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Chapter 1

Introduction and Notations

The distribution of the sum of digits function is very well known, especially
for q-ary digital expansions (e.g. decimal, binary expansions). This work
will present other types of digital expansions as well as generalizations of
the sum of digits function and show that the distribution of these functions
satisfies a central limit theorem.

More precisely, a problem posed by Drmota [8] is partially solved.
Drmota studied the distribution of patterns in digital expansions related
to specific finite recurrences and obtained a global and a local limit law. He
wondered if corresponding laws hold for infinite linear recurrences related
to the Parry expansion of a real number α > 1. Now, the global limit law
can be proved for (infinite) linear recurrences related to α-numbers (Sec-
tion 5.5). In addition, the local limit law can be proved for a larger set of
finite recurrences (those related to simple α-numbers, Section 5.6).

The Parry expansion (including α-numbers and simple α-numbers) and
other digital expansions of non-negative integers and real numbers will be
presented in Chapter 2. Chapter 3 deals with number systems in general in-
tegral domains, e.g. in the Gaussian integers. Chapter 4 recapitulates what
is known about the distribution of the sum of digits function and related
functions, whereas Chapter 5 contains the new results on this domain.

As in Drmota’s work [8], adjacency matrices of generalized De Bruijn
graphs are used. Drmota’s conjecture that the characteristic polynomial of
these graphs is in principle the characteristic polynomial of the underlying
linear recurrence will be proved in Section 5.1.

Throughout the work the following notations will be used: N will denote
the set of non-negative integers, Z the set of integers, Q the set of rational
numbers, R the set of real numbers, and C the set of complex numbers.
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R[x] will denote the polynomial ring over a ring R, Q(α) the extension field
of Q generated by α and NK/Q(β) the norm of β ∈ K over Q. The relation
“<” will denote the lexicographic order for sequences.
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Chapter 2

Digital Expansions

In this chapter some of the most important digital expansions of integers
and real numbers will be presented, with the focus on Parry’s α-expansion
which will be needed in Chapter 5.

2.1 Definition

Let G = (Gj)j≥0 be a strictly increasing sequence of integers with G0 = 1.
Then every non-negative integer n has a (unique) proper G-ary digital ex-
pansion

n =
∑
j≥0

εj(n)Gj

with integer digits εj(n) ≥ 0 provided that
k∑
j=0

εj(n)Gj < Gk+1 ∀k ∈ N (2.1)

A sequence (εj)j≥0 shall be called realizable if there exists an n with
εj = εj(n) ∀j ∈ N.

For real numbers let G = (Gj)j∈Z be a strictly increasing sequence of
real numbers with G0 = 1, lim

j→−∞
Gj = 0. Then every non-negative real

number x has a (unique) proper G-ary digital expansion

x =
∑
j∈Z

εj(x)Gj

with integer digits εj(x) ≥ 0 provided that∑
j≤k

εj(x)Gj < Gk+1 ∀k ∈ Z (2.2)
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A sequence (εj)j∈Z shall be called realizable if there exists an x with
εj = εj(x) ∀j ∈ Z.

2.2 q-ary Expansions

q-ary expansions are the classical cases Gj = qj (with q > 1 an integer). The
digits εj are in {0, 1, . . . , q − 1}. For integers j runs in N, for real numbers
in Z.

A sequence is realizable iff εj 6= 0 only for a finite number of j ≥ 0 and
(for real numbers) its “negative tail” is not (q − 1, q − 1, . . .), i.e. it exists
no k < 0 such that εj = q − 1 ∀j ≤ k.

2.3 Cantor’s Expansion

In a Cantor’s expansion the sequence G is defined as

Gj =


q1q2 . . . qj for j > 0

1 for j = 0
1

q−1q−2...q−j
for j < 0

where qj ∈ N, qj ≥ 2. Then

εj ∈
{ {0, 1, . . . , qj+1 − 1} for j ≥ 0
{0, 1, . . . , qj − 1} for j < 0 .

Like in q-ary expansions j runs in N for integers and in Z for real numbers
and a sequence is realizable iff εj 6= 0 only for a finite number of j ≥ 0 and
(for real numbers) it exists no k < 0 so that εj = qj − 1 ∀j ≤ k.

In q-ary expansions and Cantor’s expansions the digits are independent.

2.4 Parry’s α-Expansion

Instead of choosing q ∈ N like in q-ary expansions we choose α ∈ R, α > 1.
Rényi [36] proved that every non-negative real number x has an α-

expansion

x = ε0(x) +
ε−1(x)
α

+
ε−2(x)
α2

+ · · · (2.3)

where ε0(x) = [x], ε−1(x) = [α〈x〉], ε−2(x) = [α〈α〈x〉〉] etc. and [x] denotes
the integral part, 〈x〉 the fractional part of x. In the sequel the sequence
(ε0(x), ε−1(x), . . .) will be called α-expansion as well.
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Let the α-expansion of α be

α = a1 +
a2

α
+
a3

α2
+ · · · . (2.4)

Parry [34] showed the following relation between the α-expansions of a
real number x and of α:

(εk(x), εk−1(x), . . .) < (a1, a2, . . .) ∀k < 0 (2.5)

and, in particular,

(ak, ak+1, . . .) < (a1, a2, . . .) ∀k > 1. (2.6)

(“<” denotes the lexicographic order.)
Conversely, if a sequence (a1, a2, . . .) satisfies the relation (2.6), we have

a real number α with α-expansion (a1, a2, . . .).
Those α which have recurrent “tails” in their α-expansions, i.e.

aj+m = aj ∀j > n for some integers n and m, are called α-numbers. The
α-numbers which have a finite α-expansion are called simple α-numbers.

With Gj := αj ∀j ≤ 0, (εj(x))j≤0 constitutes the G-ary digital expansion
of x ∈ [0, 1).

If we set Gj := αj ∀j ∈ Z, the relation (2.5) is valid for all real numbers x
and for all integers k. (To see this, it suffices to look at the digital expansion
of x/αM with M so that x < αM .)

A sequence is realizable iff εj > 0 only for a finite number of j ≥ 0,
(2.5) holds and, if α is a simple α-number with α-expansion (a1, . . . , aq), the
sequence (εk, εk−1, . . .) does not coincide with (cj)j≥1 for a k ∈ Z:

cj =
{
ak if j ≡ k 6≡ 0 (mod q), 0 < k < q
aq − 1 if j ≡ 0 (mod q) .

Clearly α lies between a1 and a1 + 1.
If α is a simple α-number with α-expansion

α = a1 +
a2

α
+ · · ·+ ar

αr−1
,

it is a root of the polynomial

xr − a1x
r−1 − . . .− ar−1x− ar

which is called characteristic polynomial of α.
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If α is a non-simple α-number with n and m as above, it is a root of the
polynomial

(xn+m−a1x
n+m−1−· · ·−an+m−1x−an+m)−(xn−a1x

n−1−· · ·−an−1x−an).

This polynomial is called characteristic polynomial, if n and m are minimal
with this property.

The digits in these expansions are dependent.

Example 2.1. Let α be the (only) positive root of x = 1 + 1
x (α ≈ 1.618).

Clearly α is a simple α-number with

(a1, a2, . . .) = (1, 1, 0, 0, 0, . . .).

Hence the realizable sequences are exactly those where εj ∈ {0, 1} and no
two subsequent digits are 1.

Example 2.2. Let α be the positive root of x3 − 2x2 − 1 (α ≈ 2.206). Then

(a1, a2, . . .) = (2, 0, 1, 0, 0, 0, . . .).

The possible subblocks of length 3 of a digital expansion are therefore

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 0, 0),

(1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (2, 0, 0).

Example 2.3. Let α be the root satisfying α > 1 of

x3 − 2x2 − 3x+ 1 = (x3 − 2x2 − 2x− 1)− (x− 2) (α ≈ 2.912).

Then α is a non-simple α-number and

(a1, a2, . . .) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, . . .).

2.5 Expansions Related to Parry’s α-Expansion

The above sequence G cannot be used for digital expansions of integers since
the Gj are in general no integers, but we can use the α-expansion of α to
build a sequence G with a recurrence. The recurrence can be infinite or
finite:

If infinitely many aj 6= 0,

Gj =
j∑
i=1

aiGj−i + 1 ∀j > 0 (2.7)
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if α is a simple α-number, i.e. ar 6= 0, aj = 0 ∀j > r

Gj =


j∑
i=1

aiGi−j + 1 for j < r

r∑
i=1

aiGj−i for j ≥ r
(2.8)

Proposition 2.1 shows that the realizable sequences are exactly those
which appear in Parry’s α-expansions.

Proposition 2.1. Let G be defined as in (2.7) or (2.8) and (aj)j≥1 satisfy
(2.6). A sequence (εj)j∈Z with εj = 0 ∀j < 0 is realizable iff

1. (εj−1, εj−2, . . .) < (a1, a2, . . .) ∀j ≥ 1

2. εj 6= 0 only for a finite number of j ∈ Z.

Proof. If 1. and 2. hold, we have to show
m∑
j=0

εjGj < Gm+1 ∀m ∈ N.

To do this, we define M := max{j ∈ N : εj 6= 0} and use induction on
M. The hypothesis is valid for M = 0 and we conclude from M − 1 to M :

If we set εM = 0, we have

m∑
j=0

εjGj < Gm+1 ∀m ≤M − 1

because of the hypothesis. Hence it suffices to show

M∑
j=0

εjGj < GM+1.

If εM < a1, then

M∑
j=0

εjGj ≤ (a1 − 1)GM +
M−1∑
j=0

εjGj < a1GM ≤ GM+1.

If εk < aM−k+1 and (εM , εM−1, . . . , εk+1) = (a1, a2, . . . , aM−k), then

M∑
j=0

εjGj =
M∑
i=0

εM−iGM−i =
M−k−1∑
i=0

aiGM−i+
k∑
j=0

εjGj <
M−k∑
i=0

aiGM−i ≤ GM+1.

To show the other direction, we use the following lemma:
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Lemma 2.1. Let G be defined as in (2.7) or (2.8) and (aj)j≥1 satisfy (2.6).
Then

Gj−k >
j∑

i=k+1

aiGj−i ∀j ≥ 1, 1 ≤ k < j. (2.9)

Proof. With the part of the Theorem 2.1 which is already shown and (2.6),
j∑

i=k+1
aiGj−i is a digital expansion and therefore

j∑
i=k+1

aiGj−i < Gj−k.

If (εj)j∈Z is realizable, then 2. is obvious. To prove 1., we assume “>”
in 1. Then we have some k ≥ 1 so that

εj−k > ak, (εj−1, εj−2, . . . , εj−k+1) = (a1, a2, . . . , ak−1)

and
k∑
i=1

εj−iGj−i ≥
k∑
i=1

aiGj−i +Gj−k >
j∑
i=1

aiGj−i = Gj .

Hence (2.1) is violated and the sequence (εj)j∈Z is not realizable.
If “=” holds in 1., i.e. (εj−1, εj−2, . . .) = (a1, a2, . . .), we are in the finite

case. Then (2.1) is violated because of

j∑
i=1

εj−iGj−i =
r∑
i=1

aiGj−i = Gj

and the sequence (εj)j∈Z is not realizable.

