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Chapter 1

Introduction and Notations

The distribution of the sum of digits function is very well known, especially
for g-ary digital expansions (e.g. decimal, binary expansions). This work
will present other types of digital expansions as well as generalizations of
the sum of digits function and show that the distribution of these functions
satisfies a central limit theorem.

More precisely, a problem posed by Drmota [8] is partially solved.
Drmota studied the distribution of patterns in digital expansions related
to specific finite recurrences and obtained a global and a local limit law. He
wondered if corresponding laws hold for infinite linear recurrences related
to the Parry expansion of a real number « > 1. Now, the global limit law
can be proved for (infinite) linear recurrences related to a-numbers (Sec-
tion 5.5). In addition, the local limit law can be proved for a larger set of
finite recurrences (those related to simple a-numbers, Section 5.6).

The Parry expansion (including a-numbers and simple a-numbers) and
other digital expansions of non-negative integers and real numbers will be
presented in Chapter 2. Chapter 3 deals with number systems in general in-
tegral domains, e.g. in the Gaussian integers. Chapter 4 recapitulates what
is known about the distribution of the sum of digits function and related
functions, whereas Chapter 5 contains the new results on this domain.

As in Drmota’s work [8], adjacency matrices of generalized De Bruijn
graphs are used. Drmota’s conjecture that the characteristic polynomial of
these graphs is in principle the characteristic polynomial of the underlying
linear recurrence will be proved in Section 5.1.

Throughout the work the following notations will be used: N will denote
the set of non-negative integers, Z the set of integers, Q the set of rational
numbers, R the set of real numbers, and C the set of complex numbers.



R[z] will denote the polynomial ring over a ring R, Q(«) the extension field
of Q generated by a and Ng/q(3) the norm of 3 € K over Q. The relation
“<” will denote the lexicographic order for sequences.



Chapter 2

Digital Expansions

In this chapter some of the most important digital expansions of integers
and real numbers will be presented, with the focus on Parry’s a-expansion
which will be needed in Chapter 5.

2.1 Definition

Let G = (Gj);>0 be a strictly increasing sequence of integers with Gy = 1.
Then every non-negative integer n has a (unique) proper G-ary digital ex-

n = Z ej(n)Gj
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pansion

with integer digits €;(n) > 0 provided that
k
Zej(n)Gj < Gk+1 Vk e N (2.1)
j=0

A sequence (€j);>0 shall be called realizable if there exists an n with
€j = €j(n) Vj € N.

For real numbers let G = (G;);jez be a strictly increasing sequence of
real numbers with Gy = 1, jlimoo Gj = 0. Then every non-negative real

number z has a (unique) proper G-ary digital expansion

z= ()G,

JEZ
with integer digits €;(z) > 0 provided that
Z ej(x)Gj < Gk+1 Vk € Z (2.2)
J<k
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A sequence (€j)jez shall be called realizable if there exists an x with
€j =€j(x) Vj € Z.

2.2 g¢-ary Expansions

g-ary expansions are the classical cases G; = ¢’ (with ¢ > 1 an integer). The
digits €; are in {0,1,...,¢ — 1}. For integers j runs in N, for real numbers
in Z.

A sequence is realizable iff €; # 0 only for a finite number of 7 > 0 and
(for real numbers) its “negative tail” is not (¢ — 1, — 1,...), i.e. it exists
no k < 0 such that ¢; =q¢—1Vj <k.

2.3 Cantor’s Expansion
In a Cantor’s expansion the sequence G is defined as

q1q2 - - - q; for 7 >0

Gj = 1 for j =0
1 .

aaaa, forj<o0

where g; € N, g; > 2. Then

. c {0,1,...,qj41 — 1} forj >0
J {0,1,...,q; — 1} for j <0 °

Like in ¢g-ary expansions j runs in N for integers and in Z for real numbers
and a sequence is realizable iff €; # 0 only for a finite number of j > 0 and
(for real numbers) it exists no k < 0 so that ¢; = ¢; — 1 Vj < k.

In g-ary expansions and Cantor’s expansions the digits are independent.

