1
α2 .

Let N(m) be the average number of packets in queue 1 under the
routing sequence m.

N(m) = q1q2N(m1)+q2q1N(m2)
q1q2+q2q1

.

Let α = p1q2+p2q1
q1q2+q2q1

(note that α = α1/2 + α2/2 is the density of m).

Using Theorem [AGH], N(mα) 6 N(m) = 1/2N(mα1) + 1/2N(mα2),
and ∀λ ∈ [0,1]

N(mλα1+(1−λ)α2
) 6 λN(mα1) + (1− λ)N(mα2).

Using Little’s Formula, N(mα) = α(W 1(mα) + 1/µ).
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Linearity over Farey intervals

The interval [d1,d2] (di = pi
qi

) is called a Farey interval if
q1 · p2 − p1 · q2 = 1.

Proposition
Let I = [α1, α2] be a Farey interval, then for all α ∈ I, mα can be
factorized into mα1 and mα2 .

Using the greatest integer continued fraction expansion of α and the
associated factorization of mα (below) one can show that the queue is
empty at the end of each period of a mechanical word with intercept 0.
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Linearity over Farey interals(II)

0.5

1

1.5

2

2.5

3

3.5

0 0 0 0 0 00 0 11111

Corollary

The function α 7→ αW 1(mα) is linear over any Farey interal I ⊂ J.
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Construction of the best control sequence

The global cost function in both queues is

C(α) = αW 1(mα) + (1− α)W 2(m1−α).

Inside the stability interval J = [1− µ2, µ1], let us consider the
successive convergents of the lower continued fraction decomposition
of µ1 and of the upper continued fraction decomposition of 1− µ2.
They form Farey intervals over which the function C(α) is linear.

By convexity and piecewise linearity, the function C(α) is minimal at
one of these convergents.

Furthermore, using the recursive factorisation of mechanical words
shown below (Theorem 7) one can compute the function C at all those
points.
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Numerical computations(I)

0.2
α

g
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Numerical computations(II)
2

1

opt

opt

Instability domain

α   =1
opt

1/S  = c 1/S

opt

2 1

1/S
α    = 0

opt

1/S

α    = 1/4

α    = 1/2

α    = 1/3
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Numerical computations(III)

1/S

1/S

1

2

(0,0)

Instability domain

Double cusp optimal

The number of convergents browsed by the algorithm before reaching
the minimum point is small (as show in the figure).
More numerical evidences show that for 99% of the stability polytope,
the optimal sequence has a period less than 10.
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Nearest Integer Continued fraction
A semi regular continued fraction (SRCF)-expansion of a number
s ∈ [0,1) is a finite or infinite fraction

s = 0 +
ε1

b1 +
ε2

b2 +
. . .

εn

bn +
. . .

,

where, bn ∈ N and εn ∈ {−1,1}.
(bn + εn > 1, bn + εn+1 > 1 and bn + εn+1 > 2 infinitely often.)

Let Uγ : [0,1] → [0,1],
Uγ(s) =

∣∣1
s

∣∣− b
∣∣ 1

s

∣∣ + 1− γ c if s 6= 0 and Uγ(0) = 0 otherwise.

The coefficients of the SRCF-expansion are

εn(s) = sign
(
Un−1

γ (s)
)

; bn(s) = b 1∣∣∣Un−1
γ (s)

∣∣∣ + 1− γ c .
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Nearest Integer Continued fraction (II)

Some SRCFs are quite remarkable.

γ = 1 corresponds to the regular continued fraction expansion
(RCF).
γ = 0 corresponds to an expansion where, for all n, εn = −1. It
appears in the litterature under the name greatest integer
continued fraction (GICF).
γ = 1/2 is the Nearest Integer Continued Fraction (NICF), on
which we will mainly focus.
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Nearest Integer Continued fraction (III)

Let α = 13/31.

U1/2(13/31) = |31
13
| − b|31

13
|+ 1

2
c =

5
13
,

b1 = b|31
13
|+ 1

2
c = 2, ε2 = 1.

Continuing the expansion gives U2
1/2 = −2/5, b2 = 3, ε3 = −1 and

U3
1/2 = −1/2, b3 = 3, ε4 = −1 finally b4 = 2.

