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Kurzfassung

Ziel der Dissertation ist es, die Verteilung der Ziffernsummenfunktion (und
ahnlicher Funktionen) auf polynomiellen Folgen von natiirlichen Zahlen und
Primzahlen zu studieren.

Von Bassily und Katai [2] wurde ein zentraler Grenzwertsatz fiir die
Verteilung der Folgen f(P(n)), n € N, und f(P(p)), p € P, gezeigt, wobei
f(n) eine g-additive Funktion und P(n) ein Polynom mit ganzzahligen Koef-
fizienten (und positivem fiihrenden Koeffizienten) ist. Da die Ideen in ihrem
Beweis grundlegend fiir die Beweise aller anderen Satze in dieser Dissertation
sind, wird der Beweis in Kapitel 1 prasentiert.

Kapitel 2 behandelt gemeinsame Verteilungen mehrerer g¢-additiver
Funktionen. Drmota [11] hat Bassily und Kéatais Ergebnis auf die gemein-
same Verteilung von Folgen f;(P;(n)) (beziehungsweise f;(FP;(p))) verall-
gemeinert, wobei die fy(n) gp-additive Funktionen sind und die Grade der
Polynome Py(n) alle verschieden sein miissen. Der Beweis ist relativ kurz
und wird in Sektion 2.1 gefithrt. Im Fall, dass der Grad der Polynome
gleich ist, konnte Drmota nur fiir zwei Folgen f1(P;(n)) und fa(P2(n)) einen
zentralen Grenzwertsatz beweisen, wobei ¢; und gs teilerfremd und die Poly-
nome Pj(n), Py(n) linear sein miissen. Diese Ergebnisse kénnen leicht auf be-
liebige Polynome P;(n), P(n) und Primzahlfolgen erweitert werden, indem
Resultate Vinogradovs und Huas iiber Exponentialsummen polynomieller
Folgen adaptiert werden (siehe Lemmata 1.2, 1.3, 2.5 und 2.6). Theorem 2.3
erweitert diese Ergebnisse aulerdem auf multiplikativ unabhangige q1, go.

Fiir stark g-additive Funktionen zu einem gemeinsamen ¢ liefert Theo-
rem 2.2 eine Charakterisierung der Verteilung beliebiger polynomieller Fol-
gen. Es gilt immer ein zentraler Grenzwertsatz, wobei die Kovarianzmatrix
nicht Diagonalgestalt hat, wenn zwei Polynomgrade identisch sind. Dieses
Resultat ist auch fiir multiplikativ abhéngige q1, g2 anwendbar, da es dann
natiirliche Zahlen s1, sy gibt, sodass ¢j> = ¢3! = ¢ gilt, und fi(n), fa(n)
daher stark g-addditive Funktionen sind.



Als wichtigen Spezialfall dieser Sétze erhalten wir fiir die Ziffernsum-
menfunktion sq(n)
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gegeben ist. Dieses Ergebnis ist fiir nicht teilerfremde q1, g2 neu. Fiir Poly-
nomfolgen und Primzahlen gelten dhnliche Aussagen.

Im Kapitel 3 werden G-additive Funktionen betrachtet, die von
der G-adischen Entwicklung natiirlicher Zahlen abh&ngen, wobei G eine
durch eine lineare Rekursion erzeugte Folge natiirlicher Zahlen ist. Das
Hauptergebnis (Theorem 3.2) ist ein Analogon zu Bassily und Kétais Re-
sultat. Ein grofler Unterschied zu g-additiven Funktionen ist dabei, dass
die Ziffern durch eine Markoffkette dargestellt werden statt durch eine Folge
unabhéngiger Zufallsvariablen. Auflerdem ist fiir ¢g-adische Entwicklungen
die k-te Ziffer von n durch den Wert von {n/¢**1} bestimmt. Fiir G-adische
Entwicklungen bendtigen wir dazu Fliesen des Torus T¢, wobei d der Grad
der linearen Rekursion ist. Fiir d = 2 sind diese Fliesen Rechtecke, fur
d > 3 hingegen haben sie fraktalen Rand, und es handelt sich dabei um
Rauzyfraktale.

Die letzten Ergebnisse (Theoreme 3.3 und 3.4) betreffen die Un-
abhéngigkeit verschiedener G-additiver Funktionen (und g-additiver Funk-
tionen), die unter &hnlichen Bedingungen wie fiir g-additive Funktionen
gezeigt werden kann.



Abstract

The aim of this thesis is to study the distribution of the sum-of-digits func-
tion (and similar functions) on polynomial sequences of integers and primes.

Bassily and Kétai [2] proved a central limit theorem for the distribution
of sequences f(P(n)), n € N, and f(P(p)), p € P, where f(n) is a ¢g-additive
function and P(n) an arbitrary polynomial with integer coefficients (and
positive leading term). Since the ideas in their proof are fundamental for
the proofs of all other theorems in this thesis, the proof is presented in
Chapter 1.

Chapter 2 deals with joint distributions of several ¢g-additive functions.
Drmota [11] generalised Bassily and Kétai’s result on the joint distribu-
tion of sequences fy(FPy(n)) (and fy(Py(p)) respectively), where the f, are
ge-additive functions and the Py(n) polynomials with different degrees. The
proof is rather short and can be found in Section 2.1. For polynomials
with equal degrees, Drmota could prove a central limit theorem only for
two sequences f1(P1(n)), fo(P2(n)) with coprime g1, g2 and linear polyno-
mials P;(n), P>(n). By adapting results on exponential sums of polynomial
sequences of Vinogradov and Hua (see Lemmata 1.2, 1.3, 2.5 and 2.6), this
result can be easily extended to arbitrary polynomials P;(n), P2(n) and se-
quences of primes. Theorem 2.3 extends this result to multiplicatively inde-
pendent q1, qo.

For strongly ¢-additive functions with respect to the same ¢, a charac-
terisation for the distribution of arbitrary polynomial sequences is given by
Theorem 2.2. We always have a central limit theorem, but the covariance
matrix is not diagonal, if any two degrees of the polynomials are equal. This
result can also be used for multiplicatively dependent ¢, g2. Then we have
positive integers s1, s2 such that ¢;? = ¢5' = ¢ and f1(n), f2(n) are therefore
strongly g-additive functions.



In particular, we obtain for the sum-of-digits function s,(n)
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where the covariance is given by
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For ¢1, g2 which are not coprime, this result is new. Similar statements hold
for polynomial sequences of integers and primes.

In Chapter 3, G-additive functions are considered, which depend on
G-ary expansions of integers, where GG is a sequence of integers generated
by a linear recurrence. The main result (Theorem 3.2) is an analogue to
Bassily and Katai’s result. An important difference to g-ary expansions is
that the digits are represented by a Markov chain instead of a sequence of
independent random variables. Furthermore, for ¢-ary expansions the value
of the k-th digit of n is determined by the value of {n/¢**'}. For G-ary
expansions, we need tilings of the torus T¢, where d is the degree of the linear
recurrence, to obtain a similar characterisation. For d = 2, these tilings are
rectangles, whereas for d > 3 they have fractal boundary. More precisely,
they are Rauzy fractals.

The last results (Theorems 3.3 and 3.4) deal with the independence of
joint distributions of G-additive functions (and g-additive functions) which
can be proved under similar conditions as for g-additive functions.
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Chapter 1

Introduction

The purpose of this chapter is to present a work of Bassily and Kétai ([2]) on
the distribution of the values of g-additive functions on polynomial sequences
and some other results on this topic. Since the ideas in Bassily and Katai’s
work will be a main ingredient of the proofs of all other theorems, we recall
them in Section 1.3. Given that their proof is very succinct (and at one
point wrong), we will not stick to their words and notation.

First we have to define g-additive functions.

1.1 ¢-ary expansions and g-additive functions

Let ¢ > 1 be a given integer. Then every non-negative integer n has a unique

q-ary expansion
n=> eng(n)*
E>0
with € 4(n) € {0,1,...,¢ — 1}, where we will omit the index ¢ when there
is no risk of confusion. Then the sum-of-digits function is given by

sq(n) = eng(n).

k>0

The sum-of-digits function is a special case of a g-additive function, i.e.
a real-valued function f defined on the non-negative integers which satisfies
f(0) =0 and
() =3 Flena(n)db).

k>0
Such a function is said to be strongly q-additive, if

f(n) =2 flenq(n)):

k>0



1.2 Some results on the distribution of ¢g-additive
functions

We start with the mean value of the sum-of-digits function. The first asymp-
totic formula is due to Bush [5]. After some other works on this topic,
Delange [8] proved

1 qg—1
N > sg(n) = —5— logg N+ v(log, N), (1.1)

where v is a continuous, nowhere differentiable and periodic function with
period 1. Higher moments of s,(n) were considered for example by Grabner,
Kirschenhofer, Prodinger and Tichy [22].

The most general result concerning the mean value of g-additive func-
tions is due to Manstavicius [27] (extending earlier work of Coquet [6]).
Let

1924 14
pe ==Y _fbd"), == flbg")
7%= 7459
and
[logq N] [logq N]
k=0 k=0
Then

which implies .
N Y f(n) = M(N)+ O (B(N)).
n<N

Now we turn to distributional results for g-additive functions. De-
lange [7] proved an analogue to the Erdds-Wintner theorem. There exists a
distribution function F'(z) such that, as N — oo

1
N < NIf(0) <2} - F@) (12)

if and only if the two series ZkzZO Lok Zkzo M%;k converge. This theorem
was generalised by Katai [25] who proved that there exists a distribution
function F'(z) such that, as N — oo,

%#{n<N!f(n)—M(N)<$}—>F($)

if and only if the series Ekzo ,u%;  converges.



The most general known theorem concerning a central limit theorem is
again due to Manstavicius [27]. Suppose that, as N — oo,

bl;}iﬁlf(bqj)l = o(B(N))

and that D(N) — oo, where

[log, N]
D(N)? = Z of and o} =
k=0

i
L

F(bd")? —m.

| =
o>
I
o

Then, as N — oo,
%# {n < N‘—f(”)D_(%(N) < x} — B(),

where ®(z) is the normal distribution function.
Finally we turn to polynomial sequences and Bassily and Katai [2].

Theorem 1.1. Let f be a q-additive function such that f(bg®) = O (1) as

k — oo for allb € {0,1,...,q — 1}. Assume % — 00 as N — oo for
some n > 0 and let P(n) be a polynomial with integer coefficients, degree r

and positive leading term. Then, as N — oo,

%# {n <N ‘ f(P("l)))(];%(Nr) < x} ~ ®(z) (1.3)
and
1 FP@) = MNT) _ o
7r(N)qué{peIP>,p<N’ DN < } d(x), (1.4)

where ®(x) denotes the distribution function of the normal law.

Note that this theorem was only stated for n = 1. However, a short

3
inspection of the proof shows that n > 0 is sufficient.

Corollary 1.1. Let P(n) be a polynomial with integer coefficients, degree r
and positive leading term. Then, as N — oo,

1 s.(P(n)) — lrlog N
N# n<N «(P() ~ 5 84 <z p— P(x)

2__
\/ %rlogql\f

—1
)y n sq(P(p)) — G5-rlog, N

(W) 1

and

<z p— O(x)
rlog, N



1.3 Bassily and Katai’s proof

fXN—EXy o0 q Yyr—EYyr

JVarXy Rfarva, > Where

The main idea is to compare the moments o
Xn and Yy are defined by

Pr[Xy < 2] = %#{n < N: f(P(n)) <z},

Pr(¥y <o) = x#{n < N: f(n) <a},

and to apply the Fréchet-Shohat theorem.
If we define random variables & ny by

Pritiy = b = y#{n < N :a(n) = b},

then
Yv =Y fullen),

k>0
i.e. Yy is a weighted sum of & n. For N = ¢/, we have Pr, , = b =
(if & < j) and (& 4 )o<k<q is a chain of (identically distributed) independen
random variables. Hence Y; is a sum of independent random variables.
For arbitrary N, we have Pr[{, n = b] = % +0 (%) Lemma 1.1 will
allow us to restrict to the truncated function

==

7= Z filex(n)) with A(N) = [(log N)"), B(N) = [log, N]~[(log N)"]
k=A(N)

for some 77 > 0. In the range A(N) < k < B(N), we have

<
Priton = L+ 0 (4 =)

and, for an arbitrary number h of k;,
1
Pr[ékhN = bl, c. ,&kth = bh] — q_h + O (qf(logN)"l) )

This means that Yy is a sum of asymptotically independent random vari-
ables. v
Analogously to f( ), we define

B(N) B(N) B(N)
= Z My D(N)2 = Z 0']% and YN = Z fk(fk,N)
k=A(N) k=A(N) k=A(N)

Because of f;.(b) = O (1), we have
M(N) - M(N)=0((logN)") and D(N)?— D(N)* =0 ((logN)").

With these definitions, we can state the following lemma.



Lemma 1.1. Assume (ng(ixgn — oo for some n > 0 and let P(n) be a
polynomial with integer coefficients, degree r and positive leading term. Then
we have

1 f(P(n)) — M(N")
N#{H<N‘ DN <x}—><1>(x)
for all x € R if and only if
1 PP m)) - ()
N#{n<N D) <z p— O(x)
for all x € R.

Furthermore, if for all h > 0

h
7 (P(n)) ~ FI(N") >
N Z ( D(NT) ) - /_oo o (@)

n<N

then we also have

% Z;V <f<p<nl>)>u—wg\)4<zw>>h ~ /°° o d(2)

— 00

and conversely.

Proof. From the condition stated for D(N), we get E ,.; — 1 and
| e - ey - G pm) —M(N’“))‘ ~0 (1)
n<N E(NT) '
as N — oo. Therefore we have, for fixed x > 0,
1 f(P(n)) = M(NT)
o {n < [ <}
e frenlign o)
_(NT‘) I -
S%#{n<Nf (P(En()]zﬁ_)M( )<x+5x+6}
and
f(P(n)) — M(NT)
(< [ <o}

10



for all 6 > 0 and N > Nj (for some Nj). Since the limit function is contin-
uous, one direction of the equivalence is proved for x > 0. The case x < 0
and the converse implication can be proved similarly.

Now suppose that X, Y are two random variables with | X — Y| <k <1

then
h h
E’X’h < IE_O <Z)E\Y ]lﬁh_l

and conversely. Hence, if EY" exists for some even h then E |Y'|! exist, too,
for all I < h and consequently E X" < EY" 4 O (k). In the same way, we
get the converse inequality and we can obviously extend this property for
odd h.

In order to complete the proof of Lemma 1.1, we just have to apply this
observation to

_ T +(N7) TN
Py —my T P - I
D(NT) D(NT)
We also use the fact [ X =Y | < k — 0 (cf. (1.5)) and the property gg%:; 1.

Remark 1.1. Lemma 1.1 is stated for polynomial sequences of all integers
n < N. Clearly the corresponding statements for primes hold too.

Remark 1.2. Bassily and Katai [2] used the approximation
—Z(N)

— M(N
g -y 7Vm)

— M(N)
neN|  D(N) D(N)

—0

as N — oo (cf. (1.5)), but this is wrong in general and the sum-of-digits
function provides a counterexample. Lemma 1.1 corrects their proof.

Since the Y y are sums of asymptotically independent random variables,
they satisfy a central limit theorem with convergence of moments and the
variance is asymptotically VarY y ~ D(N)2. Hence

Y — (V)

SV — N(0,1)

and, for all A > 0,

It remains to compare the moments of Xy to those of Y n+, where Xy
is defined by

Pr[Xy < z] = %# {n <N:FYpwm)) < x} .

11



We have

2|

B (Felen(Pm)) = )
n<N b(NT)

1 M fiy (en, (P(n))) —
SOV | E e

n<N A(N™)<ki,....kn <B(NT) j=1
1

- b
=11 %i#{ < N | e (P(0) = b ... et (P()) = br}.

p<N b(Nr)
B(N") q-1 b.) —
~1I fk](ﬁjiw)uk] FHP <N e (P() = bis- 6, (P() = bi)

1
J W#{n < N": ekl(n) = bl,...,ekh(n) = bh}

The next proposition assures that these moments converge to the same
limit. This is the essential and most difficult part of the proof. Note that
it suffices to consider different k;, because for k; = k; and b; # b; obviously
the numbers are zero and for k; = k;,b; = b; just make h smaller.

Proposition 1.1. Let P(n) be a polynomial with integer coefficients, degree
r and positive leading term. Then, for every h > 1 and for every A > 0, we
have

%#{n < Nleg (P(n) = b, e, (P(n)) = b} = qih +0((10g M) )

and

ﬁ#{P < Nleg, (P(p)) = b1,... ek, (P(p)) =bn} = qih +0 ((log N)fA)

12



uniformly for all integers
(log N)" < ky < kg < - < ky <log, N" — (log N)"
and by, by, ..., bp €{0,1,...,q—1}.

The proof of Proposition 1.1 uses the next three lemmata. The first two
can be found in Hua [24].

Lemma 1.2. Let P(n) be a polynomial of degree r of the form

a
P(n) = on"+mn' 4ty

with ged(a,b) = 1. Let 7 be a positive number satisfying
> (2’“ + 1) 0 + 23¢=2)
and
(logN)" <b< N"(logN)™".
Then, as N — 00,
1 —T
3 e(Pm) = O ((10aN) ).
n<N
where e(x) = exp(2miz).

Lemma 1.3. Let P(n) be as in Lemma 1.2 and 79,7 arbitrary positive
numbers satisfying
T > ZGkTo

and
(logN)" <b< N"(logN)™".