2.4 Parry’s a-Expansion

Instead of choosing g € N like in g-ary expansions we choose o € R, «a > 1.
Rényi [36] proved that every non-negative real number z has an a-
expansion

e1(z) N e—2(z)

x =eo(z) + 2 +--- (2.3)

where €y(z) = [z], e_1(z) = [a(x)], e_2(x) = [a(a(z))] etc. and [x] denotes
the integral part, (x) the fractional part of . In the sequel the sequence
(eo(x),e—1(x),...) will be called a-expansion as well.



Let the a-expansion of « be
a a
a=ap+ 2+ e (2.4)
a o«

Parry [34] showed the following relation between the a-expansions of a
real number x and of a:

(ex(x), ep—1(x),...) < (a1,az,...) Yk <0 (2.5)
and, in particular,
(ak,ak+1,...) < (al,ag,...) vk > 1. (2.6)

(“<” denotes the lexicographic order.)

Conversely, if a sequence (a1, as, .. .) satisfies the relation (2.6), we have
a real number a with a-expansion (ay, ag,...).

Those « which have recurrent “tails” in their a-expansions, i.e.
@j+m = a; Vj > n for some integers n and m, are called a-numbers. The
a-numbers which have a finite a-expansion are called simple a-numbers.

With G; := o’ Vj <0, (¢j(x)) <0 constitutes the G-ary digital expansion
of x € [0,1).

If we set G := o’ Vj € Z, the relation (2.5) is valid for all real numbers x
and for all integers k. (To see this, it suffices to look at the digital expansion
of z/a™ with M so that z < o)

A sequence is realizable iff ¢; > 0 only for a finite number of j > 0,
(2.5) holds and, if « is a simple a-number with a-expansion (a1, ..., a,), the
sequence (€, €x_1,...) does not coincide with (¢;);>1 for a k € Z:

- fa ifj=k#0 (modgq), 0<k<gq
G ag—1 ifj=0 (modq) ’

Clearly « lies between a; and a; + 1.
If « is a simple a-number with a-expansion

a2 Qp
a:a1+—+~-+ﬁ,
o o
it is a root of the polynomial
r r—1
' —ax"T " — . — a1 — ay

which is called characteristic polynomial of a.



If o is a non-simple a-number with n and m as above, it is a root of the
polynomial

(x”er—alx"er*l—- . '—an+m_1x—an+m)—(x"—alaznfl — = Ap 1T —ay,).

This polynomial is called characteristic polynomial, if n and m are minimal
with this property.
The digits in these expansions are dependent.

Ezample 2.1. Let o be the (only) positive root of z = 14 1 (o ~ 1.618).
Clearly « is a simple a-number with

(al,ag, .. ) = (1, 1,0,0,0, .. )

Hence the realizable sequences are exactly those where €; € {0,1} and no
two subsequent digits are 1.

Ezample 2.2. Let a be the positive root of 2% — 222 — 1 (o ~ 2.206). Then
(a1,as,...) = (2,0,1,0,0,0,...).
The possible subblocks of length 3 of a digital expansion are therefore
(0,0,0),(0,0,1),(0,0,2),(0,1,0), (0,1,1),(0,1,2),(0,2,0), (1,0, 0),

(1,0,1),(1,0,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(2,0,0).
Ezample 2.3. Let a be the root satisfying a > 1 of

2 =202 34+ 1=(2"-20 22 —1)—(z—2) (a=~2912).
Then « is a non-simple a-number and

(a1,a2,...) = (2,2,1,2,1,2,1,2,1,2,1,...).

2.5 Expansions Related to Parry’s a-Expansion

The above sequence G cannot be used for digital expansions of integers since
the G; are in general no integers, but we can use the a-expansion of a to
build a sequence G with a recurrence. The recurrence can be infinite or
finite:

If infinitely many a; # 0,

i
Gj=> aGj_i+1Vj>0 (2.7)
i=1
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if o is a simple a-number, i.e. a, #0, a; =0Vj >r

J
Z CLZ'GZ'_]' 4+1 forj<r
Gj = ’?1 (2.8)
Z aiGj_i for j Z T
i=1

Proposition 2.1 shows that the realizable sequences are exactly those

which appear in Parry’s a-expansions.