The NICF expansion of 13/31 is db2,3,−3,−2ce.
The sequence of convergents is db2ce =1/2, db2,3ce =3/7,
db2,3,−3ce =8/19 and db2,3,−3,−2ce =13/31.
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NICF and word factorization

Let α ∈ (0,1/2) such that its partial NICF of order n + 1 is
db0,b1, ε2b2, . . ., εnbn, εn+1bn+1 +εn+2αn+1ce. Let I(n) =

∑n+1
i=2 1{εi=+1}.

Theorem

The mechanical word mα can be factorized only using two factors xn
and yn for all n defined by x0 = 1 , y0 = 0 and for n > 1,
xn = xn−1

(
yn−1

)bn−1
, yn = xn−1

(
yn−1

)bn if I(n) even ∧ εn+2 =+1,
xn = xn−1

(
yn−1

)bn−2
, yn = xn−1

(
yn−1

)bn−1 if I(n) even ∧ εn+2 =−1,
xn =

(
xn−1

)bnyn−1, yn =
(
xn−1

)bn−1yn−1 if I(n) odd ∧ εn+2 = +1,
xn =

(
xn−1

)bn−1yn−1, yn =
(
xn−1

)bn−2yn−1 if I(n) odd ∧ εn+2 = −1.
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example

Let α be equal to 13/31, its partial remainders are 5/13, −2/5 and
−1/2 and its convergents are 1/2, 3/7 and 8/19. It comes

m13/31 =

x3︷ ︸︸ ︷
x1︷︸︸︷
10

x1︷︸︸︷
10

y1︷︸︸︷
100︸ ︷︷ ︸

x2

x1︷︸︸︷
10

x1︷︸︸︷
10

y1︷︸︸︷
100︸ ︷︷ ︸

x2

x1︷︸︸︷
10

y1︷︸︸︷
100︸ ︷︷ ︸

y2

y3︷ ︸︸ ︷
x1︷︸︸︷
10

x1︷︸︸︷
10

y1︷︸︸︷
100︸ ︷︷ ︸

x2

x1︷︸︸︷
10

y1︷︸︸︷
100︸ ︷︷ ︸

y2︸ ︷︷ ︸
x4

,

since Φ(m13/31) = m1−5/13, Φ(m8/13) = m1−2/5, Φ(m3/5) = m1/2 and
Φ(m1/2) = m1.
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Algorithmic considerations

Result

Let α = p/q 6 1/2 be a rational number. The number of iterations to
reach the complete expansion in NICF is upper bounded by
logη(1 + q

√
8) with η = 1 +

√
2.

Corollary
The maximal number of regular reductions used to test if a word w is
balanced is bounded by logη(1 + |w |

√
8) with η = 1 +

√
2.
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Extension 1 : The stochastic case

The cost is now the Cesaro limit of the expected worloads. The optimal
polling between two queues can be computed when the service is
exponential (with rate µi in queue i) and the inter-arrivals are
exponential (with rate λ in both queues).

The continuous time Markov chain Xt is a quasi birth and death
process whose generator Q is given by

Q =


C A0 0 0 . . .
A2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...
. . .

 ,

The stationary measure can be computed using the Kernel method :
Π(z)K (z) = π0µ(1− z)M.
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The stochastic case(II)
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EXtension 2 : Multidimensional routing problems

A natural extension of the routing problem is to consider a routing to
N > 2 queues.

The control sequence can be seen as a word over N letters.
The optimization problem is to minimize the average waiting time of all
incoming packets : W (a) =

∑N
i=1 piWi(1i(a)).

The problem is still open.
One of the main difficulties : the sequences 1i(a) cannot be all
balanced (Fraenkel Conjecture Altman, G.,Hordijk, 2000 ; Tijdeman
2004).
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The multimodular ordering
D (n + 1)× n of rank N s. t. the rows s0 + · · ·+ sn = 0.
The Mesh MD is the set {a0s0 + · · ·+ ansn,ai ∈ Z}.