Proposition 2.2 shows together with Lemma 2.1 that (2.9) is almost
equivalent to (2.6).

Proposition 2.2. Let G be defined as in (2.7) or (2.8). If (2.9) holds, then

(ak, ak+1, . . .) ≤ (a1, a2, . . .) ∀k > 1 (2.10)

If G is defined by a finite recurrence, (2.10) is equivalent to (2.6). If G
is defined by an infinite recurrence, it can always be built with a sequence
(a′j)j≥1 which satisfies (2.6).
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Proof. We assume that “>” in (2.10) for some k. Then

aj > aj−k, (ak+1, ak+2, . . . , aj−1) = (a1, a2, . . . , aj−k−1)

for some j > k. For all l ∈ N with l ≥ j

Gl−k = a1Gl−k−1 + · · ·+ aj−k−1Gl−j+1︸ ︷︷ ︸
C

+aj−kGl−j+aj−k+1Gl−j−1 + · · ·+ arGl−k−r︸ ︷︷ ︸
A

and

Gl−k > ak+1Gl−k−1 + · · ·+ aj−1Gl−j+1︸ ︷︷ ︸
C

+ajGl−j+aj+1Gl−j−1 + · · ·+ arGl−r︸ ︷︷ ︸
B

.

This implies

0 ≤ A < Gl−j , 0 ≤ B < Gl−j , A−B > (aj − aj−k)Gl−j ≥ Gl−j

which is a contradiction.
In the finite case, “=” is impossible in (2.10) since ar+j = 0 and ar 6= 0.

Therefore (2.10) and (2.6) are equivalent.
If (aj)j≥1 is periodic, i.e. (ak, ak+1, . . .) = (a1, a2, . . .), then the sequence

G′ built with (a′j)j≥1 :

(a′1, a
′
2, . . . , a

′
k−1) = (a1, a2, . . . , ak−2, ak−1 + 1), a′j = 0 ∀j ≥ k

is identic with G, because the realizable sequences are identic. If k is minimal
with this property, (a′j)j≥1 satisfies (2.6). To show this, we assume

(a′j , a
′
j+1, . . . , a

′
k−1, 0, . . . , 0) > (a′1, a

′
2, . . . , a

′
k−1)

(“=” is impossible). With (2.10) we have

(aj , aj+1, . . . , ak−1) = (a1, a2, . . . , ak−j)

and
(aj , aj+1, . . .) = (a1, a2, . . . , ak−j , a1, a2, . . .) ≥ (a1, a2, . . .)

which is a contradiction to (2.10) or the minimality of k.

Example 2.4. For the finite recurrence with (a1, a2) = (1, 1), the elements
of the resulting sequence G are the Fibonacci numbers 1, 2, 3, 5, 8, . . .
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Example 2.5. For the finite recurrence with (a1, a2) = (2, 0, 1), the resulting
sequence G is (1, 3, 7, 15, 33, 73, 161, . . .). The digital expansion of 160 is

(ε5, . . . , ε0) = (2, 0, 0, 2, 0, 0).

Example 2.6. For the infinite recurrence related to the non-simple α-number
of Example 2.3, the resulting sequence G is (1, 3, 7, 18, 56, 163, . . .). The
digital expansion of 162 is

(ε4, . . . , ε0) = (2, 2, 1, 2, 1).
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Chapter 3

Number Systems in Integral
Domains

The concept of digital expansions of integers and real numbers can be gener-
alized to the concept of number systems in integral domains. In this chapter
we will give conditions for the existence of number systems in an integral
domain and focus on quadratic fields over Q where all number systems are
known. For the sake of shortness the proofs of the theorems will be omitted.
They can be found in the cited papers.

3.1 Definition

Let R be an integral domain, α ∈ R, N = {n1, n2, . . . , nm} ⊂ Z. {α,N} is
called a number system in R if any γ ∈ R has a unique representation

γ = c0 + c1α+ · · ·+ chα
h : cj ∈ N ∀j ∈ {0, 1, . . . , h}, ch 6= 0 if h 6= 0 (3.1)

If N = N0 = {0, 1, . . . ,m} for some m ≥ 1, then {α,N} is called canonical
number system (CNS).

α is called base and N is called set of digits of {α,N}.

3.2 Existence and Determination

The question of determining all the CNS in some special algebraic number
fields has been raised by Kátai and Szabó [26] and completely solved for
Gaussian integers:
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Theorem 3.1. {α,N0} is a CNS in the ring of Gaussian integers Z[i] iff
Re(α) < 0, Im(α) = ±1, N0 = {0, 1, . . . , |α|2 − 1}.

For the other imaginary quadratic fields and real quadratic fields this
has be done by Kátai and Kovács [24, 25]:

Theorem 3.2. Let N ≥ 2, −N 6≡ 1 (mod 4). {α,N0} is a CNS in
Q(i
√
N) iff

α = A± i
√
N, 0 ≤ −2A ≤ A2 +N ≥ 2, A is integer.

Let N ≥ 2, −N ≡ 1 (mod 4). {α,N0} is a CNS in Q(i
√
N) iff

α =
1
2

(B ± i
√
N), −1 ≤ −B ≤ 1

4
(B2 +N) ≥ 2, B is an odd integer.

Theorem 3.3. Let N 6≡ 1 (mod 4). {α,N0} is a CNS in Q(
√
N) iff

α = A±
√
N, 0 ≤ −2A ≤ A2 −N ≥ 2, A is integer.

Let N ≡ 1 (mod 4). {α,N0} is a CNS in Q(
√
N) iff

α =
1
2

(B ±
√
N), 0 < −B ≤ 1

4
(B2 −N) ≥ 2, B is an odd integer.

These CNS can be used to represent all complex numbers and real num-
bers respectively:

Theorem 3.4. If {α,N0} is a CNS in Q(i
√
N), then every complex number

z can be written as

z =
−∞∑
i=k

aiα
i (ai ∈ N0 ∀i ∈ {k, k − 1, . . .}).

If {α,N0} is a CNS in Q(
√
N), then every real number x can be written as

x =
−∞∑
i=k

aiα
i (ai ∈ N0 ∀i ∈ {k, k − 1, . . .}).

Kovács [30] solved the problem of the existence of CNS for algebraic
number fields of higher degree:

Theorem 3.5. Let Q(ϑ) be an nth degree extension of Q, n ≥ 3. In Q[ϑ]
there exists CNS iff there exists α ∈ Q[ϑ], such that {1, α, . . . , αn−1} is an
integer-basis in Q(ϑ).
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Finally Kovács and Pethő [31] gave a necessary and sufficient condition
for the existence of number systems in an integral domain R:

Theorem 3.6. There exists a number system in R iff

1. R = Z[α] for an α, algebraic over Q, if charR = 0

2. R = Fp[x], where Fp denotes the finite field with p elements and x is
transcendental over Fp, if charR = p, p is a prime

They described the number systems in R = Fp[x]:

Theorem 3.7. {α,N} is a number system in Fp[x] iff α = a0 + a1x, where
a0, a1 ∈ Fp, a1 6= 0 and N = N0 = {0, 1, . . . , p− 1}.

and in R = Z[α], where K = Q(α) is of degree n and γ = γ(1), . . . , γ(n)

denote the conjugates of γ ∈ K:

Theorem 3.8. Let α be an algebraic integer over Q. Let β ∈ Z[α], N ⊂ Z
and put A := max

a∈N
|a|. {β,N} is a number system in Z[α] iff

1. |β(j)| > 1 ∀j ∈ {1, 2, . . . , n}

2. N is a complete residue system mod|NK/Q(β)| containing 0

3. α ∈ Z[β]

4. all γ ∈ Z[α] with

|γ(j)| ≤ A

|β(j)| − 1
∀j ∈ {1, . . . , n}

have a representation (3.1) in {β,N}

Kovács and Pethő [31] also gave a computational algorithm to
determine all CNS of orders of algebraic number fields which is
based on the following theorem, where α is an algebraic integer and
N0(α) = {0, 1, . . . , |NK/Q(α)| − 1}:

Theorem 3.9. Let O be an order in the algebraic number field K. There ex-
ist α1, . . . , αt ∈ O; n1, . . . , nt ∈ Z, N1, . . . , Nt finite subsets of Z, which are
all effectively computable, such that {α,N0(α)} is a CNS in O, iff α = αi − h
for some integers i, h with 1 ≤ i ≤ t and either h ≥ ni or h ∈ Ni.
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Chapter 4

The Distribution of the Sum
of Digits Function and
Related Functions

The intention of this chapter is to present some of the known facts about
the sum of digits function and other functions which depend on the digital
expansion like q-additive functions. As in Chapter 3, the proofs are omitted
for the sake of shortness and can be found in the cited papers.

4.1 q-Additive Functions on Integers

Let q > 1 be a given integer. A real-valued fucnction f , defined on the
non-negative integers, is called q-additive if f(0) = 0 and

f(n) =
∑
j≥0

f(εj(n)qj)

where (εj(n))j≥0 is the q-ary digital expansion of n. A special q-additive
function is the sum of digits function

sq(n) =
∑
j≥0

εj(n).

The statistical behaviour of the sum of digits function and q-additive
functions has been well studied by several authors.

One of the first significant results was obtained by Delange [7] in 1975
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who computed the average of sq(n):

1
N

∑
n<N

sq(n) =
q − 1

2
logqN + γ(logqN),

where γ is a continuous, nowhere differentiable and periodic function with
period 1. Other asymptotic and exact formulas are due to Bush [4], Bellman
and Shapiro [3], Tenenbaum [37] and Trollope [39]. Formulas for digital
expansions related to Parry’s α-expansion are due to Pethő and Tichy [35]
and Grabner and Tichy [22, 23].

Kirschenhofer [28] and Kennedy and Cooper [27] obtained a formula for
the variance

1
N

∑
n<N

s2
q(n)− 1

N2

(∑
n<N

sq(n)

)2

=
q2 − 1

12
logqN + γ(logqN)

with a continuous fluctuation γ of period 1. Grabner, Kirschenhofer,
Prodinger and Tichy [21] extended this result (dth moment for the case
q = 2) and showed

1
N

∑
n<N

sdq(n) =
1
2d

(log2N)d +
d−1∑
i=0

(log2N)iγi(log2N),

where the γi are again continuous fluctuations of period 1. Other formulas
for higher moments can be found in Coquet [6] and in Dumont and Thomas
[13].

The most general result concerning the mean value of q-additive func-
tions is due to Manstavic̆ius [32]. Let E := {0, 1, . . . , q − 1},

mk,q :=
1
q

∑
c∈E

f(cqk), m2
2;k,q :=

1
q

∑
c∈E

f2(cqk),

and

Mq(x) :=
N∑
k=0

mk,q, B2
q (x) =

N∑
k=0

m2
2;k,q

with N = [logq x]. Then

1
x

∑
n<x

(f(n)−Mq(x))2 ≤ cB2
q (x),

which implies
1
x

∑
n<x

f(n) = Mq(x) +O(Bq(x)).
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There exist distributional results for q-additive functions which use the
higher moments and Fréchet-Shohat’s theorem. The most general theorem
known concerning a central limit theorem is due to Manstavic̆ius [32]: Sup-
pose that, as x→∞,

max
cqj<x

|f(cqj)| = o(Bq(x))

and that Dq(x)→∞, where

D2
q(x) =

N∑
k=0

σ2
k,q and σ2

k,q :=
1
q

∑
c∈E

f2(cqk)−m2
k,q.

