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Kurzfassung

Ziel der Dissertation ist es, die Verteilung der Ziffernsummenfunktion (und
ähnlicher Funktionen) auf polynomiellen Folgen von natürlichen Zahlen und
Primzahlen zu studieren.

Von Bassily und Kátai [2] wurde ein zentraler Grenzwertsatz für die
Verteilung der Folgen f(P (n)), n ∈ N, und f(P (p)), p ∈ P, gezeigt, wobei
f(n) eine q-additive Funktion und P (n) ein Polynom mit ganzzahligen Koef-
fizienten (und positivem führenden Koeffizienten) ist. Da die Ideen in ihrem
Beweis grundlegend für die Beweise aller anderen Sätze in dieser Dissertation
sind, wird der Beweis in Kapitel 1 präsentiert.

Kapitel 2 behandelt gemeinsame Verteilungen mehrerer q-additiver
Funktionen. Drmota [11] hat Bassily und Kátais Ergebnis auf die gemein-
same Verteilung von Folgen f`(P`(n)) (beziehungsweise f`(P`(p))) verall-
gemeinert, wobei die f`(n) q`-additive Funktionen sind und die Grade der
Polynome P`(n) alle verschieden sein müssen. Der Beweis ist relativ kurz
und wird in Sektion 2.1 geführt. Im Fall, dass der Grad der Polynome
gleich ist, konnte Drmota nur für zwei Folgen f1(P1(n)) und f2(P2(n)) einen
zentralen Grenzwertsatz beweisen, wobei q1 und q2 teilerfremd und die Poly-
nome P1(n), P2(n) linear sein müssen. Diese Ergebnisse können leicht auf be-
liebige Polynome P1(n), P2(n) und Primzahlfolgen erweitert werden, indem
Resultate Vinogradovs und Huas über Exponentialsummen polynomieller
Folgen adaptiert werden (siehe Lemmata 1.2, 1.3, 2.5 und 2.6). Theorem 2.3
erweitert diese Ergebnisse außerdem auf multiplikativ unabhängige q1, q2.

Für stark q-additive Funktionen zu einem gemeinsamen q liefert Theo-
rem 2.2 eine Charakterisierung der Verteilung beliebiger polynomieller Fol-
gen. Es gilt immer ein zentraler Grenzwertsatz, wobei die Kovarianzmatrix
nicht Diagonalgestalt hat, wenn zwei Polynomgrade identisch sind. Dieses
Resultat ist auch für multiplikativ abhängige q1, q2 anwendbar, da es dann
natürliche Zahlen s1, s2 gibt, sodass qs21 = qs12 = q gilt, und f1(n), f2(n)
daher stark q-addditive Funktionen sind.
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Als wichtigen Spezialfall dieser Sätze erhalten wir für die Ziffernsum-
menfunktion sq(n)

1
N

#

n < N

∣∣∣∣∣∣sq1(n)− q1−1
2 logq1 N√

q2
1−1
12 logq1 N

< x1,
sq2(n)− q2−1

2 logq2 N√
q2
2−1
12 logq2 N

< x2


→


1

2π

x1∫
−∞

e−t
2/2dt

x2∫
−∞

e−t
2/2dt wenn q1, q2 multiplikativ unabhängig sind

1
2π
√

1−C2

x2∫
−∞

x1∫
−∞

e
− 1

2(1−C2)
(t21+t22−2Ct1t2)

dt1dt2 sonst,

wobei die Kovarianz durch

C =
q̃ + 1
q̃ − 1

√
(q1 − 1)(q2 − 1)

s1s2(q1 + 1)(q2 + 1)
für q1 = q̃s1 , q2 = q̃s2 , (s1, s2) = 1

gegeben ist. Dieses Ergebnis ist für nicht teilerfremde q1, q2 neu. Für Poly-
nomfolgen und Primzahlen gelten ähnliche Aussagen.

Im Kapitel 3 werden G-additive Funktionen betrachtet, die von
der G-adischen Entwicklung natürlicher Zahlen abhängen, wobei G eine
durch eine lineare Rekursion erzeugte Folge natürlicher Zahlen ist. Das
Hauptergebnis (Theorem 3.2) ist ein Analogon zu Bassily und Kátais Re-
sultat. Ein großer Unterschied zu q-additiven Funktionen ist dabei, dass
die Ziffern durch eine Markoffkette dargestellt werden statt durch eine Folge
unabhängiger Zufallsvariablen. Außerdem ist für q-adische Entwicklungen
die k-te Ziffer von n durch den Wert von {n/qk+1} bestimmt. Für G-adische
Entwicklungen benötigen wir dazu Fliesen des Torus Td, wobei d der Grad
der linearen Rekursion ist. Für d = 2 sind diese Fliesen Rechtecke, für
d ≥ 3 hingegen haben sie fraktalen Rand, und es handelt sich dabei um
Rauzyfraktale.

Die letzten Ergebnisse (Theoreme 3.3 und 3.4) betreffen die Un-
abhängigkeit verschiedener G-additiver Funktionen (und q-additiver Funk-
tionen), die unter ähnlichen Bedingungen wie für q-additive Funktionen
gezeigt werden kann.
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Abstract

The aim of this thesis is to study the distribution of the sum-of-digits func-
tion (and similar functions) on polynomial sequences of integers and primes.

Bassily and Kátai [2] proved a central limit theorem for the distribution
of sequences f(P (n)), n ∈ N, and f(P (p)), p ∈ P, where f(n) is a q-additive
function and P (n) an arbitrary polynomial with integer coefficients (and
positive leading term). Since the ideas in their proof are fundamental for
the proofs of all other theorems in this thesis, the proof is presented in
Chapter 1.

Chapter 2 deals with joint distributions of several q-additive functions.
Drmota [11] generalised Bassily and Kátai’s result on the joint distribu-
tion of sequences f`(P`(n)) (and f`(P`(p)) respectively), where the f` are
q`-additive functions and the P`(n) polynomials with different degrees. The
proof is rather short and can be found in Section 2.1. For polynomials
with equal degrees, Drmota could prove a central limit theorem only for
two sequences f1(P1(n)), f2(P2(n)) with coprime q1, q2 and linear polyno-
mials P1(n), P2(n). By adapting results on exponential sums of polynomial
sequences of Vinogradov and Hua (see Lemmata 1.2, 1.3, 2.5 and 2.6), this
result can be easily extended to arbitrary polynomials P1(n), P2(n) and se-
quences of primes. Theorem 2.3 extends this result to multiplicatively inde-
pendent q1, q2.

For strongly q-additive functions with respect to the same q, a charac-
terisation for the distribution of arbitrary polynomial sequences is given by
Theorem 2.2. We always have a central limit theorem, but the covariance
matrix is not diagonal, if any two degrees of the polynomials are equal. This
result can also be used for multiplicatively dependent q1, q2. Then we have
positive integers s1, s2 such that qs21 = qs12 = q and f1(n), f2(n) are therefore
strongly q-additive functions.
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In particular, we obtain for the sum-of-digits function sq(n)

1
N

#

n < N

∣∣∣∣∣∣sq1(n)− q1−1
2 logq1 N√

q2
1−1
12 logq1 N

< x1,
sq2(n)− q2−1

2 logq2 N√
q2
2−1
12 logq2 N

< x2


→


1

2π

x1∫
−∞

e−t
2/2dt

x2∫
−∞

e−t
2/2dt if q1, q2 are multiplicatively independent

1
2π
√

1−C2

x2∫
−∞

x1∫
−∞

e
− 1

2(1−C2)
(t21+t22−2Ct1t2)

dt1dt2 else,

where the covariance is given by

C =
q̃ + 1
q̃ − 1

√
(q1 − 1)(q2 − 1)

s1s2(q1 + 1)(q2 + 1)
for q1 = q̃s1 , q2 = q̃s2 , (s1, s2) = 1.

For q1, q2 which are not coprime, this result is new. Similar statements hold
for polynomial sequences of integers and primes.

In Chapter 3, G-additive functions are considered, which depend on
G-ary expansions of integers, where G is a sequence of integers generated
by a linear recurrence. The main result (Theorem 3.2) is an analogue to
Bassily and Kátai’s result. An important difference to q-ary expansions is
that the digits are represented by a Markov chain instead of a sequence of
independent random variables. Furthermore, for q-ary expansions the value
of the k-th digit of n is determined by the value of {n/qk+1}. For G-ary
expansions, we need tilings of the torus Td, where d is the degree of the linear
recurrence, to obtain a similar characterisation. For d = 2, these tilings are
rectangles, whereas for d ≥ 3 they have fractal boundary. More precisely,
they are Rauzy fractals.

The last results (Theorems 3.3 and 3.4) deal with the independence of
joint distributions of G-additive functions (and q-additive functions) which
can be proved under similar conditions as for q-additive functions.
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Chapter 1

Introduction

The purpose of this chapter is to present a work of Bassily and Kátai ([2]) on
the distribution of the values of q-additive functions on polynomial sequences
and some other results on this topic. Since the ideas in Bassily and Kátai’s
work will be a main ingredient of the proofs of all other theorems, we recall
them in Section 1.3. Given that their proof is very succinct (and at one
point wrong), we will not stick to their words and notation.

First we have to define q-additive functions.

1.1 q-ary expansions and q-additive functions

Let q > 1 be a given integer. Then every non-negative integer n has a unique
q-ary expansion

n =
∑
k≥0

εk,q(n)qk

with εk,q(n) ∈ {0, 1, . . . , q − 1}, where we will omit the index q when there
is no risk of confusion. Then the sum-of-digits function is given by

sq(n) =
∑
k≥0

εk,q(n).

The sum-of-digits function is a special case of a q-additive function, i.e.
a real-valued function f defined on the non-negative integers which satisfies
f(0) = 0 and

f(n) =
∑
k≥0

f(εk,q(n)qk).

Such a function is said to be strongly q-additive, if

f(n) =
∑
k≥0

f(εk,q(n)).
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1.2 Some results on the distribution of q-additive
functions

We start with the mean value of the sum-of-digits function. The first asymp-
totic formula is due to Bush [5]. After some other works on this topic,
Delange [8] proved

1
N

∑
n<N

sq(n) =
q − 1

2
logqN + γ(logqN), (1.1)

where γ is a continuous, nowhere differentiable and periodic function with
period 1. Higher moments of sq(n) were considered for example by Grabner,
Kirschenhofer, Prodinger and Tichy [22].

The most general result concerning the mean value of q-additive func-
tions is due to Manstavic̆ius [27] (extending earlier work of Coquet [6]).
Let

µk =
1
q

q−1∑
b=0

f(bqk), µ2
2;k =

1
q

q−1∑
b=0

f(bqk)2

and

M(N) =
[logq N ]∑
k=0

µk, B(N)2 =
[logq N ]∑
k=0

µ2
2;k.

Then
1
N

∑
n<N

(f(n)−M(N))2 ≤ cB(N)2,

which implies
1
N

∑
n<N

f(n) = M(N) +O (B(N)) .

Now we turn to distributional results for q-additive functions. De-
lange [7] proved an analogue to the Erdős-Wintner theorem. There exists a
distribution function F (x) such that, as N →∞

1
N

# {n < N |f(n) < x} → F (x) (1.2)

if and only if the two series
∑

k≥0 µk,
∑

k≥0 µ
2
2;k converge. This theorem

was generalised by Kátai [25] who proved that there exists a distribution
function F (x) such that, as N →∞,

1
N

# {n < N |f(n)−M(N) < x} → F (x)

if and only if the series
∑

k≥0 µ
2
2;k converges.
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The most general known theorem concerning a central limit theorem is
again due to Manstavic̆ius [27]. Suppose that, as N →∞,

max
bqj<N

|f(bqj)| = o(B(N))

and that D(N)→∞, where

D(N)2 =
[logq N ]∑
k=0

σ2
k and σ2

k =
1
q

q−1∑
b=0

f(bqk)2 −m2
k.

Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x),

where Φ(x) is the normal distribution function.
Finally we turn to polynomial sequences and Bassily and Kátai [2].

Theorem 1.1. Let f be a q-additive function such that f(bqk) = O (1) as
k → ∞ for all b ∈ {0, 1, . . . , q − 1}. Assume D(N)

(logN)η → ∞ as N → ∞ for
some η > 0 and let P (n) be a polynomial with integer coefficients, degree r
and positive leading term. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x

}
→ Φ(x) (1.3)

and

1
π(N)

#
{
p ∈ P, p < N

∣∣∣∣f(P (p))−M(N r)
D(N r)

< x

}
→ Φ(x), (1.4)

where Φ(x) denotes the distribution function of the normal law.

Note that this theorem was only stated for η = 1
3 . However, a short

inspection of the proof shows that η > 0 is sufficient.

Corollary 1.1. Let P (n) be a polynomial with integer coefficients, degree r
and positive leading term. Then, as N →∞,

1
N

#

n < N

∣∣∣∣∣∣sq(P (n))− q−1
2 r logqN√

q2−1
12 r logqN

< x

→ Φ(x)

and
1

π(N)
#

p < N

∣∣∣∣∣∣sq(P (p))− q−1
2 r logqN√

q2−1
12 r logqN

< x

→ Φ(x)
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1.3 Bassily and Kátai’s proof

The main idea is to compare the moments of XN−EXN√
VarXN

and YNr−EYNr√
VarYNr

, where
XN and YN are defined by

Pr[XN ≤ x] =
1
N

#{n < N : f(P (n)) ≤ x},

Pr[YN ≤ x] =
1
N

#{n < N : f(n) ≤ x},

and to apply the Fréchet-Shohat theorem.
If we define random variables ξk,N by

Pr[ξk,N = b] =
1
N

#{n < N : εk(n) = b},

then
YN =

∑
k≥0

fk(ξk,N ),

i.e. YN is a weighted sum of ξk,N . For N = qj , we have Pr[ξk,qj = b] = 1
q

(if k < j) and (ξk,qj )0≤k<q is a chain of (identically distributed) independent
random variables. Hence Yqj is a sum of independent random variables.

For arbitrary N , we have Pr[ξk,N = b] = 1
q + O

(
qk

N

)
. Lemma 1.1 will

allow us to restrict to the truncated function

f
(N) =

B(N)∑
k=A(N)

fk(εk(n)) with A(N) = [(logN)η], B(N) = [logqN ]−[(logN)η]

for some η > 0. In the range A(N) ≤ k ≤ B(N), we have

Pr[ξk,N = b] =
1
q

+O
(
q−(logN)η

)
and, for an arbitrary number h of ki,

Pr[ξk1,N = b1, . . . , ξkh,N = bh] =
1
qh

+O
(
q−(logN)η

)
.

This means that Y N is a sum of asymptotically independent random vari-
ables.

Analogously to f (N), we define

M(N) =
B(N)∑
k=A(N)

µk, D(N)2 =
B(N)∑
k=A(N)

σ2
k and Y N =

B(N)∑
k=A(N)

fk(ξk,N ).

Because of fk(b) = O (1), we have

M(N)−M(N) = O ((logN)η) and D(N)2 −D(N)2 = O ((logN)η) .

With these definitions, we can state the following lemma.
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Lemma 1.1. Assume D(N)
(logN)η → ∞ for some η > 0 and let P (n) be a

polynomial with integer coefficients, degree r and positive leading term. Then
we have

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x

}
→ Φ(x)

for all x ∈ R if and only if

1
N

#

{
n < N

∣∣∣∣∣f
(Nr)(P (n))−M(N r)

D(N r)
< x

}
→ Φ(x)

for all x ∈ R.
Furthermore, if for all h ≥ 0

1
N

∑
n<N

(
f

(Nr)(P (n))−M(N r)
D(N r)

)h
→
∫ ∞
−∞

xh dΦ(x),

then we also have

1
N

∑
n<N

(
f(P (n))−M(N r)

D(N r)

)h
→
∫ ∞
−∞

xh dΦ(x)

and conversely.

Proof. From the condition stated for D(N), we get D(Nr)
D(Nr) → 1 and

max
n<N

∣∣∣∣∣(f(P (n))−M(N r))− (f (Nr)(P (n))−M(N r))
D(N r)

∣∣∣∣∣→ 0 (1.5)

as N →∞. Therefore we have, for fixed x ≥ 0,

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x

}
≤ 1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x(1 + δ)
}

≤ 1
N

#

{
n < N

∣∣∣∣∣f
(Nr)(P (n))−M(N r)

D(N r)
< x+ δx+ δ

}

and

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x

}
≥ 1
N

#

{
n < N

∣∣∣∣∣f
(Nr)(P (n))−M(N r)

D(N r)
< x− δx− δ

}
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for all δ > 0 and N ≥ N1 (for some N1). Since the limit function is contin-
uous, one direction of the equivalence is proved for x ≥ 0. The case x < 0
and the converse implication can be proved similarly.

Now suppose that X,Y are two random variables with |X − Y | ≤ κ ≤ 1
then

E |X|h ≤
h∑
l=0

(
h

l

)
E |Y |lκh−l

and conversely. Hence, if EY h exists for some even h then E |Y |l exist, too,
for all l ≤ h and consequently EXh ≤ EY h + O (κ). In the same way, we
get the converse inequality and we can obviously extend this property for
odd h.

In order to complete the proof of Lemma 1.1, we just have to apply this
observation to

X =
f(P (n))−M(N r)

D(N r)
and Y =

f
(Nr)(P (n))−M(N r)

D(N r)
.

We also use the fact |X−Y | ≤ κ→ 0 (cf. (1.5)) and the property D(Nr)
D(Nr) → 1.

Remark 1.1. Lemma 1.1 is stated for polynomial sequences of all integers
n < N . Clearly the corresponding statements for primes hold too.

Remark 1.2. Bassily and Kátai [2] used the approximation

max
n≤N

∣∣∣∣∣f(n)−M(N)
D(N)

− f
(N)(n)−M(N)

D(N)

∣∣∣∣∣→ 0

as N → ∞ (cf. (1.5)), but this is wrong in general and the sum-of-digits
function provides a counterexample. Lemma 1.1 corrects their proof.

Since the Y N are sums of asymptotically independent random variables,
they satisfy a central limit theorem with convergence of moments and the
variance is asymptotically VarY N ∼ D(N)2. Hence

Y N −M(N)
D(N)

→ N (0, 1)

and, for all h ≥ 0, (
Y N −M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x).

It remains to compare the moments of XN to those of Y Nr , where XN

is defined by

Pr[XN ≤ x] =
1
N

#
{
n < N : f (Nr)(P (n)) ≤ x

}
.
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We have

1
N

∑
n<N

(
f

(Nr)(P (n))−M(N r)
D(N r)

)h
=

1
N

∑
n<N

∑B(Nr)
k=A(Nr)

(
fk(εk(P (n)))− µk

)
D(N r)

h

=
1
N

∑
n<N

∑
A(Nr)≤k1,...,kh≤B(Nr)

h∏
j=1

fkj (εkj (P (n)))− µkj
D(N r)

=
h∏
j=1

B(Nr)∑
kj=A(Nr)

q−1∑
bj=0

fkj (bj)− µkj
D(N r)

1
N

#{n < N | εk1(P (n)) = b1, . . . , εkh(P (n)) = bh}.

For primes, we get similarly

1
π(N)

∑
p<N

(
f

(Nr)(P (p))−M(N r)
D(N r)

)h

=
h∏
j=1

B(Nr)∑
kj=A(Nr)

q−1∑
bj=0

fkj (bj)− µkj
D(N r)

1
π(N)

#{p < N : εk1(P (p)) = b1, . . . , εkh(P (p)) = bh}

and the moments of Y (N r) are

1
N r

∑
n<Nr

(
f

(N)(n)−M(N r)
D(N r)

)h

=
h∏
j=1

B(Nr)∑
kj=A(Nr)

q−1∑
bj=0

fkj (bj)− µkj
D(N r)

1
N r

#{n < N r : εk1(n) = b1, . . . , εkh(n) = bh}

The next proposition assures that these moments converge to the same
limit. This is the essential and most difficult part of the proof. Note that
it suffices to consider different kj , because for ki = kj and bi 6= bj obviously
the numbers are zero and for ki = kj , bi = bj just make h smaller.

Proposition 1.1. Let P (n) be a polynomial with integer coefficients, degree
r and positive leading term. Then, for every h ≥ 1 and for every λ > 0, we
have

1
N

#{n < N |εk1(P (n)) = b1, . . . , εkh(P (n)) = bh} =
1
qh

+O
(

(logN)−λ
)

(1.6)
and

1
π(N)

#{p < N |εk1(P (p)) = b1, . . . , εkh(P (p)) = bh} =
1
qh

+O
(

(logN)−λ
)

(1.7)
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uniformly for all integers

(logN)η ≤ k1 < k2 < · · · < kh ≤ logqN
r − (logN)η

and b1, b2, . . . , bh ∈ {0, 1, . . . , q − 1}.

The proof of Proposition 1.1 uses the next three lemmata. The first two
can be found in Hua [24].

Lemma 1.2. Let P (n) be a polynomial of degree r of the form

P (n) =
a

b
nr + γ1n

r−1 + · · ·+ γr

with gcd(a, b) = 1. Let τ be a positive number satisfying

τ ≥
(

2k + 1
)
τ0 + 23(k−2)

and
(logN)τ < b < N r(logN)−τ .

Then, as N →∞,

1
N

∑
n<N

e(P (n)) = O
(
(logN)−τ0

)
,

where e(x) = exp(2πix).

Lemma 1.3. Let P (n) be as in Lemma 1.2 and τ0, τ arbitrary positive
numbers satisfying

τ ≥ 26kτ0

and
(logN)τ < b < N r(logN)−τ .

Then, as N →∞,

1
π(N)

∑
p<N

e(P (p)) = O
(
(logN)−τ0

)
.

Lemma 1.4. Let 0 < ∆ < 1 and

Ub,q,∆ = [0,∆] ∪
q−1⋃
b=1

[
b

q
−∆,

b

q
+ ∆

]
∪ [1−∆, 1].