D MD

Definition (AGH, 2003)
A function f is D-multimodular if ∀a ∈ Zn and ∀i 6= j ,

f (a + si) + f (a + sj) > f (a) + f (a + si + sk )

f is D-mm iff its linear interpolation over the atoms of MD is convex.
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The multimodular ordering (II)
Let F(D, r) be the set of all D-mm functions minimum at r ∈ MD.

Definition
x 6mm y if f (x) 6 f (y) for all f ∈ F(D, r).

Theorem
x 6mm y iff there exists a path over MD from x to y, “away” from r.

D MD

x

y

r
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Multimodular order and shifts

Let P(T ,S) be the set of all integer sequences of size T that sum to S.
D′ is the mesh induced from D over the hyperplane

∑
i ai = S.

P̃(T ,S) is the set of conjugacy classes w.r.t. cyclic permutations.

Definition
x 6mms y in P̃(T ,S), if f (x) 6 f (y) for all D’-mm function f which is
invariant by cyclic permutations.

Theorem
The balanced word w(T ,S) is minimal over P̃(T ,S) for the mms-order.

Corollary
x 6mms y if the “cone”-distance to w(T ,S) over mesh MD′ is larger for
y.
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Unbalance in P(T , S).
Partial sums : ks(n) = si + · · ·+ sn
Discrepancy : φs(n) = ks(n)− nS/T .

Theorem
If T ,S are co-prime, among all cyclic permutations of s, only one
verifies ∀n, φs(n) > 0 and only one verifies ∀n, φs(n) 6 0, called s and
s respectively.

The discrepancy also induces orders over P̃(T ,S) :

Definition
u 6g v if ∀n, φu(n) 6 φv (n).
u 6g v if ∀n, φu(n) 6 φv (n).
u 6g v if u 6g v and u 6g v .

Theorem
w = w(T ,S) is minimal over P̃(T ,S) for the orders g,g,g.
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Unbalance(II)
The upper unbalance of a sequence u in P(T ,S) is

I(u) =
1
T

T∑
n=1

ku(n)− kw (n)

The lower unbalance of a sequence u in P(T ,S) is

I(u) =
1
T

T∑
n=1

ku(n)− kw (n)

1
2 2

1 1
2

1 1

1 1 1

1

00 0 0

unbalance: 15/17
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Links between the orders
In Zn :

u 6mm v ⇔ Path u → v away from r

In P(T ,S),

Path u → v away from w ⇒ u 6mms v

Path u → v away from w 6⇒ u 6g

u 6g 6⇒ u 6mms v

Therefore, the g-order does not look very useful. However, the
unbalance provides the good measure of the gap with an optimal
sequence w.r.t. waiting times.
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Unbalance and waiting times
If W (u) is the long run average waiting time in a queue, where
interarrival times and service times and iid sequences. then

Theorem
W is D’-mm over P(T ,S) when D is the set of left shifts.
W is invariant by cyclic permutations.

Therefore, u 6mms v implies W (u) 6 W (v). The density of u ∈ P(T ,S)
is d = S/T .

Theorem

W (u) 6 W (w) +
E(δ)

d
I(u).

Moreover, if the system is deterministic and δ = dσ, then

W (u) = W (w) +
δ

d
I(u).
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Routing to parallel queues

We consider all routing sequences a where the frequency of routing in
queue i is di . The admission sequence in queue i, ui = 1i(a) is a
binary sequence with density di .

The average waiting time of all packets can be written as
C(a) =

∑
diW (ui).

Theorem
Let L =

∑n
i=1 diW (w(di)), then

L 6 C(a) 6 L + E(δ)
n∑

i=1

I(ui).

Moreover, in the deterministic case, under load one,
C(a) = L + E(δ)

∑n
i=1 I(ui).
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Billiard sequences

0

1

1

m = 0 0 1 0

0
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Billiards and unbalance

In dimension n, there exists an optimal starting point for rational billiard
sequences in terms of unbalance Van der Laan, 2004

The optimal starting point can be computed using an integer program.
The optimal unbalance of a rational billiard sequence is n/2− 1.

This provides in polynomial time a routing sequence which cost is at
most

∑
diW (w(di)) + E(δ)n/2− 1.
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