Then, as x→∞

1
x

#

{
n < x|f(n)−Mq(xr)

Dq(xr)
< y

}
→ Φ(y),

where Φ is the normal distribution function.
Bassily and Kátai [2] extended this on polynomial sequences:

Theorem 4.1. Let f be a q-additive funciton such that f(cqj) = O(1) as
j → ∞ and c ∈ E. Assume that Dq(x)

(log x)1/3 → ∞ as x → ∞ and let P (x) be
a polynomial with integer coefficients, degree r, and positive leading term.
Then, as x→∞,

1
x

#

{
n < x|f(P (n))−Mq(xr)

Dq(xr)
< y

}
→ Φ(y).

Drmota [9] studied the joint distribution of ql-additive functions fl(n)
(if q1, q2, . . . , qd > 1 are pairwisely coprime integers) and showed that the
1/3 in the above theorem can be replaced by η > 0.

Similar distribution results for the sum of digits function of number
systems related to substitution automata were considered by Dumont and
Thomas [14].

Drmota and Gajdosik [11] used a generating function approach to show
that the sum of digits function for digital expansions related to Parry’s α-
expansion satisfies a central limit theorem.

Finally several authors studied subblocks of digital expansions and func-
tions depending on them, e.g. Kirschenhofer [29], Barat, Tichy, and Tijde-
man [1] and Cateland [5]. Drmota [8] showed that these functions satisfy
a central limit theorem for expansions related to certain finite recurrences.
We will extend this result on expansions related to Parry’s α-numbers in
Chapter 5.
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4.2 b-Additive Functions on Gaussian Integers

Grabner, Kirschenhofer and Prodinger [20] and Thuswaldner [38] generalized
Delange’s result to canonical number systems in the Gaussian integers and to
arbitrary canonical number systems respectively. For the Gaussian integers
we have

1
Nπ +O(

√
N)

∑
|z|2<N

(sb(z))d =

=

(
|b|2 − 1

2

)d
logd|b|2 N +

d−1∑
j=0

logj|b|2 NΦj(log|b|2 N) +O
(√

N logd|b|2 N
)
,

where Φ0, . . . ,Φd−1 are continuous periodic fluctuations of period 1, b the
base of a canonical number system in Z[i] and sb(z) the sum of digits func-
tion.

A treatment of the higher moments in the general case was done by
Gittenberger and Thuswaldner [18].

Gittenberger and Thuswaldner [19] extended the result of Bassily and
Kátai [2] to b-additive functionsf(0) = 0, f(γ) =

∑
j≥0

f(cj(γ)bj) for γ =
∑
j≥0

aj(γ)bj (aj(γ) ∈ N0)

 .
Theorem 4.2. Let f be a b-additive function such that f(cbj) = O(1) as
j →∞ and c ∈ N0. Furthermore let

mk :=
1
|b|2

∑
c∈N0

f(cbk), σ2
k :=

1
|b|2

∑
c∈N0

f2(cbk)−m2
k,

and

M(x) :=
L∑
k=0

mk, D2(x) =
L∑
k=0

σ2
k

with L = [log|b| x]. Assume that D(x)

(log x)1/3 →∞ as x→∞ and let P (x) be a
polynomial with integer coefficients and degree r. Then, as x→∞,

1
#{z||z|2 < x}

#
{
|z|2 < x|f(P (z))−M(xr)

D(xr)
< y

}
→ Φ(y),

where Φ is the normal distribution function.
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Chapter 5

The Distribution of Patterns
in Expansions Related to
α-Numbers

The aim of this chapter is to present some new results on the distribution
of functions F depending on subblocks of digital expansions related to α-
numbers α (see Sections 2.4, 2.5). We will prove asymptotic normality of
the distribution of XN , which will be defined in the sequel, and derive a
local limit law if F attains only integer values and α is a simple α-number.
The methods are adapted from [8], [16], [11] and [12].

Let α be an α-number, G defined as in Section 2.5 and

BL = {(εL−1(n), εL−2(n), . . . , ε0(n)) : n < GL}

be the set of blocks B ⊆ {0, 1, . . . , a1}L of length L which actually occur in
digital expansions. In the q-ary case we trivially have

BL = {0, 1, . . . , q − 1}L.

Let F : BL+1 → R be any given function (for some L ≥ 0) with
F (0, 0, . . . , 0) = 0.

Furthermore, set

sF (n) =
∑
j≥0

F (εj+L(n), εj+L−1(n), . . . , εj(n)) .

This means that we consider a weighted sum over all subsequent digital
patterns of length L + 1 of the digital expansion of n. For example, for
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L = 0 and F (ε) = ε we just obtain the sum-of-digits function, or if L = 1
and F (ε, η) = 1− δε,η (δx,y denoting the Kronecker delta) then sF (n) is just
counting the number of times that a digit is different from the preceding one
etc.

In order to get an insight into the distribution of sF (n), it is convenient
to consider a related sequence of random variables XN , N ≥ 1, defined by

Pr[XN ≤ x] =
1
N
|{n < N : sF (n) ≤ x}|

Expected value and variance of XN are given by

EXN =
1
N

∑
n<N

sF (n) and by VXN =
1
N

∑
n<N

(sF (n)−EXN )2 (5.1)

We introduce the function

cN (z) =
∑
n<N

zsF (n)

and consider for any block B = (η1, . . . , ηL) ∈ BL the functions

aBj (z) :=
∑

n<Gj ,(εj−1(n),...,εj−L(n))=B

zsF (n).

Then ∑
B∈BL

aBj (z) = cN (z).

In order to obtain recurrent relations for the functions aBj we need the
following notation:

For B = (η1, . . . , ηL) ∈ BL let B′ = (η2, . . . , ηL) denote the block
consisting of the last L − 1 elements of B and ηB the first element η1,
i.e. B = (ηB, B′). (Similarly ′B = (η1, . . . , ηL−1).) Furthermore, for
(ε, B) = (ε, η1, . . . , ηL) ∈ BL+1 set

κ(ε, B) =
L−1∑
i=0

(F (0, . . . , 0, ε, η1, . . . , ηL−i)− F (0, 0, . . . , 0, η1, . . . , ηL−i)) +

F (0, 0, . . . , 0, ε).

Note that κ(0, B) = 0.
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5.1 Simple α-Numbers

In the case of simple α-numbers, the coefficients of the α-expansion of α are
(a1, a2, . . . , ar, 0, 0, . . .) and the Gj are determined by the finite recurrence
(2.8).

Without loss of generality we may assume that L ≥ r−1. (If we are only
interested in L+ 1 subsequent digits with L < r−1, then we consider a new
function F̃ : Br → R that does not depend on the first (r − L− 1) digits.)

Lemma 5.1. The functions aBj (z), j > L, are recursively given by

aBj (z) =
∑

C∈BL: ′C=B′, (ηB ,C)∈BL+1

aCj−1(z)zκ(ηB ,C).

Proof. The set

{n < Gj : (εj−1(n), . . . , εj−L(n)) = B}

is divided into subsets of the form

{n < Gj : εj−1(n) = ηB, (εj−2(n), εj−3(n), . . . , εj−L−1(n)) = (B′, ε) = C}

= {n < Gj−1 : (εj−2(n), εj−3(n), . . . , εj−L−1(n)) = C}+ ηBGj−1.

Since {(ηB, C) : C ∈ BL, ′C = B′} ⊇ BL+1, we cover all possible cases.
Furthermore, for n < Gj−1 with (εj−2(n), εj−3(n), . . . , εj−L−1(n)) = C

we have
sF (n+ ηBGj−1) = sF (n) + κ(ηB, C).

Corollary 5.1. The vector aj(z) = (aBj (z))B∈BL satisfies the matrix recur-
sion

aj(z) = AL(z)aj−1(z) (j > L)

where the GL ×GL-matrix AL(z) = (aB,C(z))B,C∈BL is given by

aB,C(z) =
{
zκ(ηB ,C) if ′C = B′ and (ηB, C) ∈ BL+1

0 otherwise

Example 5.1. For q = 2 (r = 1, a1 = 2), the matrix A2(1) has the form

A2(1) =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .
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Example 5.2. For r = 2 and a1 = a2 = 1 (the Gj are the Fibonacci numbers)
we have B2 = {00, 01, 10} and

A2(1) =

 1 1 0
0 0 1
1 1 0

 .
Remark 5.1. In the q-ary case, AL(1) is the adjacency matrix of the (di-
rected) De Bruijn graph corresponding to BL.

Remark 5.2. De Bruijn graphs are Eulerian graphs since the indegree and
the outdegree of all vertices are equal (= q).

Remark 5.3. For general simple α-numbers, a generalization of De Bruijn
graphs can be defined by the adjacency matrix AL(1).

Remark 5.4. The generalized De Bruijn graph corresponding to AL+1(1) is
the line graph of the generalized De Bruijn graph corresponding to AL(1)
(L ≥ r − 1).

Remark 5.5. If D is a digraph, L(D) its linegraph and A(D), A(L(D)) the
adjacency matrices, then we have for the characteristic polynomials

χ(A(D))(x) = xq−pχ(A(L(D)))(x)

where q denotes the number of edges and p the number of vertices.

Theorem 5.1. The characteristic polynomial of AL(1) is

χ(AL(1))(x) = xGL−rp(x),

where
p(x) = xr − a1x

r−1 − a2x
r−2 − · · · − ar−1x− ar

is the characteristic polynomial of α (and of the finite recurrence).

Proof. First we remark that #(BL) = GL and for each B ∈ BL

B = (εL−1(i− 1), εL−2(i− 1), . . . , ε0(i− 1))

for some i ∈ {0, 1, . . . , GL − 1}.
The conditions B′ = ′C and (ηB, C) ∈ BL+1 can thus be written for

i, j ∈ {1, 2, . . . , GL} as

(εL−2(i− 1), . . . , ε0(i− 1)) = (εL−1(j − 1), . . . , ε1(j − 1)) (5.2)
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and
(εL−1(i− 1), εL−1(j − 1), . . . , ε0(j − 1)) ∈ BL+1 (5.3)

respectively.
Therefore the coefficients of AL(1) = (a(L)

ij )1≤i,j≤GL are

a
(L)
ij =

{
1 if (5.2) and (5.3)
0 else

If (5.2) holds, (5.3) is violated only for

L = r − 1, (εr−2(i− 1), . . . , ε0(i− 1)) = (a1, . . . , ar−1),

(εr−2(j − 1), . . . , ε0(j − 1)) = (a2, . . . , ar−1, x)

with ar ≤ x ≤ a1.
Hence we have for L ≥ r

a
(L)
ij =

{
1 if (5.2)
0 else

and
a

(L)
i+kGL−1,j

= a
(L)
i,j ,

because of

(εL−1(i+ kGL−1 − 1), εL−2(i+ kGL−1 − 1), . . . , ε0(i+ kGL−1 − 1))
= (εL−1(i− 1) + k, εL−2(i− 1), . . . , ε0(i− 1)).