Proposition 2.1. Let G be defined as in (2.7) or (2.8) and (a;);>1 satisfy
(2.6). A sequence (€;)jez with ¢; =0 Vj <0 is realizable iff

1. (Ej_l,ﬁj_g,. . ) < (al,ag,.. ) Vj >1

2. €j # 0 only for a finite number of j € Z.

Proof. If 1. and 2. hold, we have to show Z €;G; < Gpmy1 YVm € N.

To do this, we define M := max{j € N €j # 0} and use induction on
M. The hypothesis is valid for M = 0 and we conclude from M — 1 to M:
If we set €jy = 0, we have

m
ZEjGj <Gmy1 Vm <M -1
=0

because of the hypothesis. Hence it suffices to show

M
Z EjGj < GM+1.

Jj=0
If eps < aq, then
M-1

ZeJG < (a1 = DGy + Y G5 < a1Gy < Gy

Jj=0 7=0
If e, < apy_ra1 and (€M7€M—1, .. .,6k+1) = (al,ag,. . .,aM,k), then
M M M—-k—1 M-k
ZejGj :ZﬁMfiGMfi = Z a; G- l—l—ZEJG < Z a;Gr—i < Gprg1-
=0 =0 =0 7=0 =0

To show the other direction, we use the following lemma:



Lemma 2.1. Let G be defined as in (2.7) or (2.8) and (a;j)j>1 satisfy (2.6).
Then

J
Gj_k > Z aiG]’_i Vi>1l, 1<k<y. (29)
i=k+1

Proof. With the part of the Theorem 2.1 which is already shown and (2.6),

j
> a;G;_; is a digital expansion and therefore
i=k+1

J
Z a,-Gj_i < Gj,k.
i=k+1
]

If (¢j)jez is realizable, then 2. is obvious. To prove 1., we assume “>"
in 1. Then we have some k > 1 so that

€5k > Ak, (€j-1,6j-2,...,€6j 1) = (a1,a2,...,a51)
and

k k J
ij—iGj—i > ZaiGj_i + ijk > ZaiGj_i = Gj.
=1 =1 i=1

Hence (2.1) is violated and the sequence (¢;);cz is not realizable.
If “=” holds in 1., i.e. (€j_1,€j-2,...) = (a1, as,...), we are in the finite
case. Then (2.1) is violated because of

J r
ij—iGj—i = ZaiGj_i = Gj
i=1 i=1

and the sequence (¢;) ez is not realizable. O

Proposition 2.2 shows together with Lemma 2.1 that (2.9) is almost
equivalent to (2.6).

Proposition 2.2. Let G be defined as in (2.7) or (2.8). If (2.9) holds, then
(ak,ak+1,...) < (al,ag,...) Vk > 1 (210)

If G is defined by a finite recurrence, (2.10) is equivalent to (2.6). If G
18 defined by an infinite recurrence, it can always be built with a sequence
(a})j>1 which satisfies (2.6).



Proof. We assume that “>” in (2.10) for some k. Then
aj > aj_p, (Qr41,0ap42,--.,05-1) = (a1,02,...,0j_p_1)
for some j > k. For alll € N with [ > j

Gir=aG a1+ +aj k- 1Gj11+a; G jt+a; k1Grj 1+ +a;,G gy
c A

and

Gk > arp1Grop—1 + -+ a;1G_j11 +a;G_j+aj1Gj1 + -+ a, Gy
c B

This implies
0<A<G-;, 0<B<G_j, A-B> (a; — aj_k)Gl_j > G

which is a contradiction.

In the finite case, “=" is impossible in (2.10) since a,+; = 0 and a, # 0.
Therefore (2.10) and (2.6) are equivalent.