Then, as N — 00,

—— 3" e(P(p)) = O ((log N)™™).
) > e(P(p) =0 ((logN)™™)
p<N
Lemma 1.4. Let 0 < A <1 and
=y b
Upga = [0,A]U [— - A, - +A] Ul — A1)
= La q

Then, for every n > 0 and arbitrary A > 0, we have uniformly for
(log N)" < k < [log, N"] — (log N)" and 0 < A <1/(2q), as N — o0,

1 P(n _
N#{n<Nqu(+l)} eUb,q,A} < A+ (logN)™

and

1 P _
w<N>#{p< NH#} © Ub’q’A} <A (logN)™

where {x} denotes the fractional part of x.

13



Proof. We use the inequality of Erdés-Turdn: The discrepancy of the real
numbers xi,...,xy mod1

N

Z [, 8] {$n} (ﬁ_a) )

Dy =sup |—

where the supremum is taken over intervals [a, ] C [0,1] and 1(, g is the
characteristic function of [« ], can be estimated by

N
N Z mxn

uniformly for all positive integers M (cf. [14], Theorem 1.21).

Upg.a is the union of ¢ + 1 subintervals, its measure is 2¢gA. Let

M = (log N)**! and apply (1.8) to the sequences x, = Pékﬂ) for each

subinterval of U g, A The conditions of Lemmata 1.2 and 1.3 clearly hold
( )

Mo
= 1.
i . (1.8)

m=

for the polynomlals . This gives the stated inequalities. O

Proof of Proposition 1.1. Let Y, cmpqe(mez) be the Fourier series of

1[9 b+_1], i.e.
Q9 q

1 3 e<_m7b) _€<_@> for m £ 0, (1.9)

Co)b’ = - C 7b7 - -
g T 2mwim

Let 9pq.a(x) be defined by

1 A/2
Vb g,a(T) = E/ Lo vy ({2 + 2}) dz

—A/2 9’ q
. . 1
The Fourier coefficients of ¢4, 4 A(2) are dopqa = 7 and

() e () e ) - e ().

2mim 2mimA

dm,bg,n =

for m # 0. Note that dy, 54, = 0 if m # 0 and m = 0 mod ¢ and that

(o] < min | —— 1 (1.10)
min —_— —— & . .
mbaAl = w|lm|” Arm?

By definition, we have 0 < 9 4 A(z) < 1 and

1 if:ce[ +A,E A},

Uhaalr) =9 ifme[O,l]\[g_ AL+

14



If we set

T x
t(z) = ¥, g0 <W> LN (W) ;
then we get for A < 1/(2¢q)

<

'#{n < Nleg, (P(n)) = by, ..., e, (P(n)) = by} — > _ t(P(n))

n<N

p
< Z# {n <N qufﬂ} € Ub].,qA} < AN + N(log N)™*

For convenience, denote by M the set of integer vec-
tors m = (my,...,mp) and set v = (q_kl_l, .. ,q_kh_l),
T = dmy by g A - Ay, by.q.A- Then t(x) has Fourier series expansion

t(x) = Z Tme(m - vr)

meM
and A
t(P(n)) = T el ==Pn)|.
S ron= Xt e ()

We check that Lemma 1.2 can be applied to the polynomials 1‘3—';]3(71):
We can omit those m for which there is a j such that g|m;j, m; # 0, since
dm, b;,q,a = 0 implies Ty = 0. Let ¢ = pi' - - - p¢* and assume p;* fmy,. Then
we have pi“|Hy, because of

Hen(mp + ¢ 5= tmy_y 4 - 4 mf 0y = Apgfrtl,

Thus there exists an £ > 0 depending only on ¢, such that Hy, > ¢"*». We
can prove similarly Hy, > ¢ if ¢ fms and ms 1 = --- =my, = 0.
Hence Lemma 1.2 can be applied if m # 0 and we obtain

A < Nlew, (P0) = by, e, (P(0) = i}

1
= i+ 0| og ) 3 |Twl | +0 (A + (1ogN)*A)
m#0

The main term 1/¢" comes from the choice m = 0. From (1.10), we obtain
h
1 = . (1 1 1\"
m#0 m=1

Let A = (logN)™ and 79 > A. Then (1.6) follows immediately from the
above relation and Lemma 1.4. (1.7) can be shown by the same arguments
with Lemma 1.3 instead of Lemma 1.2. O

15



Thus we have proved

% 5 (f(P(nl?&%(NT)YH /°° o ()

n<N o

and

(f(P(pl)))(]—V?{‘f(N’"))h - /Z 2" dd(z)

1
m(N) 2

p<N

for all h > 0. The Fréchet-Shohat theorem (see e.g. Billingsley [3], p. 390)
implies (1.3) and (1.4).

16



Chapter 2

Joint Distributions

In this chapter, we generalise Theorem 1.1 to the joint distribution of dif-
ferent polynomials and different g-additive functions with possibly different
q.

We are able to prove a central limit theorem for sequences fo(FPy(n))
(and fo(Py(p)) respectively), where f, are gp-additive functions, if all Py(n)
have different degrees (Theorem 2.1, Section 2.1), if all g, are equal and
the f; are strongly g-additive functions (Theorem 2.2, Section 2.2) and for
two sequences, if ¢; and ¢y are multiplicatively independent (Theorem 2.3,
Section 2.3).

2.1 Polynomials of different degrees

First we prove the following theorem due to Drmota [11].

Theorem 2.1. Let f;, 1 < ¢ < d, be qp-additive functions such that

fe(bgl) = O(1) as k — oo for all b € {0,...,q, — 1}. Assume that
% — 00 as N — oo for some n > 0. Let Py(n) be polynomials of dif-

erent degrees Ty with integer coefficients and positive leading terms. Then,
as N — oo,

%# {n <N ff(Pe(gZ(&fy)é(Nw) <xp,l=1,2,... ,d} — D(x1)...P(zq)
and

1 fe(Pu(p)) — My(N™) _
m#{p<N DK(NTZ) <.Tg,€—1,,d}%q)($1>q)($d)

Remark 2.1. Drmota stated this theorem for pairwise coprime gy but did
not use this assumption in the proof. Thus it is not necessary.

As already mentioned, Theorem 2.1 is a direct generalisation of Bassily
and Kétai [2]. It turns out that it suffices to prove the following lemma,

17



which states the asymptotic independence of all digits. Then the indepen-
dence of the distributions is an easy corollary.

Proposition 2.1 (cf. Proposition 1.1). Let Py(n), 1 < ¢ < d, be poly-
nomials of different degrees rp with integer coefficients and positive leading
terms. Let A > 0 be an arbitrary constant and hy, 1 < £ < d, non-negative
integers. Then, as N — 00,

1 ¢ .
N7 {n <N E%k;e)(Pe(n)) = b§- J1<j<h,l<t< d}
1
L o(tegM) @1
q?lq;lQ . qg’d ( )
and

_ (0 :

W(N>#{p <N qu’ky)(Pz(n)) =0, 1<j<hg1<t< d}

1
= s 1O ((losN)) (22)
q?lqu . qsd

uniformly for integers
log N")1 < k9 < k9 < ... < k19 <log, N™* — (log N™)1 (1<(<d
1 2 hy qe

(with some n > 0) and by) €{0,1,...,q —1}.

Proof. We follow the proof of Lemma 1.1 and point out only the differences.

Set
d he

Ny
t(na, ... ,ng) = H Hi/fb;Z)’qe’A W

(=1j=1 oy
Then we get, for A < 1/(2q),

€0 (Pe(n) = b for all j,e} ~ 3" HPi(n),..., Pan))

n<N

e

d hy
Py(n _
<Y #fnen|[{ R v, e AN+ NlogN)
(=1 j=1

k(,l)+1
Qg]

Set h = (h1 + --- + hgq) and denote by M the set of h-dimensional
integer vectors M = (my,...,my) with m, = (m§£)7 e ,m,(fz)), 1< <d.
Furthermore, set

d hy
Im = H H dm§Z>,b§-e),qg,A'
t=1j=1

18



0) EAONE]
. k91 . . .
Withv, = (¢, " ,....,q, " t(x1,...,xq) has Fourier series expansion

t(a:l,...,xd) = Z TMe(m1 -lel—i—"-—l-md-vd(]}d).
MeM

Thus we are led to consider the exponential sums

Y Tm ) e(my-viPi(n) + -+ mg - vaPy(n)).
MeM n<N

m; = --- = my = 0 provides the leading term 1/(q?1 ~~-q§‘i). If there
exists £ and j with my) # 0 and mgﬁ) = 0 mod gy, then Ty = 0. So it
remains to consider the case where there exists ¢ and j with mg-é) # 0 mod gy.
Here the exponent is of the form
Aml
Hml

Am,

m;-viP(n)+--+mg-vygPy(n) = i
my

Py(n)+ -+

FPa(n),
with at least one Ay, # 0. Let Py(n) be the (unique) polynomial with
maximal degree ry such that Ay, # 0. Then

Am,
Hom,

my -viPi(n)+---+mg-vgPy(n) = Py(n)+yn 4o 4 Yoy

By the same arguments as in Lemma 1.1, we can therefore apply Lemma 1.2
and obtain

1

L .
qu,kﬁb(‘P(n)) :bg.),O <j<hp,l1<e< d}

1
= + O [ (logN)™™ Y T +O(A+(logN)’A).

=
Q11q22 Ty M
With
Z T < (2+ 2log<1/A))h1+-~~+hd7
MeMm\0o

(2.1) is proved.
The proof of (2.2) runs along the same lines. O

Corollary 2.1. With the definitions of Proposition 2.1, as N — oo,

1
FE{n N e o) =< <ha<esal
g
1 0 , Y
=TT (#qm < Ve o (Prln) =01 < 5 < by )40 ((10g N) )
/=1
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ﬂ(i\f) { kf)(Pﬁ(p)):b§€)>1§j§hﬁ,1éﬁgd}
d
g ( { €0 (P2(P)) = b0 1<j < he}>+0 ((IOgN)_A)

uniformly for integers

(log N™)" < ki kY7 ... ki) <log, N™ — (log N™)" (1 < €< d)
(with some n > 0) and b €{0,1,...,q,— 1}.

Proof. If there exists ¢ and ji, jo with k](f) = k( ) but b #* b(Z then both
sides are zero.

So it remains to consider the case, where for every ¢ the integers k](-z),
1 < j < hy, are different and without loss of generality we can assume that
they are increasing. Hence we can directly apply Proposition 2.1. O

Corollary 2.2. For any choice of non-negative integers hy, 1 < £ < d, we
have, as N — oo,

e) — he
1 I () - TN
© X T (L )

n<NZ 1
d (NTe) — hy
fo (Pu(n)) — My(N™)
_H N Z ( ) ) ) — 0

L
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Proof. We have

) — he
7 (Pu(n)) — I(NT)
N Z H ( - Dy(N7e) )

n<N€ 1

AN <KD L) <BINTL) Ag(NTa) <k kD <Ba(NTd)

a b fpy0 <6qbk]@>(P(”))> T Hy o
DI H Do)

n<N€ 1j=1

q1—1 qa—1

AN <R k(D <BUNTY) Ad(NT) kY kD <By(NTa) oY =0 bt =0

V4
d he fz’k§4)(b§- )) — 'U’Z,lcj(.e)

1 (0) .
— o(Pr(n)) =105 for all j,/¢ —
N#{ ko (Pe(n)) = b; J }el_[ull Du(N7)
and
1 (T ) - Ty "
(s (5

Fout ( kO (P(n))> = Hy g0
EE(NW)

d
=11 2. ¥ I
=1 Ag(NTZ)Sky),---,kg?SBZ(NW) TL<Nj 1

q1—1 qa—1

AN <R kD <BUNTY) AdNT) <KD D <By(NTa) oY =0 bl =0

¢
£y k(O (bg' ) - Fog (0
b b J

he

Y4 .
€t (Pr(n)) = b for all j } H1
j:

<1
I1 N#{
/=1

By Corollary 2.1, the two terms are equal up to an error term of the form
o ((log N )_)‘+h_h’7). The result for primes is obtained analogously. ]

EZ(NW)

By combining Theorem 1.1, Lemma 1.1 and Corollary 2.2, we obtain

N 3 H (ﬁ o NT]’Y)ANM)) /x'fV 23 d® (1) ... d(za),

n<N (=1
fo(Pu(p)) — Mo(N™)\"
( De (N"e) /w}fl .dedQ(xl)...dCI)(a:d)

p<N /=1
and the Fréchet-Shohat theorem implies the statements of Theorem 2.1.
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2.2 Strongly g-additive functions with the same q

The next theorem is a generalisation of Theorem 1.1 for the case
q1 = ...=qq = q for polynomials of not necessarily different degrees. If
the degrees of the polynomials are not different, we do not have asymptotic
independence of all digits as in Corollary 2.1, but we can show that random
vectors which represent the digits form a Markov chain (Subsection 2.2.2).
Hence we obtain a central limit theorem for these random vectors and a com-
parison of the moments (Subsection 2.2.3) gives the central limit theorem
for fo(Py(n)). For simplicity, we restrict to strongly g-additive functions.

2.2.1 Results

Theorem 2.2. Let fo, 1 < £ < d, be strongly q-additive functions with

2 q=1 2

S (T EOY o0t Rl = a4k )
b=1

polynomzals with integer coefficients and positive leading terms. Then, as

N — oo,

1 Je(Po(n)) — My(N™) _
N#{n<N DoV <xpl=1,...,d p = Py(x1,...,29)
(2.3)
and
1 fo(Pe(p)) — My(N™)
— N £=1,2,...,d d
7T(N) {p< D((Nw) <xf) 5 4y 3 - V(xla ,CCd)
(2.4)
where @y (z1,...,xq) denotes the distribution function of the d-dimensional
normal law with covariance matriz V = (v; j)1<ij<d given by
1 ifi=j
o) 95? @D py (D)
Ci; @D 67 G747 if gry Pi(n) = gr; Pj(n)
/Z)A J— 7 bl 7‘] TZ 1 JIT )
1,] T,ifmax{ ( ) (J);ég(J) (@ )}C' g%) g%) Z’f S
T (ﬁ?,gﬁj)) (gfﬁ),gﬁj)) /
0 else,
where
1 Rj*l qg—1 g—1
Ciglai9) == X X 3 (Tt~ 72 ) OIS0
I 1=0 bi=1b;=1
R;—1 qg—1 g—1 1
D I DD B CHWET. PRI

I=1 b=1b;=1



. qRZ
with Ry such that q\(im and
a9,

Re,g2))

1 (i Dg = big) (b5 + g — bg)

Tbi,bj,g9iqt,9; — Tbisbj.g,9" = q_2 - gg/q2
min (b;¢’, bjg) + min ((bz +1)g’, (b; + 1)g> — min ((bZ + 1)g’,ﬁ> — min (b;¢’, b;9)
+
99'q
where g = %, g = (q;qjg_) and y denotes the representative y' of y' =y (q)
»g3j »93j
with 0 <y < q. (b, b;.:.9;q 15 given symmetrically.)

Remark 2.2. If V is positive definite, we have, with t = (¢1,...,t4),

. 1 Td z1 _ltvfltt
(I)V($1,...,$d)—(27r)cl/2—dm/_oo.../_ooe 2 dtldtd

Remark 2.3. If gﬁf) is coprime to ¢, then we have Ry = 1.

I > Rj implies my, p. o419, = q% for all b;,b;.

The T, bsogiql,g; L€ the joint probabilities of digits k+ 1 and k of g;n and
gjn (which do not depend on k):

Ty by gsatg; = PTlek(9ia') = biy er(g;) = bj] = Prlexri(gin) = bi, ex(g;) = bjl.

Note that we need C; ;(gi, gj) only for coprime g;, g;.
Remark 2.4. As in all other theorems, the constant term of the polynomials

plays no role.

Corollary 2.3. Let Py(n) = g%)n” + gg)n + g(()é) be polynomials with
integer coefficients and positive leading terms. Then, as N — oo,

1 sq(Po(n)) — Sllog, Nt
N# n<N (il )2) 2 % <zp,l=1,...,d
\/ q1;1 log, Nt
1 T
_ 2 dty...dt
- (27T)d/2\/detV/oo /ooe b

with the positive definite matriz V = (v; j)1<i j<a given by

1 ifi=j
(4) (4) . .
gr, gr; e (7) _ @)
Cij OB IROBE) if gr; P;(n) = gr; Pj(n)
s i = (97'1- gr ) (gri 2gr; )
R R T o) e A S
r; 2%) (g(i) g(j))’ (g(i) g(j)) L)
T‘,L' 9. Tj T‘,L' I, ”‘j
0 else,
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and
7> —(¢,9)* — (¢.95)* + 1
9i95(¢*> — 1)
Ri—1.2 _ 9iq* Ri—1 2_( 954" )
1 J q <Q7 (ql,gj)> q q, (ghql)
> +

+ -
gi9j(¢> — 1)

Ci (g 95) =

=1
Remark 2.5. For monomials Py(n) = gyn” with (gs,q) = 1 we just have
_ (90,95)°
'Ui,j = .

9ig;j

For ¢ = 2 and r = 1, this was proved by W.M. Schmidt [35]. Schmid [33]
obtained a local limit law in this case.

Furthermore, we can calculate the joint distribution of the sum-of-digits

functions for multiplicatively dependent q1, go.

Corollary 2.4. For q1 = ¢°',q2 = ¢°* with positive integers q,si,s2 and
(s1,82) =1, we have, as N — oo,

1 sg.(n) — L log N Sgo(n) — 21 1o N
N# n< N|2o ) 3 g <11, Q2( ) 2 g2 < 29
/ / o~ T ez (t2+t§—20t1t2)dtldt2
27T\/1 —
with

G—1\ s1s2(q1 +1)(q2 +1)°

C:(erl\/ (1 —1)(g2—1)

For general strongly ge-additive functions similar statements can easily
be derived. The case of multiplicatively independent q;,qo is treated in
Section 2.3.