We define a matrix PL := (p(L)
ij )1≤i,j≤GL with

p
(L)
i,j :=


1 if i = j
−1 if j ≤ GL−1, i = j + kGL−1, k > 0
0 else

.

Hence P−1
L = (p(−L)

ij )1≤i,j≤GL is

p
(−L)
i,j =


1 if i = j
1 if j ≤ GL−1, i = j + kGL−1, k > 0
0 else

.

With PL we create a matrix A′L = (a
′(L)
ij )1≤i,j≤GL which is similar to

AL(1).
A′L := PLALP−1

L
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In the construction of A′L the rows i of AL(1) are subtracted of the rows
i+kGL−1 and the columns i+kGL−1 are added to the columns i. Therefore

a
′(L)
ij = 0 ∀i ∈ {GL−1 + 1, GL−1 + 2, . . . , GL}, j ∈ {1, 2, . . . , GL}.

Now we look at the matrix

AL−1 = (a(L−1)
ij )1≤i,j≤GL−1

:= A′L

(
1 2 . . . GL−1

1 2 . . . GL−1

)
(this notation means the rows and columns 1, 2, . . . , GL−1 of A′L).

We show that AL−1 = AL−1(1), i.e. the two definitions are equivalent.
a

(L−1)
ij = 1 holds not only when (5.2) holds, but also when

(εL−2(i− 1), . . . , ε0(i− 1)) = (εL−1(j + kGL−1), . . . , ε1(j + kGL−1 − 1))

= (k, εL−2(j − 1), . . . , ε1(j − 1))

for a k ∈ {0, 1, . . . , a1} with j + kGL−1 ≤ GL. Therefore

a
(L−1)
ij =

{
1 if (εL−3(i− 1), . . . , ε0(i− 1)) = (εL−2(j − 1), . . . , ε1(j − 1))
0 else

For L = r we have to check a(r−1)
ij = 0 for

(εr−1(i− 1), . . . , ε0(i− 1)) = (0, a1, a2, . . . , ar−1),

(εr−1(j − 1), . . . , ε0(j − 1)) = (0, a2, . . . , ar−1, x)

with ar ≤ x ≤ a1, i.e.

ai,j+kGr−1 = 0 (j + kGr−1 ≤ Gr).

This is true because we had otherwise

k = εr−1(j + kGr−1 − 1) = εr−2(i− 1) = a1

and k < a1 because of j + kGr−1 ≤ Gr.
We have

χ(AL(1))(x) = χ(A′L)(x) = xGL−GL−1χ(AL−1(1))(x)

and hence
χ(AL(1))(x) = xGL−Gr−1χ(Ar−1(1))(x) (5.4)
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Now we look at Ar−1(1). For i < Gr−1, j ≤ Gr−1 (but not for i = Gr−1)

a
(r−1)
ij =

{
1 if (εr−3(i− 1), . . . , ε0(i− 1)) = (εr−2(j − 1), . . . , ε1(j − 1))
0 else

and
a

(r−1)
i+kGr−2,j

= a
(r−1)
i,j .

We define the matrix Pr−1 := (p(r−1)
ij )1≤i,j≤Gr−1 with

p
(r−1)
i,j :=


1 if i = j
−1 if j ≤ Gr−2, i = j + kGr−2, k > 0
0 else

.

Like above A′r−1 := Pr−1Ar−1(1)P−1
r−1 and

a
′(r−1)
ij = 0 ∀i ∈ {Gr−2 + 1, Gr−2 + 2, . . . , Gr−1 − 1}, j ∈ {1, 2, . . . , Gr−1}.

We build the matrix Ar−2 := A′
(

1 2 ... Gr−2 Gr−1

1 2 ... Gr−2 Gr−1

)
, where the numera-

tion of the rows and columns is kept, i.e. Ar−2 = (a(r−2)
ij )i,j∈{1,2,...,Gr−2,Gr−1}.

(Now Ar−2 cannot be interpreted as adjacency matrix of a generalized
De Bruijn graph.) We have

χ(Ar−1(1))(x) = χ(A′r−1)(x) = xGr−1−Gr−2−1χ(Ar−2)(x),

and for i < Gr−2, j ≤ Gr−1

a
(r−2)
ij =

{
1 if (εr−4(i− 1), . . . , ε0(i− 1)) = (εr−3(j − 1), . . . , ε1(j − 1))
0 else

Hence this procedure can be iterated. We define matrices Pr−l for
2 ≤ l < r by replacing r − 1 by r − l in the above definition, and

Ar−l−1 := (Pr−lAr−lP−1
r−l)

(
1 2 . . . Gr−l−1 Gr−l . . . Gr−1

1 2 . . . Gr−l−1 Gr−l . . . Gr−1

)
.

Now we look at A0:

A0 = (a(0)
ij )i,j∈{G0,G1,...,Gr−1}, dim(A0) = r

a
(0)
i1 =

G1−1∑
j=1

a
(1)
ij =

∑
j∈{1,2,...,G2−1}
j 6=k1G1 ∀k1≤a1

a
(1)
ij =

∑
j∈{1,2,...,G3−1}

j 6=k1G2+k2G1 ∀(k1,k2):
(k1,k2)≤(a1,a2), k2≤a1

a
(2)
ij = · · ·
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=
∑

j∈{1,2,...,Gr−1−1}
j 6=k1Gr−1+k2Gr−2+··· +kr−1G1 ∀(k1,...,kr−1):

(kn,kn+1,...,kr−1)≤(a1,a2,...,ar−n) ∀n∈{1,2,...,r−1}

a
(r−1)
ij =

∑
j∈{1,2,...,Gr−1}

ε0(j) 6=0

a
(r−1)
ij

For 1 ≤ l < r we have

(εr−2(Gl − 1), . . . , ε0(Gl − 1)) = (0, . . . , 0, a1, a2, . . . , al).

Hence for l < r − 1 we have aGl,j = 1 iff

(εr−2(j − 1), . . . , ε0(j − 1)) = (0, . . . , 0, a1, a2, . . . , al, x) (0 ≤ x ≤ al+1).

x = al+1 implies j = Gl+1 and ε0(j) = 0, otherwise ε0(j) = x+ 1.
With (5.3) we have aGr−1,j = 1 iff

(εr−2(j − 1), . . . , ε0(j − 1)) = (a2, . . . , ar−1, x) (0 ≤ x < ar).

Therefore we have
a

(0)
Gl1

= al+1

for 1 ≤ l < r.
For 1 ≤ m ≤ r − 1 we have

a
(0)
GlGm

= δl+1,m

To show this, we have to look at aGlj , where

(εr−2(j − 1), . . . , ε0(j − 1)) = (k1, . . . , kr−m, a1, . . . , am)

= (0, . . . , 0, a1, . . . , al, x) (0 ≤ x ≤ al+1)

for l < r − 1.
For m > l + 1 all these aGlj = 0, for m = l + 1 only aGlGm = 1.
For m < l + 1 we must have

(εr−2(j − 1), . . . , ε0(j − 1)) = (0, . . . , 0, a1, . . . , al+1−m, a1, . . . , am)

= (0, . . . , 0, a1, . . . , al, x).

Then
(al+2−m, . . . , al) = (a1, . . . , am−1)

and al+1 ≤ am because of (2.6). With x ≤ al+1 we have am = x = al+1 and
j = Gl+1. aGlGl+1

= 1 has no influence on aGlGm , because the column Gl+1

is never added to another column in the construction of A0.
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For l = r − 1, 1 ≤ m < r we have to look at aGr−1j where

(εr−2(j − 1), . . . , ε0(j − 1)) = (k1, . . . , kr−m, a1, . . . , am)

= (a2, . . . , ar−1, x) (0 ≤ x ≤ a1).

For ar ≤ x ≤ a1 we have aGr−1j = 0, because (5.3) does not hold. For
0 ≤ x < ar we get a contradiction with

(a1, . . . , am) = (ar−m+1, . . . , ar−1, x) < (ar−m+1, . . . , ar) < (a1, . . . , am).

Therefore all aGr−1Gm = 0 for 1 ≤ m < r.
Hence A0 has the form

A0 =



a1 1 0 · · · 0

a2 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . 1
ar 0 · · · · · · 0


and the characteristic polynomial of Ar−1(1) is

χ(Ar−1(1))(x) = xGr−1−r(xr − a1x
r−1 − a2x

r−2 − · · · − ar−1x− ar).

With (5.4) the theorem is proved.

In the special case of q-ary expansions χ(AL(1))(x) = xq
L−1(x− q).

Example 5.3. (a1, a2) = (1, 1) (Fibonacci numbers)

G0 = 1, G1 = 2, G2 = 3

B2 = {(0, 0), (0, 1), (1, 0)}

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸

P2

 1 1 0
0 0 1
1 1 0


︸ ︷︷ ︸

A2

 1 0 0
0 1 0
1 0 1


︸ ︷︷ ︸

P−1
2

=

 1 1 0
1 0 1
0 0 0



A1 = A0 =

(
1 1
1 0

)

χ(A2)(x) = xχ(A0)(x) = x(x2 − x− 1)
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Example 5.4. (a1, a2, a3) = (2, 0, 1)

G0 = 1, G1 = 3, G2 = 7, G3 = 15

B3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 0, 0),

(1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (2, 0, 0)}

A3 =



1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0



P±1
3 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
∓1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 ∓1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 ∓1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 ∓1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 ∓1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 ∓1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 ∓1 0 0 0 0 0 0 1 0
∓1 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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P3A3P−1
3 =



1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



A2 =



1 1 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1
1 1 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0



P±1
2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
∓1 0 0 1 0 0 0
0 ∓1 0 0 1 0 0
0 0 ∓1 0 0 1 0
0 0 0 0 0 0 1



P2A2P−1
2 =



1 1 1 0 0 0 0
1 1 1 1 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0


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
1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

P1


1 1 1 0
1 1 1 0
0 0 0 1
1 0 0 0


︸ ︷︷ ︸

A1


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

P−1
1

=


2 1 1 0
0 0 0 0
0 0 0 1
1 0 0 0



A0 =

 2 1 0
0 0 1
1 0 0


χ(A3)(x) = x12χ(A0)(x) = x12(x3 − 2x2 − 1)

5.2 Non-simple α-Numbers

Let α be a non-simple α-number, i.e.

(an+m+1, an+m+2, . . .) = (an+1, an+2, . . .)

for some integers m, n and m, n minimal with this property.
As above let Bl denote the set

Bl = {(εl−1(i), εl−2(i), . . . , ε0(i)) : i < Gl},

F be a function F : Bl+1 → R (with F (0, 0, . . . , 0) = 0) and

sF (n) =
∑
j≥0

F (εj+l(n), εj+l−1(n), . . . , εj(n)) .

Now we may assume that l = km ≥ n + m − 1 for some k ∈ N. (If we
are interested in l+1 subsequent digits with l < km then we consider a new
function F̃ : Bkm+1 → R that does not depend on the first (km− l) digits.)