Then, for every η > 0 and arbitrary λ > 0, we have uniformly for
(logN)η ≤ k ≤ [logqN r]− (logN)η and 0 < ∆ < 1/(2q), as N →∞,

1
N

#
{
n < N

∣∣∣∣{P (n)
qk+1

}
∈ Ub,q,∆

}
� ∆ + (logN)−λ

and
1

π(N)
#
{
p < N

∣∣∣∣{P (p)
qk+1

}
∈ Ub,q,∆

}
� ∆ + (logN)−λ,

where {x} denotes the fractional part of x.
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Proof. We use the inequality of Erdős-Turán: The discrepancy of the real
numbers x1, . . . , xN mod 1

DN = sup

∣∣∣∣∣ 1
N

N∑
n=1

1[α,β]({xn})− (β − α)

∣∣∣∣∣ ,
where the supremum is taken over intervals [α, β] ⊆ [0, 1] and 1[α,β] is the
characteristic function of [α, β], can be estimated by

DN �
1
M

+
M∑
m=1

1
m

∣∣∣∣∣ 1
N

N∑
n=1

e(mxn)

∣∣∣∣∣ (1.8)

uniformly for all positive integers M (cf. [14], Theorem 1.21).
Ub,q,∆ is the union of q + 1 subintervals, its measure is 2q∆. Let

M = (logN)λ+1 and apply (1.8) to the sequences xn = P (n−1)
qk+1 for each

subinterval of Ub,q,∆. The conditions of Lemmata 1.2 and 1.3 clearly hold
for the polynomials hP (n)

qk+1 . This gives the stated inequalities.

Proof of Proposition 1.1. Let
∑

m∈Z cm,b,qe(mx) be the Fourier series of
1[ b

q
, b+1
q

], i.e.

c0,b,q =
1
q
, cm,b,q =

e
(
−mb

q

)
− e

(
−m(b+1)

q

)
2πim

for m 6= 0. (1.9)

Let ψb,q,∆(x) be defined by

ψb,q,∆(x) =
1
∆

∫ ∆/2

−∆/2
1[ b

q
, b+1
q

]({x+ z}) dz.

The Fourier coefficients of ψb,q,∆(x) are d0,b,q,∆ = 1
q and

dm,b,q,∆ =
e
(
−mb

q

)
− e

(
−m(b+1)

q

)
2πim

e
(
m∆

2

)
− e

(
−m∆

2

)
2πim∆

.

for m 6= 0. Note that dm,b,q,∆ = 0 if m 6= 0 and m ≡ 0 mod q and that

|dm,b,q,∆| ≤ min
(

1
π|m|

,
1

∆πm2

)
. (1.10)

By definition, we have 0 ≤ ψb,q,∆(x) ≤ 1 and

ψb,q,∆(x) =

 1 if x ∈
[
b
q + ∆, b+1

q −∆
]
,

0 if x ∈ [0, 1] \
[
b
q −∆, b+1

q + ∆
]
.
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If we set

t(x) = ψb1,q,∆

(
x

qk1+1

)
· · ·ψbh,q,∆

(
x

qkh+1

)
,

then we get for ∆ < 1/(2q)∣∣∣∣∣#{n < N |εk1(P (n)) = b1, . . . , εkh(P (n)) = bh} −
∑
n<N

t(P (n))

∣∣∣∣∣ ≤
≤

h∑
j=1

#
{
n < N

∣∣∣∣{P (n)
qkj+1

}
∈ Ubj ,q,∆

}
� ∆N +N(logN)−λ

For convenience, denote by M the set of integer vec-
tors m = (m1, . . . ,mh) and set v =

(
q−k1−1, . . . , q−kh−1

)
,

Tm = dm1,b1,q,∆ · · · dmh,bh,q,∆. Then t(x) has Fourier series expansion

t(x) =
∑

m∈M
Tme(m · vx)

and ∑
n<N

t(P (n)) =
∑

m∈M
Tm

∑
n≤N

e

(
Am

Hm
P (n)

)
.

We check that Lemma 1.2 can be applied to the polynomials Am
Hm

P (n):
We can omit those m for which there is a j such that q|mj , mj 6= 0, since
dmj ,bj ,q,∆ = 0 implies Tm = 0. Let q = pe11 · · · pess and assume pett 6 |mh. Then
we have pkhett |Hm because of

Hm(mh + qkh−kh−1mh−1 + · · ·+mkh−k1
1 ) = Amq

kh+1.

Thus there exists an κ > 0 depending only on q, such that Hm ≥ qκkh . We
can prove similarly Hm ≥ qκks if q 6 |ms and ms+1 = · · · = mh = 0.

Hence Lemma 1.2 can be applied if m 6= 0 and we obtain

1
N

#{n < N |εk1(P (n)) = b1, . . . , εkh(P (n)) = bh}

=
1
qh

+O

(logN)−τ0
∑
m6=0

|Tm|

+O
(

∆ + (logN)−λ
)

The main term 1/qh comes from the choice m = 0. From (1.10), we obtain

∑
m6=0

|Tm| ≤

(
1
q

+ 2
∞∑
m=1

min
(

1
πm

,
1

π∆m2

))h
�
(

log
1
∆

)h
.

Let ∆ = (logN)−λ and τ0 > λ. Then (1.6) follows immediately from the
above relation and Lemma 1.4. (1.7) can be shown by the same arguments
with Lemma 1.3 instead of Lemma 1.2.
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Thus we have proved

1
N

∑
n<N

(
f(P (n))−M(N r)

D(N r)

)h
→
∫ ∞
−∞

xh dΦ(x)

and
1

π(N)

∑
p<N

(
f(P (p))−M(N r)

D(N r)

)h
→
∫ ∞
−∞

xh dΦ(x)

for all h ≥ 0. The Fréchet-Shohat theorem (see e.g. Billingsley [3], p. 390)
implies (1.3) and (1.4).

16



Chapter 2

Joint Distributions

In this chapter, we generalise Theorem 1.1 to the joint distribution of dif-
ferent polynomials and different q-additive functions with possibly different
q.

We are able to prove a central limit theorem for sequences f`(P`(n))
(and f`(P`(p)) respectively), where f` are q`-additive functions, if all P`(n)
have different degrees (Theorem 2.1, Section 2.1), if all q` are equal and
the f` are strongly q-additive functions (Theorem 2.2, Section 2.2) and for
two sequences, if q1 and q2 are multiplicatively independent (Theorem 2.3,
Section 2.3).

2.1 Polynomials of different degrees

First we prove the following theorem due to Drmota [11].

Theorem 2.1. Let f`, 1 ≤ ` ≤ d, be q`-additive functions such that
f`(bqk` ) = O (1) as k → ∞ for all b ∈ {0, . . . , q` − 1}. Assume that
D`(N)

(logN)η → ∞ as N → ∞ for some η > 0. Let P`(n) be polynomials of dif-
ferent degrees r` with integer coefficients and positive leading terms. Then,
as N →∞,

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2, . . . , d
}
→ Φ(x1) . . .Φ(xd)

and

1
π(N)

#
{
p < N

∣∣∣∣f`(P`(p))−M`(N r`)
D`(N r`)

< x`, ` = 1, . . . , d
}
→ Φ(x1) . . .Φ(xd)

Remark 2.1. Drmota stated this theorem for pairwise coprime q` but did
not use this assumption in the proof. Thus it is not necessary.

As already mentioned, Theorem 2.1 is a direct generalisation of Bassily
and Kátai [2]. It turns out that it suffices to prove the following lemma,
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which states the asymptotic independence of all digits. Then the indepen-
dence of the distributions is an easy corollary.

Proposition 2.1 (cf. Proposition 1.1). Let P`(n), 1 ≤ ` ≤ d, be poly-
nomials of different degrees r` with integer coefficients and positive leading
terms. Let λ > 0 be an arbitrary constant and h`, 1 ≤ ` ≤ d, non-negative
integers. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

1

qh1
1 qh2

2 · · · q
hd
d

+O
(

(logN)−λ
)

(2.1)

and

1
π(N)

#
{
p < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

1

qh1
1 qh2

2 · · · q
hd
d

+O
(

(logN)−λ
)

(2.2)

uniformly for integers

(logN r`)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h`
≤ logq` N

r` − (logN r`)η (1 ≤ ` ≤ d)

(with some η > 0) and b(`)j ∈ {0, 1, . . . , q` − 1}.

Proof. We follow the proof of Lemma 1.1 and point out only the differences.
Set

t(n1, . . . , nd) =
d∏
`=1

h∏̀
j=1

ψ
b
(`)
j ,q`,∆

 n`

q
k

(`)
j +1

`

 .

Then we get, for ∆ < 1/(2q),∣∣∣∣∣#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j for all j, `

}
−
∑
n<N

t(P1(n), . . . , Pd(n))

∣∣∣∣∣
≤

d∑
`=1

h∑̀
j=1

#

n < N

∣∣∣∣∣∣
 P`(n)

q
k

(`)
j +1

`

 ∈ Ub(`)j ,q`,∆

� ∆N +N(logN)−λ

Set h = (h1 + · · · + hd) and denote by M the set of h-dimensional
integer vectors M = (m1, . . . ,md) with m` = (m(`)

1 , . . . ,m
(`)
h`

), 1 ≤ ` ≤ d.
Furthermore, set

TM =
d∏
`=1

h∏̀
j=1

d
m

(`)
j ,b

(`)
j ,q`,∆

.
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With v` = (q−k
(`)
1 −1

` , . . . , q
−k(`)

h`
−1

` ), t(x1, . . . , xd) has Fourier series expansion

t(x1, . . . , xd) =
∑

M∈M
TMe (m1 · v1x1 + · · ·+ md · vdxd) .

Thus we are led to consider the exponential sums∑
M∈M

TM

∑
n<N

e (m1 · v1P1(n) + · · ·+ md · vdPd(n)) .

m1 = · · · = md = 0 provides the leading term 1/(qh1
1 · · · q

hd
d ). If there

exists ` and j with m
(`)
j 6= 0 and m

(`)
j ≡ 0 mod q`, then TM = 0. So it

remains to consider the case where there exists ` and j with m(`)
j 6≡ 0 mod q`.

Here the exponent is of the form

m1 · v1P1(n) + · · ·+ md · vdPd(n) =
Am1

Hm1

P1(n) + · · ·+ Amd

Hmd

Pd(n),

with at least one Am`
6= 0. Let P`(n) be the (unique) polynomial with

maximal degree r` such that Am`
6= 0. Then

m1 · v1P1(n) + · · ·+ md · vdPd(n) =
Am`

Hm`

P`(n) + γ1n
r`−1 + · · ·+ γr` .

By the same arguments as in Lemma 1.1, we can therefore apply Lemma 1.2
and obtain

1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P (n)) = b
(`)
j , 0 ≤ j ≤ h`, 1 ≤ ` ≤ d

}

=
1

qh1
1 qh2

2 · · · q
hd
d

+O

(logN)−τ0
∑

M∈M\0

|TM|

+O
(

∆ + (logN)−λ
)
.

With ∑
M∈M\0

|TM| ≤ (2 + 2 log(1/∆))h1+···+hd ,

(2.1) is proved.
The proof of (2.2) runs along the same lines.

Corollary 2.1. With the definitions of Proposition 2.1, as N →∞,

1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

d∏
`=1

(
1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`

})
+O

(
(logN)−λ

)
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and

1
π(N)

#
{
p < N

∣∣∣∣εq`,k(`)
j

(P`(p)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

d∏
`=1

(
1

π(N)
#
{
p < N

∣∣∣∣εq`,k(`)
j

(P`(p)) = b
(`)
j , 1 ≤ j ≤ h`

})
+O

(
(logN)−λ

)
uniformly for integers

(logN r`)η ≤ k(`)
1 , k

(`)
2 , . . . , k

(`)
h`
≤ logq` N

r` − (logN r`)η (1 ≤ ` ≤ d)

(with some η > 0) and b(`)j ∈ {0, 1, . . . , q` − 1}.

Proof. If there exists ` and j1, j2 with k
(`)
j1

= k
(`)
j2

but b(`)j1 6= b
(`)
j2

then both
sides are zero.

So it remains to consider the case, where for every ` the integers k(`)
j ,

1 ≤ j ≤ h`, are different and without loss of generality we can assume that
they are increasing. Hence we can directly apply Proposition 2.1.

Corollary 2.2. For any choice of non-negative integers h`, 1 ≤ ` ≤ d, we
have, as N →∞,

1
N

∑
n<N

d∏
`=1

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`

−
d∏
`=1

 1
N

∑
n<N

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`→ 0

and

1
π(N)

∑
p<N

d∏
`=1

(
f

(Nr` )
` (P`(p))−M `(N r`)

D`(N r`)

)h`

−
d∏
`=1

 1
π(N)

∑
p<N

(
f

(Nr` )
` (P`(p))−M `(N r`)

D`(N r`)

)h`→ 0.
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Proof. We have

1
N

∑
n<N

d∏
`=1

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`
=

∑
A1(Nr1 )≤k(1)

1 ,...,k
(1)
h1
≤B1(Nr1 )

· · ·
∑

Ad(Nrd )≤k(d)
1 ,...,k

(d)
hd
≤Bd(Nrd )

1
N

∑
n<N

d∏
`=1

h∏̀
j=1

f
`,k

(`)
j

(
ε
q`,k

(`)
j

(P (n))
)
− µ

`,k
(`)
j

D`(N r`)

=
∑

A1(Nr1 )≤k(1)
1 ,...,k

(1)
h1
≤B1(Nr1 )

· · ·
∑

Ad(Nrd )≤k(d)
1 ,...,k

(d)
hd
≤Bd(Nrd )

q1−1∑
b
(1)
1 =0

· · ·
qd−1∑
b
(d)
hd

=0

1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j for all j, `

} d∏
`=1

h∏̀
j=1

f
`,k

(`)
j

(b(`)j )− µ
`,k

(`)
j

D`(N r`)

and
d∏
`=1

 1
N

∑
n<N

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`

=
d∏
`=1

 ∑
A`(N

r` )≤k(`)
1 ,...,k

(`)
h`
≤B`(Nr` )

1
N

∑
n<N

h∏̀
j=1

f
`,k

(`)
j

(
ε
q`,k

(`)
j

(P (n))
)
− µ

`,k
(`)
j

D`(N r`)


=

∑
A1(Nr1 )≤k(1)

1 ,...,k
(1)
h1
≤B1(Nr1 )

· · ·
∑

Ad(Nrd )≤k(d)
1 ,...,k

(d)
hd
≤Bd(Nrd )

q1−1∑
b
(1)
1 =0

· · ·
qd−1∑
b
(d)
hd

=0

d∏
`=1

 1
N

#
{
n < N

∣∣∣∣εq`,k(`)
j

(P`(n)) = b
(`)
j for all j

} h∏̀
j=1

f
`,k

(`)
j

(b(`)j )− µ
`,k

(`)
j

D`(N r`)


By Corollary 2.1, the two terms are equal up to an error term of the form
O
(
(logN)−λ+h−hη). The result for primes is obtained analogously.

By combining Theorem 1.1, Lemma 1.1 and Corollary 2.2, we obtain

1
N

∑
n<N

d∏
`=1

(
f`(P`(n))−M`(N r`)

D`(N r`)

)h`
→
∫
xh1

1 . . . xhdd dΦ(x1) . . . dΦ(xd),

1
π(N)

∑
p<N

d∏
`=1

(
f`(P`(p))−M`(N r`)

D`(N r`)

)h`
→
∫
xh1

1 . . . xhdd dΦ(x1) . . . dΦ(xd)

and the Fréchet-Shohat theorem implies the statements of Theorem 2.1.
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2.2 Strongly q-additive functions with the same q

The next theorem is a generalisation of Theorem 1.1 for the case
q1 = . . . = qd = q for polynomials of not necessarily different degrees. If
the degrees of the polynomials are not different, we do not have asymptotic
independence of all digits as in Corollary 2.1, but we can show that random
vectors which represent the digits form a Markov chain (Subsection 2.2.2).
Hence we obtain a central limit theorem for these random vectors and a com-
parison of the moments (Subsection 2.2.3) gives the central limit theorem
for f`(P`(n)). For simplicity, we restrict to strongly q-additive functions.

2.2.1 Results

Theorem 2.2. Let f`, 1 ≤ ` ≤ d, be strongly q-additive functions with

σ2
` =

q−1∑
b=1

f`(b)
2

q −
(
q−1∑
b=1

f`(b)
q

)2

> 0 and P`(n) = g
(`)
r` n

r` + · · ·+ g
(`)
1 n+ g

(`)
0

polynomials with integer coefficients and positive leading terms. Then, as
N →∞,

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x`, ` = 1, . . . , d
}
→ ΦV (x1, . . . , xd)

(2.3)
and

1
π(N)

#
{
p < N

∣∣∣∣f`(P`(p))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2, . . . , d
}
→ ΦV (x1, . . . , xd)

(2.4)
where ΦV (x1, . . . , xd) denotes the distribution function of the d-dimensional
normal law with covariance matrix V = (vi,j)1≤i,j≤d given by

vi,j =



1 if i = j

Ci,j

(
g

(i)
ri

(g
(i)
ri
,g

(j)
rj

)
,

g
(j)
rj

(g
(i)
ri
,g

(j)
rj

)

)
if g(j)

rj Pi(n) ≡ g(i)
ri Pj(n)

ri−max
{
s
∣∣∣g(i)
ri
g

(j)
s 6=g

(j)
rj
g

(i)
s

}
ri

Ci,j

(
g

(i)
ri

(g
(i)
ri
,g

(j)
rj

)
,

g
(j)
rj

(g
(i)
ri
,g

(j)
rj

)

)
if ri = rj

0 else,

where

Ci,j(gi, gj) =
1

σiσj

Rj−1∑
l=0

q−1∑
bi=1

q−1∑
bj=1

(
πbi,bj ,giql,gj −

1
q2

)
fi(bi)fj(bj)

+
1

σiσj

Ri−1∑
l=1

q−1∑
bi=1

q−1∑
bj=1

(
πbi,bj ,gi,gjql −

1
q2

)
fi(bi)fj(bj)
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with R` such that q| qR`

(qR` ,g
(`)
r`

)
and

πbi,bj ,giql,gj = πbi,bj ,g,g′ =
1
q2
−

(
(bi + 1)g′ − big′

)(
(bj + 1)g − bjg

)
gg′q2

+
min

(
big′, bjg

)
+ min

(
(bi + 1)g′, (bj + 1)g

)
−min

(
(bi + 1)g′, bjg

)
−min

(
big′, bjg

)
gg′q

where g = giq
l

(ql,gj)
, g′ = gj

(ql,gj)
and y denotes the representative y′ of y′ ≡ y (q)

with 0 ≤ y′ < q. (πbi,bj ,gi,gjql is given symmetrically.)

Remark 2.2. If V is positive definite, we have, with t = (t1, . . . , td),

ΦV (x1, . . . , xd) =
1

(2π)d/2
√

detV

∫ xd

−∞
. . .

∫ x1

−∞
e−

1
2
tV −1ttdt1 . . . dtd.

Remark 2.3. If g(`)
r` is coprime to q, then we have R` = 1.

l ≥ Rj implies πbi,bj ,giql,gj = 1
q2 for all bi, bj .

The πbi,bj ,giql,gj are the joint probabilities of digits k+ l and k of gin and
gjn (which do not depend on k):

πbi,bj ,giql,gj = Pr[εk(giqln) = bi, εk(gj) = bj ] = Pr[εk+l(gin) = bi, εk(gj) = bj ].

Note that we need Ci,j(gi, gj) only for coprime gi, gj .

Remark 2.4. As in all other theorems, the constant term of the polynomials
plays no role.

Corollary 2.3. Let P`(n) = g
(`)
r` n

r` + · · ·+ g
(`)
1 n+ g

(`)
0 be polynomials with

integer coefficients and positive leading terms. Then, as N →∞,

1
N

#

n < N

∣∣∣∣∣∣sq(P`(n))− q−1
2 logqN r`√

q2−1
12 logqN r`

< x`, ` = 1, . . . , d


→ 1

(2π)d/2
√

detV

∫ xd

−∞
. . .

∫ x1

−∞
e−

1
2
tV −1ttdt1 . . . dtd

with the positive definite matrix V = (vi,j)1≤i,j≤d given by

vi,j =



1 if i = j

Ci,j

(
g

(i)
ri

(g
(i)
ri
,g

(j)
rj

)
,

g
(j)
rj

(g
(i)
ri
,g

(j)
rj

)

)
if g(j)

rj Pi(n) ≡ g(i)
ri Pj(n)

ri−max
{
s
∣∣∣g(i)
ri
g

(j)
s 6=g

(j)
rj
g

(i)
s

}
ri

Ci,j

(
g

(i)
ri

(g
(i)
ri
,g

(j)
rj

)
,

g
(j)
rj

(g
(i)
ri
,g

(j)
rj

)

)
if ri = rj

0 else,

23



and

Ci,j(gi, gj) =
q2 − (q, gi)2 − (q, gj)2 + 1

gigj(q2 − 1)

+
1

gigj(q2 − 1)

Rj−1∑
l=1

q2 −
(
q, giq

l

(ql,gj)

)
ql

+
Ri−1∑
l=1

q2 −
(
q,

gjq
l

(gi,ql)

)
ql


Remark 2.5. For monomials P`(n) = g`n

r with (g`, q) = 1 we just have

vi,j =
(gi, gj)2

gigj
.

For q = 2 and r = 1, this was proved by W.M. Schmidt [35]. Schmid [33]
obtained a local limit law in this case.

Furthermore, we can calculate the joint distribution of the sum-of-digits
functions for multiplicatively dependent q1, q2.

Corollary 2.4. For q1 = q̃s1 , q2 = q̃s2 with positive integers q̃, s1, s2 and
(s1, s2) = 1, we have, as N →∞,

1
N

#

n < N

∣∣∣∣∣∣sq1(n)− q1−1
2 logq1 N√

q2
1−1
12 logq1 N

< x1,
sq2(n)− q2−1

2 logq2 N√
q2
2−1
12 logq2 N

< x2


→ 1

2π
√

1− C2

∫ x2

−∞

∫ x1

−∞
e
− 1

2(1−C2)
(t21+t22−2Ct1t2)

dt1dt2

with

C =
q̃ + 1
q̃ − 1

√
(q1 − 1)(q2 − 1)

s1s2(q1 + 1)(q2 + 1)
.

For general strongly q`-additive functions similar statements can easily
be derived. The case of multiplicatively independent q1, q2 is treated in
Section 2.3.

2.2.2 A Markov chain and calculation of the covariance

We define the polynomials

P
(s)
` (n) = g(`)

r`
nr` + · · ·+ g(`)

s ns for 1 ≤ s ≤ r = max
1≤`≤d

r`,

which will be needed in the next subsection. In this subsection we fix s.
Furthermore, we define the vectors

w(s)
k (n) = (wk,s, . . . , wk,r) =

({
ns

qk+1

}
,

{
ns+1

qk+1

}
, . . . ,

{
nr

qk+1

})
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for 0 ≤ n < N and see, by Proposition 2.1, that they asymptotically
form a net to the base q if k ∈

[
(logN)η, logqN s − (logN)η

]
(but not for

k > logqN s). Proposition 2.1 gives rather bad error terms if we want to

calculate the number of w(s)
k (n) in an arbitrary set of Tr−s+1. Nevertheless

this will give reason to use the Lebesgue measure as probability measure on
T
r−s+1.