2.2.2 A Markov chain and calculation of the covariance

We define the polynomials

PZ(S)( )—gg) [T +g£,)n for 1<8<T_1123<de’

which will be needed in the next subsection. In this subsection we fix s.
Furthermore, we define the vectors

s s+1 r
(s) . . n n n
Wi (1) = (Whe, o whr) = <{qk+1 } ’ {qk“ } ""’{q“l })
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for 0 < n < N and see, by Proposition 2.1, that they asymptotically
form a net to the base ¢ if k € [(log N)",log, N* — (log N)"]| (but not for
k >log, N*®). Proposition 2.1 gives rather bad error terms if we want to
calculate the number of Wlis) (n) in an arbitrary set of T"*T1. Nevertheless
this will give reason to use the Lebesgue measure as probability measure on
']I*rfs+1'

We have ek(Pg(s) (n)) = b if and only if

b b+1
{gﬁlg)wk‘ Ty +oet ggl)wk‘,s} € |:_7 —>
q q

This means that, for each digit b, {w,(:)(n) | ek(Pz(s)(n)) = b} (as a
set of T"*t1) is contained in the stripe Sé;) between the hyperplanes

g, + o+ gz, = (included) and g%)% bt o0z, = 21 (ex

cluded). If P (n) = 0, set Sy*) = T"~**1 and S}") = 0 for b # 0.

Thus each set {W,(j)( ) | ek(Pl(s)(n)) =by,..., ,(C)(Pl(n)) = bq} is con-
tained in Sé )1 n---N S (s ) and each of this intersections consists of a finite
number of convex sets, the boundaries of which are the above hyperplanes.

Let (W( ))1§ j<x, be the partition of T" induced by these sets (or equivalently

j
by the hyperplanes). Then fy| is constant for all £, j.

W
J
Furthermore, we have ek_j(Pe(S) (n)) = bif and only if Tj(w,(f) (n)) € Sése)
with the map T : T" — T", T(wi.s, . . ., Wiy) = (QWks, - - - , Q). Hence

{n]eoPPm) =8, (P ) = o }
w () e %) . wmn) e st

= { b 0 (0 4}

and we define a sequence of random variables (Yk(s))kzo on
Wi Wy WD) by

Pr [ ( ) _ W(S) LY ( ) _ W(S)] = A\r_ s+1(T_ij(§)m- ) IW(S) OW(S))

Jo Jk—1

for 1 < j; < ks, 0 < i < k. (A, denotes the n-dimensional Lebesgue
measure. )

Lemma 2.1. (Yk(s)>k>0 is a Markov chain.

Proof. 1t is easy to see that T’W“) is injective for 1 < j < kg and that
j

(s) . - . (s) . .
TWjS is the (disjoint) union of sets W; ) since the image of the hyperplane
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g,(f)xre 4+ 4+ gg)xs =2 is the hyperplane g%)xw 4+ 4+ gg)xs = 0. Hence

we have

Pry,” =W,y =W =A@ OW nawl)

Jo ? > k41 Jk+1 Jo Jk+1
_ 1 ) (s) (s)
- W)\T_S‘H(T Wjo n---N Wj n TWJk+1)
LNt (W A AWy i W T
= gr st Ar—s+l Jo Jk Jk Jk+1
0 else.
Thus
y ) ) RO (8) _ 117()
Pr[y, ol = ij+1| A —Wjo,...,Yk —ij]
LT if W(S) - TW( s) (s) (s) (s)
:{ % else et = PrlY, k+1 — Jk+1|Y ij l
i.e. the Markov chain property is fulfilled. O

(s)

As already noted, each f, is constant on each W;
I/Vj(s) - Slgf)l N--- NSy, q for some b;. Therefore we define the d-dimensional

because of

function f on (Wj(s)hgjgns by

FOVE) = (A, o fal W) = (A1), falba).

Before stating a central limit theorem for f (Yk(s)), we study the covari-

ance Cov ( fi(Yk(iS)), fj(Yé;))). To this effect, the following lemma, which will
be proved together with Proposition 2.3, will be very useful. Note that
Yk(s) C Sé‘? is equivalent to fg(Yk(s)) =b.

Lemma 2.2.

s s s s
Pr[Yk(i) S( ) ( ) - S( ) ] Z Cm;,b;,qCmj,bj,q0
miPKS)(n) m P4 (n)
mg,mg: qlki — qjkj =0
(2.5)

where ¢y, p,q are the Fourier coefficients in (1.9).

By Lemma 2.2, we have

PV, C 8, Y\ C 8] = cop geon; g = PrYy € SIPrYS € 5170,

if the polynomials do not have the same degree or are not proportional and

Cov(fi(V{™), [;(¥,*) = 0.
Now assume n = rj and that the polynomials are proportional. Fur-
thermore, let w.lo.g. k; > k;. Then the m; in (2.5) must satisfy
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mZgS)EO(
)-

ki), i.e. m; =0 <ﬁ> If k; — kj > R;, this implies
m; = 0(q). Hence ¢, b;,qCm; b, = 0 for (m;, m;) # (0,0) and

COV(fz( )fj(Y(s)):O iflﬁ'—k‘jZRiork‘ —k; >R

(For kj > k;, we get the result by the symmetry of the covariance.)
Since the chain (Yk(s))kzo is homogeneous, we obtain

B(N)
N) k::A(N)

B(N) min(R;—1,B(N)—k)
- > Cov (£, ;7))
k=A(N) l=max(—R;+1,A(N)—k)
R;j—1
— (B(N > Cov (L) K)o ).
I=—R;+1

Now we can state the central limit theorem

Proposition 2.2. The sums of the random variables f(Y) )) satisfy a mul-
tidimensional central limit theorem with convergence of moments. More
precisely, we have, for all a = (ay,...,aq) € R?, as N — oo,
B(N)
D (

k=A(N) Sy acfl(V) = S aMy(N)

o0\/B(N) — A(N) — A (0.avta)

where the covariance matriz V' (5) = (

(2.6)

(8)> s given b
“I ) 1<ij<d g Y

7] = O'ZO'j l_%;Jrl Cov (fz ) i k+l))

and for all integers hy > 0 we have

d

B 1 Sy e(0) = My(N)

h1 hq
— |zt 2 dDy s (21, .
Dy(N) / 1 a" 4@y (71

he
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Proof. We have

B(N) B(N)
VarZ Z acl(V;”) ZZCOV > whii) D aifi(y”)
(=1 k=A(N) i=1 j=1 k=A(N) k=A(N)

d d Rj—1
= (BOV) - AN) Y Y awa; Y Cov (A, E)) +0 )

=1 j=1 I=—R;+1
= (B(N) — A(N))o;o;aV®al + O (1).

If aV(®)al = 0, then we have E?:l Zf:(]XzN) agfg(Yk(S)) = O (1) and both
sides in (2.6) are zero.

Otherwise we use the central limit theorem for stationary and homoge-
neous Markov chains or p-mixing sequences (see e.g. Billingsley [3], p. 364).
We need that all states are recurrent and aperiodic. For Yk(s), this condition
is satisfied, since we clearly have an integer E such that T Wj(s) = Tr—s+!

for all W* and hence Pr[v,y) = M\ Y = w9 > 0forall l > E.

This implies that X = 2?21 ay fg(Yk( ) is p-mixing too and the central
limit theorem holds for Xj. (Note that X need not be a Markov chain, if
Z‘Zzl ag fy is not injective.)
For the convergence of moments it suffices to show that they exist. The
Sy Je (V) =M (N)
Dy(N)

he
onedimensional moments E ( ) are just the mo-

ments of féN) (n) (cf. Section 1.3) and converge therefore. With the re-
1
lation E ‘XR,XS (E X2’") (E XQS) for all random variables X, Xy,

we obtain the convergence of the multidimensional moments. O

For the calculation of Cov( fi(Yk(S)), !)"j(Yj(‘(”)))7 it suffices to consider

Y, = Yk(l) and linear polynomials because of Lemma 2.2 and the succeeding
remarks. For the sum-of-digits function, we get explicit expressions.

Lemma 2.3. Let Pi(n) = gin, Po(n) = gan and fi(n) = fa(n) the sum-of-
digits function. Then the covariance of f1(Yy) and fo(Yy) is given by

(* —d3 — d3 +1)(g1, 92)°
129192

Cov(f1(Yr), f2(Yk)) = (2.8)

where d] = (q, o 92)> and dy = (q, (g%ﬁ)'

Proof. Because of Lemma 2.2, the digit probability does not change if we

replace g1, g2 by (g1 92) (gf O Therefore we assume (g1,¢92) = 1.
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The covariance is given by

= Pr[ek(gln) = bl, ek(ggn) = bQ}ble — Efl(Yk>E fg(Yk) (2.9)

In order to get integer numbers, we define
apy b, = q9192Pr[er(g1n) = by, ex(gan) = by

—#{oc 0t -1 ][ 2] 200 [ 2] =nw}.

g1
Because of
q—1 ¢-1 g—1 ¢-1 ¢q-1 gq-1
E E abl,bgblb = abl,bQ
b1=0b2=0 1=1 by=q—1i j=1 ba=q—j

we study A; ; = Zbl i Zb2 — g Qb1 b

For every x in the set corresponding to ap, p,, (gg192 — 1 — ) is in the set
corresponding to ay—1—p, g—1—b,- Lherefore we have ap, p, = aGg—1-b,,9—1—b,
and

i—1 j—1

Aij=) Z by by

b1—0 bo—
=#{r €{0,... qung_l} |2=0,...,i92—1(q92),z =0,...,j91—1(qg91)}

Since (qg1,992) = ¢, the system of congruences x = z1 (gg2) and
x = x2(qg1) has no solution z if z1 # x2 (¢) and a unique solution mod-
ulo qg1go for 1 = 5 (¢). Denote by 7(9) the representative 3’ of i =y (q)
with 0 <y’ < ¢g. Then

—(q) —(q)
_ i0o —
Az‘,j — gy Jjn q]gl +jq —(q) 192 — 192

_192J91 @(q)ﬁ( ! + mm(zgz( 9 J91( ))
q q 7 |

(@)

+ min(igz?, 791 ?)

q—1qg—1 2 q"-1q'—1
-1 —d —d NPT
Y 4 = q(qg—1) 9192_Q(q 1i(q 2)+d1d2 S° 3 min(ids, jdh),

=1 j=1 i=1 j=1
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where ¢ = q/dy and ¢" = q/dy. We have

¢'—-1q'—1

> ) min(idy, jdy)

i=1 j=1
qa _

_qilzd2<q—1—{@]> qz_ljdl<q—1—[%]> ;z'dldQ

and
q//_l q//_1 q//_l q//_l
. d d 1 ——(dy)
T |2 = (-1 SN2 N g
O ) RURLD IS DI DI
@ -D@" -1 d" -1 1) 1 (S (jdy + @)idy ™
5 — 5 d Z Z Jdi +1)idy
7=0 =1
d1—1
q/(q//Q - 1) q// Y q// q// ().
=1 4|2 —d+3 = d .
G + 1 q & 1+ + d% ; 1o 1
With
2d
d1 l—d di—1 [W] di—1
T g e
i o ][]
—d, Z—zg—dg—l)Ei—l— i > i
1=1 =1 =1

do(ds — 1)(dy — 1)d;

:dg(dl —1)(2di - 1)
2

6
N Z (di — Jdi"™ + dy)(jbi — jd&i'™)
2dy
7=1
_dg(dl — 1)(3d1 —didy — dg) (d% -+ 1)<d2 — 1)(2d2 — 1)
= +
6 12
do—1
(di —1)(d2 = 1)dy di )
+ . Z
_d% + d% +1 " d%dz + dld% — 3d1ds _ Z d2)
12 4 =
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we obtain

1 q—1g—1 _1)2
9192Cov(f1(Ye), f2(Yk)) =y DD A —aige 1
=1 j=1
(g di)(g—dy) | ¢ —d3 | —dig—q—didy+3didy
= - + +
4 6 4
d% + d% +1 n d%dg + dld% — 3d1ds
12 4
2_d?  —doq— q—did%+3did — did
X q L 20 — ¢ 1045 + 50102 n q 102
6 4 2
¢ -di-di+1
N 12
and the lemma is proved. O

Clearly we have

Api1,5,41 — Ap b1 — A5, + A,
49192

Prlei(gin) = b1, ex(g2n) = bo] =
for (g1,92) = 1. Thus

Pr[ek’(gln) = by, ‘Ek(g?n) = 62] = Tb1,b2,91,92

first for (g1,92) = 1, and, with Lemma 2.2, for general g1, g2. With Re-
mark 2.3, we get

ﬁl) gﬁj) . j s i s
(S) Clv] (( 7-9) (J)) ( (1) (J))) lf gﬁ?)PL( )(TL) = g7(“z)P]( )(n)

7] gr; 59r gr; 9r
O else.

For ¢; = ¢°* and g2 = ¢*, f1(n) = sq (n) and fa(n) = s4,(n) are strongly
g-additive functions with ¢ = ¢j? = ¢3'. Then, for Pi(n) = Py(n) = n,
(Yi)k>0 is clearly a sequence of independent random variables and

fl(Yk):X0+(1X1+'"+qSI_1X8171+Xs1+ +q51 1X251 1+ +q81 1X8182 1,

f2(Ya) = Xo+G X1+ 432 Xy 14X+ -+ Xogy 1+ 432 Xy 6,1,

where (X;)o<j<s;so—1 is @ sequence of identically distributed independent
random variables on {0,1,...,¢§— 1}.
Hence we have

s182—1

Cov(fi(Ye), () = > ¢;VarX;,
=0
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where ¢; runs through {cjab :0<a<s —1,0<b< sy— 1} because of
(s1,82) = 1. This implies

~2

Cov(f1(Ye), f2(Yr)) = ql_;1 Qg+ 4D (1+g++¢27Y)

@+ @ - D@ -1
127 - 1) ‘

With 03 = Var f1(Y}) = sa(¢? —1)/12 and 05 = Var fo(Y}) = s1(q5—1)/12,
we get for the normalized covariance
Cov(/1(Ye), (V&) _q+1 (a1 —1)(g2—1)
7102 01 \/s155(q7 = 1)(a3 — 1)

2.2.3 Comparison of moments

It remains to compare the moments of f;(Py(n)) to those in (2.7). We need
the following proposition (cf. Proposition 2.1).

Proposition 2.3. Let Py(x), 1 < ¢ < d, be integer polynomials with positive
leading terms, A > 0 an arbitrary constant and hy, 1 < ¢ < d, non-negative
integers. Then for integers

(log N)? < k) < k) < <& <log, N — (log N)? (1<¢<d)
(with some n > 0) which satisfy
{4 s s
KO ¢ <logqN — (log N)", log, N* + (log N)")

for all1 < s <ry;—1, we have uniformly, as N — oo,

1
N {n <Nleo(Pen) =b"1<j<hp1<t< d}
J
i 0 (t0g )
S:Hlp’“gl)’”' ,k%,bgl),“.,bﬁl‘? + O ((logN)
and
1
TWW#{p<Newmmm»=%Q1SjsmASKSd}
J
T () Y
= + (9( log N )
S:Hlpkglx...,k;3>,bgl>,...,bgj; (log V)
with
p(s<)1> (@) (1) @ = P [Yk((i)) . SZE&)) ¢ Jor all (5,8 € KS] T H, A0
J J
B Db ) else.
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where
K, = {(j, 0) ‘k](.‘) € [log, N*~! + (log N)", log, N* — (log N)"] } .

Proof. We follow the proof of Propositions 1.1 and 2.1 and point out the
differences.
We have to consider the sums

Y= Z T Z (my - viPi(n)+ -+ mg-vyPy(n)).
MeMm n<N

First of all set A = (log N)™% with an arbitrary (but fixed) constant

9 > 0. Then we can restrict to those M for which |m§£)] < (log N)? for all
4, £ because of

> 1 > 11 i
S | S i) (S (ks
3¢,5:/m "> (log N)28 m=((log N)*] m=0

1 1 h—1
< —(log N)_5 <log K) < (log N)_5/2,

A
where h = (hy + -+ - + hg). Furthermore, it is sufficient to consider just the
case where my # 0 for all j,£. (Otherwise, we just reduce hy to a smaller
value.)
Set

QM(n) =myg - V1P1(7’L) +--+mg- Vde(n).

We have to check whether Qni(n) has degree r and satisfies the conditions
of Lemmata 1.2 and 1.3.
The coefficient of n" is, if we set kpax = maxy k}(f;),

(0) (0)
(©) () max—k.* (f)m( ) gfmax—h;’

A g q g
M T Y T (2.10)
M oek, : q

with (Anm, Hvm) = 1. If Ay # 0, then the conditions of Lemmata 1.2 and
1.3 are obviously satisfied. If Any = 0, assume kpax € K. Then we obtain

Z g’r( ) (é) kmax kj(l) = 0 <qkmax_(logq N’ril_(lOg N)’I)) .
(],E)GKT

(£)
Because of ]my)\ < (log N)?° this implies 2o G0EK, gfﬂﬁ)mg.z)qkma"*kj =
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Hence Ay = 0 if and only if both sums in (2.10) are zero and we have

0P =8 1< < he1 < 0<d)
J

1
N#{H<N

€k§e>(Pe(n)) = bg»e), (7,0) € Kr}

1

x %# {n <N ey (P(n) = b, (j,0) ¢ K} +0 ((1ogN)*A) .

Now we can repeat the arguments for (j,¢) € K,_; and get inductively

o(Pn) =4 1< <1< t<d)
J

1

- H %# {n <N [y (Po(n) = b, (j,0) € K} +0 (<1og N)*A) :
s=1

Hence we may assume from now on that all k:](-é) are contained in one set
K for some s < r.
If the degree of Qni(n) is smaller than s, we have

(log N)*N*=1  (log N)*
|Qm(n)| < qlogq Ns—1i(log N)7 q(logN)n

for all n < N and, with e(y) =1+ O (y),

N(log N)26(h+1)
Z T (Z 6(@1\/[(77,)) - N) < ( (;g(logg\f)n ’
<s

[m{?|< (105 )2 des(@na(n)) N

Thus we can treat these Qni(n) as if they were the zero polynomial and it
suffices to regard the polynomials Pg(s) (n) and

&) =my - viPP(n) + - +my - vaP ().