If (a;);>1 is periodic, i.e. (ag,agt1,...) = (a1, asz,...), then the sequence

G’ built with (a});>1 :
(ay,ahy,...,a,_1) = (a1,a9,...,a5_2,a1_1 + 1), a; =0Vj>k

is identic with GG, because the realizable sequences are identic. If k£ is minimal
with this property, (a;) j>1 satisfies (2.6). To show this, we assume

(a;7a3+17 v 7a271707 s 70) > (a/17a/27 ce ?azfl)

(“=” is impossible). With (2.10) we have

(aj, CL]'+1, ceey ak_l) = (al, as, ... 7ak_j)
and
(aj,aj+1, .. ) = (al, A2y« y Af—j, 1,02, . . ) > (al, ag, . . )
which is a contradiction to (2.10) or the minimality of k. O

Ezample 2.4. For the finite recurrence with (a1,az) = (1,1), the elements
of the resulting sequence G are the Fibonacci numbers 1,2,3,5,8, ...

10



Ezample 2.5. For the finite recurrence with (ag, a2) = (2,0, 1), the resulting
sequence G is (1,3,7,15,33,73,161,...). The digital expansion of 160 is

(e5,...,€0) = (2,0,0,2,0,0).

Ezample 2.6. For the infinite recurrence related to the non-simple a-number
of Example 2.3, the resulting sequence G is (1,3,7,18,56,163,...). The
digital expansion of 162 is

(64, ey 60) = (2, 2, 1, 2, 1)

11



Chapter 3

Number Systems in Integral
Domains

The concept of digital expansions of integers and real numbers can be gener-
alized to the concept of number systems in integral domains. In this chapter
we will give conditions for the existence of number systems in an integral
domain and focus on quadratic fields over Q where all number systems are
known. For the sake of shortness the proofs of the theorems will be omitted.
They can be found in the cited papers.

3.1 Definition

Let R be an integral domain, « € R, N = {n1,ng,...,nn} C Z. {a,N'} is
called a number system in R if any v € R has a unique representation

v=cotcra+-Fepal: c; e NVje{0,1,....h}, ¢, #0if h#0 (3.1)

If N =Ny =1{0,1,...,m} for some m > 1, then {a, N'} is called canonical
number system (CNS).
« is called base and N is called set of digits of {a, N'}.

3.2 Existence and Determination

The question of determining all the CNS in some special algebraic number
fields has been raised by Kétai and Szab6 [26] and completely solved for
Gaussian integers:

12



Theorem 3.1. {a, Ny} is a CNS in the ring of Gaussian integers Z[i] iff
Re(a) <0, Im(a) = £1, No={0,1,...,]al?> - 1}.

For the other imaginary quadratic fields and real quadratic fields this
has be done by Kétai and Kovéacs [24, 25]:

Theorem 3.2. Let N > 2, —N # 1 (mod 4). {a,Np} is a CNS in
Q(ivV/'N) iff

a:A:ti\/N, 0<-—24< A2+ N>2 Ais integer.
Let N>2, —N =1 (mod4). {a, Ny} is a CNS in Q(iv/'N) iff

1 1
o = §(Bii\/ﬁ), -1<-B< 1(32 + N) > 2, B is an odd integer.

Theorem 3.3. Let N #1 (mod 4). {o, Ny} is a CNS in Q(V/'N) iff
a=A+VN, 0<—24< A?— N >2, A is integer.

Let N=1 (mod4). {a, Ny} is a CNS in Q(v'N) iff
1 1
a= §(B:|: VN), 0< -B < 1(32 — N) > 2, B is an odd integer.

These CNS can be used to represent all complex numbers and real num-
bers respectively:

Theorem 3.4. If {a, Ny} is a CNS in Q(iv/N), then every complex number
z can be written as

z:Zaiai (a; € No Vi e {k,k—1,...}).
i=k
If {a, Ny} is a ONS in Q(v/'N), then every real number x can be written as
:E:Zaio/ (a; e Ny Vie{k,k—1,...}).
i=k

Kovécs [30] solved the problem of the existence of CNS for algebraic
number fields of higher degree:

Theorem 3.5. Let Q(¥9) be an n'* degree extension of Q, n > 3. In Q[J]
there exists CNS iff there exists a € Q[V], such that {1,a,...,a" "'} is an
integer-basis in Q(1}).