We have εk(P
(s)
` (n)) = b if and only if{
g(l)
r`
wk,r` + · · ·+ g(l)

s wk,s

}
∈
[
b

q
,
b+ 1
q

)
.

This means that, for each digit b, {w(s)
k (n) | εk(P

(s)
` (n)) = b} (as a

set of Tr−s+1) is contained in the stripe S
(s)
b,` between the hyperplanes

g
(`)
r` xr` + · · ·+ g

(`)
s xs = b

q (included) and g
(`)
r` xr` + · · ·+ g

(`)
s xs = b+1

q (ex-

cluded). If P (s)
` (n) = 0, set S(s)

0,` = T
r−s+1 and S

(s)
b,` = ∅ for b 6= 0.

Thus each set {w(s)
k (n) | εk(P

(s)
1 (n)) = b1, . . . , ε

(s)
k (P1(n)) = bd} is con-

tained in S
(s)
b1,1
∩ · · · ∩ S(s)

bd,d
and each of this intersections consists of a finite

number of convex sets, the boundaries of which are the above hyperplanes.
Let (W (s)

j )1≤j≤κs be the partition of Tr induced by these sets (or equivalently
by the hyperplanes). Then f`|W (s)

j

is constant for all `, j.

Furthermore, we have εk−j(P
(s)
` (n)) = b if and only if T j(w(s)

k (n)) ∈ S(s)
b,`

with the map T : Tr → T
r, T (wk,s, . . . , wk,r) = (qwk,s, . . . , qwk,r). Hence{

n
∣∣∣ε0(P (s)

` (n)) = b
(`)
0 , . . . , εk(P

(s)
` (n)) = b

(`)
k

}
=
{
n

∣∣∣∣w(s)
k (n) ∈ T−kS(s)

b
(`)
0 ,`

, . . . ,w(s)
k (n) ∈ S(s)

b
(`)
k ,`

}
and we define a sequence of random variables (Y (s)

k )k≥0 on
{W (s)

1 ,W
(s)
2 , . . . ,W

(s)
κs } by

Pr[Y (s)
0 = W

(s)
j0
, . . . , Y

(s)
k = W

(s)
jk

] = λr−s+1(T−kW (s)
j0
∩. . . T−1W

(s)
jk−1
∩W (s)

jk
)

for 1 ≤ ji ≤ κs, 0 ≤ i ≤ k. (λn denotes the n-dimensional Lebesgue
measure.)

Lemma 2.1.
(
Y

(s)
k

)
k≥0

is a Markov chain.

Proof. It is easy to see that T |
W

(s)
j

is injective for 1 ≤ j ≤ κs and that

TW
(s)
j is the (disjoint) union of sets W (s)

i , since the image of the hyperplane
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g
(`)
r` xr` + · · ·+ g

(`)
s xs = b

q is the hyperplane g(`)
r` xr` + · · ·+ g

(`)
s xs = 0. Hence

we have

Pr[Y (s)
0 = W

(s)
j0
, . . . , Y

(s)
k+1 = W

(s)
jk+1

] = λr−s+1(T−(k+1)W
(s)
j0
∩ · · · ∩W (s)

jk+1
)

=
1

qr−s+1
λr−s+1(T−kW (s)

j0
∩ · · · ∩W (s)

jk
∩ TW (s)

jk+1
)

=

{
1

qr−s+1λr−s+1(T−kW (s)
j0
∩ · · · ∩W (s)

jk
) if W (s)

jk
⊆ TW (s)

jk+1

0 else.

Thus

Pr[Y (s)
k+1 = W

(s)
jk+1
|Y (s)

0 = W
(s)
j0
, . . . , Y

(s)
k = W

(s)
jk

]

=

{
1
qr if W (s)

jk
⊆ TW (s)

jk+1

0 else
= Pr[Y (s)

k+1 = W
(s)
jk+1
|Y (s)
k = W

(s)
jk

],

i.e. the Markov chain property is fulfilled.

As already noted, each f` is constant on each W
(s)
j because of

W
(s)
j ⊆ S(s)

b1,1
∩ · · · ∩ Sbd,d for some bi. Therefore we define the d-dimensional

function f on (W (s)
j )1≤j≤κs by

f(W (s)
j ) =

(
f1(W (s)

j ), . . . , fd(W
(s)
j )
)

= (f1(b1), . . . , fd(bd)).

Before stating a central limit theorem for f(Y (s)
k ), we study the covari-

ance Cov(fi(Y
(s)
ki

), fj(Y
(s)
kj

)). To this effect, the following lemma, which will
be proved together with Proposition 2.3, will be very useful. Note that
Y

(s)
k ⊆ S(s)

b,` is equivalent to f`(Y
(s)
k ) = b.

Lemma 2.2.

Pr[Y (s)
ki
⊆ S(s)

bi,i
, Y

(s)
kj
⊆ S(s)

bj ,j
] =

∑
mi,mj :

miP
(s)
i

(n)

qki
+
mjP

(s)
j

(n)

q
kj

≡0

cmi,bi,qcmj ,bj ,q,

(2.5)
where cmi,bi,q are the Fourier coefficients in (1.9).

By Lemma 2.2, we have

Pr[Y (s)
ki
⊆ S(s)

bi,i
, Y

(s)
kj
⊆ S(s)

bj ,j
] = c0,bi,qc0,bj ,q = Pr[Y (s)

ki
⊆ S(s)

bi,i
]Pr[Y (s)

kj
⊆ S(s)

bj ,j
],

if the polynomials do not have the same degree or are not proportional and
Cov(fi(Y

(s)
ki

), fj(Y
(s)
kj

)) = 0.
Now assume ri = rj and that the polynomials are proportional. Fur-

thermore, let w.l.o.g. ki ≥ kj . Then the mi in (2.5) must satisfy
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mig
(i)
r ≡ 0 (qki−kj ), i.e. mi ≡ 0

(
qki−kj

(qki−kj ,g
(i)
r )

)
. If ki − kj ≥ Ri, this implies

mi ≡ 0 (q). Hence cmi,bi,qcmj ,bj ,q = 0 for (mi,mj) 6= (0, 0) and

Cov
(
fi(Y

(s)
ki

), fj(Y
(s)
kj

)
)

= 0 if ki − kj ≥ Ri or kj − ki ≥ Rj .

(For kj ≥ ki, we get the result by the symmetry of the covariance.)
Since the chain (Y (s)

k )k≥0 is homogeneous, we obtain

Cov

 B(N)∑
k=A(N)

fi(Y
(s)
k ),

B(N)∑
k=A(N)

fj(Y
(s)
k )


=

B(N)∑
k=A(N)

min(Rj−1,B(N)−k)∑
l=max(−Ri+1,A(N)−k)

Cov
(
fi(Y

(s)
k ), fj(Y

(s)
k+l)

)

= (B(N)−A(N))
Rj−1∑

l=−Ri+1

Cov
(
fi(Y

(s)
k ), fj(Y

(s)
k+l)

)
+O (1) .

Now we can state the central limit theorem.

Proposition 2.2. The sums of the random variables f(Y (s)
k ) satisfy a mul-

tidimensional central limit theorem with convergence of moments. More
precisely, we have, for all a = (a1, . . . , ad) ∈ Rd, as N →∞,∑B(N)

k=A(N)

∑d
`=1 a`f`(Y

(s)
k )−

∑d
`=1 a`M `(N)

σ`
√
B(N)−A(N)

→ N
(

0,aV (s)at
)
, (2.6)

where the covariance matrix V (s) =
(
v

(s)
i,j

)
1≤i,j≤d

is given by

v
(s)
i,j =

1
σiσj

Rj−1∑
l=−Ri+1

Cov
(
fi(Y

(s)
k ), fj(Y

(s)
k+l)

)
and for all integers h` ≥ 0 we have

E
d∏
`=1

∑B(N)
k=A(N) f`(Y

(s)
k )−M `(N)

D`(N)

h`

→
∫
xh1

1 · · ·x
hd
d dΦV (s)(x1, . . . , xd).

(2.7)
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Proof. We have

Var
d∑
`=1

B(N)∑
k=A(N)

a`f`(Y
(s)
k ) =

d∑
i=1

d∑
j=1

Cov

 B(N)∑
k=A(N)

aifi(Y
(s)
k ),

B(N)∑
k=A(N)

ajfj(Y
(s)
k )


= (B(N)−A(N))

d∑
i=1

d∑
j=1

aiaj

Rj−1∑
l=−Ri+1

Cov
(
fi(Y

(s)
k ), fj(Y

(s)
k+l)

)
+O (1)

= (B(N)−A(N))σiσjaV (s)at +O (1) .

If aV (s)at = 0, then we have
∑d

`=1

∑B(N)
k=A(N) a`f`(Y

(s)
k ) = O (1) and both

sides in (2.6) are zero.
Otherwise we use the central limit theorem for stationary and homoge-

neous Markov chains or ϕ-mixing sequences (see e.g. Billingsley [3], p. 364).
We need that all states are recurrent and aperiodic. For Y (s)

k , this condition
is satisfied, since we clearly have an integer E such that TEW (s)

j = T
r−s+1

for all W (s)
j and hence Pr[Y (s)

k+l = W
(s)
jk+l
|Y (s)
k = W

(s)
jk

] > 0 for all l ≥ E.

This implies that Xk =
∑d

`=1 a`f`(Y
(s)
k ) is ϕ-mixing too and the central

limit theorem holds for Xk. (Note that Xk need not be a Markov chain, if∑d
`=1 a`f` is not injective.)
For the convergence of moments it suffices to show that they exist. The

onedimensional moments E
(∑B(N)

k=A(N)
f`(Y

(s)
k )−M`(N)

D`(N)

)h`
are just the mo-

ments of f (N)
` (n) (cf. Section 1.3) and converge therefore. With the re-

lation E
∣∣∣Xr

NX̃
s
N

∣∣∣ ≤ (EX2r
N

) 1
2

(
E X̃2s

N

) 1
2 for all random variables XN , X̃N ,

we obtain the convergence of the multidimensional moments.

For the calculation of Cov(fi(Y
(s)
k ), fj(Y

(s)
j )), it suffices to consider

Yk = Y
(1)
k and linear polynomials because of Lemma 2.2 and the succeeding

remarks. For the sum-of-digits function, we get explicit expressions.

Lemma 2.3. Let P1(n) = g1n, P2(n) = g2n and f1(n) = f2(n) the sum-of-
digits function. Then the covariance of f1(Yk) and f2(Yk) is given by

Cov(f1(Yk), f2(Yk)) =
(q2 − d2

1 − d2
2 + 1)(g1, g2)2

12g1g2
(2.8)

where d1 =
(
q, g1

(g1,g2)

)
and d2 =

(
q, g2

(g1,g2)

)
.

Proof. Because of Lemma 2.2, the digit probability does not change if we
replace g1, g2 by g1

(g1,g2) ,
g2

(g1,g2) . Therefore we assume (g1, g2) = 1.
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The covariance is given by

Cov(f1(Yk), f2(Yk))

=
q−1∑
b1=0

q−1∑
b2=0

Pr[εk(g1n) = b1, εk(g2n) = b2]b1b2 −E f1(Yk)E f2(Yk). (2.9)

In order to get integer numbers, we define

ab1,b2 = qg1g2Pr[εk(g1n) = b1, εk(g2n) = b2]

= #
{
x ∈ {0, 1, . . . , qg1g2 − 1}

∣∣∣∣[ xg2

]
≡ b1 (q),

[
x

g1

]
≡ b2 (q)

}
.

Because of

q−1∑
b1=0

q−1∑
b2=0

ab1,b2b1b2 =
q−1∑
i=1

q−1∑
b1=q−i

q−1∑
j=1

q−1∑
b2=q−j

ab1,b2

we study Ai,j =
∑q−1

b1=q−i
∑q−1

b2=q−j ab1,b2 .
For every x in the set corresponding to ab1,b2 , (qg1g2−1−x) is in the set

corresponding to aq−1−b1,q−1−b2 . Therefore we have ab1,b2 = aq−1−b1,q−1−b2
and

Ai,j =
i−1∑
b1=0

j−1∑
b2=0

ab1,b2

= #{x ∈ {0, . . . , qg1g2−1} | x ≡ 0, . . . , ig2−1(qg2), x ≡ 0, . . . , jg1−1(qg1)}

Since (qg1, qg2) = q, the system of congruences x ≡ x1 (qg2) and
x ≡ x2 (qg1) has no solution x if x1 6≡ x2 (q) and a unique solution mod-
ulo qg1g2 for x1 ≡ x2 (q). Denote by y(q) the representative y′ of y′ ≡ y (q)
with 0 ≤ y′ < q. Then

Ai,j = ig2
jg1 − jg1

(q)

q
+ jg1

(q) ig2 − ig2
(q)

q
+ min(ig2

(q)
, jg1

(q))

=
ig2jg1

q
− ig2

(q)
jg1

(q)

q
+ min(ig2

(q)
, jg1

(q)).

Hence

q−1∑
i=1

q−1∑
j=1

Ai,j =
q(q − 1)2

4
g1g2−

q(q − d1)(q − d2)
4

+d1d2

q′′−1∑
i=1

q′−1∑
j=1

min(id2, jd1),
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where q′ = q/d1 and q′′ = q/d2. We have

q′′−1∑
i=1

q′−1∑
j=1

min(id2, jd1)

=
q′′−1∑
i=1

id2

(
q′ − 1−

[
id2

d1

])
+
q′−1∑
j=1

jd1

(
q′′ − 1−

[
jd1

d2

])
+

q′′
d1
−1∑

i=1

id1d2

and

q′′−1∑
i=1

i

(
q′ − 1−

[
id2

d1

])
= (q′ − 1)

q′′−1∑
i=1

i− d2

d1

q′′−1∑
i=1

i2 − 1
d1

q′′−1∑
i=1

id2
(d1)

i

=
(q′ − 1)(q′′ − 1)q′′

2
− q′(q′′ − 1)(2q′′ − 1)

6
+

1
d1

q′′
d1
−1∑

j=0

d1−1∑
i=1

(jd1 + i)id2
(d1)

=
q′(q′′2 − 1)

6
+
q′′

4

(
−q′′ − q′′

d1
− d1 + 3

)
+
q′′

d2
1

d1−1∑
i=1

id2
(d1)

i.

With

d2

d1

d1−1∑
i=1

id2
(d1)

i =
d2

d1

d1−1∑
i=1

d2i
2 −

[
2d1
d2

]∑
i=
[
d1
d2

]
+1

d1i− · · · −
d1−1∑

i=
[

(d2−1)d1
d2

]
+1

(d2 − 1)d1i



=d2

d1−1∑
i=1

d2

d1
i2 − (d2 − 1)

d1−1∑
i=1

i+

[
(d2−1)d1

d2

]∑
i=1

i+ · · ·+

[
d1
d2

]∑
i=1

i


=
d2

2(d1 − 1)(2d1 − 1)
6

− d2(d2 − 1)(d1 − 1)d1

2

+
d2−1∑
j=1

(jd1 − jd1
(d2) + d2)(jd1 − jd1

(d2))
2d2

=
d2(d1 − 1)(3d1 − d1d2 − d2)

6
+

(d2
1 + 1)(d2 − 1)(2d2 − 1)

12

+
(d1 − 1)(d2 − 1)d2

4
− d1

d2

d2−1∑
j=1

jd1
(d2)

j

=
d2

1 + d2
2 + 1

12
+
d2

1d2 + d1d
2
2 − 3d1d2

4
− d1

d2

d2−1∑
j=1

jd1
(d2)

j
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we obtain

g1g2Cov(f1(Yk), f2(Yk)) =
1
q

q−1∑
i=1

q−1∑
j=1

Ai,j − g1g2
(q − 1)2

4

=− (q − d1)(q − d2)
4

+
q2 − d2

2

6
+
−d1q − q − d2

1d2 + 3d1d2

4

+
d2

1 + d2
2 + 1

12
+
d2

1d2 + d1d
2
2 − 3d1d2

4

+
q2 − d2

1

6
+
−d2q − q − d1d

2
2 + 3d1d2

4
+
q − d1d2

2

=
q2 − d2

1 − d2
2 + 1

12

and the lemma is proved.

Clearly we have

Pr[εk(g1n) = b1, εk(g2n) = b2] =
Abi+1,bj+1 −Abi,bj+1 −Abi+1,bj +Abi,bj

qg1g2

for (g1, g2) = 1. Thus

Pr[εk(g1n) = b1, εk(g2n) = b2] = πb1,b2,g1,g2

first for (g1, g2) = 1, and, with Lemma 2.2, for general g1, g2. With Re-
mark 2.3, we get

v
(s)
i,j =

 Ci,j

(
g

(i)
ri

(g
(i)
ri
,g

(j)
rj

)
,

g
(j)
rj

(g
(i)
ri
,g

(j)
rj

)

)
if g(j)

rj P
(s)
i (n) = g

(i)
ri P

(s)
j (n)

0 else.

For q1 = q̃s1 and q2 = q̃s2 , f1(n) = sq1(n) and f2(n) = sq2(n) are strongly
q-additive functions with q = qs21 = qs12 . Then, for P1(n) = P2(n) = n,
(Yk)k≥0 is clearly a sequence of independent random variables and

f1(Yk) = X0+q̃X1+· · ·+q̃s1−1Xs1−1+Xs1+· · ·+q̃s1−1X2s1−1+· · ·+q̃s1−1Xs1s2−1,

f2(Yk) = X0+q̃X1+· · ·+q̃s2−1Xs2−1+Xs2+· · ·+q̃s2−1X2s2−1+· · ·+q̃s2−1Xs1s2−1,

where (Xj)0≤j≤s1s2−1 is a sequence of identically distributed independent
random variables on {0, 1, . . . , q̃ − 1}.

Hence we have

Cov(f1(Yk), f2(Yk)) =
s1s2−1∑
j=0

cjVarXj ,
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where cj runs through {q̃ab : 0 ≤ a ≤ s1 − 1, 0 ≤ b ≤ s2 − 1} because of
(s1, s2) = 1. This implies

Cov(f1(Yk), f2(Yk)) =
q̃2 − 1

12
(
1 + q̃ + · · ·+ q̃s1−1

) (
1 + q̃ + · · ·+ q̃s2−1

)
=

(q̃ + 1)(q̃s1 − 1)(q̃s2 − 1)
12(q̃ − 1)

.

With σ2
1 = Var f1(Yk) = s2(q2

1−1)/12 and σ2
2 = Var f2(Yk) = s1(q2

2−1)/12,
we get for the normalized covariance

Cov(f1(Yk), f2(Yk))
σ1σ2

=
q̃ + 1
q̃ − 1

(q1 − 1)(q2 − 1)√
s1s2(q2

1 − 1)(q2
2 − 1)

.

2.2.3 Comparison of moments

It remains to compare the moments of f`(P`(n)) to those in (2.7). We need
the following proposition (cf. Proposition 2.1).

Proposition 2.3. Let P`(x), 1 ≤ ` ≤ d, be integer polynomials with positive
leading terms, λ > 0 an arbitrary constant and h`, 1 ≤ ` ≤ d, non-negative
integers. Then for integers

(logN)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h`
≤ logqN

r` − (logN)η (1 ≤ ` ≤ d)

(with some η > 0) which satisfy

k
(`)
j 6∈

(
logqN

s − (logN)η, logqN
s + (logN)η

)
for all 1 ≤ s ≤ r` − 1, we have uniformly, as N →∞,

1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

r∏
s=1

p
(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

+O
(

(logN)−λ
)

and

1
π(N)

#
{
p < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

r∏
s=1

p
(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

+O
(

(logN)−λ
)

with

p
(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

=

 Pr
[
Y

(s)

k
(`)
j

⊆ S(s)

b
(`)
j ,`

for all (j, `) ∈ Ks

]
if Ks 6= ∅

1 else,
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where

Ks =
{

(j, `)
∣∣∣k(`)
j ∈

[
logqN

s−1 + (logN)η, logqN
s − (logN)η

]}
.

Proof. We follow the proof of Propositions 1.1 and 2.1 and point out the
differences.

We have to consider the sums

Σ =
∑

M∈M
TM

∑
n<N

e (m1 · v1P1(n) + · · ·+ md · vdPd(n)) .

First of all set ∆ = (logN)−δ with an arbitrary (but fixed) constant
δ > 0. Then we can restrict to those M for which |m(`)

j | < (logN)2δ for all
j, ` because of

∑
∃`,j:|m(`)

j |≥(logN)2δ

|TM| �

 ∞∑
m=[(logN)2δ ]

1
∆m2

( ∞∑
m=0

min
(

1,
1
m
,

1
∆m2

))h−1

� 1
∆

(logN)−δ
(

log
1
∆

)h−1

� (logN)−δ/2,

where h = (h1 + · · ·+ hd). Furthermore, it is sufficient to consider just the
case where m(`)

j 6= 0 for all j, `. (Otherwise, we just reduce h` to a smaller
value.)

Set
QM(n) = m1 · v1P1(n) + · · ·+ md · vdPd(n).

We have to check whether QM(n) has degree r and satisfies the conditions
of Lemmata 1.2 and 1.3.

The coefficient of nr is, if we set kmax = max` k
(`)
h`

,

AM

HM
=

∑
(j,`)∈Kr

g
(`)
r m

(`)
j qkmax−k(`)

j

qkmax
+

∑
(j,`) 6∈Kr

g
(`)
r m

(`)
j qkmax−k(`)

j

qkmax
(2.10)

with (AM,HM) = 1. If AM 6= 0, then the conditions of Lemmata 1.2 and
1.3 are obviously satisfied. If AM = 0, assume kmax ∈ Kr. Then we obtain∑

(j,`)∈Kr

g(`)
r m

(`)
j qkmax−k(`)

j ≡ 0
(
qkmax−(logq N

r−1−(logN)η)
)
.

Because of |m(`)
j | < (logN)2δ this implies

∑
(j,`)∈Kr g

(`)
r m

(`)
j qkmax−k(`)

j = 0.
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Hence AM = 0 if and only if both sums in (2.10) are zero and we have

1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , (j, `) ∈ Kr

}
× 1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , (j, `) 6∈ Kr

}
+O

(
(logN)−λ

)
.

Now we can repeat the arguments for (j, `) ∈ Kr−1 and get inductively

1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , 1 ≤ j ≤ h`, 1 ≤ ` ≤ d

}
=

r∏
s=1

1
N

#
{
n < N

∣∣∣∣εk(`)
j

(P`(n)) = b
(`)
j , (j, `) ∈ Ks

}
+O

(
(logN)−λ

)
.