The conditions of Lemmata 1.2 and 1.3 are satisfied if and only if QS[) (n) #0
and we obtain

S=N ) Tu+O|N(ogN)™™ > T
MeM:Q\Y (n)=0 MeM:|m?|<(log N)2, Q5 (n) 20

+0 (N(ogN) ™) +.0 <H;a;< Ub;f>,qe,a> '
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Since the main term ) Tnv depends on A, we want to

MeM:Q\Y) (n)=0
replace T by
d hy

o= Ty

(=1j=1 ™0

Hence we have to estimate the difference 3 e v (my=0(TM — Tyg)-
We clearly have

¢
d, o 40 =€ o (1 + O (m§ )A>)
7 3

J’]’

as A — 0 and therefore

T = Ty (1 +0 (maxm( )A>> (2.11)

gl
First assume ]m§£)| < (logN)%/2 for all j¢. From (2.11) and

Copl6) (0 , < Min <17 ﬁ), we obtain

J ) 4q j
> T — Tl < > [Tl (log N) =/
MeM:|m?|<(log N)3/2 MeM:|m?|<(log N)3/2
[(log N)%/2] " 5/2\M
log(log N )°/2) ~
- loec N 5/2 ( loec N 4/3

It remains to estimate the Ty and T}, with |m§-e)| > (log N)%/2 for some

4, £ which satisfy the equation QSI) (n) =0, i.e.

Zgr =S = 0, (2.12)

Assume first gr ;é 0 for all j,¢. For simplicity, let us rewrite (2.12) as
mma + y2ma + - -+ ypmp, =0,

where my, is an my) with k;g) = kmax and the other m; are arbitrary per-

mutations of the m( ). Hence Yh = gg) is bounded by maxy 91@) which is a

constant. We may assume v, = 1.

Then for every choice of m;, 1 < i < h — 1, we get a unique
mp(= —y1mi — -+ — Yp—1mp—1) which satisfies (2.12). If we sum up the
T{g with [mp| > [ma...mp_1|Y*=D% we obtain

mi=1

ZTM<<Z Z Tl 1;:1_[50:?

\mh 1] Imy ..
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and, if we consider only |m;| > (log N)%/? for some i < h — 1, we have thus
)
> Ty < (log N)20-17,
For |my| > (log N)%/2, we get

h—1 ([(log N)*/2] 5/2
1 1 log(log N )%/
Ty —
Z M < }_[1 Z m; | (log N)9/2 < (log N)®/2

|m;|<(log N)9/2 forall i<h—1 mi=1

and |m;| > (log N)%/? for some i < h — 1 else.
For the remaining m;, we have |my,| < |m1 ... mu_q|Y/®D* We fix my
and consider all m;, 2 <i < h — 1, with |y;m;| < |y1mq|. Then we have

[mp| < |yma .. -’Yh—lmh—1|(hjl)2 < Jyima |71
and

[yame + -+ Yp-1mp-1] € [|71m1| — [P, | + |71m1|ﬁ] :
We split the possible range of [y2ma| into two intervals and get

1
2 el

ma:|y2ma|€(Jyima|=|yima |2/ (h=D) |yymy ]

h=2
2[y1mg [ 72| <4
2 = 1
el | = T g
for all (not too small) m;. From now on we consider only

|vame| € (0, |y ama| — \’71m1|(h’2)/(h’1)]. This implies

|y3ma+- - -+ yp—1mp—1| € [!717711 + yoma| — [yima Y [yima + yama| + |71m1|1/h]

with . -
|y1m1 + yame| € [!’hmﬂmﬂlwml! — [yrma|n=1

For m3, we get

Z 1 < 4

> 1
|ma| | T
ma:|yams|€([yimi+yzma|—yima |(h=3)/ A=) [y my frame |+ [yrm (R =3)/ (h-1)] rumal

and the remaining mg imply

h-3
|yim1 + yamg + y3ms| € “71m1|h*1 , 3!717711@ -
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We proceed inductively and the remaining my_1 imply
1
[vima + y2ma +y3ms + Yh—1mp-1| € [|’Ylm1| AT (h = 2) [yl |

but this contradicts |my| < |y1mi|"*=Y and no my,_; are left. Thus the
sum over all m;, 2 <1i < h— 1, with |y;m;| < |y1mq], can be split into A — 2
sums, where the sum over one m; is always bounded by ]’ylml\*l/ (h=1) and
the sum over the other m; can be bounded by log |y;m1|. Hence we obtain

Z Tl < 1 4(h — 3)(log |y1mq|)"*
M= Iy

Qi\j[) (n)=0,m1fixed,|y1m1 ‘Z|’Yimi|,|mh|<|m1...mh,1\1/(’1—1)2

_1
[y1mq [ AT

for all my. If we consider only |m;| > (log N)%? for some i < h, then we
also have |y;m1| > (log N)%/? and get

/ (log |y1ma )3 1 —5/2h
ZTM < Z Ima [|ym [V/(=D) < lyim [V/h < (log N) :
m1:|y1mi|>(log N)°/2

Summing up, we have

5 _
> Tip < (log N) 2007 (2.13)
MEM:QSI) (n)EO,|m§-Z)|2(log N)4/2 forsome j,0

If we consider only my) > (log N)%/? for some ¢ with gy) =0 and ggﬁ) #0

for some i > s, then replace all gg) in (2.12) by gzw and we get the same
(0)

estimate. If all g; are zero, then we have the zero polynomial and all digits

bg-g) must be zero. Clearly (2.13) also holds if we replace Ty; by T.
Hence

Z T = 13](5()1)

5
m @ T 0O <(1ogN) 2(h1>2> ’
M€M3Qg\?(n)50

(d) (1)
k) b1 ey

where )
(s . /
Py @ @ = > Tn
1 RS hd7 1 RARRS hd (S)
MeM:QL) (n)=0
and we get

2 = Npl®) o) ( log N —A) ,
b0 g O ((og )

for 6 = 2(h — 1)2X and 19 > .

It remains to prove that the p

defined by the Markov chain.

(s)

S e .
are the probabilities
k§1)7‘..7k}(1€;)7b51) _____ b}(:g p
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We have

{n < N e, (P (n)) =) for all (j,1) € K}
J
_ (s) kS —max o)
={n<N kanax ﬂ T" Sb(@ y
(J.0)EKs

and this intersection consists of a finite number of convex sets, which can
be arbitrarily well approximated by elementary rectangles

Ji
[T S350 o7
j=1

1=s

We have
r i J; ~
e AUESAOES | I DU RN DU R
i=s | j=1 7j=1
:i#{n<Ne : m0:101<'<Js<i<r}e !
N kmax—7+1 j o S)>Jdp S>> qu --qJT?

if kmax < log N — (log N)7 and J; < kpax — (log N)" because of Propo-
sition 2.1. This means that the density in each of this rectangles con-
verges to its Lebesgue measure. Since we do not change the sets if we
shift all k(z) and increase N, the J; can be arbitrarily large. Therefore
(s)

(£)
D KD @ @ must be the Lebesgue measure of (; , 7™ S O ¢

hg 1 oo hd
(s)
which is just p KD k(d) ol ,b("”'
This also 1mphes Lemma 2.2 (d=2,h1 = hy =1). O

Proposition 2.3 shows that we have to change the definition of ?(Nw)

slightly, namely

re (s—1)log, N+B(N)

(Pe(n)) = > fe(ex(Po(n))).

s=1 k=(s—1)log, N+A(N)

(N"e)

fé

We still have ngre)(Pg(n)) = fu(Py(n)) + O ((log N)7). The definitions of
M(N™) and D(N™) are adapted similarly.
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Corollary 2.5. We have

_ he
1 7N (Pu(n)) = M(N™)
ZH( ) )

n<NZ 1
s—1)log, N+B(N) — , he
- ﬁ Zk (s-1) log, N+ A(N) ff( )—Mé(N ‘) .
- —
=1 Dy(N™e)
and
d — ” he
H I (Pup)) = FT(N™)
p<N DE(N”)
r,« (s— 1)log N+B(N — . he
_E ﬁ SZ 1 £ak=(s— 1)(110g N+A(N) f£< ) _MZ(N Z) 0
—
Dg(NW) ’

/=1

where the Yk(s) and Yk(,sl) are independent if s # s'.
Proof. The second terms are the sum over all integers

re—1

kY. k) € JAN), log, N~ A(N)\ | [log, N*~A(N),log, N*+A(N)],

1<0<d, of

d he fz( (<2>> g0
E ]I

=1 j=1 Dy(N'e)
g=1 d h fz g0 @) ~ ole)
Z ST ——+2 ) [Y o S5 0 for all 3,4 :

bV—0  bl¥—gf=1=1

where the s are such that kj(»e) € K,. Since the Yk(fe)) are independent for
j

different s, we have
Pr [Y(f[)) C S((Z)> for all (j,¢ ] HPr [Y((Se) C S((% for all (j,¢) € Ks}

and, by Proposition 2.3, the corresponding first terms are the same up to
an error term of O ((log N )_>‘). Hence the convergences are valid with error
terms O ((log N)~*h=hm), O

39



Similarly to Lemma 1.1, we obtain

Z H <fe Py(n Ny)e(N”)>hl

n<N€ 1

d (N72)

_ — he
1 fi (Pe(n)) — My(N"™)
-5 Z H ( L EE(NW) ) — 0

and therefore

1 fe(Pe(n)) — My(N™) —
N#{n<N Dz(NW) sz b
r (s—1)log, N+B(N Vi
S S ey fe (V) = TV
L Pr 1 Laf=( l)lgqN+A ( ) <x€’€:1,...,d
Dg(NW)

Clearly we have M;(N"¢) = ryMy(N), Dy(N")? = ryDy(N)? and

r (s—1)log, N+B(N) (s) — r
S e iy fe (V) = M)

Dy(N™e)
v NBY) ) _ 77
_ ZZk:A(N)ff (Yk> Me(N)_) 1 (Z(1)+...+Z(T))
VS /B AT Z

1

by Proposition 2.2, where the Z(5) = (Z{s), cee Zc(ls)) are independent nor-
mally distributed random vectors with covariance matrices V(5. (For s > 1y,
we have fg(Yk(s)) =0= Zés) because of PE(S) (n) =0 and Sé‘fﬁ) = Tr—s+l)

Hence the sum is normally distributed and the elements of the covariance
matrix V are given by

_ o (r)
vi,j—m( ij Tt J).
For r; # rj, all v( *) are zero, as well as for all s > r;. If gr Pi(n) = gn Pj(n),
then U( ) =... = UZ(;") = v; ;. If we just have r; = r; and g(j) O = gﬁi)gg ) for
all s > ¢/, then v(jﬂ) == vl-(?) and v( ) =0 for s < §'. Therefore v; ; =
”T_s Z(Zl) and the covariance matrix has the stated form. This concludes the

proof of (2.3).
The proof of (2.4) runs along the same lines.

2.3 Two polynomials of the same degree

For different ¢, and equal degrees ry, up to now only the case d = 2 can be
handled exhaustively. Theorem 2.3 was stated by Drmota [11] for coprime
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integers q1, g2, linear polynomials and only for sequences of all integers (not
primes). In a joint work with Drmota ([13]) the theorem was stated for all
polynomials and sequences of primes, but still only for coprime integers.

Theorem 2.3. Let q1,q2 > 1 be multiplicatively independent integers and
let fo, £ = 1,2, be qp-additive functions such that fg(bqg) =0(1) asj— o0
for all b € {0,1,...,q0 — 1}. Assume that (ﬁé(]]\\,])),, — 00 as N — oo, for
some n > 0. Let Py(n) be polynomials of degree vy with integer coefficients
and positive leading terms. Then, as N — 00,

1 fg(Pg(n)) — Mg(Nw) -
N# {n <N DN <xp, L= 1,2} — O(z1)P(x2)
and
1 Je(Pe(p)) — My(N"™) _
7_r(]\[)#{p<]\f Dy(N7) < @y, 6—1,2} — O(z1)P(x2)

Note that for multiplicatively dependent g¢i,qo, the distributions of
fi(Pi(n)), fa(P2(n)) are dependent (cf. Corollary 2.4).
We have to prove the following proposition.

Proposition 2.4 (cf. Proposition 2.1). Let q1,q2 be multiplicatively in-
dependent integers and Py(n), Py(n) integer polynomials with positive leading
terms. Let A > 0 be an arbitrary constant and hi, ho non-negative integers.
Then for integers

(log N")" < ki < k) < < kj) <log, N"* — (log N")" (£ =1,2)

(with some n > 0), we have, as N — o0,

1 ‘
o {n <N ey g (Brm) =0, L (Pa(n) = b1 < j < m}
1 Y
- M + O ((logN) )
and
1 (1) 2) ,
W(N)# p<N eql,kJ(_n(Pl(n)) =b; ,€q27k§2>(P2(”)) =b;,1<j<h
1
=—— +0((logN)™?
g ( )

uniformly for by) €{0,...,q/ — 1} and kj(.g) in the given range, where the
implicit constant of the error term may depend on q, on the polynomials

P, on hy and on A.

41



For the proof we need the corollary to the following lemma, which is a
proper version of Baker’s theorem on linear forms, due to Waldschmidt [37].

Lemma 2.4. Let aj,a9,...,a, be non-zero algebraic numbers and
b1,bo, ..., b, integers such that

b wealy £1

and let Ay, As, ..., A, > e real numbers with log A; > h(c;), where h(-)
denotes the absolute logarithmic height. Set d = [Q(ay ..., ay) : Q]. Then

o/{l el — 1 > e Y,
where
U = 20n32p3n+6n+2(1 4 Jog d)(log B + log d) log A; - - -log A,

and
B = max{2, |b1],|ba], ..., |bn|}

Corollary 2.6. Let ki, ko be positive integers, q1,qa positive real numbers
and my, ms real numbers such that 7% + ng # 0. Then there exists a
1 D)

constant C > 0 such that

mi ma my ma _
- + - > max | - | 7 | = ‘ e C'log q1 log g2 log(max(k1,k2)) log(max(|m1|,|mz|)) ]
q qs a1 a2

Proof. Because of miq; k1 +maqy k2 = 0, we can apply Lemma 2.4 for n = 3,

a1 = q1, 0o = @2, a3 = —ma/my, by = ki, by = —ko, bg = 1 and directly
obtain

mp | M2 k ki —ko T2

- T | = Imla | -4 g "’——1‘

qq qs my

> ‘ml |q11€16—6’10g q1 log g2 log(max(k1,k2)) log max(|m1\,|m2\)‘

Since the problem is symmetric it is no loss of generality to assume that
[malar™ > malay ™. .

Furthermore, we need the following adapted versions of Lemmata 1.2
and 1.3.

Lemma 2.5 (cf. Lemma 1.2). Let P(n) be a polynomial of degree r with
leading coefficient 3. Let 19, T be arbitrary positive numbers satisfying

7> 267 4+ 23(=2)

42



and
N"(logN)" < < (logN)™"

Then, as N — 00,
5 3 eP) = O ((log N) ™).
n<N

Lemma 2.6 (cf. Lemma 1.3). Let P(n) be as in Lemma 1.2 and 19,7
arbitrary positive numbers satisfying

T> 26k(70 +1)
and
N7"(logN)" < < (logN)™"
Then, as N — 00,

¥ O e(P) = O (g N) ™).

p<N

To prove Lemmata 2.5 and 2.6, we just have to replace ¢ by % in the
proofs of Hua and use the following lemma:

Lemma 2.7.
f+3]
Z min <U ;) <<U+llogl
"2(nB| g op

n=f+1
where ||z]| = min({z},1 — {z}).

Proof. In each of the intervals [mg3, (m+1)8) and (1 — (m+1)3,1 —mf],
0<m< %[%] we have at most one {ng3}. Therefore

f+(5] ) 3(5] ) ) )
min 2 min < U+ =log =
_ZH ( 2| mr) Z < ﬁ) 553

Now we can prove Proposition 2.4.

Proof of Proposition 2.4. As for Propositions 2.1 and 2.3, we have to esti-
mate the sums

¥ = Z Ty m, Z e(mj - viPi(n) +my - vePe(n)).
(ml,mg)EM n<N
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The case of different degrees of the polynomials is treated by Proposi-
tion 2.1. So we can assume that they have the same degree r; = ro = r.
As in the proof of Proposition 2.3 we fix A = (log N)~ and restrict to

those (mj, mg) for which |m§£)] < (log N)? and my) # 0(qyp) for all 7, ¢.

Suppose now g,(,l)ml -V + gﬁQ)mg -vg # 0 and set € = n/(h1 + ha — 1).
Then there exists an integer K with 0 < K < hy + ho — 2 such that for all
jand £=1,2

l J4
B — 10 ¢ [(log N)=, (log ) (+D2)

So fix K with this property. Before discussing the general case, let us con-
sider two extremal ones.
First suppose k:](ﬁzl — k](-z) < (log N)%¢ for all j,¢. Then we set

(&) _ 4.0
Ky, —k;

he
me =gy mg," (t=1,2)
j=1

and have log [T7y| < (log N)%¢. We can apply Corollary 2.6 to

Dm (2) _ ™ my
1-vi+ my - vy =
I I RO+ kD4
qq 42
and obtain
(1) (1)
kM1 kD x
gﬁl)m1 -V + g£2)m2 . Vz‘ > max <q1 " » 4o "2 ) g~ ¢cloglog N (log N)™<
max(ql, q2)(1og N)"e—cloglogN(log N)Ke
> NG
hq+ho—2
S plog(max(g1,q2)) (log N)—cloglog N (log N)" P72 =1 . (log N)™
> NG Z

for some constant ¢ > 0 and all 7 > 0. Because of

(hl + hg)(log N)%

Ggp MMy - V] T gp 1) - V) min(q1, go)— (o N7’

Lemmata 2.5 and 2.6 can be applied.