13



Finally Kovécs and Pethé [31] gave a necessary and sufficient condition
for the existence of number systems in an integral domain R:

Theorem 3.6. There exists a number system in R iff
1. R =1Z[a] for an «, algebraic over Q, if charR =0

2. R = F,[z], where F), denotes the finite field with p elements and x is
transcendental over I, if charR = p, p is a prime

They described the number systems in R = F,[z]:

Theorem 3.7. {o, N'} is a number system in Fy[z] iff & = ag + a1z, where
ag, a1 € Fp, a1 #0 and N =Ny ={0,1,...,p—1}.

and in R = Z[o], where K = Q(a) is of degree n and v =~ . ..
denote the conjugates of v € K:

)

Theorem 3.8. Let o be an algebraic integer over Q. Let 3 € Z[a], N C Z
and put A := ranez}\)[(\a]. {B,N'} is a number system in Z[a] iff

1. 189 >1Vje{1,2,...,n}

2. N is a complete residue system mod|Ng,q(B)| containing 0

3. a € Zf]

4. all v € Z[a] with

9] < B 1 vjied{l,...,n}

have a representation (3.1) in {38, N}

Kovacs and Pethé [31] also gave a computational algorithm to
determine all CNS of orders of algebraic number fields which is
based on the following theorem, where « is an algebraic integer and

No(a) = {0, 1, cesy |NK/Q(O[)‘ — ].}

Theorem 3.9. Let O be an order in the algebraic number field K. There ex-
st aq,...,o0 € O; ny,...,ng €4, Ni,..., Ny finite subsets of Z, which are
all effectively computable, such that {c, No(«)} is a CNSin O, iff « = a; — h
for some integers i, h with 1 <1 <t and either h > n; or h € N;,.

14



Chapter 4

The Distribution of the Sum
of Digits Function and
Related Functions

The intention of this chapter is to present some of the known facts about
the sum of digits function and other functions which depend on the digital
expansion like g-additive functions. As in Chapter 3, the proofs are omitted
for the sake of shortness and can be found in the cited papers.

4.1 g¢-Additive Functions on Integers

Let ¢ > 1 be a given integer. A real-valued fucnction f, defined on the
non-negative integers, is called g-additive if f(0) = 0 and

fn) =2 fle(n)d’)

320

where (ej(n));>0 is the g-ary digital expansion of n. A special g-additive
function is the sum of digits function

sq(n) =) ¢i(n).

Jj=0

The statistical behaviour of the sum of digits function and g-additive
functions has been well studied by several authors.
One of the first significant results was obtained by Delange [7] in 1975
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who computed the average of s4(n):

1 q—
N qu(n): B

n<N

1
log, N +~(log, N),

where 7y is a continuous, nowhere differentiable and periodic function with
period 1. Other asymptotic and exact formulas are due to Bush [4], Bellman
and Shapiro [3], Tenenbaum [37] and Trollope [39]. Formulas for digital
expansions related to Parry’s a-expansion are due to Pethd and Tichy [35]
and Grabner and Tichy [22, 23].

Kirschenhofer [28] and Kennedy and Cooper [27] obtained a formula for
the variance

2 q2 1
- Z (Z sq(n)> = "1y logg N +(log, N)

n<N n<N

with a continuous fluctuation ~ of period 1. Grabner, Kirschenhofer,
Prodinger and Tichy [21] extended this result (dth moment for the case
g = 2) and showed

d—1
— Z loggN) Z(loggN)l’yi(loggN),
n<N =0

where the «; are again continuous fluctuations of period 1. Other formulas
for higher moments can be found in Coquet [6] and in Dumont and Thomas
[13].