Hence we may assume from now on that all k(`)
j are contained in one set

Ks for some s ≤ r.
If the degree of QM(n) is smaller than s, we have

|QM(n)| � (logN)2δN s−1

qlogq N
s−1+(logN)η

=
(logN)2δ

q(logN)η

for all n < N and, with e(y) = 1 +O (y),

∑
∣∣∣m(`)

j

∣∣∣<(logN)2δ ,deg(QM(n))<s

TM

(∑
n<N

e(QM(n))−N

)
� N(logN)2δ(h+1)

q(logN)η
.

Thus we can treat these QM(n) as if they were the zero polynomial and it
suffices to regard the polynomials P (s)

` (n) and

Q
(s)
M (n) = m1 · v1P

(s)
1 (n) + · · ·+ md · vdP

(s)
d (n).

The conditions of Lemmata 1.2 and 1.3 are satisfied if and only if Q(s)
M (n) 6≡ 0

and we obtain

Σ = N
∑

M∈M:Q
(s)
M (n)≡0

TM+O

N(logN)−τ0
∑

M∈M:|m(`)
j |<(logN)2δ ,Q

(s)
M (n) 6≡0

|TM|


+O

(
N(logN)−δ/2

)
+O

(
max
j,`

U
b
(`)
j ,q`,∆

)
.
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Since the main term
∑

M∈M:Q
(s)
M (n)≡0

TM depends on ∆, we want to
replace TM by

T ′M =
d∏
`=1

h∏̀
j=1

c
m

(`)
j ,b

(`)
j ,q

.

Hence we have to estimate the difference
∑

M∈M:QM(n)≡0(TM − T ′M).
We clearly have

d
m

(`)
j ,b

(`)
j ,q

= c
m

(`)
j ,b

(`)
j ,q

(
1 +O

(
m

(`)
j ∆

))
as ∆→ 0 and therefore

TM = T ′M

(
1 +O

(
max
j,`

m
(`)
j ∆

))
. (2.11)

First assume |m(`)
j | < (logN)δ/2 for all j, `. From (2.11) and

c
m

(`)
j ,b

(`)
j ,q
≤ min

(
1, 1

m
(`)
j

)
, we obtain

∑
M∈M:|m(`)

j |<(logN)δ/2

|TM − T ′M| �
∑

M∈M:|m(`)
j |<(logN)δ/2

|T ′M|(logN)−δ/2

�

[(logN)δ/2]∑
m=1

1
m

h

(logN)−δ/2 ≤
(
log(logN)δ/2

)h
(logN)δ/2

� (logN)−δ/3

It remains to estimate the TM and T ′M with |m(`)
j | > (logN)δ/2 for some

j, ` which satisfy the equation Q
(s)
M (n) ≡ 0, i.e.∑

j,`

g(`)
r qkmax−k(`)

j m
(`)
j = 0. (2.12)

Assume first g(`)
r 6= 0 for all j, `. For simplicity, let us rewrite (2.12) as

γ1m1 + γ2m2 + · · ·+ γhmh = 0,

where mh is an m
(`)
j with k

(`)
j = kmax and the other mi are arbitrary per-

mutations of the m(`)
j . Hence γh = g

(`)
r is bounded by max` g

(`)
r which is a

constant. We may assume γh = 1.
Then for every choice of mi, 1 ≤ i ≤ h − 1, we get a unique

mh(= −γ1m1 − · · · − γh−1mh−1) which satisfies (2.12). If we sum up the
T ′M with |mh| ≥ |m1 . . .mh−1|1/(h−1)2

, we obtain

∑
T ′M �

∞∑
m1=1

· · ·
∞∑

mh−1=1

1
|m1| . . . |mh−1|

1

|m1 . . .mh−1|
1

(h−1)2

=
h−1∏
i=1

∞∑
mi=1

1

|mi|
1+ 1

(h−1)2
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and, if we consider only |mi| ≥ (logN)δ/2 for some i ≤ h− 1, we have thus∑
T ′M � (logN)

δ
2(h−1)2 .

For |mh| ≥ (logN)δ/2, we get

∑
|mi|≤(logN)δ/2 for all i≤h−1

T ′M �
h−1∏
i=1

[(logN)δ/2]∑
mi=1

1
mi

 1
(logN)δ/2

� log(logN)δ/2

(logN)δ/2

and |mi| ≥ (logN)δ/2 for some i ≤ h− 1 else.
For the remaining mi, we have |mh| < |m1 . . .mh−1|1/(h−1)2

. We fix m1

and consider all mi, 2 ≤ i ≤ h− 1, with |γimi| ≤ |γ1m1|. Then we have

|mh| < |γ1m1 . . . γh−1mh−1|
1

(h−1)2 ≤ |γ1m1|
1

h−1

and

|γ2m2 + · · ·+ γh−1mh−1| ∈
[
|γ1m1| − |γ1m1|

1
h−1 , |γ1m1|+ |γ1m1|

1
h−1

]
.

We split the possible range of |γ2m2| into two intervals and get

∑
m2:|γ2m2|∈(|γ1m1|−|γ1m1|(h−2)/(h−1),|γ1m1|]

1
|m2|

≤ 2|γ1m1|
h−2
h−1

|γ2|
|γ2|

|γ1m1| − |γ1m1|
h−2
h−1

≤ 4

|γ1m1|
1

h−1

for all (not too small) m1. From now on we consider only
|γ2m2| ∈

(
0, |γ1m1| − |γ1m1|(h−2)/(h−1)

]
. This implies

|γ3m3+· · ·+γh−1mh−1| ∈
[
|γ1m1 + γ2m2| − |γ1m1|1/h, |γ1m1 + γ2m2|+ |γ1m1|1/h

]
with

|γ1m1 + γ2m2| ∈
[
|γ1m1|

h−2
h−1 , 2|γ1m1| − |γ1m1|

h−2
h−1

]
.

For m3, we get ∑
m3:|γ3m3|∈(|γ1m1+γ2m2|−|γ1m1|(h−3)/(h−1),|γ1m1+γ2m2|+|γ1m1|(h−3)/(h−1)]

1
|m2|

≤ 4

|γ1m1|
1

h−1

and the remaining m3 imply

|γ1m1 + γ2m2 + γ3m3| ∈
[
|γ1m1|

h−3
h−1 , 3|γ1m1|

]
.
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We proceed inductively and the remaining mh−1 imply

|γ1m1 + γ2m2 + γ3m3 + γh−1mh−1| ∈
[
|γ1m1|

1
h−1 , (h− 2)|γ1m1|

]
,

but this contradicts |mh| < |γ1m1|1/(h−1) and no mh−1 are left. Thus the
sum over all mi, 2 ≤ i ≤ h− 1, with |γimi| ≤ |γ1m1|, can be split into h− 2
sums, where the sum over one mi is always bounded by |γ1m1|−1/(h−1) and
the sum over the other mi can be bounded by log |γ1m1|. Hence we obtain

∑
Q

(s)
M (n)≡0,m1fixed,|γ1m1|≥|γimi|,|mh|<|m1...mh−1|1/(h−1)2

T ′M ≤
1
|m1|

4(h− 3)(log |γ1m1|)h−3

|γ1m1|
1

h−1

for all m1. If we consider only |mi| ≥ (logN)δ/2 for some i ≤ h, then we
also have |γ1m1| ≥ (logN)δ/2 and get

∑
T ′M �

∑
m1:|γ1m1|≥(logN)δ/2

(log |γ1m1|)h−3

|m1||γ1m1|1/(h−1)
� 1
|γ1m1|1/h

� (logN)−δ/2h.

Summing up, we have∑
M∈M:Q

(s)
M (n)≡0,|m(`)

j |≥(logN)δ/2 for some j,`

T ′M � (logN)
− δ

2(h−1)2 . (2.13)

If we consider only m
(`)
j ≥ (logN)δ/2 for some ` with g

(`)
r = 0 and g

(`)
i 6= 0

for some i ≥ s, then replace all g(`)
r in (2.12) by g

(`)
i and we get the same

estimate. If all g(`)
i are zero, then we have the zero polynomial and all digits

b
(`)
j must be zero. Clearly (2.13) also holds if we replace T ′M by TM.

Hence ∑
M∈M:Q

(s)
M (n)≡0

TM = p̃
(s)

k
(1)
1 ,...,k

(d)
hd
,b

(1)
1 ,...,b

(d)
hd

+O
(

(logN)
− δ

2(h−1)2

)
,

where
p̃

(s)

k
(1)
1 ,...,k

(d)
hd
,b

(1)
1 ,...,b

(d)
hd

=
∑

M∈M:Q
(s)
M (n)≡0

T ′M

and we get
Σ = Np

(s)

k
(1)
1 ,...,k

(d)
hd
,b

(1)
1 ,...,b

(d)
hd

+O
(

(logN)−λ
)
,

for δ = 2(h− 1)2λ and τ0 > λ.
It remains to prove that the p̃

(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

are the probabilities

defined by the Markov chain.
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We have{
n < N

∣∣∣∣εk(`)
j

(P (s)
` (n)) = b

(`)
j for all (j, l) ∈ Ks

}

=

n < N

∣∣∣∣∣∣w(s)
kmax

(n) ∈
⋂

(j,`)∈Ks

T k
(`)
j −kmaxS

(s)

b
(`)
j ,`


and this intersection consists of a finite number of convex sets, which can
be arbitrarily well approximated by elementary rectangles

r∏
i=s

 Ji∑
j=1

b̃
(i)
j q
−j ,

Ji∑
j=1

b̃
(i)
j q
−j + q−Ji

 .

We have

1
N

#

n < N

∣∣∣∣∣∣w(s)
kmax

(n) ∈
r∏
i=s

 Ji∑
j=1

b̃
(i)
j q
−j ,

Ji∑
j=1

b̃
(i)
j q
−j + q−Ji


=

1
N

#
{
n < N

∣∣∣εkmax−j+1(ni) = b̃
(i)
j , 1 ≤ j ≤ Ji, s ≤ i ≤ r

}
→ 1

qJs . . . qJr
,

if kmax ≤ logN − (logN)η and Ji ≤ kmax − (logN)η because of Propo-
sition 2.1. This means that the density in each of this rectangles con-
verges to its Lebesgue measure. Since we do not change the sets if we
shift all k(`)

j and increase N , the Ji can be arbitrarily large. Therefore

p̃
(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

must be the Lebesgue measure of
⋂
j,` T

k
(`)
j −kmaxS

(s)

b
(`)
j ,`

,

which is just p(s)

k
(1)
1 ,··· ,k(d)

hd
,b

(1)
1 ,...,b

(d)
hd

.

This also implies Lemma 2.2 (d = 2, h1 = h2 = 1).

Proposition 2.3 shows that we have to change the definition of f (Nr` )

slightly, namely

f
(Nr` )
` (P`(n)) =

r∑̀
s=1

(s−1) logq N+B(N)∑
k=(s−1) logq N+A(N)

f`(εk(P`(n))).

We still have f (Nr` )
` (P`(n)) = f`(P`(n)) + O ((logN)η). The definitions of

M(N r`) and D(N r`) are adapted similarly.

38



Corollary 2.5. We have

1
N

∑
n<N

d∏
`=1

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`

−E
d∏
`=1

∑r`
s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) f`

(
Y

(s)
k

)
−M `(N r`)

D`(N r`)

h`

→ 0

and

1
π(N)

∑
p<N

d∏
`=1

(
f

(Nr` )
` (P`(p))−M `(N r`)

D`(N r`)

)h`

−E
d∏
`=1

∑r`
s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) f`

(
Y

(s)
k

)
−M `(N r`)

D`(N r`)

h`

→ 0,

where the Y (s)
k and Y (s′)

k′ are independent if s 6= s′.

Proof. The second terms are the sum over all integers

k
(`)
1 , . . . , k

(`)
h`
∈ [A(N), logqN

r`−A(N)]\
r`−1⋃
s=1

[logqN
s−A(N), logqN

s+A(N)],

1 ≤ ` ≤ d, of

E
d∏
`=1

h∏̀
j=1

f`

(
Y

(s)

k
(`)
j

)
− µ

`,k
(`)
j

D`(N r`)

=
q−1∑
b
(1)
1 =0

· · ·
q−1∑
b
(d)
hd

=0

d∏
`=1

h∏̀
j=1

f`(b`j)− µ`,k(`)
j

D`(N r`)
Pr
[
Y

(s)

k
(`)
j

⊆ S(s)

b
(`)
j

for all j, `
]
,

where the s are such that k(`)
j ∈ Ks. Since the Y (s)

k
(`)
j

are independent for

different s, we have

Pr
[
Y

(s)

k
(`)
j

⊆ S(s)

b
(`)
j

for all (j, `)
]

=
r∏
s=1

Pr
[
Y

(s)

k
(`)
j

⊆ S(s)

b
(`)
j

for all (j, `) ∈ Ks

]
and, by Proposition 2.3, the corresponding first terms are the same up to
an error term of O

(
(logN)−λ

)
. Hence the convergences are valid with error

terms O
(
(logN)−λ+h−hη).
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Similarly to Lemma 1.1, we obtain

1
N

∑
n<N

d∏
`=1

(
f`(P`(n))−M`(N r`)

D`(N r`)

)h`

− 1
N

∑
n<N

d∏
`=1

(
f

(Nr` )
` (P`(n))−M `(N r`)

D`(N r`)

)h`
→ 0

and therefore

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2, . . . , d
}

→ Pr

∑r`
s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) f`

(
Y

(s)
k

)
−M `(N r`)

D`(N r`)
< x`, ` = 1, . . . , d

 .
Clearly we have M `(N r`) = r`M `(N), D`(N r`)2 = r`D`(N)2 and∑r`
s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) f`

(
Y

(s)
k

)
−M `(N r`)

D`(N r`)

=
1
√
r`

r∑̀
s=1

∑B(N)
k=A(N) f`

(
Y

(s)
k

)
−M `(N)

σ`
√
B(N)−A(N) + 1

→ 1
√
r`

(
Z

(1)
` + · · ·+ Z

(r)
`

)
by Proposition 2.2, where the Z(s) = (Z(s)

1 , . . . , Z
(s)
d ) are independent nor-

mally distributed random vectors with covariance matrices V (s). (For s > r`,
we have f`(Y

(s)
k ) = 0 = Z

(s)
` because of P (s)

` (n) ≡ 0 and S
(s)
0,` = T

r−s+1.)
Hence the sum is normally distributed and the elements of the covariance

matrix V are given by

vi,j =
1
√
rirj

(
v

(1)
i,j + · · ·+ v

(r)
i,j

)
.

For ri 6= rj , all v(s)
i,j are zero, as well as for all s > ri. If g(j)

rj Pi(n) ≡ g(i)
ri Pj(n),

then v(1)
i,j = · · · = v

(ri)
i,j = vi,j . If we just have ri = rj and g(j)

rj g
(i)
s = g

(i)
ri g

(j)
s for

all s > s′, then v
(s′+1)
i,j = · · · = v

(ri)
i,j and v(s)

i,j = 0 for s ≤ s′. Therefore vi,j =
ri−s′
ri

v
(ri)
i,j and the covariance matrix has the stated form. This concludes the

proof of (2.3).
The proof of (2.4) runs along the same lines.

2.3 Two polynomials of the same degree

For different q` and equal degrees r`, up to now only the case d = 2 can be
handled exhaustively. Theorem 2.3 was stated by Drmota [11] for coprime
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integers q1, q2, linear polynomials and only for sequences of all integers (not
primes). In a joint work with Drmota ([13]) the theorem was stated for all
polynomials and sequences of primes, but still only for coprime integers.

Theorem 2.3. Let q1, q2 > 1 be multiplicatively independent integers and
let f`, ` = 1, 2, be q`-additive functions such that f`(bq

j
` ) = O (1) as j →∞

for all b ∈ {0, 1, . . . , q` − 1}. Assume that D`(N)
(logN)η → ∞ as N → ∞, for

some η > 0. Let P`(n) be polynomials of degree r` with integer coefficients
and positive leading terms. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2
}
→ Φ(x1)Φ(x2)

and

1
π(N)

#
{
p < N

∣∣∣∣f`(P`(p))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2
}
→ Φ(x1)Φ(x2)

Note that for multiplicatively dependent q1, q2, the distributions of
f1(P1(n)), f2(P2(n)) are dependent (cf. Corollary 2.4).

We have to prove the following proposition.

Proposition 2.4 (cf. Proposition 2.1). Let q1, q2 be multiplicatively in-
dependent integers and P1(n), P2(n) integer polynomials with positive leading
terms. Let λ > 0 be an arbitrary constant and h1, h2 non-negative integers.
Then for integers

(logN r`)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h`
≤ logq` N

r` − (logN r`)η (` = 1, 2)

(with some η > 0), we have, as N →∞,

1
N

#
{
n < N

∣∣∣∣εq1,k(1)
j

(P1(n)) = b
(1)
j , ε

q2,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ h`

}
=

1
qh1

1 qh2
2

+O
(

(logN)−λ
)

and

1
π(N)

#
{
p < N

∣∣∣∣εq1,k(1)
j

(P1(n)) = b
(1)
j , ε

q2,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ h`

}
=

1
qh1

1 qh2
2

+O
(

(logN)−λ
)

uniformly for b(`)j ∈ {0, . . . , q` − 1} and k
(`)
j in the given range, where the

implicit constant of the error term may depend on q`, on the polynomials
P`, on h` and on λ.
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For the proof we need the corollary to the following lemma, which is a
proper version of Baker’s theorem on linear forms, due to Waldschmidt [37].

Lemma 2.4. Let α1, α2, . . . , αn be non-zero algebraic numbers and
b1, b2, . . . , bn integers such that

αb11 · · ·α
bn
n 6= 1

and let A1, A2, . . . , An ≥ e real numbers with logAj ≥ h(αj), where h(·)
denotes the absolute logarithmic height. Set d = [Q(α1 . . . , αn) : Q]. Then∣∣∣αb11 · · ·α

bn
n − 1

∣∣∣ ≥ e−U ,
where

U = 26n+32n3n+6dn+2(1 + log d)(logB + log d) logA1 · · · logAn

and
B = max{2, |b1|, |b2|, . . . , |bn|}.

Corollary 2.6. Let k1, k2 be positive integers, q1, q2 positive real numbers
and m1,m2 real numbers such that m1

q
k1
1

+ m2

q
k2
2

6= 0. Then there exists a

constant C > 0 such that∣∣∣∣∣m1

qk1
1

+
m2

qk2
2

∣∣∣∣∣ ≥ max

(
|m1|
qk1

1

,
|m2|
qk2

2

)
e−C log q1 log q2 log(max(k1,k2)) log(max(|m1|,|m2|)).

Proof. Because of m1q
−k1
1 +m2q

−k2
2 6= 0, we can apply Lemma 2.4 for n = 3,

α1 = q1, α2 = q2, α3 = −m2/m1, b1 = k1, b2 = −k2, b3 = 1 and directly
obtain∣∣∣∣∣m1

qk1
1

+
m2

qk2
2

∣∣∣∣∣ = |m1|qk1
1

∣∣∣∣−qk1
1 q
−k2
2

m2

m1
− 1
∣∣∣∣

≥ |m1|qk1
1 e
−C log q1 log q2 log(max(k1,k2)) log max(|m1|,|m2|).

Since the problem is symmetric it is no loss of generality to assume that
|m1|q−k1

1 ≥ |m2|q−k2
2 .

Furthermore, we need the following adapted versions of Lemmata 1.2
and 1.3.

Lemma 2.5 (cf. Lemma 1.2). Let P (n) be a polynomial of degree r with
leading coefficient β. Let τ0, τ be arbitrary positive numbers satisfying

τ ≥ 2kτ0 + 23(k−2)
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and
N−r(logN)τ < β < (logN)−τ .

Then, as N →∞,

1
N

∑
n<N

e(P (n)) = O
(
(logN)−τ0

)
.

Lemma 2.6 (cf. Lemma 1.3). Let P (n) be as in Lemma 1.2 and τ0, τ
arbitrary positive numbers satisfying

τ ≥ 26k(τ0 + 1)

and
N−r(logN)τ < β < (logN)−τ .

Then, as N →∞,

1
N

∑
p<N

e(P (p)) = O
(
(logN)−τ0

)
.

To prove Lemmata 2.5 and 2.6, we just have to replace q by 1
β in the

proofs of Hua and use the following lemma:

Lemma 2.7.

f+[ 1
β

]∑
n=f+1

min
(
U,

1
2‖nβ‖

)
� U +

1
β

log
1
β
,

where ‖x‖ = min({x}, 1− {x}).

Proof. In each of the intervals
[
mβ, (m+ 1)β

)
and

(
1− (m+ 1)β, 1−mβ

]
,

0 ≤ m ≤ 1
2 [ 1
β ] we have at most one {nβ}. Therefore

f+[ 1
β

]∑
n=f+1

min
(
U,

1
2‖nβ‖

)
≤ 2

1
2

[ 1
β

]∑
m=0

min
(
U,

1
2mβ

)
� U +

1
β

log
1
β

Now we can prove Proposition 2.4.

Proof of Proposition 2.4. As for Propositions 2.1 and 2.3, we have to esti-
mate the sums

Σ =
∑

(m1,m2)∈M

Tm1,m2

∑
n<N

e (m1 · v1P1(n) + m2 · v2P2(n)) .
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The case of different degrees of the polynomials is treated by Proposi-
tion 2.1. So we can assume that they have the same degree r1 = r2 = r.

As in the proof of Proposition 2.3 we fix ∆ = (logN)−δ and restrict to
those (m1,m2) for which |m(`)

j | < (logN)2δ and m
(`)
j 6≡ 0 (q`) for all j, `.

Suppose now g
(1)
r m1 · v1 + g

(2)
r m2 · v2 6= 0 and set ε = η/(h1 + h2 − 1).

Then there exists an integer K with 0 ≤ K ≤ h1 + h2 − 2 such that for all
j and ` = 1, 2

k
(`)
j+1 − k

(`)
j 6∈

[
(logN)Kε, (logN)(K+1)ε

)
.

So fix K with this property. Before discussing the general case, let us con-
sider two extremal ones.