Next suppose k](?l — kj(.e) > (log N)E+1Ve for all j,¢. Here we set

me = gmi” (0=1,2)
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and obtain

my T h1 m(l) ha m(2)

(1) . (2) . o J1 . J2

g7 My V14 g, My - V| > | —— o+ — Z ©) Z @
kD 1 K 41 = k41 = kD41
91 qs =2 qq 1274y

s . |
> max (q1 gy ¢~ clloglog N)*

)

W W ]
-0 ((IOgN)25 max <q1 "1 , Qo ha >e(1ogN)(K+1) >

(1) (1)
k 1 k 1 2
h h —
> max <‘71 "1 4o 2 > e c(loglog N) .

Thus again Lemmata 2.5 and 2.6 can be applied.

In general, we assume that for some s; (¢ = 1,2) k](-izl - k‘y) < (log N)&e

for all j < sy and kgill — kgi) > (log N)(KH)E. Here we set

, s¢ © XONG
mézgﬁ)zm]’ Qge ! (62172)-
j=1

and have again log |[my| < (log N)X¢. Furthermore, we can estimate the

sums
he

m; ks, — (log N)(E+D)e
2 ;=0 ((logN)%w ety > :
j=set+1 g7
Thus we get
hi (1) ha (2)
1 2 mi ma mj, Mo
gyt my - vy + g% my - VQ‘ = R e Z o Z @
kD 41 k) 41 L k) L kg
q1 2 Ji=s1+ q J2=s2+ s

(1) (2)
-k’ —1 —ks/'—1 _ Ke
> max <q1 1 0y 2 > e cloglog N (log N)

M @ )
-0 <(10g N)% max <q1 ksy 1’ 4 ks 1> 6—(log N)(E+1) >

(1) (2)
—kV -1 k-1 _ Ke
> max <q1 1 , Qo 52 )e cloglog N (log N)

and the conditions of Lemmata 2.5 and 2.6 are satisfied.
If ¢1 and g9 are coprime, then we have g,(,l)ml -vy + g7(a2)m2 -vo = 0 only
for m; = my = 0. Otherwise we may have other choices of (mj, my).

Set ¢ = (q1,92) and ¢1 = q1/q, @2 = q2/q. Assume, w.l.o.g., k;}l) > k:g)
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Then we have

hi gT(«l)mﬁ) ha gq(?)mg)
>t o
n=l g 2=l g,

W _ D @ ) (1) _ (1) @ 1 (1 (2)
B g A
=4, ~k211) Jf;;) k;})

q1 "9y “g ™M
(1) (2)_5.(2) 1 2 (1) 1 2
PR A
+ gy RORTOR) , (2.14)
~hy fhy Ky
4 4 "q "™

where we have omit the “+1” in the denominator for simplicity. (Just con-
sider k‘;@ — 1 instead of kﬁe).) Hence we must have
LW _ gD

(1) _ (1)
N A RN CORNEY N IO )
gﬁl) (mg )q1h1 Lk +...+m§Ll)—1 1h1 Pt g Fh T +m§1,1)

Il
)
N
el
=
7z
N———

(2.15)
Of course this is useful only if ¢; > 1, which we assume first. As above,
we have to distinguish several cases. (2.15) implies

1) _ M (1) _ (1) (1) _p (1)
L n o KDL 1 kD g
m;jlqlhl J+1 +.. '+m§11)71Q1h1 hy—1 4o +m§“) = <q1h1 J > (216)

forall j, 1 <j < hy—1 If &Y, — kY > (log N) for some j, then
|m§-€)| < (log N)? implies that the left hand side of (2.16) must be zero.
Hence mgl) = 0(¢1) which implies Ty, ,m, = 0 since we have excluded
mgl) =0. If kg(% — k§1) < (log N)* for all j, then the left hand side of (2.15)
must be zero and mgll) =0(q1)-

Now consider the case §; = 1, i.e. q1|g2. Then we have to check

2 @) k2 L) k2
1 1) Ky kD k 0 e, kY k 1) -k
gq(n)<mg )q2 2gm M +...+m§”)_1q2 2 g R +m§u)q2 2)+

(2) ,.(2) (2) 1.2
o) ko —ki” (D _p @ 9y kT —k 7 M _p(2 2) kM _p®@
95‘2) (mg )q2 2 q h1 1 + . _|_ m](’LQ)_qu 2 2 1q h1 ho—1 _|_ m;L2)q h1 ho — O‘
(2.17)
This implies
(1) (2) k(2)—k(.2) k(2>—k(2) k(Q)_k(_Q)
2) k; ' —k (2) Fn j+1 (2) h ho—1 2\ _ Fp j
’E‘ )q hy ho <m]+lq2 2 “+ .o+ mh271q2 2 2 + th — q2 2
(2.18)
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for 1 < j < hy—1 and for j =0, if we set k:(()Q):O
Assume first k,(Lll) —k,(i) < (log N)&/2. Then we can do the same reasonings
as above and obtain m,(i) = 0(q2)-
The last (and most difficult) case is k,(Lll) —k:}(i) > (log N)=/2. First suppose

that go has some prime divisor py fg. Then we get from (2.18)

(2)_.(2) (2)_@ (2) (2)
9 kP -k 9 k 9 k) kS
97(«2) <m§£1q2 J+1 St m§+1q2h2 h2 1 + mg;;) 0 < >

~

for 0 < j < hy — 1 and again mg) = 0(g2). Suppose next that ¢ has some
prime divisor p [g2. Then we have

W0 W0 W
g <m§1)qkh1 SR +m§111) gk +m](111)> EO( s )

and we can do the same reasonings with ¢/h; instead of .
It {email{s to consider ¢ and ¢ with prime factorisations ¢ = p7* ... pS*,
G2 = p§'...pS, where all e; and ¢; are positive. Let us rewrite (2.17):

S
9(1) (mgl) Hpi

(1) T, Fi
+o oy, sz’ ?
i=1 i=1

KD ket () K D)e, D KD)e,
2 €q T 2 0
+g% ( ) | | Pt m;; p; =0.
=1

22)51_‘_(]?;11)_]?51))81_

By assumption, g; and go are multiplicatively independent. Thus we have

s > 2 and e;/€é; # ej/é; for some i, j. Therefore k,(i)éz- - (k,gll) — k:,(fz))ei cannot

be zero for all i and the difference must be at least (log N )$/2 for some i.
Let

5 1
(kfy) = ki Yeiq — ki &y > 5 (log N)*/2,

Then we have

Dk D)e; KD kD )esy—k2e;
o (T ) 2 (e

and we can again do the same reasonings. Similarly
2) - 1 2 1 e
kég)eio - (kgl) - kég))eio > 5(10g N) /2

leads to
(2) ) - (kfz)—k?))(éﬁ@i) (2) 1 (log N)=/2
gy mq b; + -+ my, =0 piO
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and the same result.
Hence, we finally get

Z |Tm1,m2| ’

(mlva)#(Ovo)

% > e ((my - vi+ gPmy - va)n)

n<N

=0 ((10g N)“W) +0 ((log N)Q(h1+h2)5—/\) :

which completes the proof of Proposition 2.4. O
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Chapter 3

Parry Expansions

Now we turn to digital expansions which are slightly different from g-ary
expansions.

3.1 G-ary expansions and G-ary functions
Let the sequence G = (Gg)k>0 be defined by the linear recurrence
Gr=a1Grp_1+asGp_o+ -+ aqgGr_q for k > d
and
Gr=a1Gr_1+asGp_o+ -+ apGo for 1 <k <d, Gog=1,
with non-negative integers a; which satisfy the relations
(aj,ajt1,...,aq) < (ar,a2,...,a4—j41) for 2 <5 <d

(where “<” denotes the lexicographical order) and ag > 0.
Then every non-negative integer n has a unique G-ary digital expansion

n = Z ek(n)Gk

k>0
with integer digits ex(n) > 0 satisfying
(ex(n), ex—1(n), ..., ex—a+1(n)) < (a1,az,...,aq) for all k > 0. (3.1)

For d = 1, we just get g-ary expansions with ¢ = a;. Therefore assume
d > 1. The best known example of these expansions is the Zeckendorf
expansion with d = 2 and a1 = as = 1. Then the GGj, are the Fibonacci
numbers.
Let
x(z)=2%—a1x” " — - —ag_1x — ay

49



be the characteristic polynomial of the linear recurrence. It is easy to show
that it has a unique dominant root o € Rt (e.g. consider its (primitive)
companion matrix and apply the Perron-Frobenius theorem). If y(z) is
irreducible over Z, denote by aag, ..., aq the (distinct) algebraic conjugates
of . Then we have, for some constants cy, ..., cq,

G = c10F 4+ coab + - + ¢4ak. (3.2)

(We will show ¢; = Cf__ll Hj>1(10£*aj) in Section 3.3 and get, for reasons of

af—l 1

a;—1 Hj;ti(ai—aj)
(3.1) and (3.2) show that these G-ary expansions of integers are strongly

related to Parry’s a-expansions of real numbers (with simple a-numbers)

(cf. Parry [30], Grabner and Tichy [23]). Therefore they are called Parry

expansions.

The analogue to g-additive functions are G-additive functions, i.e.

fn)=>" flee()Gr) =Y frlex(n)) for all n € N, f,(0) =0,

k>0 k>0

for all ¢ > 1, where a1 = «.)

symmetry, ¢; =

a special case of which is the sum-of-digits function

sg(n) = Z erc(n).

k>0

Several authors have studied these functions, e.g. Grabner and Tichy [23]
proved the following analogue to (1.1):

1
= 2 s6(n) = cglogy N + F(log, N) + O (Nﬁ—l log N) :

n<N

where c¢ is a positive constant (expressions for which will be given in Theo-
rem 3.1), 0 < 3 < 1 and F is a continuous, nowhere differentiable function,
the graph of which has Haussdorf dimension 1.

Dumont and Thomas [16] obtained similar results for the moments. They
used the more general framework of numeration systems associated with a
substitution which we will present in Section 3.2. In [17] they prove a central
limit theorem for the sum-of-digits function.

Our aim is to prove a theorem similar to Theorem 1.1, i.e. to gener-
alise the central limit theorem on G-additive functions and on polynomial
sequences.

3.2 Central limit theorem for P(n) =n

First we have to prove the following theorem on the distribution of the
sequence f(n), 0 < n < N. For d = 2, all theorems in this chapter can be
found in a joint paper with Drmota ([13]).
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Theorem 3.1. Let f be a G-additive function such that fr(e) = O (1) as
k — oo foralle € {0,1,...,a1}. Then, for all p > 0, the expected value of
f(n), 0 <n < N, is given by

v 3 i )+ O ((log N7, (3.3)

n<N

where
[log,, N]

Z Hr  with Mk—Zpefk

and the constants p. are the asymptotic pmbabzlztzes of the digits e, the
values of which are determined by equation (3.11). Furthermore, set

[log, N] o
Z Ok k!
k,k'=0
with
ai
@ Z pefr(e)® — 1} if k =k
Ok k! = d Y |

Z (EZ)I ‘ Z Z pee fmln k’k/ ( )fmax(k,k’)(e/> ka‘;ék:/

1=2 e=1le/=1

and constants p(ei)e, described on page 58.

Assume that there exists a constant ¢ > 0 such that a,(f,l > ¢ for all
k > 0. Then we have

v Z ~ D(N)?, (3.4)
n<N
% {n<N‘f JifW)(N) <x}—><1>(:n) (3.5)
and
1 n) — M(N)\" o0
v 2 (e ) [t e
as N — oc.

(2)

Remark 3.1. In case d = 2 we give more explicit expressions for u; and o}

a+l @l a1l a9
- Z (b bE: fi() + a—ka((h),
az
o), AR fr(b)? 5 ‘221 TR0+ B @)~ k=K
(= a2) Femin (k, k") Fmax (k, k') if k# K,

o1



where D = \/a% + 4a9 and
a1—1

= aa;gz Z fu(®) — = Z fu(b) + %fk(m)-

bag

The proof relies on the fact that the digits of the possible G-ary expan-
sions can be represented by random variables which form a Markov chain
(of order d —1). For convenience, we reduce this Markov chain to a Markov
chain of order 1 by using a representation of the digital expansions in terms
of substitutions, like Dumont and Thomas [15, 17], who studied strongly
G-additive functions, i.e. f(n) =), f(ex(n)).

So let o be the substitution on A = {1,...,d} defined by

U:i—>1ai(’i—|—1) forl1<i<d-1
d— 1%

and let o also stand for its extension on the set of words A* = J22, A'U{A}
with A the empty word. We denote by |m| the length of the word m, and
m/ < m means that m’ is a strict prefix of m.

A sequence of words m;_1m;_a...mg is said to be b-admissible, if there
exist (unique) letters b; = b,bj_1,...,by such that myb; < o(by1) for all
k < j. The admissible representation of an integer n > 1 is the (unique)
1-admissible sequence m;_i(n)m;_s(n)...mo(n), with mj_1(n) # A, such
that

n= |O‘J Y(mj_1( n))|+---+ ‘ao(mo(n))‘ .

Denote by bi(n) the letter by corresponding to this 1-admissible sequence.
It is easy to show (by induction) that the numbers ’O‘k(l)‘ are just the
G} defined by the linear recurrence in the Introduction, and we have
my(n) = 1),

The matrix of the substitution

a/l a2 e .o oe . ad
1 0 0
M = (#{occurrences of b in O‘(b/)}) =10 1
bbb eA
o --- 0 1 0

is the companion matrix of the characteristic polynomial of the linear recur-
rence.

Our aim is to study the distribution behaviour of f(n), 0 <n < N, i.e.
the random variable Yy defined by

Pr(¥y <o) = y#{n < N: f(n) <},

52



If we define Y; v by
Prl¥iow < o] = #{n < N filex(n)) < o)
and & n by
Priy = (m,h)] = x#{n < N : (mi(n), bu(n)) = (m,b)},
we have, with fi(m,b) = fi(jm),

Yn =) Yen =Y filérn),

k>0 k>0

i.e. Yy is a weighted sum of the £ n. Therefore we will first have a detailed
look at the & n.

Dumont and Thomas [17] showed that, for fixed j, the sequence
(§j-1,6,,8j-2,G;5- - -»60,G;) constitutes a Markov chain with transition prob-
abilities

Prléq, = (m,)|&gr,q; = (m!, V)] = Pr(éra, = (m,b)|&kr1,q, = ()]
Uk .
_ { Io|—k+1(21>\ = Py, (mp) T 0(p")  if mb < a(V)

0 otherwise,
where (.,b) denotes the set of states {(m,b) : m € A"}, p(_p),(mp) = V:,ba,
(v, vg) = (1,0 — ay, 02 —a1a —ag,...,a% N —qrat? — s —ag-1)

is a left eigenvector of M to the eigenvalue o, and p < 1 a constant such that
all roots of x(z) except a have modulus less than ap. (For Pisot numbers
a, we can set p = a1,

Furthermore, denote by Pj; the matrix of transition probabilities
Pr(éea, = (-.0)|&+1,6, = (., V)], Then we have Py, ; = P+ O (p*) with

a1 az ad—1
a a?—aia 2?1 _g1a?2—_ay sa
a—ay e e
a 0 0
o?—aja—as .
P = (p(,7b/)7(,7b))b/’b€./4 = 0 0[2—(1104
d—1 d—2
a®t—aqra® - —ag_1
0 0 @1 g1a8 2 " _ay sa 0
P is similar to
ai az ad
[e% a2 ad
1 0 0
0 1
0 0 1 0
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and its eigenvalues are therefore 1,%2,..., 24 Hence we have

Pr(é.c; = ()] =pcy +O (Pmm(k’j*k» , (3.7)

where the probability vector (p(1),. .- ,p(.’d))t is the right eigenvector of P
to the eigenvalue 1 with ZZ:1 Py = Lt

Pey 1 ag\t
: _ ) (adq’ad L g10%2 0% 1 — g10%2 — gyat3, ’Ed) ’
P(.,d)
where x/(z) denotes the derivative of x(z). We deduce
Prléig, = (mb)]= Y Prla = (mb)&16, = (V)Prléig = (1)

b :mb<o (V')
= Py + O <pmin(k,j—k))

with

Pimp) = Z Pb,(m,b)P(b)-
b :mb<c(b')

In case d = 2 we have o(1) = 12 and o(2) = 1?2, thus

1 ag 1
Pl ey = o for 0 e <an, peyama = 50 Paaen = - for0s e <a

and

Q

a
Py = D’ P2 = aD’

These asymptotics suggests to approximate the digital distribu-
tion by a stationary Markov chain (Xj,k > 0) with the probabil-
ity distribution Pr[Xy = (m,b)] = p(,p and the transition probabilities
Pr[Xy = (m,0)|Xp11 = (-,0')] = p(p),(mp)- The next lemma shows how we
can quantify this approximation for the finite-dimensional distributions.