Lemma 5.2. For all l ∈ N we can find an integer L ≥ l such that

(aj , aj+1, . . . , aL+1) < (a1, a2, . . . , aL−j+2) ∀j ∈ {2, 3, . . . , L+ 1} (5.5)

Proof. If (5.5) holds for L := l, we are finished. Otherwise we have a j ≤ l+1
such that

(aj , aj+1, . . . , al+1) = (a1, a2, . . . , al−j+2)
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and an integer g > l + 1 such that

(aj , aj+1, . . . , ag−1) = (a1, a2, . . . , ag−j)

and
(aj , aj+1, . . . , ag) < (a1, a2, . . . , ag−j+1).

If (5.5) holds for L := g− 1, we are finished. Otherwise we have a j′ ≤ g
such that

(aj′ , aj′+1, . . . , ag) = (a1, a2, . . . , ag−j′+1).

For j′ ≥ j, we have

(aj′ , aj′+1, . . . , ag) < (aj′−j+1, aj′−j+2, . . . , ag−j+1) ≤ (a1, a2, . . . , ag−j′+1).

Therefore j′ < j. We can find g′ > g such that

(aj′ , aj′+1, . . . , ag−1) = (a1, a2, . . . , ag−j′),

(aj′ , aj′+1, . . . , ag) < (a1, a2, . . . , ag−j′+1)

and repeat this procedure.
Since j > j′ > j′′ > . . . > 1, we find a L that satisfies (5.5) after a finite

number of steps.

Remark 5.6. If (5.5) holds for L, it holds for L+m since

(aj , aj+1, . . . , aL+m+1) = (aj−m, aj−m+1, . . . , aL+1) ∀j ∈ {L+2, L+3, . . . , L+m+1}

and, with induction, for L+ km.

Now we consider the functions

aBj (z) :=
∑

n<Gj ,(εj−1(n),...,εj−L(n))=B

zsF (n) (B ∈ BL).

Lemma 5.3. Let L satisfy (5.5) and L ≥ km ≥ n + m − 1. Then the
functions aBj , j > L, B ∈ BL are (recursively) given by

aBj (z) =
∑

C∈BL: ′C=B′,
(ηB,C)∈BL+1

aCj−1(z) zκ(ηB ,C)

if B 6= (a1, a2, . . . , aL) and

a
(a1,...,aL)
j (z) =

∑
C=(a2,...,aL,ηL),

ηL≤aL+1

aCj−1(z) zκ(a1,C)−
∑

D∈Ckm

bDj−L−1(z) zλ(a1,...,aL+1,D),

(5.6)
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where
Ckm := {D ∈ Bkm : D ≥ (aL+2, aL+3, . . . , aL+km+1)},

bDj (z) :=
∑

i<Gj : (εj−1(i),...,εj−km(i))=D,

(εj−1(i),...,ε0(i))>(aL+2,...,aL+j+1)

zsF (n)

and
λ(θ1, θ2, . . . , θL+1, D) := sF (n1)− sF (n2)

with

D = (ζ1, ζ2, . . . , ζkm), εi(n1) = εi(n2) = 0 ∀i ≥ km+ L+ 1

(εkm+L(n1), εkm+L+1(n1), . . . , ε0(n1)) = (θ1, θ2, . . . , θL+1, ζ1, ζ2, . . . , ζkm),

(εkm+L(n2), εkm+L+1(n2), . . . , ε0(n2)) = (0, . . . , 0, ζ1, ζ2, . . . , ζkm).

The functions bDj (z), j ≥ km, D ∈ Ckm are recursively given by

bDj (z) =


∑

B∈BL: (η1,...,ηkm)=D
aBj (z) if D > (aL+2, . . . , aL+km+1)∑

E∈Ckm
bEj−km(z)zλ(0,...,0,aL+2,...,aL+km+1,E) if D = (aL+2, . . . , aL+km+1)

Proof. The proof of the first equation is the same as that of Lemma 5.1. We
just have to check

(ηB, εj−2(n), . . . , ε0(n), 0, . . .) < (a1, a2, . . .) (5.7)

for C = (εj−2(n), . . . , εj−L−1(n)), ′C = B′, (ηB, C) ∈ BL+1.
(5.7) can only be violated, if (ηB, C) = (a1, . . . , aL+1) (which implies

B = (a1, . . . , aL)).

a
(a1,...,aL)
j (z) =

∑
(ϕj−1,...,ϕ0):

(ϕj−1,...,ϕj−L)=(a1,...,aL), ϕj−L−1≤aL+1,

(ϕj−2,...,ϕ0)∈Bj−1

zsF (ϕj−1,...,ϕ0) −

∑
(ϕj−1,...,ϕ0):

(ϕj−1,...,ϕj−L)=(a1,...,aL), ϕj−L−1=aL+1,

(ϕj−2,...,ϕ0)∈Bj−1,

(ϕj−L−2,...,ϕ0)>(aL+2,...,aj)

zsF (ϕj−1,...,ϕ0) (5.8)

where, with ϕi = 0 ∀i ≥ j,

sF (ϕj−1, . . . , ϕ0) :=
∑
i≥0

F (ϕi+l(n), . . . , ϕi(n)).
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The first sum of (5.8) is equal to the first sum of (5.6) (see lemma 5.1 and
consider (5.5)). The patterns of the second sum of (5.8) are exactly those of
the first sum which do not satisfy (ϕj−1, . . . , ϕ0) ∈ Bj . Because of (5.5) the
patterns (ϕj−L−2, . . . , ϕ0) which appear in the second sum of (5.8) are not
influenced by the digits in front of them. Therefore this sum is equal to the
second sum of (5.6).

The equation for bDj (z), D > (aL+2, . . . , aL+km+1) is clear. For
D = (aL+2, . . . , aL+km+1) we have to consider Remark 5.6 and that
(aL+km+2, . . . , aL+2km+1) = (aL+2, . . . , aL+km+1).

Corollary 5.2. The vector

aj(z) = (aB1
j (z), . . . , a

BGL
j (z), bD1

j−1(z), . . . , bDMj−1(z), . . . , bD1
j−L(z), . . . , bDMj−L(z))T

with
M := #(Ckm), Bi := (εL−1(i− 1), . . . , ε0(i− 1))

D1 := (aL+2, . . . , aL+km+1), . . . , DM := (a1, . . . , akm)

satisfies the matrix recursion

aj(z) = AL(z)aj−1(z) (j > L)

where AL(z) = (ai,j(z))1≤i,j≤GL+LM is given by

ai,j(z) =



zκ(ηBi ,Bj) if i, j ≤ GL, ′Bj = B′i
−zλ(a1,...,aL+1,Dj−GL−(L−1)M ) if i = GL, j > GL + (L− 1)M

zλ(0,...,0,aL+2,...,aL+km+1,Dj−GL−(km−1)M ) if i = GL + 1, j ≤ GL + kmM,
j > GL + (km− 1)M

1 if GL + 2 ≤ i ≤ GL +M,
Di−GL = (η1, . . . , ηkm)(Bj)
or i > GL +M, j = i−M

0 otherwise
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Hence, if L > km, AL(1) has the form

ÃL 0 · · · · · · · · · 0

0 · · · 0
...

...
0 · · · 0
−1 · · · −1

0 · · · · · · · · · · · · · · · 0
0 · · · 1 1 0 · · · 0
... 0 0

. . . 0 0
0 · · · · · · · · · 0 1 1

0 · · ·

1 · · · 1
0 · · · 0
...

...
0 · · · 0

· · · 0 0

0 EM 0 · · · · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · 0 EM 0


where ÃL is the matrix AL(1) corresponding to the simple α-number with
α-expansion (a1, a2, . . . , aL, aL+1 + 1, 0, . . . , 0).

Akm(1) has the form

Ãkm 0 · · · · · · 0

0 · · · 0
...

...
0 · · · 0
−1 · · · −1

0 · · · · · · · · · · · · · · · 0
0 · · · 1 1 0 · · · 0
... 0 0

. . . 0 0
0 · · · · · · · · · 0 1 1

0 · · · · · · 0

1 · · · 1
0 · · · 0
...

...
0 · · · 0

0 EM 0 · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 EM 0


Theorem 5.2. The characteristic polynomial of AL(1) is

χ(AL(1))(x) = p(x) (x(k−1)m + x(k−2)m + · · ·+ 1) xGL+LM−km−n (5.9)

where

p(x) = (xn+m − a1x
n+m−1 − · · · − an+m)− (xn − a1x

n−1 − · · · − an)

is the characteristic polynomial of α.
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Proof. First we construct a matrix A′ = (a′ij)1≤i,j≤GL+L with

χ(AL(1))(x) = χ(A′)(x) xLM−L.

To get A′, we define Ph = (p(h)
ij )1≤i,j≤GL+LM , 0 ≤ h < L, with

p
(h)
i,i := 1 ∀i ≤ GL + LM,

p
(h)
GL+hM+1,j := 1 ∀j : GL + hM + 1 ≤ j ≤ GL + (h+ 1)M.

Then

A′ := Ā
(

1 2 . . . GL + 1 GL +M + 1 . . . GL + (L− 1)M + 1
1 2 . . . GL + 1 GL +M + 1 . . . GL + (L− 1)M + 1

)
where

Ā := P0P1 . . .PL−1ALP−1
L−1P

−1
L . . .P−1

0 .

A′ has the form

ÃL 0

0
...
0
−1

0 · · · 0 1 · · · 1 0 · · · 0 1 0 · · · 0 0

0 EL−1

0
...
0


if L > km and

Ãkm 0

0
...
0
−1

0 · · · 0 1 · · · 1 0 · · · 0 1

0 EL−1

0
...
0


if L = km.
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Since ÃL is the matrix AL(1) corresponding to the simple α-number
with α-expansion (a1, a2, . . . , aL, aL+1 + 1, 0, . . . , 0), it can be transformed
to 

a1 1 0 · · · 0

a2 0 1
. . .

...
...

...
. . . . . . 0

aL
...

. . . 1
aL+1 + 1 0 · · · · · · 0


(see proof of Theorem 5.1). In the transformation the last row is never
added to or subtracted from another row. Because of this and the fact that
a′ij = 0 ∀i < GL, j > GL, we can apply this transformation to the whole
matrix A′ and get the (2L+ 1)× (2L+ 1)-matrix A′′ which has the form

a1 1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

a2 0 1
. . .

...
...

...
. . . . . . . . .

...
aL

...
. . . 1 0 · · · · · · · · · · · · · · · 0

aL+1 + 1 0 · · · · · · 0 0 · · · · · · · · · · · · 0 −1
y0 y1 · · · · · · yl−1 0 · · · 0 1 0 · · · 0
0 · · · · · · · · · 0 1 0 · · · · · · · · · · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1 0


and 

a1 1 0 · · · · · · · · · · · · · · · 0

a2 0 1
. . .

...
...

...
. . . . . . . . .

...
aL

...
. . . 1 0 · · · · · · 0

aL+1 + 1 0 · · · · · · 0 0 · · · 0 −1
y0 y1 · · · · · · yl−1 0 · · · 0 1
0 · · · · · · · · · 0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · · · · · · · · · · 0 1 0


respectively.