First suppose k(`)
j+1 − k

(`)
j < (logN)Kε for all j, `. Then we set

m` = g(`)
r

h∑̀
j=1

m
(`)
j q

k
(`)
h`
−k(`)

j

` (` = 1, 2)

and have log |m`| � (logN)Kε. We can apply Corollary 2.6 to

g(1)
r m1 · v1 + g(2)

r m2 · v2 =
m1

q
k

(1)
h1

+1

1

+
m2

q
k

(2)
h2

+1

2

and obtain∣∣∣g(1)
r m1 · v1 + g(2)

r m2 · v2

∣∣∣ ≥ max
(
q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2

)
e−c log logN (logN)Kε

≥ max(q1, q2)(logN)ηe−c log logN (logN)Kε

N r

≥ elog(max(q1,q2))(logN)η−c log logN (logN)
η
h1+h2−2
h1+h2−1

N r
≥ (logN)τ

N r

for some constant c > 0 and all τ > 0. Because of∣∣∣g(1)
r m1 · v1 + g(2)

r m2 · v2

∣∣∣ ≤ (h1 + h2)(logN)2δ

min(q1, q2)−(logN)η
,

Lemmata 2.5 and 2.6 can be applied.
Next suppose k(`)

j+1 − k
(`)
j ≥ (logN)(K+1)ε for all j, `. Here we set

m` = g(`)
r m

(`)
1 (` = 1, 2)
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and obtain

|g(1)
r m1 · v1 + g(2)

r m2 · v2| ≥

∣∣∣∣∣∣ m1

q
k

(1)
1 +1

1

+
m2

q
k

(2)
1 +1

2

∣∣∣∣∣∣−
∣∣∣∣∣∣
h1∑
j1=2

m
(1)
j1

q
k

(1)
j1

+1

1

∣∣∣∣∣∣−
∣∣∣∣∣∣
h2∑
j2=2

m
(2)
j2

q
k

(2)
j2

+1

2

∣∣∣∣∣∣
≥ max

(
q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2

)
e−c(log logN)2

−O
(

(logN)2δ max
(
q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2

)
e−(logN)(K+1)ε

)
� max

(
q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2

)
e−c(log logN)2

.

Thus again Lemmata 2.5 and 2.6 can be applied.
In general, we assume that for some s` (` = 1, 2) k(`)

j+1 − k
(`)
j < (logN)Kε

for all j < s` and k
(`)
s`+1 − k

(`)
s` ≥ (logN)(K+1)ε. Here we set

m` = g(`)
r

s∑̀
j=1

m
(`)
j q

k
(`)
s`
−k(`)

j

` (` = 1, 2).

and have again log |m`| � (logN)Kε. Furthermore, we can estimate the
sums

h∑̀
j=s`+1

m
(`)
j

q
k

(`)
j +1

`

= O
(

(logN)2δq
−ks`−(logN)(K+1)ε

`

)
.

Thus we get

∣∣∣g(1)
r m1 · v1 + g(2)

r m2 · v2

∣∣∣ ≥
∣∣∣∣∣∣ m1

q
k

(1)
s1

+1
1

+
m2

q
k

(2)
s2

+1
2

∣∣∣∣∣∣−
∣∣∣∣∣∣

h1∑
j1=s1+1

m
(1)
j1

q
k

(1)
j1

+1

1

∣∣∣∣∣∣−
∣∣∣∣∣∣

h2∑
j2=s2+1

m
(2)
j2

q
k

(2)
j2

+1

2

∣∣∣∣∣∣
≥ max

(
q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)
e−c log logN (logN)Kε

−O
(

(logN)2δ max
(
q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)
e−(logN)(K+1)ε

)
� max

(
q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)
e−c log logN (logN)Kε

and the conditions of Lemmata 2.5 and 2.6 are satisfied.
If q1 and q2 are coprime, then we have g(1)

r m1 ·v1 + g
(2)
r m2 ·v2 = 0 only

for m1 = m2 = 0. Otherwise we may have other choices of (m1,m2).
Set q = (q1, q2) and q̃1 = q1/q, q̃2 = q2/q. Assume, w.l.o.g., k(1)

h1
≥ k

(2)
h2

.
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Then we have

h1∑
j1=1

g
(1)
r m

(1)
j1

q
k

(1)
j1

1

+
h2∑
j2=1

g
(2)
r m

(2)
j2

q
k

(2)
j2

2

= g(1)
r

m
(1)
1 q̃

k
(1)
h1
−k(1)

1

1 q̃
k

(2)
h2

2 q
k

(1)
h1
−k(1)

1 + · · ·+m
(1)
h1−1q̃

k
(1)
h1
−k(1)

h1−1

1 q̃
k

(2)
h2

2 q
k

(1)
h1
−k(1)

h1−1 +m
(1)
h1
q̃
k

(2)
h2

2

q̃
k

(1)
h1

1 q̃
k

(2)
h2

2 q
k

(1)
h1

+ g(2)
r

m
(2)
1 q̃

k
(1)
h1

1 q̃
k

(2)
h2
−k(2)

1

2 q
k

(1)
h1
−k(2)

1 + · · ·+m
(2)
h2
q̃
k

(1)
h1

1 q
k

(1)
h1
−k(2)

h2

q̃
k

(1)
h1

1 q̃
k

(2)
h2

2 q
k

(1)
h1

, (2.14)

where we have omit the “+1” in the denominator for simplicity. (Just con-
sider k(`)

j − 1 instead of k(`)
j .) Hence we must have

g(1)
r

(
m

(1)
1 q̃

k
(1)
h1
−k(1)

1

1 q
k

(1)
h1
−k(1)

1 + · · ·+m
(1)
h1−1q̃

k
(1)
h1
−k(1)

h1−1

1 q
k

(1)
h1
−k(1)

h1−1 +m
(1)
h1

)
≡ 0

(
q̃
k

(1)
h1

1

)
.

(2.15)
Of course this is useful only if q̃1 > 1, which we assume first. As above,

we have to distinguish several cases. (2.15) implies

m
(1)
j+1q

k
(1)
h1
−k(1)

j+1

1 + · · ·+m
(1)
h1−1q

k
(1)
h1
−k(1)

h1−1

1 + · · ·+m
(1)
h1
≡ 0

(
q̃
k

(1)
h1
−k(1)

j

1

)
(2.16)

for all j, 1 ≤ j ≤ h1 − 1. If k(1)
j+1 − k

(1)
j ≥ (logN)ε for some j, then

|m(`)
j | < (logN)2δ implies that the left hand side of (2.16) must be zero.

Hence m
(1)
h1
≡ 0 (q1) which implies Tm1,m2 = 0 since we have excluded

m
(1)
h1

= 0. If k(1)
j+1− k

(1)
j ≤ (logN)ε for all j, then the left hand side of (2.15)

must be zero and m
(1)
h1
≡ 0 (q1).

Now consider the case q̃1 = 1, i.e. q1|q2. Then we have to check

g(1)
r

(
m

(1)
1 q̃

k
(2)
h2

2 q
k

(1)
h1
−k(1)

1 + · · ·+m
(1)
h1−1q̃

k
(2)
h2

2 q
k

(1)
h1
−k(1)

h1−1 +m
(1)
h1
q̃
k

(2)
h2

2

)
+

g(2)
r

(
m

(2)
1 q̃

k
(2)
h2
−k(2)

1

2 q
k

(1)
h1
−k(2)

1 + · · ·+m
(2)
h2−1q̃

k
(2)
h2
−k(2)

h2−1

2 q
k

(1)
h1
−k(2)

h2−1 +m
(2)
h2
q
k

(1)
h1
−k(2)

h2

)
= 0.

(2.17)

This implies

g(2)
r q

k
(1)
h1
−k(2)

h2

(
m

(2)
j+1q

k
(2)
h2
−k(2)

j+1

2 + · · ·+m
(2)
h2−1q

k
(2)
h2
−k(2)

h2−1

2 +m
(2)
h2

)
≡ 0

(
q̃
k

(2)
h2
−k(2)

j

2

)
(2.18)
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for 1 ≤ j ≤ h2 − 1 and for j = 0, if we set k(2)
0 = 0.

Assume first k(1)
h1
−k(2)

h2
≤ (logN)ε/2. Then we can do the same reasonings

as above and obtain m
(2)
h2
≡ 0 (q2).

The last (and most difficult) case is k(1)
h1
−k(2)

h2
≥ (logN)ε/2. First suppose

that q̃2 has some prime divisor p̃2 6 |q. Then we get from (2.18)

g(2)
r

(
m

(2)
j+1q

k
(2)
h2
−k(2)

j+1

2 + · · ·+m
(2)
j+1q

k
(2)
h2
−k(2)

h2−1

2 +m
(2)
h2

)
≡ 0

(
p̃
k

(2)
h2
−k(2)

j

2

)
for 0 ≤ j ≤ h2 − 1 and again m

(2)
h2
≡ 0 (q2). Suppose next that q has some

prime divisor p 6 |q̃2. Then we have

g(1)
r

(
m

(1)
1 q

k
(1)
h1
−k(1)

1 + · · ·+m
(1)
h1−1q

k
(1)
h1
−k(1)

h1−1 +m
(1)
h1

)
≡ 0

(
p
k

(1)
h1
−k(2)

h2

)
and we can do the same reasonings with ε/h1 instead of ε.

It remains to consider q and q̃2 with prime factorisations q = pe11 . . . pess ,
q̃2 = pẽ11 . . . pẽss , where all ei and ẽi are positive. Let us rewrite (2.17):

g(1)
r

(
m

(1)
1

s∏
i=1

p
k

(2)
h2
ẽi+(k

(1)
h1
−k(1)

1 )ei

i + · · ·+m
(1)
h1

s∏
i=1

p
k

(2)
h2
ẽi

i

)

+g(2)
r

(
m

(2)
1

s∏
i=1

p
(k

(2)
h2
−k(2)

1 )ẽi+(k
(1)
h1
−k(2)

1 )ei

i + · · ·+m
(2)
h2

s∏
i=1

p
(k

(1)
h1
−k(2)

h2
)ei

i

)
= 0.

By assumption, q1 and q2 are multiplicatively independent. Thus we have
s ≥ 2 and ei/ẽi 6= ej/ẽj for some i, j. Therefore k(2)

h2
ẽi−(k(1)

h1
−k(2)

h2
)ei cannot

be zero for all i and the difference must be at least 1
2(logN)ε/2 for some i.

Let
(k(1)
h1
− k(2)

h2
)ei0 − k

(2)
h2
ẽi0 ≥

1
2

(logN)ε/2.

Then we have

g(1)
r

(
m

(1)
1

s∏
i=1

p
(k

(1)
h1
−k(1)

1 )ei

i + · · ·+m
(1)
h1

)
≡ 0

(
p

(k
(1)
h1
−k(2)

h2
)ei0−k

(2)
h2
ẽi0

i0

)
and we can again do the same reasonings. Similarly

k
(2)
h2
ẽi0 − (k(1)

h1
− k(2)

h2
)ei0 ≥

1
2

(logN)ε/2

leads to

g(2)
r

(
m

(2)
1

s∏
i=1

p
(k

(2)
h2
−k(2)

1 )(ẽi+ei)

i + · · ·+m
(2)
h2

)
≡ 0

(
p

1
2

(logN)ε/2

i0

)
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and the same result.
Hence, we finally get

∑
(m1,m2) 6=(0,0)

|Tm1,m2 | ·

∣∣∣∣∣ 1
N

∑
n<N

e
(

(g(1)
r m1 · v1 + g(2)

r m2 · v2)n
)∣∣∣∣∣

= O
(

(logN)−δ/2
)

+O
(

(logN)2(h1+h2)δ−λ
)
,

which completes the proof of Proposition 2.4.
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Chapter 3

Parry Expansions

Now we turn to digital expansions which are slightly different from q-ary
expansions.

3.1 G-ary expansions and G-ary functions

Let the sequence G = (Gk)k≥0 be defined by the linear recurrence

Gk = a1Gk−1 + a2Gk−2 + · · ·+ adGk−d for k ≥ d

and

Gk = a1Gk−1 + a2Gk−2 + · · ·+ akG0 for 1 ≤ k < d, G0 = 1,

with non-negative integers ai which satisfy the relations

(aj , aj+1, . . . , ad) ≤ (a1, a2, . . . , ad−j+1) for 2 ≤ j ≤ d

(where “<” denotes the lexicographical order) and ad > 0.
Then every non-negative integer n has a unique G-ary digital expansion

n =
∑
k≥0

εk(n)Gk

with integer digits εk(n) ≥ 0 satisfying

(εk(n), εk−1(n), . . . , εk−d+1(n)) < (a1, a2, . . . , ad) for all k ≥ 0. (3.1)

For d = 1, we just get q-ary expansions with q = a1. Therefore assume
d > 1. The best known example of these expansions is the Zeckendorf
expansion with d = 2 and a1 = a2 = 1. Then the Gk are the Fibonacci
numbers.

Let
χ(x) = xd − a1x

d−1 − · · · − ad−1x− ad
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be the characteristic polynomial of the linear recurrence. It is easy to show
that it has a unique dominant root α ∈ R+ (e.g. consider its (primitive)
companion matrix and apply the Perron-Frobenius theorem). If χ(x) is
irreducible over Z, denote by α2, . . . , αd the (distinct) algebraic conjugates
of α. Then we have, for some constants c1, . . . , cd,

Gk = c1α
k + c2α

k
2 + · · ·+ cdα

k
d. (3.2)

(We will show c1 = αd−1
α−1

1∏
j>1(α−αj) in Section 3.3 and get, for reasons of

symmetry, ci = αdi−1
αi−1

1∏
j 6=i(αi−αj)

for all i ≥ 1, where α1 = α.)

(3.1) and (3.2) show that these G-ary expansions of integers are strongly
related to Parry’s α-expansions of real numbers (with simple α-numbers)
(cf. Parry [30], Grabner and Tichy [23]). Therefore they are called Parry
expansions.

The analogue to q-additive functions are G-additive functions, i.e.

f(n) =
∑
k≥0

f(εk(n)Gk) =
∑
k≥0

fk(εk(n)) for all n ∈ N, fk(0) = 0,

a special case of which is the sum-of-digits function

sG(n) =
∑
k≥0

εk,G(n).

Several authors have studied these functions, e.g. Grabner and Tichy [23]
proved the following analogue to (1.1):

1
N

∑
n<N

sG(n) = cG logαN + F (logαN) +O
(
Nβ−1 logN

)
,

where cG is a positive constant (expressions for which will be given in Theo-
rem 3.1), 0 ≤ β < 1 and F is a continuous, nowhere differentiable function,
the graph of which has Haussdorf dimension 1.

Dumont and Thomas [16] obtained similar results for the moments. They
used the more general framework of numeration systems associated with a
substitution which we will present in Section 3.2. In [17] they prove a central
limit theorem for the sum-of-digits function.

Our aim is to prove a theorem similar to Theorem 1.1, i.e. to gener-
alise the central limit theorem on G-additive functions and on polynomial
sequences.

3.2 Central limit theorem for P (n) = n

First we have to prove the following theorem on the distribution of the
sequence f(n), 0 ≤ n < N . For d = 2, all theorems in this chapter can be
found in a joint paper with Drmota ([13]).
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Theorem 3.1. Let f be a G-additive function such that fk(e) = O (1) as
k → ∞ for all e ∈ {0, 1, . . . , a1}. Then, for all η > 0, the expected value of
f(n), 0 ≤ n < N , is given by

EN =
1
N

∑
n<N

f(n) = M(N) +O ((logN)η) , (3.3)

where

M(N) =
[logαN ]∑
k=0

µk with µk =
a1∑
e=1

pefk(e).

and the constants pe are the asymptotic probabilities of the digits e, the
values of which are determined by equation (3.11). Furthermore, set

D(N)2 =
[logαN ]∑
k,k′=0

σ
(2)
k,k′

with

σ
(2)
k,k′ =


a1∑
e=1

pefk(e)2 − µ2
k if k = k′

d∑
i=2

(
αi
α

)|k−k′| a1∑
e=1

a1∑
e′=1

p
(i)
e,e′fmin(k,k′)(e)fmax(k,k′)(e′) if k 6= k′

and constants p(i)
e,e′ described on page 58.

Assume that there exists a constant c > 0 such that σ(2)
k,k ≥ c for all

k ≥ 0. Then we have

1
N

∑
n<N

(f(n)− EN )2 ∼ D(N)2, (3.4)

1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x) (3.5)

and
1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x) (3.6)

as N →∞.

Remark 3.1. In case d = 2 we give more explicit expressions for µk and σ(2)
k,k′ :

µk =
α+ 1
αD

a2−1∑
b=1

fk(b) +
1
D

a1−1∑
b=a2

fk(b) +
a2

αD
fk(a1),

σ
(2)
k,k′ =

{
α+1
αD

∑a2−1
b=1 fk(b)2 + 1

D

∑a1−1
b=a2

fk(b)2 + a2
αDfk(a1)2 − µ2

k if k = k′(
− a2
α2

)|k−k′|
µmin(k,k′)µmax(k,k′) if k 6= k′,
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where D =
√
a2

1 + 4a2 and

µk =
α− a2

a2D

a2−1∑
b=1

fk(b)−
1
D

a1−1∑
b=a2

fk(b) +
α

D
fk(a1).

The proof relies on the fact that the digits of the possible G-ary expan-
sions can be represented by random variables which form a Markov chain
(of order d− 1). For convenience, we reduce this Markov chain to a Markov
chain of order 1 by using a representation of the digital expansions in terms
of substitutions, like Dumont and Thomas [15, 17], who studied strongly
G-additive functions, i.e. f(n) =

∑
k≥0 f(εk(n)).

So let σ be the substitution on A = {1, . . . , d} defined by

σ : i→ 1ai(i+ 1) for 1 ≤ i ≤ d− 1
d→ 1ad

and let σ also stand for its extension on the set of words A∗ =
⋃∞
i=1Ai∪{Λ}

with Λ the empty word. We denote by |m| the length of the word m, and
m′ < m means that m′ is a strict prefix of m.

A sequence of words mj−1mj−2 . . .m0 is said to be b-admissible, if there
exist (unique) letters bj = b, bj−1, . . . , b0 such that mkbk ≤ σ(bk+1) for all
k < j. The admissible representation of an integer n ≥ 1 is the (unique)
1-admissible sequence mj−1(n)mj−2(n) . . .m0(n), with mj−1(n) 6= Λ, such
that

n =
∣∣σj−1(mj−1(n))

∣∣+ · · ·+
∣∣σ0(m0(n))

∣∣ .
Denote by bk(n) the letter bk corresponding to this 1-admissible sequence.
It is easy to show (by induction) that the numbers

∣∣σk(1)
∣∣ are just the

Gk defined by the linear recurrence in the Introduction, and we have
mk(n) = 1εk(n).

The matrix of the substitution

M =
(

#{occurrences of b in σ(b′)}
)
b,b′∈A

=


a1 a2 · · · · · · ad
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


is the companion matrix of the characteristic polynomial of the linear recur-
rence.

Our aim is to study the distribution behaviour of f(n), 0 ≤ n < N , i.e.
the random variable YN defined by

Pr[YN ≤ x] =
1
N

#{n < N : f(n) ≤ x}.

52



If we define Yk,N by

Pr[Yk,N ≤ x] =
1
N

#{n < N : fk(εk(n)) ≤ x}

and ξk,N by

Pr[ξk,N = (m, b)] =
1
N

#{n < N : (mk(n), bk(n)) = (m, b)},

we have, with fk(m, b) = fk(|m|),

YN =
∑
k≥0

Yk,N =
∑
k≥0

fk(ξk,N ),

i.e. YN is a weighted sum of the ξk,N . Therefore we will first have a detailed
look at the ξk,N .

Dumont and Thomas [17] showed that, for fixed j, the sequence
(ξj−1,Gj , ξj−2,Gj , . . . , ξ0,Gj ) constitutes a Markov chain with transition prob-
abilities

Pr[ξk,Gj = (m, b)|ξk+1,Gj = (m′, b′)] = Pr[ξk,Gj = (m, b)|ξk+1,Gj = (., b′)]

=

{
|σk(b)|
|σk+1(b′)| = p(.,b′),(m,b) + o(ρk) if mb ≤ σ(b′)

0 otherwise,

where (., b) denotes the set of states {(m, b) : m ∈ A∗}, p(.,b′),(m,b) = νb
νb′α

,

(ν1, . . . , νd) = (1, α− a1, α
2 − a1α− a2, . . . , α

d−1 − a1α
d−2 − · · · − ad−1)

is a left eigenvector of M to the eigenvalue α, and ρ < 1 a constant such that
all roots of χ(x) except α have modulus less than αρ. (For Pisot numbers
α, we can set ρ = α−1.)

Furthermore, denote by Pk,j the matrix of transition probabilities
Pr[ξk,Gj = (., b)|ξk+1,Gj = (., b′)]. Then we have Pk,j = P +O

(
ρk
)

with

P =
(
p(.,b′),(.,b)

)
b′,b∈A =



a1
α

a2
α2−a1α

· · · ad−1

αd−1−a1αd−2−···−ad−2α
1

α−a1
α 0 · · · · · · 0

0 α2−a1α−a2
α2−a1α

. . .
...

...
. . . . . . . . .

...

0 · · · 0 αd−1−a1αd−2−···−ad−1

αd−1−a1αd−2−···−ad−2α
0


.

P is similar to 

a1
α

a2
α2 · · · · · · ad

αd

1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


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and its eigenvalues are therefore 1, α2
α , . . . ,

αd
α . Hence we have

Pr[ξk,Gj = (., b)] = p(.,b) +O
(
ρmin(k,j−k)

)
, (3.7)

where the probability vector (p(.,1), . . . , p(.,d))t is the right eigenvector of P
to the eigenvalue 1 with

∑d
b=1 p(.,b) = 1:p(.,1)

...
p(.,d)

 =
1

χ′(α)

(
αd−1, αd−1 − a1α

d−2, αd−1 − a1α
d−2 − a2α

d−3, . . . ,
ad
α

)t
,

where χ′(x) denotes the derivative of χ(x). We deduce

Pr[ξk,Gj = (m, b)] =
∑

b′:mb≤σ(b′)

Pr[ξk,Gj = (m, b)|ξk+1,Gj = (., b′)]Pr[ξk+1,Gj = (., b′)]

= p(m,b) +O
(
ρmin(k,j−k)

)
with

p(m,b) =
∑

b′:mb≤σ(b′)

p(.,b′),(m,b)p(.,b′).

In case d = 2 we have σ(1) = 1a12 and σ(2) = 1a2 , thus

p(.,1),(1e,1) =
1
α

for 0 ≤ e < a1, p(.,1),(1a1 ,2) =
a2

α2
, p(.,2),(1e,1) =

1
a2

for 0 ≤ e < a2

and
p(.,1) =

α

D
, p(.,2) =

a2

αD
.