Lemma 3.1. For every h > 1 and integers 0 < k1 < ko < -+ < kp < j we
have

Pr(&, c, = (501), 5 &k = (5 00)] = Dy (1) () 1O (pmm(kl’j_kh)) :

where

ﬁkl ..... kl7(-7b1)7---,(-1bh) = I‘)I'[)(k1 = (., bl), N ,th = (., bh)]

54



Proof. For 0 < k < k' < j we have
PyjPiirg---Poory =P+ 0 (pk)
and consequently

Prleq, = (-B)léw.a; = (V)] = PrXe = (,b) X} = ()] + O (o).
(3.8)
Since

Pr[€k1,Gj = (" b1)7 s ’gkh,Gj = (-7 bh)]
= Pré, c; = (- 01)[€ka,c; = (5 02)|PrEy 65 = (5 02) €k 65 = (1 03)] -
e .Pr[é.kh—l,Gj = ('7bh—1)|§khij = ('7bh)]Pr[€kh7Gj = ('7bh)]

we just have to apply (3.8) and (3.7) and the lemma follows. O

Hence we have

Préq, = (m,b),&.a, = (M, 0)] = Pri,(mp),m p) + O (Pmin(k’jfkl))

(0 <k <k <j) with

. P by .
Pk (mb)(m ) = D ]i DR L (0), ()P (), () (3.9)
c:mb<o(c) (b7

because of

Pr[ék,Gj = (m7 b)|§k",Gj = (m,a b/)}
= Z Pr(éra; = (m,0)|&r1.6, = (5 OIPr[Ee1a; = (5 O)&a; = (5 0)].

cmb<o(c)

For finite dimensional distributions we have

Pr[gk‘l,Gj = (mly bl)) e 7£k3h7Gj = (mha bh)]

= Dk, (ma by )y (mpsby) T O (pmin(kl’j_kh)> ., (3.10)

where the i,k (m1,b1),....(maby) ar€ defined similarly to (3.9).

The next lemma shows that, for general IV, { x is similar to §k,Gj where
G is the largest element of G not exceeding N (j =~ [log, N]). Here we set
p =a ', if o is a Pisot number.

Lemma 3.2. The probability distribution of § n for Gj < N < Gjy1 with
k < j is given by

Pré, n = (m,b)] = Prlérg, = (m,b)] + O <p<j—k)/2) .
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The joint distribution for 0 < ky < ko < --- < ky < j is given by

Pr[ék‘l,N = (mla b1)7 o ’ék‘h,N = (mhv bh)]

= Pr[&, ¢, = (m1,01),. .-, &kya; = (M, b)) + O (P(jfkh)/z)

Proof. For N = Zi:o e Gy, we have
J

{n < N} = {’I’L < 6jGj}U<{TL < EjflG];l}—i—EjGj)U' . U({TL < 60G0}+Z 61G1>
i=1

Therefore

1
Prigiy =t = (#(1 < 66 [ u(m) =0} + #{n < -1Gyoa | aln) =B} + -
k=1

Gy ifep =10
+ #{n < ex+1Gr11 | ex(n) = b} + %;3 i o )

0 otherwise

:% <6jGjPI‘[§k’Gj = b] + 4 6[%]G[%]Pr[§k,g[%] = b])

+O<%G%ﬂ)
=Pr[éq, =0+ O ( jl_k> ,

o 2
where we have used
#{n < Gj | ex(n) = b} = #{G; <n <2Gj | ex(n) =b} = ---
= #{(a1 — 1)Gj <n< alGj | € — b}
and

1
Pr(ékc; = b = Pr[&q, =0+ 0O <W> (for k < j).

A similar reasoning can be done for the joint distribution, e.g. we have
for k < k' < j:

Pr(&n =b,&p Ny =] = N Z €GiPr(&a, = b, &g, =V
i=k'+1
W1 k—1
— €G; ife, =0 )

+ i ) Z eiGiPr[gl,Gi = C] + Zgo v k if € = v

N | =k 0 otherwise

0 otherwise

Thus, we can proceed in the same way. O
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As in Section 1.3, we can concentrate on the digits ex(n) with
A(N) <k < B(N), where A(N) = [(log N)"], B(N) = [log,, N] — [(log N)"|
and > 0 is a sufficiently small number (to be chosen in the sequel), in
order to obtain uniform estimates.

The following lemma is a direct consequence of Lemma 3.2 and (3.10).
Note that it is not necessary that ki, ..., ks are ordered and that they are
distinct.

Lemma 3.3. For every h > 1 and for every A > 0 we have

1 R _
N#{n < N ‘ le (n) = 61, R Ekl(n) = eh} = pk17~~-7kh:€17~~76h+0 ((log N) A)
uniformly for
A(N) < k17k27"' 7kh < B(N)7
where
ﬁkh...,kh,eh...,eh = Z ﬁkl,...,kh,(ml,bl),...,(mh,bh)'

(m,bi):lms|=e;

As in Section 1.3 we define
N
7™M Z fk &) = f(n) + O ((log N)").

Now, we turn to the derivation of Ey = E Yy, i.e. to the proof of (3.3).
For Y n, we get

EYkN = ZPI‘ ka = (m b fk |m’ Zpefk ( mln(k,(jfk)/2)> :

m,b

where

Pe= > Dimp): (3.11)

m,b:m|=e

In case d = 2, we have

Paen) + Py = 2 if e < ag
Pe = (161)—% ifas <e<a;
P(1912) = op ife=a
Since fi(e) is bounded, we have
logq N] B(N)
> EYin= Y EYn+0((logN)")
k=0 k=A(N)
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and get (with fx(0) = 0)

B(N)
By = Y m+0 (p%N)"/2) 4 O ((log N)) = M(N) + O ((log N)")..
k=A(N)

The variance is clearly given by

[log, N] logy N]
Var [ > fuXe) | = > (E (fk(Xk)fk/(Xk/>)_Efk(Xk:)Efk’(Xk’)>
k=0 koK' =0

and

ai

E (f1(Xi) frr (X)) =B f(X0)B fro (X)) = D (Prr e.r —Deber) fr(€) fi (€).

e,e’=0
Since the eigenvalues of M are 2L, ..., %4 (with oy = «), we have, for k < &/,
. B d (i) a;\k=J
Djk,(.,b),(0") = Zp(.,b),(.7b’) o
i=1

()

with (easily determined) constants Py () and pg.lg)) ) = PLHPLY):
Since the py e are (weighted) sums of Py g (v (), We have

d
. B () (C6\kF
DPEk! ee! = Zpae/ E s

i=1

©)

e,e’

péle), = peper. With these p(i)e, we get D(N)? = Var ( Eigoa N] fk(Xk)>.

(%)

where the constants p’~, are the respective sums of p(? b), ()" Note that

€,

In Lemma 1.1, which is also valid for G-additive functions, we need
% — oo for some n > 0. We prove D(N) > log N if the variances of

fx(Xx) have a uniform lower bound.

Lemma 3.4. Suppose that there exists a constant ¢ > 0 such that 0,5322: >c

for all k > 0. Then we have a constant w such that

s'—1
Var (Z fk(Xk)> > w(s' — s) (3.12)
k=s

for all s,s' > 0 with s’ — s > 3d.

Proof. Set X; = fi(Xg) — E fi(Xp) and S = Z/:_Sl X;.  Then
Var X, = 0122,1 > ¢ and Var (ZZ:SI fk(Xk)> =ES2
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In [13], Dobrusin’s work [9] is used to prove E S? > ¢(s’—s)3/100, where
0 is the ergodicity coeflicient

B=1- sup ) |Pr[X), € A Xjq1 = (m,b)] = Pr[Xy € A Xy = (m',0)]|

K
m,b,m/ b,

(which does not depend on k). Hence the lemma is proved, if we have 3 > 0.
If all a; are non-zero, we have p(,, ) a1y > 0 for all possible (m,b).
Therefore, if (A, 1) € A, we have

Pr[X; € A|Xki1 = (m,b)] > 0 for all (m,d)

and the difference cannot be 1. If (A,1) ¢ A, the difference cannot be 1,
because we have

Pr(X; € A|Xgi1 = (m,b)] <1 for all (m,b).

By construction, the transition probabilities attain just finitely many values.
Therefore we have 3 > 0.
If a; = 0 for some b (1 < b < d), then

Pr[Xi = (A, b+ )| Xgp1 = (1%-10)] =1
and
Pr[Xk = (Av b+ 1)|Xk+1 = (A7 1)] = 07
hence f = 0. Then we need a result of Giesbrecht. In [19] he proved

s'—1 N
ES? > %0 > 15,(2“)\,&") with a constant by and the following definitions:
k=s

)

p.(v) D DD go,(f) (m,b) ifke[s+u+twv,s]
k 0 else

where cpg)) satisfies P[Xj_, = (m,b)| X = (m/, V)] > wév)(m, b) for all (m, b)
and (m/,b),

A = sup g, (1)h (7),
¥>0

m,b, A

k—1
g (y) =sup inf Pr|| Y X~ t| <y|X; = (m,b), X4y € A,
t .
j=k—u

B () = inf maxc{0, (") (m, b) — 493" (m, b))},

)

X,(cu)(m,b) :/ tQ,uLu)(m, b, dt), w,gu)(m, b) :/ |t|u§€u)(m, b, dt),

—00
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E

k—1 —1
O mb )y =Pr || S Xi| - X, | <X, = (m,b)],
j=k—u j

Il
e

—Uu

where (X7);>o is a copy of (X);>0 and the two chains are independent from
each other.

We have Pr[X;_qi1 = (m,0)| Xy = (m/,0)] > 0 for all k,m,b,m’, ¥
and this probability takes only finitely many values. Therefore we obtain

(d—1) (1)

o > ¢ for some constant ¢’. For g v) we get

d—1 .
g;(€ '(7) > inf max Pr(Xy_g11 = (Mk—dt1,br—dy1),
m,b, A Mp_g41,0k—d1seMp—1,06—1

oy X1 = (M1, bp-1) | X = (M, 0), Xj 1 € A

for all v > 0. There always exist values mg_q+1,bp—ga1, .-, Mk—1,bk—1

for which this probability is non-zero and this probability takes again only

finitely many values. Therefore we have g,gd_l)(y) > ¢ for some constant

.
The fi are bounded, say fi(e) < C for all Kk > 0 and e € {0,...,a1}.
Therefore wl(cd) (z) < ‘(Z?;]i_d Xé) — (E;‘:,i_d Xé)‘ < 2dC'. On the other

hand, we have |fy_q(e) — fr—a(0)| > /c for some digit e and

PriXi_1 = (Abr—1), .., Xp—dp2 = (A bp—ds2), Xp—g+1 = (A, 1),
Xp—gqg = (A, 1)‘ch = (m,b)] >0,

Pr(Xy 1 = (A be1), -, Xpoara = (A, be—aya), Xp—apr = (A, 1),
Xy—a = (1°,b5—q)| Xg = (m,b)] >0
for some (unique) b; and all (m,b). Hence u,(cd) (m, b, t) jumps at some point

t > +/c at least by some constant ¢ and we have Xéd) (m,b) > cc”.

These results do not depend on . With v = % we obtain
h,(cd) >ccd’d” /2 and (withu = d, v = d—1) ES? > (s'—s—3d+1)cc/ ¢ "by /4.
Hence the lemma is proved and w > ec’c”’ by /(12d). O

Immediately we get the following corollary.
Corollary 3.1. Suppose that there exists a constant ¢ > 0 such that 01532,1 >c
for all k > 0. Then we have

D(N)? > log N and D(N)? > log N.

In order to prove (3.6) it suffices, because of Lemma 1.1, to show that
the moments




with

B(N) B(N)
= Y m DW= > U](-?k)
k=A(N) 7 k=A(N)

converge to the corresponding moments of the normal law. This implies
— M(N

(Ti) (V) <z p— D(x),

D(N)

and, by Lemma 1.1, (3.5). First we prove a central limit theorem (with
convergence of moments) for the exact Markov chain.

(N)

f

1

Lemma 3.5. Suppose that there exists a constant ¢ > 0 such that 0](”)g >c
for allk > 0. Then the sums of the random variables fi.(Xy) satisfy a central
limit theorem. More precisely

ZEUXzN fr(Xg) = M(N)

— N(0,1
D) — N(0,1)
and for all h > 0 we have
S (X0 - T\ e
E k=A(N) JR\2E _ / T d(I)( )
D(N) -
as N — oo.

Proof. If all a; are non-zero, then the ergodicity coefficient 3 is positive and
the lemma can be proved with the help of Theorem 4 of Lifsic [26]. If 3 = 0,
we have to adapt this theorem.

An inspection of LifSic’ proof and Dobrusin’s work [9] shows that we get
the same result if we replace the ergodicity coefficient 3 by a constant 8 > 0
that satisfies

Vi = %sulb) D [PrXp = (m,0)| Xy = (m,b)] = Pr{X, = (m',b)]]
m /b/
<(1-6)Y (3.13)

for all 7 > 1 and
s'—1
(Z Te( Xk ) > (s’ —s)0 (3.14)

for all 5,5’ > 0 with s’ — s > sg for some constant sg.
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We have v; > 0 for all j > 1 since the sum in (3.13) is always less than
1 and we only have a finite number of states (m,b). Dobrusin [9] proved
v; <1 — B, where

ﬁj =1- b b A ‘PI‘ X € .A|Xk+] (m,b)]—PI‘[Xk S A|Xk+j = (m,,b,)H.

For some jo with 1 < jo < d we have Pr[X; = (A, 1)|Xj4; = (m,b)] >0
for all possible (m,b) and all j > jo. This implies 3; > 0 for all j > jo and
we define

f =min (1 — ma 1/k,1— max (1 — 1/]“,2 .
( 1Shsg, Tk o, (1= B0 2

Then (3.14) holds because of (3.12). Because of v; < 1—;, (3.13) holds
for j < 2jo. For j > 2jo, we apply the inequality 1 — f;; < (1 — G;)(1 — ;)
(see Dobrusin [9]) and get, by induction on g,

1= uigsa < (1= Bi) (1= Blgyjo o) < (1= 0)72(1 =)ot = (1 — gjeio

for ¢ > 2, t < jo. Hence 6 satisfies the required properties, we can apply the
(adapted) theorem of Lifsic and the lemma is proved. O

The next lemma concludes the proof of Theorem 3.1. In particular, for
h = 2, it implies together with Lemma 1.1 and (3.3) the asymptotics for the
variance (3.4).

Lemma 3.6. For every h > 1 and every A > 0 we have
_ _ h B N — h
1y FN () — D) E g ) Fie(Xe) = M(N)
N D(N)
n<N

Proof. The first term is the sum over all integers A(N) < ky,...,k, < B(N)
of

f kj ))_ j
_ZHk EN HE

n<N j=1

:Z...Z#{n<N!ekl(n): e, (1 _eh}ka ej

e1=0 8h:0

— 0.

The second term is the sum over all integers A(N) < ky,...,k, < B(N) of

& f[ Fiy (Xx,) —

U5
- Z ZPrX e X, —e ]ﬁm
1 1y---yAh = €h L] E(N) .

e1=0 Ep= 0 ]—1
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Hence, with Lemma 3.3, the convergence is valid with an error term of the
form O ((log N)Mh=hm). O

3.3 Tilings

The proof of Theorem 1.1 relies essentially on the fact that the value of ex(n)
can be determined without using the greedy algorithm, namely by

(n) 6:){ n }e[e e—|—1>
€ = — -, )
k s 7 q

In order to get an analogue to Theorem 1.1 for G-ary expansions, we
need a similar characterisation of the digits. It turns out that we need a
tiling of the torus T¢ = RY/Z4, i.e. a family of sets (Qe)eeqo,....ar} Such that

i Uzlz() Qe = Tda
e cach of the €. is the closure of its interior,
e the intersection of two different €2, has Lebesgue measure zero,

and vectors v(n, k) € T¢ such that
ex(n) = e <= v(n, k) € Q.. (3.15)

For g-ary expansions we have %#{n <@ |ex(n) =e} = % for all j > k.

- min(k’j’k)) for all

In our case we have G%#{n < Gjlep(n)=e} =p.+0 (
j > k. Therefore we obtain tilings with A\y(€2¢) = pe, where Ay denotes the
d-dimensional Lebesgue measure, which satisfy (3.15) only up to an error
term of O (a_k).

Unfortunately, we have to make some restrictions on the sequence G: we
need ag = 1, « has to be a Pisot number with minimal polynomial x(z), i.e.

lai| < 1for 2 <i<d,and
Fin(a) = Z[a" | N RT, (3.16)

where Fin(«) denotes the set of non-negative real numbers with finite a-
expansion, i.e.

{x€R+

Proposition 3.1. Let G be as in Section 3.1 with ag = 1, irreducible char-

acteristic polynomial x(x) and its dominant root o a Pisot number which
satisfies (3.16).

M
T = Z el with (€ky -y €h—ar1) < (ai,...,aq) for all k < M} .
k=—L

1 t
v(n,k) = %% (ad_l,...,a, 1) e T¢.
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Then we have a tiling (Qe)eeqo,....a,} Of T with

d(v(n, k), () = O (ofk) for all k,n € N, (3.17)

where d(x,5) = infyeg [|X — ¥l/oo-

Remark 3.2. We have d(v(n, k), Q¢ (n)) > 0, i.e. v(n, k) & Q, (n) only for a
small number of n and k (see Lemma 3.10).

Proof. We regard the linear map

a/l a2 PEEEEY PEEEEY a’d
1 0 0
o=110 1 . : | € GL(d, %)
o --- 0 1 0
with eigenvalues o, ao,...,aq. Since « is a Pisot number and ag = 1, ¢
is a hyperbolic toral automorphism and we have a ¢-invariant decompo-
sition of R? into the unstable eigenspace E, = R(a?!,... a,1)! and the

stable eigenspace E, (of dimension d — 1). Let e, = m, ((1,0,...,0)") and

e, = Ty ((1, 0,... ,O)t) with 7, : R — E, the projection along E, to E, and

7s : R — E, the projection along F, to E,. Set e, = c’l(ad_l, RS L
Then the sequence (G;) j>o0 defined by the linear recurrence

G; = alG;_l + - adG;,d for j > d
with initial values G{, =0, ..., G’ , =0, G/,_; = 1 satisfies
G =cla + chady 4 -+
for some constants ¢, ..., ¢,;. By induction on j, we can prove the equation
Gi=Gi+G ++Gg
Because of G — c1a/, G — cjal for j — oo, we have

a=cd(l+a+ -+a® ),

With -
Z n)a’d + O (1),
we obtain
T N A R —k
v(n, k) = v ZEJ (n)a’ e, +0O (a ) = Z €j(n)¢?’ " (ey)+0O (a
1 , ;
7=0 7=0



Clearly we have

¢’ (ew) + ¢’ (e5) = ¢ ((1,0,...,0)") € Z* for all j >0

and thus

k—1 00
vin, k) =Y ej(n)¢ F(e,) Zej YT (es +(9< ) mod Z.