The most general result concerning the mean value of g-additive func-
tions is due to Manstavicius [32]. Let E :={0,1,...,q — 1},

Z fled®) Mg Z £2(cq®)
CEE ceE

and
N N
- Z mkﬂ’ B(?(‘T) = Z m%;k,q
k=0 k=0
with N = [log, z]. Then
1
— Y (f(n) = My(2))* < eBj(x),

x n<x

which implies

—_



There exist distributional results for g-additive functions which use the
higher moments and Fréchet-Shohat’s theorem. The most general theorem
known concerning a central limit theorem is due to Manstavicius [32]: Sup-
pose that, as + — oo,

max | f(cq’)| = o(By(2))

cql<x

and that D,(z) — oo, where

D2 Zakqand qu ZfQ cq®) mkq
= cEE

Then, as x — oo

i# {n < w!% < y} — (y),

where ® is the normal distribution function.
Bassily and Kétai [2] extended this on polynomial sequences:

Theorem 4.1. Let f be a g-additive funciton such that f(c¢’) = O(1) as
Dg(x)
(og )17
a polynomial with integer coefficients, degree r, and positive leading term.

Then, as x — 00,

i# {n < a:\f(P(nl)))q(_xT];JQ(xr) < y} — B(y).

j — 00 and ¢ € E. Assume that — 00 as x — oo and let P(x) be

Drmota [9] studied the joint distribution of g;-additive functions fi(n)
(if g1,92,...,94 > 1 are pairwisely coprime integers) and showed that the
1/3 in the above theorem can be replaced by n > 0.

Similar distribution results for the sum of digits function of number
systems related to substitution automata were considered by Dumont and
Thomas [14].

Drmota and Gajdosik [11] used a generating function approach to show
that the sum of digits function for digital expansions related to Parry’s a-
expansion satisfies a central limit theorem.

Finally several authors studied subblocks of digital expansions and func-
tions depending on them, e.g. Kirschenhofer [29], Barat, Tichy, and Tijde-
man [1] and Cateland [5]. Drmota [8] showed that these functions satisfy
a central limit theorem for expansions related to certain finite recurrences.
We will extend this result on expansions related to Parry’s a-numbers in
Chapter 5.
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4.2 b-Additive Functions on Gaussian Integers

Grabner, Kirschenhofer and Prodinger [20] and Thuswaldner [38] generalized
Delange’s result to canonical number systems in the Gaussian integers and to
arbitrary canonical number systems respectively. For the Gaussian integers
we have

1 i
Nr+ OWN) > (sp(2)) =

[z[2<N

d d—1
b —1 ‘ Vv
B <| | 2 ) loge N + 3 logjy: N (logyy2 N) + O (VN logfya N)
j=0

where ®¢,...,P,4_1 are continuous periodic fluctuations of period 1, b the
base of a canonical number system in Z[i] and s,(z) the sum of digits func-
tion.

A treatment of the higher moments in the general case was done by
Gittenberger and Thuswaldner [18].

Gittenberger and Thuswaldner [19] extended the result of Bassily and
Kaétai [2] to b-additive functions

(f(()) Zf ci(y v) for v = Za] / )EN@)).

j>0 j=>0

Theorem 4.2. Let f be a b-additive function such that f(cb/) = O(1) as
j — oo and ¢ € Ny. Furthermore let

Z f Cbk 0,2 . Z f2 bk 2
ceNo ce/\/o
and
L
:kav D2($):ZO']%
_D(=)

(logz)173
polynomial with integer coeﬂiczents and degree r. Then, as T — 00,

| o JPE) ~ M)
Fer e <A B

where ® is the normal distribution function.

with L = [log, z]. Assume that — 00 as x — oo and let P(x) be a

< y} — ®(y),

18



Chapter 5

The Distribution of Patterns
in Expansions Related to
a-Numbers

The aim of this chapter is to present some new results on the distribution
of functions F' depending on subblocks of digital expansions related to a-
numbers « (see Sections 2.4, 2.5). We will prove asymptotic normality of
the distribution of X, which will be defined in the sequel, and derive a
local limit law if F' attains only integer values and « is a simple a-number.
The methods are adapted from [8], [16], [11] and [12].

Let a be an a-number, G defined as in Section 2.5 and

BL = {(GL_l(TL),EL_Q(n), .. .,Go(n)) n< GL}

be the set of blocks B C {0, 1,...,a;}" of length L which actually occur in
digital expansions. In the g-ary case we trivially have

B, ={0,1,...,q— 1}~

Let F' : Bry1 — R be any given function (for some L > 0) with
F(0,0,...,0) = 0.