These asymptotics suggests to approximate the digital distribu-
tion by a stationary Markov chain (Xk, k ≥ 0) with the probabil-
ity distribution Pr[Xk = (m, b)] = p(m,b) and the transition probabilities
Pr[Xk = (m, b)|Xk+1 = (., b′)] = p(.,b′),(m,b). The next lemma shows how we
can quantify this approximation for the finite-dimensional distributions.

Lemma 3.1. For every h ≥ 1 and integers 0 ≤ k1 < k2 < · · · < kh < j we
have

Pr[ξk1,Gj = (., b1), . . . , ξkh,Gj = (., bh)] = p̂k1,...,kl,(.,b1),...,(.,bl)+O
(
ρmin(k1,j−kh)

)
,

where

p̂k1,...,kl,(.,b1),...,(.,bh) = Pr[Xk1 = (., b1), . . . , Xkh = (., bh)].

54



Proof. For 0 ≤ k < k′ < j we have

Pk,jPk+1,j · · ·Pk′−1,j = P k
′−k +O

(
ρk
)

and consequently

Pr[ξk,Gj = (., b)|ξk′,Gj = (., b′)] = Pr[Xk = (., b)|X ′k = (., b′)] +O
(
ρk
)
.

(3.8)
Since

Pr[ξk1,Gj = (., b1), . . . , ξkh,Gj = (., bh)]

= Pr[ξk1,Gj = (., b1)|ξk2,Gj = (., b2)]Pr[ξk2,Gj = (., b2)|ξk3,Gj = (., b3)] · · ·
· · ·Pr[ξkh−1,Gj = (., bh−1)|ξkh,Gj = (., bh)]Pr[ξkh,Gj = (., bh)]

we just have to apply (3.8) and (3.7) and the lemma follows.

Hence we have

Pr[ξk,Gj = (m, b), ξl,Gj = (m′, b′)] = p̂k,l,(m,b),(m′,b′) +O
(
ρmin(k,j−k′)

)
(0 ≤ k < k′ < j) with

p̂k,k′,(m,b),(m′,b′) =
∑

c:mb≤σ(c)

p(m′,b′)

p(.,b′)
p̂k+1,k′,(.,c),(.,b′)p(.,c),(m,b) (3.9)

because of

Pr[ξk,Gj = (m, b)|ξk′,Gj = (m′, b′)]

=
∑

c:mb≤σ(c)

Pr[ξk,Gj = (m, b)|ξk+1,Gj = (., c)]Pr[ξk+1,Gj = (., c)|ξk′,Gj = (., b′)].

For finite dimensional distributions we have

Pr[ξk1,Gj = (m1, b1), . . . , ξkh,Gj = (mh, bh)]

= p̂k1,...,kh,(m1,b1),...,(mh,bh) +O
(
ρmin(k1,j−kh)

)
, (3.10)

where the p̂k1,...,kh,(m1,b1),...,(mh,bh) are defined similarly to (3.9).
The next lemma shows that, for general N , ξk,N is similar to ξk,Gj where

Gj is the largest element of G not exceeding N (j ≈ [logαN ]). Here we set
ρ = α−1, if α is a Pisot number.

Lemma 3.2. The probability distribution of ξk,N for Gj ≤ N < Gj+1 with
k < j is given by

Pr[ξk,N = (m, b)] = Pr[ξk,Gj = (m, b)] +O
(
ρ(j−k)/2

)
.
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The joint distribution for 0 ≤ k1 < k2 < · · · < kh < j is given by

Pr[ξk1,N = (m1, b1), . . . , ξkh,N = (mh, bh)]

= Pr[ξk1,Gj = (m1, b1), . . . , ξkh,Gj = (mh, bh)] +O
(
ρ(j−kh)/2

)
Proof. For N =

∑j
k=0 εkGk, we have

{n < N} = {n < εjGj}∪
(
{n < εj−1Gj−1}+εjGj

)
∪· · ·∪

(
{n < ε0G0}+

j∑
i=1

εiGi

)
.

Therefore

Pr[ξk,N = b] =
1
N

(
#{n < εjGj | εk(n) = b}+ #{n < εj−1Gj−1 | εk(n) = b}+ · · ·

+ #{n < εk+1Gk+1 | εk(n) = b}+


k−1∑
i=0

εiGi if εk = b

0 otherwise

)

=
1
N

(
εjGjPr[ξk,Gj = b] + · · ·+ ε[ k+j

2 ]G[ k+j
2 ]Pr[ξk,G[ k+j

2 ]
= b]

)
+O

(
1
N
G[ k+j

2 ]

)
=Pr[ξk,Gj = b] +O

(
1

α
j−k

2

)
,

where we have used

#{n < Gj | εk(n) = b} = #{Gj ≤ n < 2Gj | εk(n) = b} = · · ·
= #{(a1 − 1)Gj ≤ n < a1Gj | εk = b}.

and

Pr[ξk,Gj = b] = Pr[ξk,Gj′ = b] +O
(

1
αj′−k

)
(for k < j′).

A similar reasoning can be done for the joint distribution, e.g. we have
for k < k′ < j:

Pr[ξk,N = b, ξk′,N = b′] =
1
N

j∑
i=k′+1

εiGiPr[ξk,Gi = b, ξk′,Gi = b′]

+
1
N


k′−1∑
i=k+1

εiGiPr[ξl,Gi = c] +


k−1∑
i=0

εiGi if εk = b

0 otherwise

 if εk′ = b′

0 otherwise

Thus, we can proceed in the same way.
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As in Section 1.3, we can concentrate on the digits εk(n) with
A(N) ≤ k ≤ B(N), where A(N) = [(logN)η], B(N) = [logαN ]− [(logN)η]
and η > 0 is a sufficiently small number (to be chosen in the sequel), in
order to obtain uniform estimates.

The following lemma is a direct consequence of Lemma 3.2 and (3.10).
Note that it is not necessary that k1, . . . , kh are ordered and that they are
distinct.

Lemma 3.3. For every h ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εk1(n) = e1, . . . , εkl(n) = eh} = p̂k1,...,kh,e1,...,eh+O
(

(logN)−λ
)

uniformly for
A(N) ≤ k1, k2, · · · , kh ≤ B(N),

where
p̂k1,...,kh,e1,...,eh =

∑
(mi,bi):|mi|=ei

p̂k1,...,kh,(m1,b1),...,(mh,bh).

As in Section 1.3 we define

f
(N)(n) =

B(N)∑
k=A(N)

fk(εk) = f(n) +O ((logN)η) .

Now, we turn to the derivation of EN = EYN , i.e. to the proof of (3.3).
For Yk,N , we get

EYk,N =
∑
m,b

Pr[ξk,N = (m, b)]fk(|m|) =
a1∑
e=0

pefk(e) +O
(
ρmin(k,(j−k)/2)

)
,

where
pe =

∑
m,b:|m|=e

p(m,b). (3.11)

In case d = 2, we have

pe =


p(1e,1) + p(1e,2) = α+1

αD if e < a2

p(1e,1) = 1
D if a2 ≤ e < a1

p(1a1 ,2) = a2
αD if e = a1

.

Since fk(e) is bounded, we have

EN =
[logαN ]∑
k=0

EYk,N =
B(N)∑
k=A(N)

EYk,N +O ((logN)η)
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and get (with fk(0) = 0)

EN =
B(N)∑
k=A(N)

µk +O
(
ρ(logN)η/2

)
+O ((logN)η) = M(N) +O ((logN)η) .

The variance is clearly given by

Var

[logαN ]∑
k=0

fk(Xk)

 =
[logαN ]∑
k,k′=0

(
E
(
fk(Xk)fk′(Xk′)

)
−E fk(Xk)E fk′(Xk′)

)
and

E
(
fk(Xk)fk′(Xk′)

)
−E fk(Xk)E fk′(Xk′) =

a1∑
e,e′=0

(p̂k,k′,e,e′−pepe′)fk(e)fk′(e′).

Since the eigenvalues of M are α1
α , . . . ,

αd
α (with α1 = α), we have, for k < k′,

p̂j,k,(.,b),(.,b′) =
d∑
i=1

p
(i)
(.,b),(.,b′)

(αi
α

)k−j
with (easily determined) constants p

(i)
(.,b),(.,b′) and p

(1)
(.,b),(.,b′) = p(.,b)p(.,b′).

Since the p̂k,k′,e,e′ are (weighted) sums of p̂k,k′,(.,b),(.,b′), we have

p̂k,k′,e,e′ =
d∑
i=1

p
(i)
e,e′

(αi
α

)k−k′
,

where the constants p(i)
e,e′ are the respective sums of p(i)

(.,b),(.,b′). Note that

p
(1)
e,e′ = pepe′ . With these p(i)

e,e′ we get D(N)2 = Var
(∑[logαN ]

k=0 fk(Xk)
)

.
In Lemma 1.1, which is also valid for G-additive functions, we need

D(N)
(logN)η → ∞ for some η > 0. We prove D(N) � logN if the variances of
fk(Xk) have a uniform lower bound.

Lemma 3.4. Suppose that there exists a constant c > 0 such that σ(2)
k,k ≥ c

for all k ≥ 0. Then we have a constant w such that

Var

(
s′−1∑
k=s

fk(Xk)

)
≥ w(s′ − s) (3.12)

for all s, s′ ≥ 0 with s′ − s ≥ 3d.

Proof. Set X ′k = fk(Xk) − E fk(Xk) and S =
∑s′−1

k=s X
′
k. Then

VarX ′k = σ
(2)
k,k ≥ c and Var

(∑s′−1
k=s fk(Xk)

)
= ES2.
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In [13], Dobrušin’s work [9] is used to prove ES2 ≥ c(s′−s)β/100, where
β is the ergodicity coefficient

β = 1− sup
m,b,m′,b′,A

∣∣Pr[Xk ∈ A|Xk+1 = (m, b)]−Pr[Xk ∈ A|Xk+1 = (m′, b′)]
∣∣

(which does not depend on k). Hence the lemma is proved, if we have β > 0.
If all ai are non-zero, we have p(m,b),(Λ,1) > 0 for all possible (m, b).

Therefore, if (Λ, 1) ∈ A, we have

Pr[Xk ∈ A|Xk+1 = (m, b)] > 0 for all (m, b)

and the difference cannot be 1. If (Λ, 1) 6∈ A, the difference cannot be 1,
because we have

Pr[Xk ∈ A|Xk+1 = (m, b)] < 1 for all (m, b).

By construction, the transition probabilities attain just finitely many values.
Therefore we have β > 0.

If ab = 0 for some b (1 < b < d), then

Pr[Xk = (Λ, b+ 1)|Xk+1 = (1ab−1 , b)] = 1

and
Pr[Xk = (Λ, b+ 1)|Xk+1 = (Λ, 1)] = 0,

hence β = 0. Then we need a result of Giesbrecht. In [19] he proved

ES2 ≥ b0
2

s′−1∑
k=s

p̃
(v)
k−uλ̃

(u)
k with a constant b0 and the following definitions:

p̃
(v)
k =

{ ∑
m,b ϕ

(v)
k (m, b) if k ∈ [s+ u+ v, s′]
0 else

,

where ϕ(v)
k satisfies P [Xk−v = (m, b)|Xk = (m′, b′)] ≥ ϕ(v)

k (m, b) for all (m, b)
and (m′, b′),

λ̃
(u)
k = sup

γ≥0
g

(v)
k−u(γ)h(u)

k (γ),

g
(v)
k (γ) = sup

t
inf
m,b,A

Pr

∣∣∣∣∣∣
k−1∑

j=k−u
X ′k − t

∣∣∣∣∣∣ ≤ γ|Xk = (m, b), Xk−v ∈ A

 ,
h

(u)
k (γ) = inf

m,b
max{0, (χ(u)

k (m, b)− 4γψ(u)
k (m, b))},

χ
(u)
k (m, b) =

∫ ∞
−∞

t2µ
(u)
k (m, b, dt), ψ

(u)
k (m, b) =

∫ ∞
−∞
|t|µ(u)

k (m, b, dt),
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µ
(u)
k (m, b, t) = Pr

 k−1∑
j=k−u

X ′k

−
 k−1∑
j=k−u

X̃ ′k

 < t|Xk = (m, b)

 ,
where (X̃ ′j)j≥0 is a copy of (X ′j)j≥0 and the two chains are independent from
each other.

We have Pr[Xk−d+1 = (m, b)|Xk = (m′, b′)] > 0 for all k,m, b,m′, b′

and this probability takes only finitely many values. Therefore we obtain
ϕ

(d−1)
k ≥ c′ for some constant c′. For g(d−1)

k (γ) we get

g
(d−1)
k (γ) ≥ inf

m,b,A
max

mk−d+1,bk−d+1,...,mk−1,bk−1

Pr[Xk−d+1 = (mk−d+1, bk−d+1),

. . . , Xk−1 = (mk−1, bk−1)|Xk = (m, b), Xk−1 ∈ A]

for all γ ≥ 0. There always exist values mk−d+1, bk−d+1, . . . ,mk−1, bk−1

for which this probability is non-zero and this probability takes again only
finitely many values. Therefore we have g(d−1)

k (γ) ≥ c′′ for some constant
c′′.

The fk are bounded, say fk(e) ≤ C for all k ≥ 0 and e ∈ {0, . . . , a1}.
Therefore ψ(d)

k (x) ≤
∣∣∣(∑k−1

j=k−dX
′
k

)
−
(∑k−1

j=k−d X̃
′
k

)∣∣∣ ≤ 2dC. On the other

hand, we have |fk−d(e)− fk−d(0)| >
√
c for some digit e and

Pr[Xk−1 = (Λ, bk−1), . . . , Xk−d+2 = (Λ, bk−d+2), Xk−d+1 = (Λ, 1),
Xk−d = (Λ, 1)|Xk = (m, b)] > 0,

Pr[X̃k−1 = (Λ, bk−1), . . . , X̃k−d+2 = (Λ, bk−d+2), X̃k−d+1 = (Λ, 1),

X̃k−d = (1e, bk−d)|Xk = (m, b)] > 0

for some (unique) bi and all (m, b). Hence µ(d)
k (m, b, t) jumps at some point

t >
√
c at least by some constant c′′′ and we have χ(d)

k (m, b) ≥ cc′′′.
These results do not depend on γ. With γ = cc′′′

16dC we obtain
h

(d)
k ≥ cc

′′c′′′/2 and (with u = d, v = d−1) ES2 ≥ (s′−s−3d+1)cc′c′′c′′′b0/4.
Hence the lemma is proved and w ≥ cc′c′′c′′′b0/(12d).

Immediately we get the following corollary.

Corollary 3.1. Suppose that there exists a constant c > 0 such that σ(2)
k,k ≥ c

for all k ≥ 0. Then we have

D(N)2 � logN and D(N)2 � logN.

In order to prove (3.6) it suffices, because of Lemma 1.1, to show that
the moments

1
N

∑
n<N

(
f

(N)(n)−M(N)
D(N)

)h
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with

M(N) =
B(N)∑
k=A(N)

µk, D(N)2 =
B(N)∑

j,k=A(N)

σ
(2)
j,k

converge to the corresponding moments of the normal law. This implies

1
N

#

{
n < N

∣∣∣∣∣f
(N)(n)−M(N)

D(N)
< x

}
→ Φ(x),

and, by Lemma 1.1, (3.5). First we prove a central limit theorem (with
convergence of moments) for the exact Markov chain.

Lemma 3.5. Suppose that there exists a constant c > 0 such that σ(2)
k,k ≥ c

for all k ≥ 0. Then the sums of the random variables fk(Xk) satisfy a central
limit theorem. More precisely∑B(N)

k=A(N) fk(Xk)−M(N)

D(N)
→ N (0, 1)

and for all h ≥ 0 we have

E

∑B(N)
k=A(N) fk(Xk)−M(N)

D(N)

h

→
∫ ∞
−∞

xh dΦ(x)

as N →∞.

Proof. If all ai are non-zero, then the ergodicity coefficient β is positive and
the lemma can be proved with the help of Theorem 4 of Lif̌sic [26]. If β = 0,
we have to adapt this theorem.

An inspection of Lif̌sic’ proof and Dobrušin’s work [9] shows that we get
the same result if we replace the ergodicity coefficient β by a constant θ > 0
that satisfies

γj =
1
2

sup
m,b

∑
m′,b′

∣∣Pr[Xk = (m′, b′)|Xk+j = (m, b)]−Pr[Xk = (m′, b′)]
∣∣

≤ (1− θ)j (3.13)

for all j ≥ 1 and

Var

(
s′−1∑
k=s

fk(Xk)

)
≥ c(s′ − s)θ (3.14)

for all s, s′ ≥ 0 with s′ − s ≥ s0 for some constant s0.
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We have γj > 0 for all j ≥ 1 since the sum in (3.13) is always less than
1 and we only have a finite number of states (m, b). Dobrušin [9] proved
γj ≤ 1− βj , where

βj = 1− sup
m,b,m′,b′,A

∣∣Pr[Xk ∈ A|Xk+j = (m, b)]−Pr[Xk ∈ A|Xk+j = (m′, b′)]
∣∣.

For some j0 with 1 < j0 < d we have Pr[Xk = (Λ, 1)|Xk+j = (m, b)] > 0
for all possible (m, b) and all j ≥ j0. This implies βj > 0 for all j ≥ j0 and
we define

θ = min
(

1− max
1≤k<j0

γ
1/k
k , 1− max

j0≤k<2j0
(1− βk)1/k,

w

c

)
.

Then (3.14) holds because of (3.12). Because of γj ≤ 1−βj , (3.13) holds
for j < 2j0. For j ≥ 2j0, we apply the inequality 1− βi+j ≤ (1− βi)(1− βj)
(see Dobrušin [9]) and get, by induction on q,

1−βqj0+t ≤ (1−βj0)(1−β(q−1)j0+t) ≤ (1−θ)j0(1−θ)(q−1)j0+t = (1−θ)qj0+t

for q ≥ 2, t < j0. Hence θ satisfies the required properties, we can apply the
(adapted) theorem of Lif̌sic and the lemma is proved.

The next lemma concludes the proof of Theorem 3.1. In particular, for
h = 2, it implies together with Lemma 1.1 and (3.3) the asymptotics for the
variance (3.4).

Lemma 3.6. For every h ≥ 1 and every λ > 0 we have

1
N

∑
n<N

(
f

(N)(n)−M(N)
D(N)

)h
−E

∑B(N)
k=A(N) fk(Xk)−M(N)

D(N)

h

→ 0.

Proof. The first term is the sum over all integers A(N) ≤ k1, . . . , kh ≤ B(N)
of

1
N

∑
n<N

h∏
j=1

fkj (εkj (n))− µkj
D(N)

=
a1∑
e1=0

· · ·
a1∑
eh=0

#{n < N | εk1(n) = e1, . . . , εkh(n) = eh}
h∏
j=1

fkj (ej)− µkj
D(N)

.

The second term is the sum over all integers A(N) ≤ k1, . . . , kh ≤ B(N) of

E

 h∏
j=1

fkj (Xkj )− µkj
D(N)


=

a1∑
e1=0

· · ·
a1∑
eh=0

Pr[X1 = e1, . . . , Xh = eh]
h∏
j=1

fkj (ej)− µkj
D(N)

.
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Hence, with Lemma 3.3, the convergence is valid with an error term of the
form O

(
(logN)λ+h−hη).

3.3 Tilings

The proof of Theorem 1.1 relies essentially on the fact that the value of εk(n)
can be determined without using the greedy algorithm, namely by

εk(n) = e⇐⇒
{

n

qk+1

}
∈
[
e

q
,
e+ 1
q

)
.

In order to get an analogue to Theorem 1.1 for G-ary expansions, we
need a similar characterisation of the digits. It turns out that we need a
tiling of the torus Td = R

d/Zd, i.e. a family of sets (Ωe)e∈{0,...,a1} such that

•
⋃a1
e=0 Ωe = T

d,

• each of the Ωe is the closure of its interior,

• the intersection of two different Ωe has Lebesgue measure zero,

and vectors v(n, k) ∈ Td such that

εk(n) = e⇐⇒ v(n, k) ∈ Ωe. (3.15)

For q-ary expansions we have 1
qj

#{n < qj | εk(n) = e} = 1
q for all j > k.

In our case we have 1
Gj

#{n < Gj | εk(n) = e} = pe+O
(
α−min(k,j−k)

)
for all

j > k. Therefore we obtain tilings with λd(Ωe) = pe, where λd denotes the
d-dimensional Lebesgue measure, which satisfy (3.15) only up to an error
term of O

(
α−k

)
.

Unfortunately, we have to make some restrictions on the sequence G: we
need ad = 1, α has to be a Pisot number with minimal polynomial χ(x), i.e.
|αi| < 1 for 2 ≤ i ≤ d, and

Fin(α) = Z[α−1] ∩ R+, (3.16)

where Fin(α) denotes the set of non-negative real numbers with finite α-
expansion, i.e.{
x ∈ R+

∣∣∣∣∣x =
M∑

k=−L
εkα

k with (εk, . . . , εk−d+1) < (a1, . . . , ad) for all k ≤M

}
.

Proposition 3.1. Let G be as in Section 3.1 with ad = 1, irreducible char-
acteristic polynomial χ(x) and its dominant root α a Pisot number which
satisfies (3.16).

v(n, k) =
n

αk
α− 1
αd − 1

(
αd−1, . . . , α, 1

)t
∈ Td.
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Then we have a tiling (Ωe)e∈{0,...,a1} of Td with

d(v(n, k),Ωεk(n)) = O
(
α−k

)
for all k, n ∈ N, (3.17)

where d(x, S) = infy∈S ‖x− y‖∞.

Remark 3.2. We have d(v(n, k),Ωεk(n)) > 0, i.e. v(n, k) 6∈ Ωεk(n) only for a
small number of n and k (see Lemma 3.10).

Proof. We regard the linear map

φ =


a1 a2 · · · · · · ad
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

 ∈ GL(d,Z)

with eigenvalues α, α2, . . . , αd. Since α is a Pisot number and ad = 1, φ
is a hyperbolic toral automorphism and we have a φ-invariant decompo-
sition of Rd into the unstable eigenspace Eu = R(αd−1, . . . , α, 1)t and the
stable eigenspace Es (of dimension d − 1). Let eu = πu

(
(1, 0, . . . , 0)t

)
and

es = πs
(
(1, 0, . . . , 0)t

)
with πu : Rd → Eu the projection along Es to Eu and

πs : Rd → Es the projection along Eu to Es. Set eu = c′1(αd−1, . . . , α, 1)t.
Then the sequence (G′j)j≥0 defined by the linear recurrence

G′j = a1G
′
j−1 + · · ·+ adG

′
j−d for j ≥ d

with initial values G′0 = 0, . . . , G′d−2 = 0, G′d−1 = 1 satisfies

G′j = c′1α
j + c′2α

j
2 + · · ·+ c′dα

j
d

for some constants c′2, . . . , c
′
d. By induction on j, we can prove the equation

Gj = G′j +G′j+1 + · · ·+G′j+d−1.