χ(A′)(x) = χ(A′′)(x) xGL−L−1
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The yj , 0 ≤ j ≤ L, are given by yj := #(Dj) with

Dj = {B = (η1, . . . , ηL) ∈ BL : (η1, . . . , ηkm) > (aL+2, . . . , aL+km+1),
(ηL−j+1, . . . , ηL) = (a1, . . . , aj), (ηL+1−h, . . . , ηL) 6= (a1, . . . , ah) ∀h > j}

Lemma 5.4. The yL−j , 0 ≤ j ≤ L, are recursively given by

yL = 1, yL−j =
j∑

h=1

yL−j+hah −


aL+j+1 if 1 ≤ j < km
aL+1+km + 1 if j = km
0 if j > km

Proof. yL = 1 is obvious.
If B = (η1, . . . , ηL) ∈ DL−j , let h ≥ 1 be maximal with the property

B = (η1, . . . , ηj−h, a1, . . . , ah−1, ηj , a1, . . . , aL−j)

Then
(η1, . . . , ηj−h, a1, . . . , aL−j+h) ∈ DL−j+h.

If we take (θ1, . . . , θj−h, a1, . . . , aL−j+h) ∈ DL−j+h, 1 ≤ h < j, then

(η1, . . . , ηL) := (θ1, . . . , θj−h, a1, . . . , ah−1, ηj , a1, . . . , aL−j) ∈ Dl−j
iff ηj < ah and (η1, . . . , ηkm) > (aL+2, . . . , aL+km+1).

If j > km, the definition of (η1, . . . , ηL) guarantees that the last condition
holds. If j ≤ km, it guarantees

(η1, . . . , ηj−1) ≥ (aL+2, . . . , aL+j).

Therefore (η1, . . . , ηkm) > (aL+2, . . . , aL+km+1) is violated iff

j ≤ km, (η1, . . . , ηj−1) = (aL+2, . . . , aL+j), ηj < aL+j+1

or
j = km, (η1, . . . , ηj−1) = (aL+2, . . . , aL+j), ηkm ≤ aL+km+1.

We calculate χ(A′′) by developping det(xI−A′′) at the columns (2L+1)
and (L+ km+ 1):

χ(A′′)(x) = xL−km
(
xkm(xL+1 − a1x

L − · · · − aLx− aL+1 − 1) +

(−1)km(−1)L+km+1+L+2(xL+1 − a1x
L − · · · − aLx− aL+1 − 1)

)
+

(−1)L−1(−1)2L+1+L+1det(ÂL)
= xL−km(xkm − 1)(xL+1 − a1x

L − · · · − aLx− aL+1 − 1)− det(ÂL)
= xL−km(x(k−1)m + x(k−2)m + · · ·+ 1)(xm − 1)

(xL+1 − a1x
L − · · · − aLx− aL+1 − 1)− det(ÂL)
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where Âj , 1 ≤ j ≤ L, is the matrix

Âj =



x− a1 −1 0 · · · · · · 0

−a2 x −1
. . .

...
... 0

. . . . . . . . . 0
...

...
. . . . . . . . . 0

−aj 0 · · · 0 x −1
−y0 −y1 · · · · · · · · · −yj



det(ÂL) = −yL(xL − a1x
L−1 − · · · − aL) + det(ÂL−1) = · · ·

= −yLxL + (a1yL − yL−1)xL−1 + (a2yL + a1yL−1 − yL−2)xL−2

+ · · ·+ (aLyL + · · ·+ a1y1 − y0)
= −xL + aL+2x

L−1 + · · ·+ aL+kmx
L−km+1 + (aL+km+1 + 1)xL−km

= −xL−km(xkm − aL+2x
km−1 − · · · − aL+kmx− aL+km+1 − 1)

= −xL−km(x(k−1)m + · · ·+ 1)(xm − aL+2x
m−1 − · · · − aL+m+1 − 1)

Hence

χ(A′′)(x) = xL−km(x(k−1)m + x(k−2)m + · · ·+ 1)(
(xL+m+1 − a1x

L+m − · · · − aL+m+1 − 1)− (xL+1 − a1x
L − · · · − aL+1 − 1)

)
= x2L+1−km−n(x(k−1)m + x(k−2)m + · · ·+ 1)p(x)

Therefore

χ(A(1))(x) = xGL−L−1+LM−Lχ(A′′)(x)
= xGL+LM−km−n(x(k−1)m + x(k−2)m + · · ·+ 1)p(x)

and the theorem is proved.

Remark 5.7. The roots of x(k−1)m + x(k−2)m + · · · + 1 are km-th roots of
unity.

5.3 The Conjugates of α

We look at the conjugates of an α-number α with respect to its characteristic
polynomial (see Section 2.4).
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Using the notation employed in Section 2.4, we define the transformation
T (x) = 〈αx〉 which sends [0, 1) onto itself. Then, with T 0(x) = x, induc-
tively Tn(1) = Tn−1(〈α〉) for n ≥ 1, consequently Tn(1) = 〈αT n−1(1)〉 and
ε−n(α) = [αT n−1(〈α〉)] = [αT n(1)]. Therefore an = ε−n+1(α) = [αT n−1(1)].

Hence the characteristic polynomial is

p(x) = xr − [α]xr−1 − [αT (1)]xr−2 − · · · − [αT r−1(1)]

and

p(x) = (xn+m − [α]xn+m−1 − [αT (1)]xn+m−2 − · · · − [αT n+m−1(1)])−
(xn − [α]xn−1 − [αT (1)]xn−2 − · · · − [αT n−1(1)])

respectively.

Lemma 5.5. The conjugates α1, α2, . . . , αr−1(αn+m−1) of α with respect to
its characteristic polynomial are roots of

p̄(x) := xr−1 + T (1)xr−2 + T 2(1)xr−3 + · · ·+ T r−1(1) (5.10)

and

p̄(x) := (xn+m−1 + T (1)xn+m−2 + T 2(1)xn+m−3 + · · ·+ Tn+m−1(1))−
(xn−1 + T (1)xn−2 + T 2(1)xn−3 + · · ·+ Tn−1(1)) (5.11)

respectively.

Proof. We show p̄(x)(x − α) = p(x). If α is a simple α-number, then the
coefficient of xj , 1 ≤ j ≤ r − 1, of the left hand side polynomial is

T r−j(1)− αT r−j−1(1) = 〈αT r−j−1(1)〉 − αT r−j−1 = −[αT r−j−1]

and the constant coefficient is

−αT r−1(1) = −[αT r−1(1)]

since
[αT j(1)] = aj+1 = 0 ∀j ≥ r

and therefore T r(1) = 0.
For non-simple α-numbers we can make a similar reasoning. The con-

stant coefficient is then

−αT n+m−1(1) + αT n−1(1) = −[αT n+m−1(1)] + [αT n−1(1)]
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since

(αT n+m−1(1)− [αT n+m−1(1)])− (αT n−1(1)− [αT n−1(1)]

= 〈αT n+m−1(1)〉 − 〈αT n−1(1)〉 = Tn+m(1)− Tn(1) = 0(
[αT j(1)] = aj+1 = aj+m+1 = [αT j+m(1)] ∀j ≥ n

)
.

Proposition 5.1. The conjugates of an α-number α with respect to the
characteristic polynomial have absolute value less than α.

Proof. If α is a simple α-number, set

g(x) := 1− xrp(x−1) =
r∑
j=1

ajx
j .

If |x| > α, then

|g(x−1)| ≤ g(|x−1|) < g(α−1) = 1

and p(x) 6= 0. If |x| = α, x 6= α, this is assured by

|g(x−1)| < g(|x−1|) = 1

since a1 6= 0.
If α is a non-simple α-number, set, for |x| > 1,

f(x) := 1− a1

x
− a2

x2
− a3

x3
− · · ·

and, for |x| < 1,

g(x) := 1− f(x−1) =
∞∑
j=1

ajx
j .

Then, for the same reasons as above, the roots of f(x) have absolute
value less than α for x 6= α.

If we set

pk(x) = p(x)(1 + xm + x2m + · · ·+ x(k−1)m),

then

pk(x) := (xn+km − a1x
n+km−1 − · · · − an+km)− (xn − a1x

n−1 − · · · − an).
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With qk(x) := x−n−kmpk(x) we have

qk(x) = (1− a1

x
− · · · − an+km

xn+km
)− (

1
xkm

− a1

xkm+1
− · · · − an

xn+km
)

and, for |x| > 1, qk(x)→ f(x) as k →∞.
Therefore f(x) = 0 is a necessary condition for p(x) = 0, |x| > 1 and

the roots of p(x) have absolute value less than α for x 6= α.
Since α is simple root of p(x) (p̄(α) > 0), the proposition is proved.

Proposition 5.2. The conjugates of α with respect to the characteristic
polynomial have absolute value less than 2.

Proof. If x ∈ C is a conjugate with |x| > 1 and α is a non-simple α-number,
then

|xn+m−1+T (1)xn+m−2+· · ·+Tn+m−1(1)| = |xn−1+T (1)xn−2+· · ·+Tn−1(1)|.

Hence

(|x|m − 1)|xn−1 + T (1)xn−2 + · · ·+ Tn−1(1)| < |x|m−1 + · · ·+ 1,

|xn−1 + T (1)xn−2 + · · ·+ Tn−1(1)| < 1
|x| − 1

and

|x|n−1 <
1

|x| − 1
+|T (1)xn−2+· · ·+Tn−1(1)| ≤ 1

|x| − 1
+
|x|n−1 − 1
|x| − 1

=
|x|n−1

|x| − 1
.

If x ∈ C is a conjugate with |x| > 1 and α is a non-simple α-number,
then

|x|r−1 = |T (1)xr−2 + T 2(1)xr−3 + · · ·+ T r−1(1)|

≤ |x|r−2 + |x|r−3 + · · ·+ 1 =
|x|r−1 − 1
|x| − 1

<
|x|r−1

|x| − 1
.

Therefore |x| < 2 in both cases.

α resembles thus a Pisot number which is an algebraic integer greater
than 1, with conjugates of maximum absolute value less than 1.

The proofs of Lemma 5.5 and Proposition 5.2 are due to Parry [34].

Proposition 5.3. If the α-expansion (a1, a2, . . . , ar, 0, . . .) satisfies
a1 ≥ a2 ≥ . . . ≥ ar > 0, then α is a Pisot number.

41



Proof. We use the following two lemmas:

Lemma 5.6. If (a1, a2, . . . , ar) satisfies a1 ≥ a2 ≥ . . . ≥ ar > 0, then

1 > T (1) > T 2(1) > · · · > T r−1(1) > 0

Proof. We assume Tn−1(1) ≤ Tn(1). This implies

an = [αT n−1(1)] ≤ [αT n(1)] = an+1

and consequently an = an+1. Hence

Tn(1) = 〈αT n−1(1)〉 ≤ 〈αT n(1)〉 = Tn+1(1).

We can repeat this consideration and get T r−1(1) ≤ T r(1) = 0. Then
ar = [αT r−1(1)] = 0 which is not allowed.

Lemma 5.7. q(z) := a0 +a1x+ · · ·+anx
n. If a0 > a1 ≥ a2 ≥ · · · ≥ an ≥ 0,

then all roots of q(x) have absolute value bigger than 1.