Jj=0 Jj=k

v'(n,k)
(3.18)

Set

Q. = Clos {v’(n, k) : k,n € N with e;(n) = e}

Then we know by Praggastis [31] that (Qe)ee{o,...,al} is a tiling of T¢ if
Fin(a) = Z[a] NR,. We have Z[a] = Z[a~1], because the characteristic
polynomial is monic and aq = 1. Hence (3.16) implies that (e)ecqo,....a;} 18
a tiling and (3.17) holds because of (3.18). O

Remark 3.3. For d = 2, these tilings consist of rectangles which are given
in the following example. For d > 3, the involved sets always have fractal
boundary.

Example. Figure 3.1 gives an example of the rectangles in case d = 2.
Here we have a1 = 3 (and clearly as = 1). Figure 3.2 makes clear that
(Qe)o<e<s is a tiling of T2. Note that for these pictures v(n, k) is slightly

modified, namely
n

okl a+1)

We can give the rectangles as the convex hull of their corners (see [13]):

1 « al+1 al=-1 a1
Qp = convhull[ [—= & 1 e 2
0 CODV“(( D’D)’(O’ )’< D ' D )’(D’ D>

al+e—1 l+at(1—¢ al+e 1—ale
Qe:convhull<( o) ,1— D( )>,< ) ,1— ) ),

v(n, k) = (o, 1)1

al+e+1 allet1)-1 al+e ale—1
f 1,... -1
( D ) D )7 ( D ) D ) OI'GG{, y a1 }

a—1 ay 1 « « 1
Qa = h H - ' | 1— ' N | 17 9 ' o .
1 = COnvEE (( D D) ( D D) (1,0) <D a2D>)

Ezxzample. Figure 3.3 shows the sets €2, for the Tribonacci expansion
(d=3, a1 =ay=a3=1). Q is the largest of the three prisms and Q; is

65



Figure 3.1: Qg,21,9,Q3 ford =2, a1 =3

the union of the two smaller ones. m4(€) is the Rauzy fractal (for details
on the Rauzy fractal see Messaoudi [28, 29] and Rauzy [32] for the original
work). Figure 3.4 illustrates how (£, 1) tiles R3. These figures were drawn
by Siegel, who studied in [36] substitutions of Pisot type.

For the proof of Proposition 3.3, we will need a covering of €2, and its
boundary by convex sets. Since the boundary of €2, has fractal structure for
d > 2, we approximate it by parallelepipeds.

Each €. is the union of sets

Qeo,..eqs = Clos {V/'(n, k) : k,n € N with (ex(n), ..., €gya—2(n)) = (eo, ..., ea-2)}

(with ey = e), which are prisms:

k—1
Qe()a---ved—2 = 778(9607---,64—2) D [07 sup Z ej(n)ajik]eu'

k,n as above =0

Therefore we study the boundary of 7s(Qey,....ey »)-

The problem of determining all points on the boundary is equivalent to
determining all points with more than one ¢-representation, which can be
done with the help of a finite automaton. This method is adapted from
Messaoudi [29] who examined the Rauzy fractal. Siegel [36] studied similar
problems with similar automata.

Let N be the set of sequences (b;) ez with

(bj,bj_l,... ,bj,dJrl) < (al,ag,... ,ad) for all j € Z
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(0,1) (1,1)

Figure 3.2: Qq,Qy,Q0, Q3 for d = 2, a; = 3 in T?

and an integer K such that b; = 0 for j > K. Let Ny be the set of
sequences (bj)jez € N with an integer J such that b; = 0 for j < J. With

o]

E=1> €’ (es)|(ej)j>1 € Ny }, we get the following proposition.

J=1

Proposition 3.2 (cf. [29], Théoréme 1). Letx =37 | bj¢’ (es) and
Y= 1 b;-gzbj(es), where (bj)j>-r, € N and (b})j>-1 € N, then x =y if
and only if we have, for all i > —L,

xi—inS

where x; = ¢~* (Z;‘:—L quf)j(es)); yi=¢" (Z;:—L b (es)> and

0

0
S=0£> €dl(es): (6)-s<j<0 ENFEN[EL D e5dl(es) | #£0

j=—s j=—s
for some (fized) integer s.
We need two small lemmata for the proof of Proposition 3.2.
Lemma 3.7. For all integers j > d — 1, we have
ol = ad_lG; + ad_Z(agG;_l +a3G o+ -+ aaG_gyq)
+ -+ alag1G_y 4 agG_y) + aaG_y, (3.19)

where the sequence (G;)jzo is defined in the proof of Proposition 3.1.
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Figure 3.3: Qg, Q1 for the Tribonacci expansion

Proof. Induction on j. O

Lemma 3.8. Define the linear map

K:q =+ Z e;d’ (es) : (¢)jez € Ny p — £Fin(a)

j=—00
by (¢ (es)) = o for all j € Z. Then k is well defined and a bijection.

Proof. Clearly & is a bijection, if it is well defined.

We show that all elements on the left side are distinct. Suppose
that two representations > "2 ;¢ (es) and &’ Do e}(bj(es) with
(¢j)jez, (€})jez € Ny and e," € {£1} represent the same vector. Hence
we have Q(¢)(es) = 0 for some polynomial Q = ¢,z™ + -+ qax +qo Z0
(after applying some power of ¢). ‘

The proof of Proposition 3.1 shows & (es) = Zgzz ol (affl, a1
Hence 37 g Z?:z cad(ad™, ... a;, 1)t = 0. By easy calculations (solu-

-1
tion of a linear equation system), we get ¢, = (Hk#(ai - ak)) #0. If

a; € Rforalli € {2,...,d}, then the (a?™', ..., a;,1)! are linearly indepen-
dent vectors of R? and we must have Q(«;) = 0 for all i € {2,...,d}. For
a; € R we get Q(«;) = 0 similarly.

This implies Q(a) = 0 and e>°72  €jaf =€ 372 € al. Therefore
we have ¢ = ¢’ and, since finite a-representations are unique, (¢;)jez =

(Eg)jez-
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Figure 3.4: Tiling of R? for the Tribonacci expansion

Thus x is well defined and the lemma proved. O

we have

x —y = lim ¢4 (x; —y;) = 0,

71— 00

ifx; —y; €5.
To show the other direction of the implication, we suppose x = y. Hence

¢~ (x) = ¢~'(y) and

—Yi= Z (b = bj) Z b;ﬂ bjti) (GS)
j=it1 j=1

On the other hand we have

A i ‘ ‘ L+i+d—1 A
—yi= o7 [ S - ten) | =0t S gioles) |
j=—L Jj=d—1

where g;j = bj_r1—q41 — b;'—L—d—i—l‘ We apply « and get by (3.19)

K(x; —yi) =~ (gézflad‘l +tgrat 96)
with integers g_; which are easily seen to be all positive if

(bi;bz‘—la---7b—L) > ( g, ;71,...,()/71/)
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and all negative if “<” holds. Hence we have x(x; — y;) € Z,[a"!] and
k(X; —yi) € Z_[a~!] respectively. Because of (3.16), we have

m
K(Xi - yi) =+ Z ejaj with (Ej)_sgjgm S Nf. (3.20)

j==s

Assume, w.lo.g., k(x;) = k(yi) + 7L €jal. Then (3.16) implies

77,_[//
k(x;) = Z e;»aj with (€}) g <j<m € Ny and m' > m.

j=—s'

Since k(x;) = Z;:_ 1 bja?™" and finite a-expansions are unique, we have
m’ = 0 which implies m < 0.
By applying x~! to (3.20), we get

o0

0
D (B = bjwi)dl(es) =+ Y ejd (es)

i=1 j=—s

and

00 0
D biidies) €EN | E+ D ;¢ (es)

j=1 j=—s
Lemma 2.10 of Praggastis [31] shows that we have an integer s such that
(5 + Z?:_Oo ej¢j(es)) = (), if ¢; # 0 for some j < —s. This concludes the
proof of the proposition. O

If we set z; = x; — y;, then

Zi11 = (Zfl(zz‘) + (biy1 — b§+1)eS'

Therefore the points with two representations are determined by a finite
automaton, the states of which are the elements of S and two states z,z’
are connected by an edge labeled by (b,b'), if 2’ = ¢~(z) + (b — b)es or,
equivalently, x(z') = k(z)/a + (b —V'). (The starting point is 0.)

As Gilbert [20] for the twin dragon, we obtain a v-th approximation to
the boundary by determining all paths of length v in the automaton and
drawing for each such path p a parallelepiped that contains the image of all
paths which start with p. This is the idea of the following lemma.

Lemma 3.9. For all v € N and e € {0,...,a1}, the boundary of Q. is
contained in sets U, which are the union of O (") parallelepipeds of size

Ca™ for some constants v < «a and C, with edges parallel to ay, ..., aq,
where a; = (a?_l,...,ai,l)t for the real eigenvalues o; (v = «) and
a;, = (%affl, oo Ra, D agyg = (%affl, ., Say, 0) for the pairs of com-

plex eigenvalues (o, aiy1 = @5).
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Proof. A point can be on the boundary of . if its mws-image has
at least two ¢-representations »2°,b;j¢’(es) = 7 bi¢l(es) with
(bos ... ba—2) # (bp,...,bl;_5), bo = e and jo the smallest integer with
bj, # b;o. Denote by B, the number of different initial sequences (b, . .., b,)
of points on the boundary. We show that these sequences cannot have 2s+2

subsequent zeros.

Suppose on the contrary that (bj,41,...,bj,42s12) = (0,...,0) for some
J1 > jo. Set zi = Y i_. (b; —b;-)gbj*i(es). We have zj, # 0 by definition and

z; # 0 for all i > jo, because k(z;) = 0 would imply that two different finite
a-representations are equal.

Assume k(zj,) < 0. Then we have k(z;) < 0 for all j; <i < ji +2s+2
and the uniqueness of finite a-representations implies z; ¢ S for some ¢,
J1 <1< ji+ s+ 1, which contradicts Proposition 3.2. If k(z;,) > 0, then
the uniqueness of finite a-representations implies x(z;) < 0 or z; ¢ S for
some i, j1 < ¢ < j1 + s+ 1. As above k(z;) < 0 implies z;; ¢ S for some
i <i+s+1.

Therefore 2s + 2 subsequent zeros are not possible and B, = O (y") for
some v < q.

The a; are the real eigenvectors of ¢ and the real and imaginary parts of
the complex eigenvectors respectively. Let ¢ be the size of the parallelepiped
that covers £ and all its images of rotations in the planes spanned by the
complex eigenvectors (€ is a bounded set). Then all points on the boundary

with same initial sequence (b, ..., b,) are covered by a parallelepiped of size
Clasgl” ... |ag|” = Ca™ and we have B, of these parallelepipeds.
This concludes the proof of the lemma. O

3.4 Central limit theorem for polynomial se-
quences

Now, we can state the analogue to Theorem 1.1. Clearly we have to make
the same restrictions on f as in Theorem 3.1 and the same restrictions on
G as in Proposition 3.1.

Theorem 3.2. Let G be as in Section 3.1 with ag = 1, irreducible char-
acteristic polynomial x(x) and its dominant root o a Pisot number which
satisfies (3.16). Let f be a G-additive function such that fi(e) = O (1) as
k — oo for all e € {0,1,...,a1} and assume that there exists a constant
c > 0 such that U,(j) > c for all k > 0. Let P(n) be a polynomial of degree r
with integer coefficients and positive leading term. Then, as N — oo,

%# {n <N ‘ f(P(nl)))(;]TJ\f(NT) < x} — O(x) (3.21)
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and

# {p <N ’ f(Pp) = MINT) 33} — B(z) (3.22)

m(N) D(NT)

Remark 3.4. For a1 > ag > -+ > ag > 0, we know from Brauer [4] that o
is a Pisot number with minimal polynomial x(x). (3.16) has been shown in
this case by Frougny and Solomyak [18]. Hence Theorem 3.2 holds for these
sequences.

For d =3,a90 =0,a3 =1, as and a3 are complex numbers and have
therefore absolute value 1/4/a. For these a;, the equation (3.16) was shown
by Akiyama [1]. Hence Theorem 3.2 holds for these sequences too and the
only restriction in case d = 3 is ag = 1.

Remark 3.5. a may not be a Pisot number (e.g. the dominant root of
2% —2° —1). We also have a which are Pisot units, but do not satisfy
(3.16): let a be the dominant root of #* — 2% — 1. Then the a-expansion of
2 is 10.010(00001)°°.

We have to prove the following analogue to Proposition 1.1.

Proposition 3.3. Let P(n) be an integer polynomial of degree v > 1 and
positive leading term. Then for every h > 1 and for every X > 0 we have

1 A
N#{n < N:iep(Pn)) =e1,...,e4,(P(n) =en} = Dk, kn.erren
+0 ((log N)*A)
and

1

7_[_(]\7) #{p <N: €k, (P(p)) =€1,... 7€kh(P(p)) = eh} = ﬁkl,m,kh,el,weh

+0 ((log N)_’\>
uniformly for all integers
(log N")T < ky, ko, ..., kp <log, N" — (log N")"

and ey, ea,...,ep € {0,1,...,a1}. (The Dr,,. ky.er, e, @re as in Lemma

We adapt the proof of Proposition 1.1 and include some elements of the
proof of Gittenberger and Thuswaldner [21], who proved a similar theorem
for digital expansions of the Gaussian integers. There the digits are also
determined by tilings with fractal boundary.

Denote by U, , the union of parallelepipeds of Lemma 3.9 containing the
boundary of .. Let 1g,uy,, the characteristic function of €. U Ue, on
the torus T? and Y mezd Cmepe(m - X) its Fourier expansion. In order to

72



calculate ¢y ¢, we split up 2. UU,, into parallelepipeds with edges parallel
to ai,...,ay. Then we clearly have cg ¢, = A\i(Qe U U, ) and, by Lemma 1
of Drmota [10], the m-th Fourier coefficient of such a parallelepiped is

|det(x — ¥)yer| o(mx) =Y |det(+a;)1<j<dl

HyeF(x)(—27ri)m (x—y) B = H?Zl(_gm)m ] (j:aj)e(_m'X)’

xeV

where V' denotes the set of vertices of the parallelepiped and I'(x) the set
of vertices adjacent to x. As in Gittenberger and Thuswaldner [21], the
contributions of the inner parallelepipeds cancel out and only the O (v")
corners of the boundary of €2, U U., play a role. The contribution of a
corner can be bounded by (cf. Drmota [10], Lemma 2)

d 1

S (L jm - ag))?

|det(+a;)1<;j<dl
[15_,(—2mi)m - (+ay)

uniformly for all m. Hence we define m; = m - a; and have

d
1
< 'Yy Hmln <1, W)
(2

i=1

<

|Cm,e,1/

As in Section 1.3, we consider the function

A A
1 2 2

Ve a(x) = Ad / R .../A lgeuyw(x—l— z1a1 + -+ 4 zgag)dzy . . . dzg.
-3 -3

By enlarging the parallelepipeds of U, ,, we obtain sets ()., which are again
unions of O (y¥) parallelepipeds with A¢(Qc,) = O ((2)”) such that

. 1 ifXEQe\Q&V
¢e,u,A(X) - { 0 ifx ¢ Q. U Qe,ua

if we assume A < a7V.

For the Fourier expansion e, A(X) = > c7d dm,ev,ae(m - X), we get

d
1 1
d < ””min 1, —, —=|.
[, a] <y paley ( |74 Amf)

We set
t(n) = Ve, v,a(v(n, k1)) .. e, v,a(v(n, kp)).

Then we have t(n) = 1 if v(n,k;) € Q, \ Q¢ for all i, 1 < i < h and
t(n) = 0 if v(n, ki) & Qe; U Qe for some i. Therefore we estimate the
number of integers with v(n, k;) € Qe by the following lemma.
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Lemma 3.10. Let

v=#{n < NV(P(n).k) € Qep}, Frew =#{p < N|[v(P(p),k) € Qe }

and A an arbitrary positive constant. Then, wuniformly in k,
(log N")" < k <rlog, N" — (log N")", we have

7V .Y 7\ -2
Epey < o N+ N(ogN)™ ", Fre,p < o 7(N) + N(log N)

Proof. The proof of this lemma uses the isotropic discrepancy

= sup
CC’]I‘d

ZXC {Xn} ( ) )

where the supremum is taken over all convex subsets C' of T¢ = R?/Z? and
X1,...,Xy € R It can be estimated by the normal discrepancy

Dy = sup
IcTe

1 N
> xa(fxad) = ()
n=1

(where the supremum is taken over all d-dimensional intervals I of T¢):

Dy < Jy < (4dVd + 1)D§

(see Drmota and Tichy [14], Theorem 1.12).
To get an estimate for Dy, we use the following version of Erdés-Turan-
Koksma’s inequality:

1
Dy < 37+ > H

heZ4:0<|/h|lcc <M i=1

b

NZ e(h-xy)

where M is an arbitrary positive integer (cf. [14], Theorem 1.21).