Because of Gj → c1α
j , G′j → c′1α

j for j →∞, we have

c1 = c′1(1 + α+ · · ·+ αd−1).

With

n = c1

∞∑
j=0

εj(n)αj +O (1) ,

we obtain

v(n, k) =
n

c1αk
eu =

∞∑
j=0

εj(n)αj−keu+O
(
α−k

)
=
∞∑
j=0

εj(n)φj−k(eu)+O
(
α−k

)
.
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Clearly we have

φj(eu) + φj(es) = φj
(
(1, 0, . . . , 0)t

)
∈ Zd for all j ≥ 0

and thus

v(n, k) ≡
k−1∑
j=0

εj(n)φj−k(eu)−
∞∑
j=k

εj(n)φj−k(es)︸ ︷︷ ︸
v′(n,k)

+O
(
α−k

)
modZd.

(3.18)
Set

Ωe = Clos
{
v′(n, k) : k, n ∈ N with εk(n) = e

}
.

Then we know by Praggastis [31] that (Ωe)e∈{0,...,a1} is a tiling of Td if
Fin(α) = Z[α] ∩ R+. We have Z[α] = Z[α−1], because the characteristic
polynomial is monic and ad = 1. Hence (3.16) implies that (Ωe)e∈{0,...,a1} is
a tiling and (3.17) holds because of (3.18).

Remark 3.3. For d = 2, these tilings consist of rectangles which are given
in the following example. For d ≥ 3, the involved sets always have fractal
boundary.

Example. Figure 3.1 gives an example of the rectangles in case d = 2.
Here we have a1 = 3 (and clearly a2 = 1). Figure 3.2 makes clear that
(Ωe)0≤e≤3 is a tiling of T2. Note that for these pictures v(n, k) is slightly
modified, namely

v(n, k) =
n

αk+1(α+ 1)
(α, 1)t.

We can give the rectangles as the convex hull of their corners (see [13]):

Ω0 = convhull

((
− 1
D
,
α

D

)
, (0, 1),

(
α−1 + 1
D

,
α−1 − 1
D

)
,

(
α−1

D
,− 1

D

))

Ωe = convhull

((
α−1 + e− 1

D
, 1− 1 + α−1(1− e)

D

)
,

(
α−1 + e

D
, 1− 1− α−1e

D

)
,

(
α−1 + e+ 1

D
,
α−1(e+ 1)− 1

D

)
,

(
α−1 + e

D
,
α−1e− 1

D

))
for e ∈ {1, . . . , a1 − 1}

Ωa1 = convhull

((
α− 1
D

,
a1

D

)
,

(
1− 1

D
,
α

D

)
, (1, 0),

(
α

D
,− 1

α2D

))
.

Example. Figure 3.3 shows the sets Ωe for the Tribonacci expansion
(d = 3, a1 = a2 = a3 = 1). Ω0 is the largest of the three prisms and Ω1 is
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(0,0)

(0,1) (1,1)

(1,0)

Ω0 Ω1
Ω2

Ω3

Figure 3.1: Ω0,Ω1,Ω2,Ω3 for d = 2, a1 = 3

the union of the two smaller ones. πs(Ω0) is the Rauzy fractal (for details
on the Rauzy fractal see Messaoudi [28, 29] and Rauzy [32] for the original
work). Figure 3.4 illustrates how (Ω0,Ω1) tiles R3. These figures were drawn
by Siegel, who studied in [36] substitutions of Pisot type.

For the proof of Proposition 3.3, we will need a covering of Ωe and its
boundary by convex sets. Since the boundary of Ωe has fractal structure for
d > 2, we approximate it by parallelepipeds.

Each Ωe is the union of sets

Ωe0,...,ed−2
= Clos

{
v′(n, k) : k, n ∈ N with (εk(n), . . . , εk+d−2(n)) = (e0, . . . , ed−2)

}
(with e0 = e), which are prisms:

Ωe0,...,ed−2
= πs(Ωe0,...,ed−2

)⊕ [0, sup
k,n as above

k−1∑
j=0

εj(n)αj−k]eu.

Therefore we study the boundary of πs(Ωe0,...,ed−2
).

The problem of determining all points on the boundary is equivalent to
determining all points with more than one φ-representation, which can be
done with the help of a finite automaton. This method is adapted from
Messaoudi [29] who examined the Rauzy fractal. Siegel [36] studied similar
problems with similar automata.

Let N be the set of sequences (bj)j∈Z with

(bj , bj−1, . . . , bj−d+1) < (a1, a2, . . . , ad) for all j ∈ Z
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(0,0)

(0,1) (1,1)

(1,0)

Ω0

Ω1
Ω2

Ω3

Ω0

Ω1
Ω2

Ω3

Figure 3.2: Ω0,Ω1,Ω2,Ω3 for d = 2, a1 = 3 in T2

and an integer K such that bj = 0 for j ≥ K. Let Nf be the set of
sequences (bj)j∈Z ∈ N with an integer J such that bj = 0 for j ≤ J . With

E =

{
∞∑
j=1

εjφ
j(es) |(εj)j≥1 ∈ Nf

}
, we get the following proposition.

Proposition 3.2 (cf. [29], Théorème 1). Let x =
∑∞

j=−L bjφ
j(es) and

y =
∑∞

j=−L b
′
jφ
j(es), where (bj)j≥−L ∈ N and (b′j)j≥−L ∈ N , then x = y if

and only if we have, for all i ≥ −L,

xi − yi ∈ S

where xi = φ−i
(∑i

j=−L bjφ
j(es)

)
, yi = φ−i

(∑i
j=−L b

′
jφ
j(es)

)
and

S =

±
0∑

j=−s
εjφ

j(es) : (εj)−s≤j≤0 ∈ Nf , E ∩

E ± 0∑
j=−s

εjφ
j(es)

 6= ∅
 .

for some (fixed) integer s.

We need two small lemmata for the proof of Proposition 3.2.

Lemma 3.7. For all integers j ≥ d− 1, we have

αj = αd−1G′j + αd−2(a2G
′
j−1 + a3G

′
j−2 + · · ·+ adG

′
j−d+1)

+ · · ·+ α(ad−1G
′
j−1 + adG

′
j−2) + adG

′
j−1, (3.19)

where the sequence (G′j)j≥0 is defined in the proof of Proposition 3.1.
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Figure 3.3: Ω0,Ω1 for the Tribonacci expansion

Proof. Induction on j.

Lemma 3.8. Define the linear map

κ :

±
∞∑

j=−∞
εjφ

j(es) : (εj)j∈Z ∈ Nf

→ ±Fin(α)

by κ(φj(es)) = αj for all j ∈ Z. Then κ is well defined and a bijection.

Proof. Clearly κ is a bijection, if it is well defined.
We show that all elements on the left side are distinct. Suppose

that two representations ε
∑∞

j=−∞ εjφ
j(es) and ε′

∑∞
j=−∞ ε

′
jφ
j(es) with

(εj)j∈Z, (ε′j)j∈Z ∈ Nf and ε, ε′ ∈ {±1} represent the same vector. Hence
we have Q(φ)(es) = 0 for some polynomial Q = qmx

m + · · ·+ q1x+ q0 6≡ 0
(after applying some power of φ).

The proof of Proposition 3.1 shows φj(es) =
∑d

i=2 c
′
iα
j
i (α

d−1
i , . . . , αi, 1)t.

Hence
∑m

j=0 qj
∑d

i=2 c
′
iα
j
i (α

d−1
i , . . . , αi, 1)t = 0. By easy calculations (solu-

tion of a linear equation system), we get c′i =
(∏

k 6=i(αi − αk)
)−1
6= 0. If

αi ∈ R for all i ∈ {2, . . . , d}, then the (αd−1
i , . . . , αi, 1)t are linearly indepen-

dent vectors of Rd and we must have Q(αi) = 0 for all i ∈ {2, . . . , d}. For
αi 6∈ R we get Q(αi) = 0 similarly.

This implies Q(α) = 0 and ε
∑∞

j=−∞ εjα
j = ε′

∑∞
j=−∞ ε

′
jα

j . Therefore
we have ε = ε′ and, since finite α-representations are unique, (εj)j∈Z =
(ε′j)j∈Z.
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Figure 3.4: Tiling of R3 for the Tribonacci expansion

Thus κ is well defined and the lemma proved.

Proof of Proposition 3.2. Since φ|Es is contracting, we have

x− y = lim
i→∞

φi−d+1(xi − yi) = 0,

if xi − yi ∈ S.
To show the other direction of the implication, we suppose x = y. Hence

φ−i(x) = φ−i(y) and

xi − yi =
∞∑

j=i+1

(b′j − bj)φj−i(es) =
∞∑
j=1

(b′j+i − bj+i)φj(es).

On the other hand we have

xi − yi = φ−i

 i∑
j=−L

(bj − b′j)φj(es)

 = φ−L−i−d+1

L+i+d−1∑
j=d−1

gjφ
j(es)

 ,

where gj = bj−L−d+1 − b′j−L−d+1. We apply κ and get by (3.19)

κ(xi − yi) = α−L−i−d+1
(
g′d−1α

d−1 + · · ·+ g′1α+ g′0

)
with integers g′j which are easily seen to be all positive if

(bi, bi−1, . . . , b−L) > (b′i, b
′
i−1, . . . , b

′
−L)
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and all negative if “<” holds. Hence we have κ(xi − yi) ∈ Z+[α−1] and
κ(xi − yi) ∈ Z−[α−1] respectively. Because of (3.16), we have

κ(xi − yi) = ±
m∑

j=−s
εjα

j with (εj)−s≤j≤m ∈ Nf . (3.20)

Assume, w.l.o.g., κ(xi) = κ(yi) +
∑m

j=−s εjα
j . Then (3.16) implies

κ(xi) =
m′∑

j=−s′
ε′jα

j with (ε′j)−s′≤j≤m′ ∈ Nf and m′ ≥ m.

Since κ(xi) =
∑i

j=−L bjα
j−i and finite α-expansions are unique, we have

m′ = 0 which implies m ≤ 0.
By applying κ−1 to (3.20), we get

∞∑
j=1

(b′j+i − bj+i)φj(es) = ±
0∑

j=−s
εjφ

j(es)

and
∞∑
j=1

bj+iφ
j(es) ∈ E ∩

E ± 0∑
j=−s

εjφ
j(es)

 .

Lemma 2.10 of Praggastis [31] shows that we have an integer s such that(
E ±

∑0
j=−∞ εjφ

j(es)
)

= ∅, if εj 6= 0 for some j < −s. This concludes the
proof of the proposition.

If we set zi = xi − yi, then

zi+1 = φ−1(zi) + (bi+1 − b′i+1)es.

Therefore the points with two representations are determined by a finite
automaton, the states of which are the elements of S and two states z, z′

are connected by an edge labeled by (b, b′), if z′ = φ−1(z) + (b − b′)es or,
equivalently, κ(z′) = κ(z)/α+ (b− b′). (The starting point is 0.)

As Gilbert [20] for the twin dragon, we obtain a ν-th approximation to
the boundary by determining all paths of length ν in the automaton and
drawing for each such path p a parallelepiped that contains the image of all
paths which start with p. This is the idea of the following lemma.

Lemma 3.9. For all ν ∈ N and e ∈ {0, . . . , a1}, the boundary of Ωe is
contained in sets Ue,ν which are the union of O (γν) parallelepipeds of size
Cα−ν for some constants γ < α and C, with edges parallel to a1, . . . ,ad,
where ai = (αd−1

i , . . . , αi, 1)t for the real eigenvalues αi (α1 = α) and
ai = (<αd−1

i , . . . ,<αi, 1)t, ai+1 = (=αd−1
i , . . . ,=αi, 0)t for the pairs of com-

plex eigenvalues (αi, αi+1 = αi).
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Proof. A point can be on the boundary of Ωe if its πs-image has
at least two φ-representations

∑∞
j=0 bjφ

j(es) =
∑∞

j=−L b
′
jφ
j(es) with

(b0, . . . , bd−2) 6= (b′0, . . . , b
′
d−2), b0 = e and j0 the smallest integer with

bj0 6= b′j0 . Denote by Bν the number of different initial sequences (b0, . . . , bν)
of points on the boundary. We show that these sequences cannot have 2s+2
subsequent zeros.

Suppose on the contrary that (bj1+1, . . . , bj1+2s+2) = (0, . . . , 0) for some
j1 ≥ j0. Set zi =

∑i
j=j0

(bj− b′j)φj−i(es). We have zj0 6= 0 by definition and
zi 6= 0 for all i > j0, because κ(zi) = 0 would imply that two different finite
α-representations are equal.

Assume κ(zj1) < 0. Then we have κ(zi) < 0 for all j1 < i ≤ j1 + 2s+ 2
and the uniqueness of finite α-representations implies zi 6∈ S for some i,
j1 < i ≤ j1 + s+ 1, which contradicts Proposition 3.2. If κ(zj1) > 0, then
the uniqueness of finite α-representations implies κ(zi) < 0 or zi 6∈ S for
some i, j1 < i ≤ j1 + s + 1. As above κ(zi) < 0 implies zi′ 6∈ S for some
i′ ≤ i+ s+ 1.

Therefore 2s+ 2 subsequent zeros are not possible and Bν = O (γν) for
some γ < α.

The ai are the real eigenvectors of φ and the real and imaginary parts of
the complex eigenvectors respectively. Let c be the size of the parallelepiped
that covers E and all its images of rotations in the planes spanned by the
complex eigenvectors (E is a bounded set). Then all points on the boundary
with same initial sequence (b0, . . . , bν) are covered by a parallelepiped of size
C|α2|ν . . . |αd|ν = Cα−ν and we have Bν of these parallelepipeds.

This concludes the proof of the lemma.

3.4 Central limit theorem for polynomial se-
quences

Now, we can state the analogue to Theorem 1.1. Clearly we have to make
the same restrictions on f as in Theorem 3.1 and the same restrictions on
G as in Proposition 3.1.

Theorem 3.2. Let G be as in Section 3.1 with ad = 1, irreducible char-
acteristic polynomial χ(x) and its dominant root α a Pisot number which
satisfies (3.16). Let f be a G-additive function such that fk(e) = O (1) as
k → ∞ for all e ∈ {0, 1, . . . , a1} and assume that there exists a constant
c > 0 such that σ(2)

k,k ≥ c for all k ≥ 0. Let P (n) be a polynomial of degree r
with integer coefficients and positive leading term. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(N r)
D(N r)

< x

}
→ Φ(x) (3.21)
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and
1

π(N)
#
{
p < N

∣∣∣∣f(P (p))−M(N r)
D(N r)

< x

}
→ Φ(x) (3.22)

Remark 3.4. For a1 ≥ a2 ≥ · · · ≥ ad > 0, we know from Brauer [4] that α
is a Pisot number with minimal polynomial χ(x). (3.16) has been shown in
this case by Frougny and Solomyak [18]. Hence Theorem 3.2 holds for these
sequences.

For d = 3, a2 = 0, a3 = 1, α2 and α3 are complex numbers and have
therefore absolute value 1/

√
α. For these ai, the equation (3.16) was shown

by Akiyama [1]. Hence Theorem 3.2 holds for these sequences too and the
only restriction in case d = 3 is a3 = 1.

Remark 3.5. α may not be a Pisot number (e.g. the dominant root of
x6 − x5 − 1). We also have α which are Pisot units, but do not satisfy
(3.16): let α be the dominant root of x4 − x3 − 1. Then the α-expansion of
2 is 10.010(00001)∞.

We have to prove the following analogue to Proposition 1.1.

Proposition 3.3. Let P (n) be an integer polynomial of degree r ≥ 1 and
positive leading term. Then for every h ≥ 1 and for every λ > 0 we have

1
N

#{n < N : εk1(P (n)) = e1, . . . , εkh(P (n)) = eh} = p̂k1,...,kh,e1,...,eh

+O
(

(logN)−λ
)

and

1
π(N)

#{p < N : εk1(P (p)) = e1, . . . , εkh(P (p)) = eh} = p̂k1,...,kh,e1,...,eh

+O
(

(logN)−λ
)

uniformly for all integers

(logN r)η ≤ k1, k2, . . . , kh ≤ logαN
r − (logN r)η

and e1, e2, . . . , eh ∈ {0, 1, . . . , a1}. (The p̂k1,...,kh,e1,...,eh are as in Lemma
3.3.)

We adapt the proof of Proposition 1.1 and include some elements of the
proof of Gittenberger and Thuswaldner [21], who proved a similar theorem
for digital expansions of the Gaussian integers. There the digits are also
determined by tilings with fractal boundary.

Denote by Ue,ν the union of parallelepipeds of Lemma 3.9 containing the
boundary of Ωe. Let 1Ωe∪Ue,ν the characteristic function of Ωe ∪ Ue,ν on
the torus Td and

∑
m∈Zd cm,e,νe(m · x) its Fourier expansion. In order to
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calculate cm,e,ν we split up Ωe∪Ue,ν into parallelepipeds with edges parallel
to a1, . . . ,ad. Then we clearly have c0,e,ν = λd(Ωe ∪Ue,ν) and, by Lemma 1
of Drmota [10], the m-th Fourier coefficient of such a parallelepiped is

∑
x∈V

∣∣det(x− y)y∈Γ(x)

∣∣∏
y∈Γ(x)(−2πi)m · (x− y)

e(−m·x) =
∑
x∈V

|det(±aj)1≤j≤d|∏d
j=1(−2πi)m · (±aj)

e(−m·x),

where V denotes the set of vertices of the parallelepiped and Γ(x) the set
of vertices adjacent to x. As in Gittenberger and Thuswaldner [21], the
contributions of the inner parallelepipeds cancel out and only the O (γν)
corners of the boundary of Ωe ∪ Ue,ν play a role. The contribution of a
corner can be bounded by (cf. Drmota [10], Lemma 2)∣∣∣∣∣ |det(±aj)1≤j≤d|∏d

j=1(−2πi)m · (±aj)

∣∣∣∣∣�
d∏
i=1

1
(1 + |m · ai|)2

uniformly for all m. Hence we define m̃i = m · ai and have

|cm,e,ν | � γν
d∏
i=1

min
(

1,
1
|m̃i|

)
As in Section 1.3, we consider the function

ψe,ν,∆(x) =
1

∆d

∫ ∆
2

−∆
2

. . .

∫ ∆
2

−∆
2

1Ωe∪Ue,ν (x + z1a1 + · · ·+ zdad)dz1 . . . dzd.

By enlarging the parallelepipeds of Ue,ν , we obtain sets Qe,ν which are again
unions of O (γν) parallelepipeds with λd(Qe,ν) = O

(( γ
α

)ν) such that

ψe,ν,∆(x) =
{

1 if x ∈ Ωe \Qe,ν
0 if x 6∈ Ωe ∪Qe,ν ,

if we assume ∆ < α−ν .
For the Fourier expansion ψe,ν,∆(x) =

∑
m∈Zd dm,e,ν,∆e(m · x), we get

|dm,e,ν,∆| � γν
d∏
i=1

min
(

1,
1
|m̃i|

,
1

∆m̃2
i

)
.

We set
t(n) = ψe1,ν,∆(v(n, k1)) . . . ψeh,ν,∆(v(n, kh)).

Then we have t(n) = 1 if v(n, ki) ∈ Ωei \ Qei,ν for all i, 1 ≤ i ≤ h and
t(n) = 0 if v(n, ki) 6∈ Ωei ∪ Qei,ν for some i. Therefore we estimate the
number of integers with v(n, ki) ∈ Qei,ν by the following lemma.
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Lemma 3.10. Let

Ek,e,ν = # {n ≤ N |v(P (n), k) ∈ Qe,ν } , Fk,e,ν = # {p ≤ N |v(P (p), k) ∈ Qe,ν }

and λ an arbitrary positive constant. Then, uniformly in k,
(logN r)η ≤ k ≤ r logαN r − (logN r)η, we have

Ek,e,ν �
(γ
α

)ν
N +N(logN)−λ, Fk,e,ν �

(γ
α

)ν
π(N) +N(logN)−λ.

Proof. The proof of this lemma uses the isotropic discrepancy

JN = sup
C⊆Td

∣∣∣∣∣ 1
N

N∑
n=1

χC({xn})− λd(C)

∣∣∣∣∣ ,
where the supremum is taken over all convex subsets C of Td = R

d/Zd and
x1, . . . ,xN ∈ Rd. It can be estimated by the normal discrepancy

DN = sup
I⊆Td

∣∣∣∣∣ 1
N

N∑
n=1

χI({xn})− λd(I)

∣∣∣∣∣
(where the supremum is taken over all d-dimensional intervals I of Td):

DN ≤ JN ≤ (4d
√
d+ 1)D

1
d
N

(see Drmota and Tichy [14], Theorem 1.12).
To get an estimate for DN , we use the following version of Erdős-Turán-

Koksma’s inequality:

DN �
1
M

+
∑

h∈Zd:0<‖h‖∞<M

d∏
i=1

1
max{1, |hi|}

∣∣∣∣∣ 1
N

N∑
n=1

e(h · xn)

∣∣∣∣∣ ,
where M is an arbitrary positive integer (cf. [14], Theorem 1.21).

We set xn = v(P (n), k) and M = (logN)dλ. Then we have, since Qe,ν is
the union of O (γν) convex subsets and the conditions of Lemmata 2.5 and
2.6 hold,

Ek,e,ν � γνJNN + λd(Qe,ν)N

� Nγν
(

(logN)−λ + log(logN)dλ(logN)−τ0/d
)

+
(γ
α

)ν
N.

Similarly we get with Lemma 2.6,

Fk,e,ν � π(N)γν
(

(logN)−λ + log(logN)dλ(logN)−τ0/d
)

+
(γ
α

)ν
π(N).

We can choose τ0 > dλ and the inequalities are proven.
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We define

Σ1 = #{n < N : εk1(P (n)) = e1, . . . , εkh(P (n)) = eh}

and
Σ2 = #{n < N : εk1(P (n)) = e1, . . . , εkh(P (n)) = eh}.