Proof. Let ξ be a root of q(x). Clearly ξ 6= 1.
Assume |ξ| ≤ 1, ξ 6= 1. We have

(1−x)q(x) = a0− (a0 − a1)︸ ︷︷ ︸
>0

x− (a1 − a2)︸ ︷︷ ︸
≥0

x2−· · ·− (an−1 − an)︸ ︷︷ ︸
≥0

xn−anxn+1,

hence

|(1− ξ)q(ξ)| > a0 − (a0 − a1)− (a1 − a2)− · · · − (an−1 − an)− an = 0

and ξ cannot be a root of q(x).
Therefore |ξ| > 1.

We set q(x) := xr−1p̄(x−1), i.e.

q(x) := 1 + T (1)x+ T 2(1)x2 + · · ·+ T r−1(1)xr−1.

With Lemma 5.6, q(x) satisfies the conditions of Lemma 5.7 and all roots
of q(x) have absolute value bigger than 1. Therefore all roots of p̄(x) have
absolute value less than 1.

Corollary 5.3. If (a1, a2, . . . , ar) satisfies a1 ≥ a2 ≥ . . . ≥ ar > 0, the
characteristic polynomial is irreducible in Z[x].
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Proof.
p(x) = (x− α)(x− α1)(x− α2) . . . (x− αr−1)

If
(x− αi1)(x− αi2) . . . (x− αik) ∈ Z[x] (1 ≤ ij ≤ r − 1),

then
k∏
j=1

αij ∈ Z, |
k∏
j=1

αij | < 1.

Therefore αij = 0 for a j ∈ {1, 2, . . . , k} and ar = α
r−1∏
i=1

αi = 0 which is not

allowed.

Remark 5.8. In general, the characteristic polynomial is not irreducible. E.g.

x5 − 3x4 − 2x3 − 2x− 3 = (x3 − 2x2 − 5x− 3)(x2 − x+ 1).

5.4 Expected Value and Variance

Lemma 5.8. Let G(t, z) = det(tI−AL(z)) be the characteristic polynomial
of the matrix AL(z). Then there exists a (complex) neighbourhood of z = 1
such that G(t, z) = 0 has a unique solution t = α(z) of maximal modulus.
Furthermore, the function α(z) is analytic in this neighbourhood.

Proof. Since the eigenvalues of AL(1) are α (which is simple) and (dimAL-1)
complex numbers βi with max |βi| < α, there exists a neigbourhood of z = 1
such that (dimAL − 1) eigenvalues of AL(z) are bounded by max |βi|+α

2 and
one eigenvalue is contained in the circle |t − α| < α−max |βi|

2 . Hence, the
equation G(t, z) = 0 has a unique solution t = α(z) of maximal modulus.

Since α is a simple root of G(t, 1) = 0 we also have

∂

∂t
G(t, 1)|t=q 6= 0.

Hence, by the implicit function theorem, there exists a neighbourhood of
z = 1 such that α(z) is analytic, too.

Corollary 5.4. There exists a neighbourhood of z = 1 such that for every
block B ∈ BL

aBj (z) = aB(z)α(z)j +O(α(1−δ)j)

as j →∞, where δ > 0 and aB(z) is a properly chosen analytic function.
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Now we look at the function cN (z) (=
∑
n<N

zsF (n)). By the preceding

corollary we know the following:

Lemma 5.9. The asymptotic behaviour of cηGj (z), j ≥ 0, 1 ≤ η ≤ a1,
locally around z = 1 is given by

cηGj (z) = Cη(z)α(z)j +O(α(1−δ)j)

as j → ∞, where Cη(z) is a properly chosen analytic function with
Cη(1) = η.

Proof. We just have to add up over all aBj+1(z) with blocks B ∈ BL with
ηB = η and observe that cηGj (1) = ηGj .

The next recurrence will help to extend this property to general N .

Lemma 5.10. Suppose that N = ηGk + N ′, k ≥ L, with 1 ≤ η ≤ a1 and
N ′ < Gk and let BN = (εk−1(N), . . . , εk−L(N)) be the block of digits of N
preceding η = εk(N). Then

cN (z) = cηGk(z) + cN ′(z) zκ(η,BN ). (5.12)

Proof. For n < N ′ we have

sF (n+ ηGk) = sF (n) + κ(η,BN ).

Hence, (5.12) follows immediately.

Obviously, we have

EXN =
c′N (1)
N

and

VXN =
c′′N (1)
N

+
c′N (1)
N

−
(
c′N (1)
N

)2

.

Therefore we need expressions for c′N (1) and c′′N (1).

Lemma 5.11. Suppose that the digital representation of N with respect to
Gj is given by

N =
M∑
m=1

ηmGjm

with Gj1 > Gj2 > · · · > GjM and ηm > 0. Then there exist κm depending
on N such that

cN (z) =
M∑
m=1

zκmcηmGjm (z) (5.13)

and |κm| ≤ Dm for some constant D > 0.
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Proof. We just have to apply Lemma 5.10 recursively. Furthermore
|κm| ≤ Dm with

D = max
(η,B)∈BL+1

|κ(η,B)|.

Corollary 5.5. With the same notation as in Lemma 5.11 we have

c′N (1) =
M∑
m=1

(
κmηm + C ′ηm(1) + jm

α′(1)
α(1)

ηm

)
Gjm +O(N1−δ)

and

c′′N (1) =
M∑
m=1

(
κm(κm − 1)ηm + 2κmC ′ηm(1) + C ′′ηm(1)

)
Gjm

+
M∑
m=1

(
2κmηm

α′(1)
α(1)

+ 2C ′ηm(1)
α′(1)
α(1)

+
α′′(1)
α(1)

ηm

)
jmGjm

+
M∑
m=1

(
ηmjm(jm − 1)

α′(1)2

α(1)2

)
Gjm +O(N1−δ)

for some δ > 0.

Proof. We just apply that cηGj (z) and its derivatives are given by

cηGj (z) = Cη(z)α(z)j +O(α(1−δ)j),

c′ηGj (z) = C ′η(z)α(z)j + Cη(z)jα′(z)α(z)j−1 +O(α(1−δ)j),

c′ηGj (z) = C ′′η (z)α(z)j + 2C ′η(z)jα
′(z)α(z)j−1

+Cη(z)jα′′(z)α(z)j−1 + Cη(z)j(j − 1)α′(z)2α(z)j−2 +O(α(1−δ)j)

in a sufficiently small neighbourhood of z = 1 and for some δ > 0. Note
that by Cauchy’s formula, the absolute value of the derivative of an analytic
function f in some circle |z − 1| ≤ R can be essentially bounded by max |f |
in a slightly larger circle |z − 1| ≤ R+ ε.

Theorem 5.3.

EXN =
1
N

∑
n<N

sG(n) = µ
logN
logα

+O(1) (5.14)

and
VXN =

1
N

∑
n<N

(sG(n)−EXN )2 = σ2 logN
logα

+O(1),
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where

µ =
α′(1)
α

and σ2 =
α′′(1)
α

+ µ− µ2.

Proof. Let us start with EXN . Firstly, we have

EXN =
c′N (1)
N

=
1
N

M∑
m=1

(
κmηm + C ′ηm(1) + jm

α′(1)
α(1)

ηm

)
Gjm +O(N−δ)

= j1
α′(1)
α(1)

1
N

M∑
m=1

ηmGjm −
1
N

M∑
m=1

α′(1)
α(1)

(j1 − jm)ηmGjm

+
1
N

M∑
m=1

(κmηm + C ′ηm(1))Gjm +O(N−δ).

Now note that

M∑
m=1

(j1 − jm)ηmGjm ≤ a1

j1∑
j=0

jGj1−j = O(
j1∑
j=0

jαj1−j) = O(αj1) = O(N)

and that
M∑
m=1

|κm|ηmGjm ≤
M∑
m=1

Dma1Gjm = O(N).

Hence,

EXN = j1
α′(1)
α(1)

+O(1).

Finally, since j1 = logN/ logα + O(1) the representation (5.14) for EXN

follows.
For the variance VXN we have to be a little bit more careful. Let us

start with the full expansion of

N(c′′N (1) + c′N (1))− c′N (1)2 = N
M∑
m=1

(
κ2
mηm + 2κmC ′ηm(1) + C ′ηm(1) + C ′′ηm(1)

)
Gjm

+2N
α′(1)
α(1)

M∑
m=1

(κmηm + C ′ηm(1))jmGjm

−2
α′(1)
α(1)

M∑
m=1

(κmηm + C ′ηm(1))Gjm
M∑
k=1

jkηkGjk
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+N
M∑
m=1

(
α′′(1)
α(1)

+
α′(1)
α(1)

− α′(1)2

α(1)2

)
jmηmGjm

+N
α′(1)2

α(1)2

M∑
m=1

j2
mηmGjm −

α′(1)2

α(1)2

(
M∑
m=1

jmηmGjm

)2

−
(

M∑
m=1

(κmηm + C ′ηm(1))Gjm

)2

+O(N2−δ).

Now we apply the estimates

M∑
m=1

m2ηmGjm = O(N),

M∑
m=1

|κmηm + C ′ηm(1)|(j1 − jm)Gjm = O(N),
(
C ′ηm(1) ≤ max

0≤i≤a1

C ′i(1)
)

M∑
m=1

(j1 − jm)ηmGjm = O(N),

and

N
M∑
m=1

j2
mηmGjm −

(
M∑
m=1

jmηmGjm

)2

=
M∑

k,m=1

jm(jm − jk)ηmηkGjmGjk

=
M∑

k,m=1

(jm − j1)((jm − j1)− (jk − j1))ηmηkGjmGjk = O(N2)

and directly obtain

VXN = j1

(
α′′(1)
α(1)

+
α′(1)
α(1)

− α′(1)2

α(1)2

)
+O(1).

As above, j1 = logN/ logα+O(1) and so the theorem is proved.

5.5 Global Limit Law

With help of Lemma 5.9 and Lemma 5.10 we can prove asymptotic normality
of XN . Observe that

1
N
cN (eit) = EeitXN

is the characteristic function of XN .
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Proposition 5.4. Suppose that σ2 6= 0 and set µN = EXN and σ2
N = VXN .

Then for every ε > 0 we have uniformly for |t| ≤ (logN)1/2−ε

e−itµN/σN
1
N
cN (eit/σN ) = e−t

2/2 +O((logN)−1/2+ε). (5.15)

Proof. Set f(z) = logα(ez) in an open neighbourhood of z = 0. Then we
have

α(eit) = αeiµt−σ
2t2/2+O(|t|3),

with µ = f ′(0) = α′(1)/α and σ2 = f ′′(0) = α′′(1)/α + µ − µ2 (see Theo-
rem 5.3). Hence, by using Lemma 5.9

cηGj (e
it) = ηGje

j(iµt−σ2t2/2)eO(|t|+j|t|3) +O
(
α(1−δ)j

)
in an open neighbourhood of t = 0 in R.

Now suppose that N =
M∑
m=1

ηmGjm with j1 > j2 > · · · > jM and ηm > 0

is the G-ary expansion of N . Then by Lemma 5.11

cN (eit) =
M∑
m=1

cηmGjm (eit)eitκm

=
M∑
m=1

ηmGjme
ijmµt−jmσ2t2/2eO(m|t|+jm|t|3) +O(N (1−δ)).