We set x, = v(P(n), k) and M = (log N)%. Then we have, since Q. is
the union of O (v”) convex subsets and the conditions of Lemmata 2.5 and
2.6 hold,

Ek,e,u < 7VJNN + Ad(Qe,V)N

< Ny ((log N)™ + log(log N)™(log N Ym/d) + (%) o

Similarly we get with Lemma 2.6,

Frew < m(N)y” ((log N)~ + log(log N)™(log N) /%) + (1)" m(n).

(0%

We can choose 19 > d\ and the inequalities are proven. O
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We define
Si=#{n < N:e,(Pn) =ei1,...,ep,(P(n)) =ep}
and
Yo=#{n < N:e, (Pn)=ei,..., e, (Pn)) =en}.

For v < loglog N and (log N")" < k < rlog, N" — (log N")", the error term
O (a_k) of Proposition 3.1 is negligible compared to the size of each paral-
lelepiped in @, and we have

X — Z t(P(n)) < Ekhel,l/ +ot Ekhﬁhﬂ’?
n<N

2y — Z tP(P)| < Fryerw + -+ Fryen
n<N

As usual, we will consider only ¥ since ¥y can be treated similarly.
Let M be the set of vectors M = (mj,...,my) with integer vectors

m; = (mgi), e mg)). Then we have

Y uPm) =Y v Y e((m1 V(1 k) + - +my v(l,kh))P(n)),

n<N MeM n<N
with

TM,V = dml,el,MA T dmh,eh,l/,A'
Because of

mgl)adfl +---+ m((il) mgh)ozd*1 + -+ m&h)
avl ath

h a—1
Zmi-v(l, kz) = ad 1
=1
we have to estimate

akh_kl+d_1mgl) NS mg)akh—kl 4ot mgh)ad—l NI mglh)
akn

g —
(3.23)
in order to estimate these exponential sums, where we may assume
ki <kg<--- <kp.
Since the a; form a basis of R?, we have
1 1 1 1

<
jar-m|  |ag - m|

[l |mal
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and therefore

00 00 d—1 1 1 h
Z T | < < Z Z ')/”Hmin <1, — =5 ))
MeM m1=—00 7] A

mq=—00 1=0

=1

) 9] d—1 1
< Z Z vl’Hmin(l,

fin=—co  fhg=—00  i=0 || i A

—_
N————

1
< (log N(log E))dh

If |m§j)| > (log N)? for some i, j, then we have ymgj)| > ¢&(log N)% for
some ¢, 7 and

Z |TM,V|

34,5 with [m{?) [> (log N)2?
dh—1

o) [¢(log N)%] 25\ dh
1 (log(log N')*)
hv § : 2 : hv
<7 } m2A |m| <7 (log N)?
m=[¢(log N)29] m=1

if we set A = (logN)°. Hence we need estimates of S for all M with
|m§3)\ < (log N)? for all 4, .
We use the following lemma due to W.M. Schmidt:

Lemma 3.11 (W.M. Schmidt [34], p. 153). Suppose 1,1, B2,..., By

are linearly independent over Q, and they generate an algebraic number field
of degree d. Then

B1q1 + -+ + Bugqo — p| > cq~ 4!

for arbitrary integers qi,...,qu,p having ¢ = max(|q1],..-,|q@|) > 0 and
some constant c.

Lemma 3.12. Let \mgj)\ < (log N)? for all i, 7,
(log N")" < ki1 < kg <--- < ky <log, N" — (log N")"
and arbitrary constants 6 > 0,7 > 0. Then the S defined by (3.23) satisfy

(log N)"'

«

~ (3.24)

allog N)W'

for ally’ <.
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Proof. Assume S # 0. Because of Lemma 3.7 we have

mlad_l 4+ Mg+ My

S p—
akn

with integers m; which satisfy
;| < (log N)Pakr=k (1 <i<d).

Therefore

(log N)20afn—k1

(log N)% 1
5] < v <

o(log N)" Cy(logN)Ti/ )

To obtain the lower bound we start by setting ¢ = n/h. Then there
exists an integer K, 0 < K < h — 1, such that for all j

K1 — Ky & [ (log ), (log V) K09

So fix K with this property. We have to distinguish two cases.
If kj+1 — kj < (log N)X¢ for all j, we apply Lemma 3.11 and get

1 |
51> a }‘mﬂdqakh > (log N )2(d—1)3 g +(d—1) (h—1)(log N) K=
1€40,...,d—1
o108 N)1—(d-1)(h-1)(log N)FFT _(log N}
> Nr(log N)Q(d—l)d > N7

Otherwise we have a j < h such that kjiq —k; > (log N)E+De and
kj — k1 < (j — 1)(log N)X¢. Then we split up the sum into two terms

akjflirdflmgl)+...+m£ll)akjfk1 +---+m§j)ad*1+~-—|—m2j)

S = =
alti
. akh—kj+1+d—1mgj+1) 4o mgj+1)ak;b—kj+1 44 mgh)ad—l 4 méh)

akn
=51+ Ss.

If S1 =0, then S = S5 and we are concerned with a problem containing less
terms. By using induction on h (which is not made explicit here), we may
assume that this case has already been treated. Otherwise we have

1

|Sl| > (log N)2(d—1)5akj+(d—1)(j—1)(logN)Ke’
whereas S 25
h—Rj+1
5] < (log N) ka g < (log N) ‘
akn kit (log N)(E+De
Hence
o108 N)T—(j=1)(d=1)(log N)Ke  (log N)'
151> N7 (log N)20 >z TN
and the lemma is proved. O
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Hence we have
14
2, = 3 Ta,+O (4" N(log N) ™ + " N(log N) /2 + N (1))
MEMZE mi~v(1,ki):0 o
We set
Tl(/[,u = Cmy,er,v """ Cmy,ep,v

and have to compare T, to T3, . Here we have
sy =Ty, + O <7” max ’mﬁj)‘ A>
’ Z?J

and

3 [Tt — T | <77 (log N) =2,
MeM:|m| < (log N)20F for allij

For the other M we obtain by the same methods as in Section 2.1

Z TIIVI < (log N)72dh(di—1)2 )
MeM:Y m,-~v(1,ki):0,|ﬁz§j)|2(log N)ﬁ for somei,j
If we set
ﬁkl,...,kh,el,...,eh,u = Z TII\/I,W
MeM:Y m;-v(1,k;)=0
we get

6 v
(6%

Remark 3.6. In case of one variable k, we have m - v(1,k;) = 0 only for
m = 0. Hence ﬁk,e,z/ = Coev — )‘d(Qe) = Pe = ﬁk,e as v — OoQ.
We set v = [Cloglog N] for some constant C which satisfies

_ )
(%)V < (log N)_’\, choose 0 such that (log N) 2dr(dn-1)? < =" and get

X = Nﬁkl,...,kh,el,...,eh,[CloglogN] +0 (N(log N)i)\> .

For P(n) = n and (log N)" < ky,...,k, < log, N — (log N)", Lemma 3.3
implies
1= NDky,.ooknier e, + O <N(10g N)_A>

and therefore
- . Y
Pky,... kn.e1,....en,[Cloglog N] = Pki,....kp.e1,....en +0 ((log N) ) .

For (log N")7 < kq,...,ky < log, N" — (log N")", we obtain this result by
considering ¥, for P(n) =n and N".

As already noted, we get the corresponding result for primes by the same
arguments. Thus Proposition 3.3 and Theorem 3.2 are proved.
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3.5 Joint distributions of G-additive and
g-additive functions

Finally, we generalise Theorems 2.1 and 2.3 on G-ary expansions.

Theorem 3.3. Let f;, 1 < £ < L, be either qu-additive functions as in
Theorem 1.1 or Gy-additive functions as in Theorem 3.2. Let Py(n) be poly-
nomials of different degrees rp with integer coefficients and positive leading
terms. Then, as N — oo,

%# {n <N fZ(PZ(gZ(&%Z(NW) <xp,l=1,2,... 7L} — ®(x1)...9(z1)
and

Je(Pu(p)) — My(N™) _
W(N)#{p<N Do(N70) <3:g,€—1,...,L}—><I>(x1)...<1>(xL)

The strategy of the proof of Theorem 3.3 is exactly the same as that of
Theorem 2.1 and the changes which have to be made are obvious. Therefore
they will not be presented.

Theorem 3.4. Let f1 be a Gi-additive function as in Theorem 3.2 with
dominant root a1 of degree di and fo either a g-additive function as in
Theorem 1.1 or a Ga-additive function as in Theorem 3.2 with dominant
root ag of degree dy such that [Q(a1,a9) : Q] = didy. Let Pi(n), Pa(n) be
polynomials with integer coefficients, degrees 1,19 and positive leading term.
Then, as N — o0,

1 fe(Pe(n)) — My(N™) _
N# {n <N Dy(N™0) <xp (0=1,2) p — O(x1)P(x2)
(3.25)
and
1 fe(Pe(p)) — My(N"™)
—_— N =12 P P .
e o < (1=1.2) ) - @@
(3.26)
Remark 3.7. If (d1,d2) = 1, then [Q(au, a2) : Q] = dids is always satisfied.
(1?2
If d = dy = 2, this condition is equivalent to 2L = \/al—H being irrational.
D=

As usual it suffices to prove Propositions 3.4 and 3.5.

Proposition 3.4 (cf. Proposition 2.4). Let G be a sequence as in Theo-
rem 3.2 with dominant root o, q an integer (q > 2) and Pi(n), Py(n) integer
polynomials with positive leading terms and degrees r1,79. Let A > 0 be an
arbitrary constant and hi, he non-negative integers. Then for integers

(log N™)" < ki < kS < - < k) <log, N™ — (log N™*)"
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(with some n > 0) and
(log N"2)" < k(Y < kY < -+ < kY < log, N™ — (log N"2)"

we have, as N — o0,

1 :
o {n <N e, o (Pi(n) = b5 e o (Po(n) =bP,1 <5 < hz}
g g
=5 -2
=P 7k}<L11) b 7(1) s +(9((10gN) )
and
L ulpanle, @) =tD,e o@m)=b2,1<j<h
7_[_(]\7) p th(l 1 ] ) q7]€‘§'2) 2 p - ] I — j >~ 1y
1
=p O ((logN)™
P kD o0 oD ghz T ((Og ) )

uniformly for b ) ¢ {0,...,a1}, b§2) €{0,...,¢—1} and k](() in the given
range, where the zmplzczt constant of the error term may depend on gz, on
the polynomials Py, on hy and on .

Proof. The proof is similar to that of Proposition 2.4. We have to estimate
the exponential sums

3 e (Sl L) )

n<N i=1

If the degrees of rq,ry are different then we are in the same situation as in
Proposition 2.1. So assume r; = ro = 7.
Denote by gﬁl), g,(, ) the leading terms of the polynomials and set

S=5 48— Zm vO(L, KD 4 m® . @@

(1) (1) (1) (1)
1,1 kDM g1 11) KDk Lh
mg ) ofr k1 +o 4 gl )a +-~+m§ 1)

ad—1 + -+ m

(1,h1)

- JASY)
o Ky

(2) _1.(2)
+m(2>qkh2 Hhm® L aPat o )

d g(l)

@ Ir X i1
qkhz Gk,gll),la +--+G 1>d 1a+Gk(1)d

(cf. Lemma 3.7) with

Gri= Gy + -+ agGh_1_gps (3.27)
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Hence we have S = 0 if and only if

(2) ~
i) g gkhe = m@)g,(?)Gk;ll) oralli e {1,2,...,d}.
17

Now we show that the CNJ;M, 1 < ¢ < d, have no common di-

visor.  First assume gcd(G}_{,G)_o,.--.Gi_4y) = g > 1. Because
of ag = 1 we get g|G)_, , and inductively g|G’; for all j < &,
but this is not possible because of the choice of the initial values
(G,_y =1). Hence we have gcd(G},_;,G)_5,...,G)_;) = 1. Now as-

sume gcd(@kvl,ékg, e ’ékvd) =g > 1 for some k. Then (3.27) with i = d
gives g|G)._, with i = d — 1 we get g|G),_, and inductively g|G},_, for all
i € {1,...,d} which contradicts ged(G)_,,G}_5,...,G}_y) = 1. Thus we

have 3 B B
ng(Gk,17 ijg, ceey Gk,d) =1 for all k£ > 1. (328)
Therefore we have, for every prime divisor p of ¢, some i such that

(2)
p /|G, ,. Hence pkh2 |m?) and ¢|m(®. This implies q|m§122) and either
hy”

mgfz) =0, i.e. we have a smaller problem, or dm(2> B2

assume S # 0 if §7 # 0.
Now we can proceed as in the proof of Proposition 2.4. It suf-
fices to consider those mgl) and m® with 0 < ]m§.1’2)| < (log N)?,

0< ]m§.2)| < (log N)? for all 4, j and Sy # 0. Clearly we have

= 0. Thus we may
ho Yhy e AN

(log N)*
min (o, g)log N)"”

S <

For the lower bound set € = 1/(h1+ha—1). Then there exists an integer
K with 0 < K < hy + hy — 2 such that for all 7, ¢

K~ KO ¢ [(log V)<, (1og N)U€HD7)

So fix K with this property.
First suppose ]‘7]('?1 — kj(-g) < (log N)X¢ for all j,£. Set
i =mMad 4D a bl m = g@n®,
Th _ Ke (1) 25 ki) —k{V
en we have log [, < (log N)"¢ because of m,;”’ < (log N)* o™ ,
we can apply Corollary 2.6 to

my mo
5= Y L
o h q ha
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and obtain

S > max <a"“531>,q‘k2?—1> ~cloglog N (1og N)< +, (108 V)T
Nr

for some constant ¢ > 0 and all 7 > 0.

Otherwise we have some sy, £ = 1,2, such that ,14:](21 — kj(.e) < (log N)Ke

for all j < s; and kéi)ﬂ — k:gf) > (log N)E+12. Here we set
my = grl) Z ( i kg)ik]('%rdil +ooet m&l’j)akgi)k;l)> )
— (2 2) k2 -k
=9 Zm

Then we have again log|m,| < (log N)®¢. Furthermore, we can estimate
the sums

1 d 25 —k( ) log N)(E+1)e
Z nE) < (log N)? g Fsy ~(log N) 7
Jj=s1+1
ha (2)
m; (2 (K+1)e
Y. o < (log N)¥g i m(os M,
Jj=s2+1 Q7 *
Thus we get
m m (1) € (1) €
S > Tll) + k(z—f -0 ((log N)* (ofksl ~(log N)UHD= q k= —(log N) K+ ))
> max (a—kg? : q—kg)—l) (e—cloglogN(log N)Ke O ((log N)Q(Se—log(min(a,q))(log N)<K+1)5)>
., (log V)
= N7

and the conditions of Lemmata 2.5 and 2.6 are satisfied.
Therefore the limits of the joint probabilities are just the products of the
simple probabilities. ]

Proposition 3.5. Let G1, Gy be sequences as in Theorem 3.2 with dominant
roots a1, ay and Py(n), Pa(n) integer polynomials with positive leading terms
and degrees r1,12. Let A > 0 be an arbitrary constant and h1, ho non-negative
integers. Then for integers

(log N™)" < ki) < k) < < kj) <log,, N™ — (log N")" (£ =1,2)

?
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(with some n > 0) we have, as N — oo,

1

N {n < Nleg o (Pim) =6 e, o (Pa(n)) = b, 1< j < hg}
]

A . —A
= D kD b0, 40P, D Dy +O((10gN) )

and
Lwlpen (Pi(p)) = bV (Po(p)) = b, 1< j<h
(V) p 6G1’k§1) 1\p)) =9 7€G27k]§2> 2P)) =0; 1> ) >y

=D, L0, B2 o ((log N)_A)

WP ) @ 5@
Ok b0 PR e

1

uniformly for b €{0,...,q/ — 1} and k,‘](.é) in the given range, where the
implicit constcmt of the error term may depend on q, on the polynomials
Py, on hy and on \.

Proof. The proof is almost the same as that of Proposition 3.5. It remains
to prove that S = 0 only if S; = So = 0, where

S=8+85= Zm viD(i, k(l) (1) —i—Zm -V(Q)(l,kf))g?@)
=1

k(1>—k(1)+d -1 k2 k) dy—1
_ 971)0‘1’11 o : ‘+m£lll’h1) (1) mSQ’l)O‘th P +m£l22h1)
- ) gr Tt @

h1
oy Qo
mg )Ofih f+ "+m5111) (1) mg )0‘32 1*"'+m£l2) (2)
TE0 i, a0 T Em e e O
NONGS BT K@ 192 -t K2 d
h1 71 h2 2

Because of [Q(a1,az) : Q] = dida, the ozilozg, 0<i<dy, 0<j<dy, are
linearly independent over Q and we get the equation system

mMgae) mf)gﬁ?)é(lg) (1<i<dy,1<j<dy).

ka)’] hy?
Hence we have

~(1) ~(1)

1 29 sz(ll)ﬂi 1 Gkﬁl):’i

) = @I T M T < i < dy). (3.29)

i i D) G(z) i G(l)
gr (2) 1)
Kpy » Ky,

Therefore the system of dids equations can be reduced to di + do — 1
equations and we have non-trivial solutions, but they must satisfy

) = (Gl(:z,) > (3.30)

7
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(o)

for all 4,¢. This implies m; ’ = 0 for all 7, ¢ because of

() 0 _ 1.0
~(£) / /() Ky, —d . (0) o5 Fkn, —ki
G 2 Gy~ and || < (log N)¥a, ™

£

ho 't

and thus S; = Sy = 0. To show (3.30), let p{* ...p;" be the prime factorisa-

tion of C:’](ﬁ)e) .

. For each p; we have p; )(él(j&) _, for some i’ because of (3.28).
hy? hy )2

Hence (3.29) implies pjj ymg” for all j and (3.30) is proved.
This concludes the proof of Theorem 3.4. O
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