For ν � log logN and (logN r)η ≤ k ≤ r logαN r − (logN r)η, the error term
O
(
α−k

)
of Proposition 3.1 is negligible compared to the size of each paral-

lelepiped in Qe,ν and we have∣∣∣∣∣Σ1 −
∑
n<N

t(P (n))

∣∣∣∣∣ ≤ Ek1,e1,ν + · · ·+ Ekh,eh,ν ,

∣∣∣∣∣Σ2 −
∑
n<N

t(P (p))

∣∣∣∣∣ ≤ Fk1,e1,ν + · · ·+ Fkh,eh,ν .

As usual, we will consider only Σ1 since Σ2 can be treated similarly.
Let M be the set of vectors M = (m1, . . . ,mh) with integer vectors

mi = (m(i)
1 , . . . ,m

(i)
d ). Then we have∑

n<N

t(P (n)) =
∑

M∈M
TM,ν

∑
n<N

e
((

m1 · v(1, k1) + · · ·+ mh · v(1, kh)
)
P (n)

)
,

with
TM,ν = dm1,e1,ν,∆ · · · dmh,eh,ν,∆.

Because of

h∑
i=1

mi·v(1, ki) =
α− 1
αd − 1

(
m

(1)
1 αd−1 + · · ·+m

(1)
d

αk1
+ · · ·+

m
(h)
1 αd−1 + · · ·+m

(h)
d

αkh

)

we have to estimate

S =
αkh−k1+d−1m

(1)
1 + · · ·+m

(1)
d αkh−k1 + · · ·+m

(h)
1 αd−1 + · · ·+m

(h)
d

αkh
(3.23)

in order to estimate these exponential sums, where we may assume
k1 < k2 < · · · < kh.

Since the ai form a basis of Rd, we have

1
|a1 ·m|

. . .
1

|ad ·m|
� 1
|m1|

· · · 1
|md|
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and therefore

∑
M∈M

|TM,ν | �

( ∞∑
m1=−∞

· · ·
∞∑

md=−∞
γν

d−1∏
i=0

min
(

1,
1
|m̃i|

,
1

m̃2
i∆

))h

�

 ∞∑
m̃1=−∞

· · ·
∞∑

m̃d=−∞
γν

d−1∏
i=0

min
(

1,
1
|m̃i|

,
1

m̃2
i∆

)h

� (logN(log
1
∆

))dh

If |m(j)
i | > (logN)2δ for some i, j, then we have |m̃(j)

i | > c̃(logN)2δ for
some i, j and∑
∃i,j with |m(j)

i |>(logN)2δ

|TM,ν |

� γhν

 ∞∑
m=[c̃(logN)2δ ]

1
m2∆

[c̃(logN)2δ ]∑
m=1

1
|m|

dh−1

� γhν
(
log(logN)2δ

)dh
(logN)δ

if we set ∆ = (logN)δ. Hence we need estimates of S for all M with
|m(j)

i | ≤ (logN)2δ for all i, j.
We use the following lemma due to W.M. Schmidt:

Lemma 3.11 (W.M. Schmidt [34], p. 153). Suppose 1, β1, β2, . . . , βv
are linearly independent over Q, and they generate an algebraic number field
of degree d. Then

|β1q1 + · · ·+ βvqv − p| > cq−d+1

for arbitrary integers q1, . . . , qv, p having q = max(|q1|, . . . , |qv|) > 0 and
some constant c.

Lemma 3.12. Let |m(j)
i | ≤ (logN)2δ for all i, j,

(logN r)η ≤ k1 < k2 < · · · < kh ≤ logαN
r − (logN r)η

and arbitrary constants δ > 0, η > 0. Then the S defined by (3.23) satisfy

S = 0 or
α(logN)η

′

N r
� |S| � 1

α(logN)η′
(3.24)

for all η′ < η.
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Proof. Assume S 6= 0. Because of Lemma 3.7 we have

S =
m̂1α

d−1 + · · ·+ m̂d−1α+ m̂d

αkh

with integers m̂i which satisfy

|m̂i| � (logN)2δαkh−k1 (1 ≤ i ≤ d).

Therefore

|S| � (logN)2δαkh−k1

αkh
≤ (logN)2δ

α(logN)η
� 1

α(logN)η′
.

To obtain the lower bound we start by setting ε = η/h. Then there
exists an integer K, 0 ≤ K ≤ h− 1, such that for all j

kj+1 − kj 6∈
[
(logN)Kε, (logN)(K+1)ε

)
.

So fix K with this property. We have to distinguish two cases.
If kj+1 − kj ≤ (logN)Kε for all j, we apply Lemma 3.11 and get

|S| � 1
max

i∈{0,...,d−1}
|m̂i|d−1αkh

� 1
(logN)2(d−1)δαkh+(d−1)(h−1)(logN)Kε

� α(logN)η−(d−1)(h−1)(logN)
hη
h+1

N r(logN)2(d−1)δ
� α(logN)η

′

N r
.

Otherwise we have a j < h such that kj+1 − kj ≥ (logN)(K+1)ε and
kj − k1 ≤ (j − 1)(logN)Kε. Then we split up the sum into two terms

S =
αkj−k1+d−1m

(1)
1 + · · ·+m

(1)
d αkj−k1 + · · ·+m

(j)
1 αd−1 + · · ·+m

(j)
d

αkj

+
αkh−kj+1+d−1m

(j+1)
1 + · · ·+m

(j+1)
d αkh−kj+1 + · · ·+m

(h)
1 αd−1 + · · ·+m

(h)
d

αkh

= S1 + S2.

If S1 = 0, then S = S2 and we are concerned with a problem containing less
terms. By using induction on h (which is not made explicit here), we may
assume that this case has already been treated. Otherwise we have

|S1| �
1

(logN)2(d−1)δαkj+(d−1)(j−1)(logN)Kε
,

whereas

|S2| �
(logN)2δαkh−kj+1

αkh
≤ (logN)2δ

αkj+(logN)(K+1)ε
.

Hence

|S| � α(logN)η−(j−1)(d−1)(logN)Kε

N r(logN)2δ
� α(logN)η

′

N r

and the lemma is proved.
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Hence we have

Σ1 =
∑

M∈M:
∑

mi·v(1,ki)=0

TM,ν+O
(
γhνN(logN)−τ0 + γhνN(logN)−δ/2 +N

(γ
α

)ν)
We set

T ′M,ν = cm1,e1,ν · · · cmh,eh,ν

and have to compare TM,ν to T ′M,ν . Here we have

TM,ν = T ′M,ν +O
(
γν max

i,j

∣∣∣m̃(j)
i

∣∣∣∆)
and ∑

M∈M:|m̃(j)
i |<(logN)

δ
2dh for all i,j

∣∣TM,ν − T ′M,ν

∣∣� γν(logN)−δ/3.

For the other M we obtain by the same methods as in Section 2.1∑
M∈M:

∑
mi·v(1,ki)=0,|m̃(j)

i |≥(logN)
δ

2dh for some i,j

T ′M � (logN)
− δ

2dh(dh−1)2 .

If we set

p̃k1,...,kh,e1,...,eh,ν =
∑

M∈M:
∑

mi·v(1,ki)=0

T ′M,ν ,

we get

Σ1 = Np̃k1,...,kh,e1,...,eh,ν +O
(
γνN(logN)

− δ
2dh(dh−1)2

)
+O

(
N
(γ
α

)ν)
Remark 3.6. In case of one variable k, we have m · v(1, ki) = 0 only for
m = 0. Hence p̃k,e,ν = c0,e,ν → λd(Ωe) = pe = p̂k,e as ν →∞.

We set ν = [C log logN ] for some constant C which satisfies( γ
α

)ν � (logN)−λ, choose δ such that (logN)
− δ

2dh(dh−1)2 � α−ν and get

Σ1 = Np̃k1,...,kh,e1,...,eh,[C log logN ] +O
(
N(logN)−λ

)
.

For P (n) = n and (logN)η ≤ k1, . . . , kh ≤ logαN − (logN)η, Lemma 3.3
implies

Σ1 = Np̂k1,...,kh,e1,...,eh +O
(
N(logN)−λ

)
and therefore

p̃k1,...,kh,e1,...,eh,[C log logN ] = p̂k1,...,kh,e1,...,eh +O
(

(logN)−λ
)
.

For (logN r)η ≤ k1, . . . , kh ≤ logαN r − (logN r)η, we obtain this result by
considering Σ1 for P (n) = n and N r.

As already noted, we get the corresponding result for primes by the same
arguments. Thus Proposition 3.3 and Theorem 3.2 are proved.
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3.5 Joint distributions of G-additive and
q-additive functions

Finally, we generalise Theorems 2.1 and 2.3 on G-ary expansions.

Theorem 3.3. Let f`, 1 ≤ ` ≤ L, be either q`-additive functions as in
Theorem 1.1 or G`-additive functions as in Theorem 3.2. Let P`(n) be poly-
nomials of different degrees r` with integer coefficients and positive leading
terms. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x`, ` = 1, 2, . . . , L
}
→ Φ(x1) . . .Φ(xL)

and

1
π(N)

#
{
p < N

∣∣∣∣f`(P`(p))−M`(N r`)
D`(N r`)

< x`, ` = 1, . . . , L
}
→ Φ(x1) . . .Φ(xL)

The strategy of the proof of Theorem 3.3 is exactly the same as that of
Theorem 2.1 and the changes which have to be made are obvious. Therefore
they will not be presented.

Theorem 3.4. Let f1 be a G1-additive function as in Theorem 3.2 with
dominant root α1 of degree d1 and f2 either a q-additive function as in
Theorem 1.1 or a G2-additive function as in Theorem 3.2 with dominant
root α2 of degree d2 such that [Q(α1, α2) : Q] = d1d2. Let P1(n), P2(n) be
polynomials with integer coefficients, degrees r1, r2 and positive leading term.
Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f`(P`(n))−M`(N r`)
D`(N r`)

< x` (` = 1, 2)
}
→ Φ(x1)Φ(x2)

(3.25)
and

1
π(N)

#
{
p < N

∣∣∣∣f`(P`(p))−M`(N r`)
D`(N r`)

< x` (` = 1, 2)
}
→ Φ(x1)Φ(x2).

(3.26)

Remark 3.7. If (d1, d2) = 1, then [Q(α1, α2) : Q] = d1d2 is always satisfied.

If d1 = d2 = 2, this condition is equivalent to D1
D2

=

√
a

(1)
1

2
+4√

a
(2)
1

2
+4

being irrational.

As usual it suffices to prove Propositions 3.4 and 3.5.

Proposition 3.4 (cf. Proposition 2.4). Let G be a sequence as in Theo-
rem 3.2 with dominant root α, q an integer (q ≥ 2) and P1(n), P2(n) integer
polynomials with positive leading terms and degrees r1, r2. Let λ > 0 be an
arbitrary constant and h1, h2 non-negative integers. Then for integers

(logN r1)η ≤ k(1)
1 < k

(1)
2 < · · · < k

(1)
h1
≤ logαN

r1 − (logN r1)η
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(with some η > 0) and

(logN r2)η ≤ k(2)
1 < k

(2)
2 < · · · < k

(2)
h2
≤ logqN

r2 − (logN r2)η

we have, as N →∞,

1
N

#
{
n < N

∣∣∣∣εG1,k
(1)
j

(P1(n)) = b
(1)
j , ε

q,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ h`

}
= p̂

k
(1)
1 ,...,k

(1)
h1
,b

(1)
1 ,...,b

(1)
h1

1
qh2

+O
(

(logN)−λ
)

and

1
π(N)

#
{
p < N

∣∣∣∣εG1,k
(1)
j

(P1(p)) = b
(1)
j , ε

q,k
(2)
j

(P2(p)) = b
(2)
j , 1 ≤ j ≤ h`

}
= p̂

k
(1)
1 ,...,k

(1)
h1
,b

(1)
1 ,...,b

(1)
h1

1
qh2

+O
(

(logN)−λ
)

uniformly for b(1)
j ∈ {0, . . . , a1}, b(2)

j ∈ {0, . . . , q − 1} and k
(`)
j in the given

range, where the implicit constant of the error term may depend on q`, on
the polynomials P`, on h` and on λ.

Proof. The proof is similar to that of Proposition 2.4. We have to estimate
the exponential sums

∑
n<N

e

(
h1∑
i=1

m(1)
i · v

(1)(1, k(1)
i )P1(n) + m(2) · v(2)

)
.

If the degrees of r1, r2 are different then we are in the same situation as in
Proposition 2.1. So assume r1 = r2 = r.

Denote by g(1)
r , g

(2)
r the leading terms of the polynomials and set

S = S1 + S2 =
h1∑
i=1

m(1)
i · v

(1)(1, k(1)
i )g(1)

r + m(2) · v(2)g(2)
r

=
m

(1,1)
1 α

k
(1)
h1
−k(1)

1 +d−1 + · · ·+m
(1,1)
d α

k
(1)
h1
−k(1)

1 + · · ·+m
(1,h1)
1 αd−1 + · · ·+m

(1,h1)
d

α
k

(1)
h1

g(1)
r

+
m

(2)
1 q

k
(2)
h2
−k(2)

1 + · · ·+m
(2)
h2

q
k

(2)
h2

g(2)
r =

m̂
(1)
1 αd−1 + · · ·+ m̂

(1)
d−1α+ m̂

(1)
d

G̃
k

(1)
h1
,1
αd−1 + · · ·+ G̃

k
(1)
h1
,d−1

α+ G̃
k

(1)
h1
,d

g(1)
r +

m̂(2)

q
k

(2)
h2

g(2)
r

(cf. Lemma 3.7) with

G̃k,i = aiG
′
k−1 + · · ·+ adG

′
k−1−d+i. (3.27)
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Hence we have S = 0 if and only if

m̂
(1)
i g(1)

r q
k

(2)
h2 = m̂(2)g(2)

r G̃
k

(1)
h1
,i

for all i ∈ {1, 2, . . . , d}.

Now we show that the G̃k,i, 1 ≤ i ≤ d, have no common di-
visor. First assume gcd(G′k−1, G

′
k−2, . . . , G

′
k−d) = g > 1. Because

of ad = 1 we get g|G′k−d−1 and inductively g|G′j for all j < k,
but this is not possible because of the choice of the initial values
(G′d−1 = 1). Hence we have gcd(G′k−1, G

′
k−2, . . . , G

′
k−d) = 1. Now as-

sume gcd(G̃k,1, G̃k,2, . . . , G̃k,d) = g > 1 for some k. Then (3.27) with i = d
gives g|G′k−1, with i = d − 1 we get g|G′k−2 and inductively g|G′k−i for all
i ∈ {1, . . . , d} which contradicts gcd(G′k−1, G

′
k−2, . . . , G

′
k−d) = 1. Thus we

have
gcd(G̃k,1, G̃k,2, . . . , G̃k,d) = 1 for all k ≥ 1. (3.28)

Therefore we have, for every prime divisor p of q, some i such that

p 6 |G
k

(1)
h1
,i
. Hence p

k
(2)
h2 |m̂(2) and q|m̂(2). This implies q|m(2)

h2
and either

m
(2)
h2

= 0, i.e. we have a smaller problem, or d
m

(2)
h2
,b

(2)
h2
,q,∆

= 0. Thus we may

assume S 6= 0 if S1 6= 0.
Now we can proceed as in the proof of Proposition 2.4. It suf-

fices to consider those m(1)
i and m(2) with 0 < |m(1,i)

j | < (logN)2δ,

0 < |m(2)
j | < (logN)2δ for all i, j and S1 6= 0. Clearly we have

S � (logN)2δ

min(α, q)(logN)η
.

For the lower bound set ε = η/(h1 +h2−1). Then there exists an integer
K with 0 ≤ K ≤ h1 + h2 − 2 such that for all j, `

k
(`)
j+1 − k

(`)
j 6∈

[
(logN)Kε, (logN)(K+1)ε

)
.

So fix K with this property.
First suppose k(`)

j+1 − k
(`)
j < (logN)Kε for all j, `. Set

m1 = m̂
(1)
1 αd−1 + · · ·+ m̂

(1)
d−1α+ m̂

(1)
d , m2 = g(2)

r m̂(2).

Then we have log |m`| � (logN)Kε because of m̂(1)
i � (logN)2δα

k
(1)
h1
−k(1)

1 ,
we can apply Corollary 2.6 to

S =
m1

α
k

(1)
h1

+
m2

q
k

(2)
h2

+1

81



and obtain

S ≥ max
(
α
−k(1)

h1 , q
−k(1)

h2
−1
)
e−c log logN (logN)Kε ≥ (logN)τ

N r

for some constant c > 0 and all τ > 0.
Otherwise we have some s`, ` = 1, 2, such that k(`)

j+1 − k
(`)
j < (logN)Kε

for all j < s` and k
(`)
s`+1 − k

(`)
s` ≥ (logN)(K+1)ε. Here we set

m1 = g(1)
r

s1∑
j=1

(
m

(1,j)
1 αk

(1)
s1
−k(1)

j +d−1 + · · ·+m
(1,j)
d αk

(1)
s1
−k(1)

j

)
,

m2 = g(2)
r

s2∑
j=1

m
(2)
j qk

(2)
s2
−k(2)

j

Then we have again log |m`| � (logN)Kε. Furthermore, we can estimate
the sums

h1∑
j=s1+1

m
(1,j)
1 αd−1 + · · ·+m

(1,j)
d

αk
(2)
j

� (logN)2δq−k
(1)
s1
−(logN)(K+1)ε

,

h2∑
j=s2+1

m
(2)
j

qk
(2)
j +1

� (logN)2δq−k
(2)
s2
−(logN)(K+1)ε

.

Thus we get

S ≥

∣∣∣∣∣ m1

αk
(1)
s1

+
m2

qk
(2)
s2

+1

∣∣∣∣∣−O ((logN)2δ
(
α−k

(1)
s1
−(logN)(K+1)ε

+ q−k
(1)
s1
−(logN)(K+1)ε

))
≥ max

(
α−k

(1)
s1 , q−k

(2)
s2
−1
)(

e−c log logN (logN)Kε −O
(

(logN)2δe− log(min(α,q))(logN)(K+1)ε
))

≥ (logN)τ

N r

and the conditions of Lemmata 2.5 and 2.6 are satisfied.
Therefore the limits of the joint probabilities are just the products of the

simple probabilities.

Proposition 3.5. Let G1, G2 be sequences as in Theorem 3.2 with dominant
roots α1, α2 and P1(n), P2(n) integer polynomials with positive leading terms
and degrees r1, r2. Let λ > 0 be an arbitrary constant and h1, h2 non-negative
integers. Then for integers

(logN r`)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h`
≤ logα` N

r` − (logN r`)η (` = 1, 2)
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(with some η > 0) we have, as N →∞,

1
N

#
{
n < N

∣∣∣∣εG1,k
(1)
j

(P1(n)) = b
(1)
j , ε

G2,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ h`

}
= p̂

k
(1)
1 ,...,k

(1)
h1
,b

(1)
1 ,...,b

(1)
h1

p̂
k

(2)
1 ,...,k

(2)
h2
,b

(2)
1 ,...,b

(2)
h2

+O
(

(logN)−λ
)

and

1
π(N)

#
{
p < N

∣∣∣∣εG1,k
(1)
j

(P1(p)) = b
(1)
j , ε

G2,k
(2)
j

(P2(p)) = b
(2)
j , 1 ≤ j ≤ h`

}
= p̂

k
(1)
1 ,...,k

(1)
h1
,b

(1)
1 ,...,b

(1)
h1

p̂
k

(2)
1 ,...,k

(2)
h2
,b

(2)
1 ,...,b

(2)
h2

+O
(

(logN)−λ
)

uniformly for b(`)j ∈ {0, . . . , q` − 1} and k
(`)
j in the given range, where the

implicit constant of the error term may depend on q`, on the polynomials
P`, on h` and on λ.

Proof. The proof is almost the same as that of Proposition 3.5. It remains
to prove that S = 0 only if S1 = S2 = 0, where

S = S1 + S2 =
h1∑
i=1

m(1)
i · v

(1)(1, k(1)
i )g(1)

r +
h2∑
i=1

m(2)
i · v

(2)(1, k(2)
i )g(2)

r

=
m

(1,1)
1 α

k
(1)
h1
−k(1)

1 +d1−1

1 + · · ·+m
(1,h1)
d1

α
k

(1)
h1

1

g(1)
r +

m
(2,1)
1 α

k
(2)
h2
−k(2)

1 +d2−1

2 + · · ·+m
(2,h1)
d2

α
k

(2)
h2

2

g(2)
r

=
m̂

(1)
1 αd1−1

1 + · · ·+ m̂
(1)
d1

G̃
(1)

k
(1)
h1
,1
αd1−1

1 + · · ·+ G̃
(1)

k
(1)
h1
,d1

g(1)
r +

m̂
(2)
1 αd2−1

2 + · · ·+ m̂
(2)
d2

G̃
(2)

k
(2)
h2
,1
αd2−1

2 + · · ·+ G̃
(2)

k
(2)
h2
,d2

g(2)
r

Because of [Q(α1, α2) : Q] = d1d2, the αi1α
j
2, 0 ≤ i < d1, 0 ≤ j < d2, are

linearly independent over Q and we get the equation system

m̂
(1)
i g(1)

r G̃
(2)

k
(2)
h2
,j

= m̂
(2)
j g(2)

r G̃
(1)

k
(1)
h1
,i

(1 ≤ i ≤ d1, 1 ≤ j ≤ d2).

Hence we have

m̂
(1)
i = −m̂(2)

j

g
(2)
r

g
(1)
r

G̃
(1)

k
(1)
h1
,i

G̃
(2)

k
(2)
h2
,j

= m̂
(1)
i′

G̃
(1)

k
(1)
h1
,i

G̃
(1)

k
(1)
h1
,i′

(1 ≤ i, i′ ≤ d1). (3.29)

Therefore the system of d1d2 equations can be reduced to d1 + d2 − 1
equations and we have non-trivial solutions, but they must satisfy

m̂
(`)
i ≡ 0

(
G̃

(`)

k
(`)
h`
,i

)
(3.30)
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for all i, `. This implies m(`)
i = 0 for all i, ` because of

G̃
(`)

k
(`)
h`
,i
≥ G′

k
(`)
h`
−d
∼ c′1

(`)
α
k

(`)
h`
−d

` and
∣∣∣m̂(`)

i

∣∣∣� (logN)2δα
k

(`)
h`
−k(`)

1

`

and thus S1 = S2 = 0. To show (3.30), let pe11 . . . pett be the prime factorisa-
tion of G̃(`)

k
(`)
h`
,i
. For each pj we have pj 6 |G̃(`)

k
(`)
h`
,i′

for some i′ because of (3.28).

Hence (3.29) implies pejj |m̂
(1)
1 for all j and (3.30) is proved.

This concludes the proof of Theorem 3.4.
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