Now observe that
it

σN
=

it

σ j
1/2
1

(
1 +O(j−1

1 )
)
,

and that
e−itµN/σN = e−it(µ/σ)j

1/2
1 (1+O(j−1

1 )).

Hence

Eeit(XN−µN )/σN = e−itµN/σN
1
N
cN (eit/σN )

= e−t
2/2 1

N

M∑
m=1

ηmGjme
it(jm−j1)/(σj

1/2
1 )−(jm−j1)t2/(2j1)

×e
O
(
m|t|/j1/21 +t2/j1+|t3|/j1/21

)
+O(N−δ).
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Let ε > 0 be a (small) real number and let τ be defined by jτ > j1−jε1 ≥ jτ+1.
Then τ/2 ≤ j1 − jτ < jε1 and consequently

Eeit(XN−µN )/σN = e−t
2/2

τ∑
m=1

ηmGjm
N

e
O
(
|t|σjε−1/2

1 +t2jε−1
1 +|t|3j−1/2

1

)

+O

 M∑
m=τ+1

ηmGjm
N

+O(N−δ)

= e−t
2/2e

O
(
|t|σjε−1/2

1 +t2jε−1
1 +|t|3j−1/2

1

)
+O(α−j

ε
1 ).

Since j1 = (logN)/(logα) + O(1) this implies (5.15) directly for
|t| ≤ (logN)ε/3. Furthermore, since

e−t
2/2+O(|t3|j−1/2

1 ) ≤ e−cj
2ε/3
1 = O(j−1

1 )

for (logN)ε/3 ≤ |t| ≤ (logN)1/2−ε and a sufficiently small c > 0 we finally
obtain the full version of (5.15).

We use Proposition 5.4 to prove the following theorem.

Theorem 5.4. If σ2 6= 0, then for every ε > 0
1
N
|{n < N : sF (n) < EXN+xVXN}| =

1√
2π

∫ x

−∞
e−

1
2
t2dt+O((logN)−1/2+ε)

(5.16)
uniformly for all real x as N →∞.

Proof. Set
∆N (t) = e−t

2/2 −Eeit(XN−µN )/σN .

Then by Esseen’s inequality [15, p. 32] we have

1
N
|{n < N : sF (n) < EXN+xVXN}| =

1√
2π

∫ x

−∞
e−

1
2
t2dt+O

(
1
T

+
∫ T

−T

∣∣∣∣∆N (t)
t

∣∣∣∣ dt
)
.

We choose T = (logN)1/2−ε and use the estimate

e−itµN/σN
1
N
cN (eit/σN ) = 1 +O(t2)

for |t| ≤ (logN)−2. Combining this with Proposition 5.4 we directly get∫ T

−T

∣∣∣∣∆N (t)
t

∣∣∣∣ dt =
∫
|t|≤(logN)−2

∣∣∣∣∆N (t)
t

∣∣∣∣ dt+
∫

(logN)−2<|t|≤T

∣∣∣∣∆N (t)
t

∣∣∣∣ dt
= O

(
(logN)−1/2+ε(log logN)

)
.

Hence, (5.16) follows.
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5.6 Local Limit Law

In order to prove a local limit law for XN , we need more precise information
on the behaviour of cηGj (z).

Proposition 5.5. Suppose that α is a simple α-number and that

d = gcd{κ(η,B) : B ∈ BL+1} = 1.

Then there exist ε > 0 and δ > 0 such that

cηGj (e
it) = Cη(eit)α(eit)j +O

(
α(1−δ)j

)
(5.17)

uniformly for |t| ≤ ε, where Cη(z) and α(z) are as in Lemma 5.9, and

cηGj (e
it) = O

(
α(1−δ)j

)
(5.18)

uniformly for ε ≤ |t| ≤ π.

Proof. Obviously, (5.17) follows from Lemma 5.9 for some ε > 0.
For the proof of (5.18) we just have to observe that d = 1 implies that

all solutions t of G(t, z) = det(tI−AL(z)) = 0 for z = eiϕ, 0 < ϕ < 2π, are
strictly bounded by α.

If |z| = 1 then all entries of AL(z) are complex numbers whose abolute
values are bounded by those of AL(1). Hence by [33, theorem 2.1, p. 36] all
eigenvalues β of AL(z) are bounded by |β| ≤ α. Furthermore, |β| = α if and
only if there exists a complex number λ with |λ| = 1 and a diagonal matrix
D = diag(λB)B∈BL with complex numbers λB with |λB| = 1 such that

AL(z) = λDAL(1)D−1.

Without loss of generality we may assume that λ00···0 = 1.
We now show that in this case we have λ = 1 and λB = 1 for all

B ∈ BL, i.e. AL(z) = AL(1). First observe that a00···0,00···0(z) = 1 for all
z. Thus, λ = 1. More generally, if aB,C(z) = aB,C(1) = 1 then λB = λC .
Obviously, we have aB,C(z) = aB,C(1) = 1 if B′ = ′C and ηB = 0. Thus, if
B = (η1, . . . , ηL) is any block in BL then we can consider the sequence

B0 = (0, 0, . . . , 0), B1 = (0, . . . , 0, η1), B2 = (0, . . . , 0, η1, η2), . . . , BL−1 = B

and can conclude that

1 = λB0 = λB1 = · · · = λB.

However, if d = 1 then for every ϕ, 0 < ϕ < 2π, there exists (ε, B) ∈ BL+1

with eitκ(ε,B) 6= 1. Consequently, if d = 1 then all eigenvalues β of AL(eit)
are strictly bounded by |β| < α.

50



Remark 5.9. If d > 1 then we have AL(z) = AL(1) if and only if z is a d-th
root of unity, and therefore we get a periodic structure, i.e. a local limit law
for every residue class of d.

With help of Proposition 5.5 it is possible to derive asymptotic expan-
sions for the coefficients

cN,k = |{n < N : sF (n) = k}|

of
cN (z) =

∑
k≥0

cN,kz
k

for N = ηGj , 1 ≤ η ≤ Q, via saddle point approximations.

Proposition 5.6. We have

cηGj ,k =
ηGj√
2πjσ2

(
exp

(
−(k − jµ)2

2jσ2

)
+O(j−1/2)

)

uniformly for all j, k ≥ 0.

Proof. We again use Cauchy’s formula

cηGj ,k =
1

2π

∫ π

−π
cηGj (e

it)e−ikt dt.

Since ∫
ε≤|t|≤π

|cηGj (eit)| dt = O
(
α(1−δ)j

)
= O(Gj/j)

we just have to evaluate

I =
1

2π

∫
|t|≤j−ν

cηGj (e
it)e−ikt dt+

1
2π

∫
j−ν≤|t|≤ε

cηGj (e
it)e−ikt dt = I1 + I2,

where 0 < ν < 1
6 . From α(eit) = αeiµt−σ

2t2/2+O(|t|3) it follows that there
exists a constant c > 0 such that |α(eit)| ≤ e−ct2 for |t| ≤ ε. Hence,

I2 ≤
1
π

∫ ∞
j−ν

e−cjt
2
dt+O

(
α(1−δ)j

)
= O

(
e−cj

1−2ν
)

+O
(
α(1−δ)j

)
= O(Gj/j)

Finally,

I1 =
1

2π

∫
|t|≤j−ν

Cη(1)αjeit(jµ−k)−jσ2t2/2
(
1 +O(j|t|3 + |t|)

)
dt+O

(
α(1−δ)j

)
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=
1

2π

∫ ∞
−∞

Cη(1)αjeit(jµ−k)−jσ2t2/2 dt+O
(∫
|t|>j−ν

Cη(1)αje−jσ
2t2/2 dt

)

+O
(∫
|t|≤j−ν

Cη(1)αje−jσ
2t2/2(j|t|3 + |t|) dt

)
+O

(
α(1−δ)j

)
=

Cη(1)αj√
2πjσ2

exp

(
−(k − jµ)2

2jσ2

)
+O(αj/j)

=
ηGj√
2πjσ2

exp

(
−(k − jµ)2

2jσ2

)
+O(Gj/j).

Proposition 5.6 and Lemma 5.11 can be used to prove the following
theorem.

Theorem 5.5. If α is a simple α-number, σ2 6= 0, F just attains integer
values and

d = gcd{κ(ε, B) : (ε, B) ∈ BL+1} = 1,

then for every ε > 0

|{n < N : sF (n) = k}| = N√
2πVXN

(
exp

(
−(k −EXN )2

2VXN

)
+O((logN)−1/2+ε)

)

uniformly for all non-negative integers k as N →∞.

Proof. As in the proof of Proposition 5.4 we suppose that N =
M∑
m=1

ηmGjm

(with j1 > j2 > · · · > jM and ηm > 0) is the G-ary expansion of N .
Furthermore, let ε > 0 be a (small) real number and let τ be defined by
jτ > j1 − jε1 ≥ jτ+1. Then by (5.13)

cN,k =
M∑
m=1

cηmGjm ,k−κm

=
τ∑

m=1

cηmGjm ,k−κm +O

 M∑
l=τ+1

ηmGjm

j
1/2
l


=

τ∑
m=1

ηmGjm√
2πjmσ2

exp

(
−(k − κm − jmµ)2

2jmσ2

)
+O(Gj1/j1).
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If m < τ and |k − µN | = O(j1/2
1 log j1) then

(k − µN )2

2σ2
N

− (k − κm − jmµ)2

2jmσ2

=
(k − µN )2 − (k − κm − jmµ)2

2σ2
N

+ (k − κm − jmµ)2

(
1

2σ2
N

− 1
2jmσ2

)
= O

(
j
ε−1/2
1 log j1

)
+O

(
j−1
1 (log j1)2

)
,

where we have used µN = j1µ+O(1), σ2
N = j1σ

2 +O(1), and κm = O(m).
Hence, from√

j1 +O(1)
jm

exp

(
(k − µN )2

2σ2
N

− (k − κm − jmµ)2

2jmσ2

)
= 1 +O

(
j
ε−1/2
1 log j1

)
we obtain

cN,k =
N√

2πσ2
N

exp

(
−(k − µN )2

2σ2
N

)
τ∑

m=0

ηmGjm
N

(
1 +O

(
j
ε−1/2
1 log j1

))
+O(Gj1/j1)

=
N√

2πσ2
N

(
exp

(
−(k − µN )2

2σ2
N

)
+O

(
j
ε−1/2
1 log j1

))
.

If |k − µN | ≥ j1/2
1 log j1 then we have for m < κ

cηmGjm ,k−κm = O
(
αjmj

−1/2
1 exp

(
−(log j1)2

4σ2

))
= O

(
αjmj−1

1

)
which finally gives

cN,k = O(
(
αj1j−1

1

)
+O

 M∑
m=τ+1

Gjm

j
1/2
m


= O(Gj1/j1).

Remark 5.10. The case d > 1 can be treated in a similar way. (See Re-
mark 5.9.) However, for the sake of shortness and simplicity we just formu-
lated Theorem 5.5 for d = 1.
Remark 5.11. It is an open problem if corresponding theorems to Theo-
rem 5.4 and Theorem 5.5 hold for real numbers α which are not α-numbers
and simple α-numbers respectively. The case L = 0 is discussed in [11].
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