Furthermore, set

sr(n) = Y F (1) ejipi(n), ... ¢;(n)).
7=>0

This means that we consider a weighted sum over all subsequent digital
patterns of length L + 1 of the digital expansion of n. For example, for
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L =0 and F(e) = € we just obtain the sum-of-digits function, or if L = 1
and F(e,n) =1—0cy (0, denoting the Kronecker delta) then sp(n) is just
counting the number of times that a digit is different from the preceding one
etc.

In order to get an insight into the distribution of sp(n), it is convenient
to consider a related sequence of random variables Xy, N > 1, defined by

Pr[Xy < 2] = %Hn < N:sp(n) <z}

Expected value and variance of X are given by

EXy = % S sp(n) and by VXy = % S (sp(n) —BXy)?  (5.1)

n<N n<N

We introduce the function

en(z) = Z »5F(n)

n<N

and consider for any block B = (n1,...,nr) € By, the functions

af(z) = Z Zr (),

n<Gj7(6]'—1(n)7"'75j*L(n)):B

Then

BeBp,

In order to obtain recurrent relations for the functions a? we need the

following notation: !

For B = (m,...,n) € Br let B = (na,...,n1) denote the block
consisting of the last L — 1 elements of B and np the first element 7y,
ie. B = (ng,B’). (Similarly 'B = (n1,...,n-1).) Furthermore, for
(e,B) = (e,m1,...,nL) € Br41 set

L-1

H(G,B) = Z(F(O,...,0,6,771,...,17L_i>—F(0,0,...,0,171,...,77L_i))+
1=0
F(0,0,...,0,¢)

Note that (0, B) = 0.
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5.1 Simple a-Numbers

In the case of simple a-numbers, the coefficients of the a-expansion of « are
(a1,a2,...,ar,0,0,...) and the G; are determined by the finite recurrence
(2.8).

Without loss of generality we may assume that L > r—1. (If we are only
interested in L+ 1 subsequent digits with L. < r — 1, then we consider a new
function F : B, — R that does not depend on the first (r — L — 1) digits.)

Lemma 5.1. The functions af(z), 7 > L, are recursively given by

B C ,C
aj (Z) = Z aj_l(z)zn(nB )
CeByr: 'C=B/, (nB,C)EBL+1

Proof. The set

{n<Gj:(ej-1(n),...,€—1(n)) = B}

is divided into subsets of the form
{n < Gj:e1(n) =np, (j-2(n),ej-3(n),...,ej--1(n)) = (B',e) = C}

= {n < Gj_l : (Ej_Q(n), Gj_g(n), cee, ej_L_l(n)) = C} + nBGj—l-
Since {(np,C) : C € Br,'C = B’} D Br+1, we cover all possible cases.
Furthermore, for n < G;j_1 with (ej_2(n),€ej_3(n),...,ej_r—1(n)) = C
we have
sF(n + 773ij1) = SF(n) + /6(773, C).
[
Corollary 5.1. The vector aj(z) = (af(z))BeBL satisfies the matriz recur-
sion
aj(z) = Ar(2)aj-1(2) (> 1)
where the G, x Gr-matriz Ar(z) = (ap,c(2))B,ces, is given by
apc(z) = {Zn(nB’C) if'C = B" and (n5,C) € Br11
0 otherwise

Ezample 5.1. For ¢ =2 (r = 1, a; = 2), the matrix Ay(1) has the form
1 0
As(1) =

O = O
O = O
— O = O

1
0
1



Example 5.2. For r = 2 and a; = a = 1 (the G; are the Fibonacci numbers)
we have By = {00,01,10} and

110
A2(1):(0 0 1).
110

Remark 5.1. In the g-ary case, Ar(1) is the adjacency matrix of the (di-
rected) De Bruijn graph corresponding to By,.

Remark 5.2. De Bruijn graphs are Eulerian graphs since the indegree and
the outdegree of all vertices are equal (= q).

Remark 5.3. For general simple a-numbers, a generalization of De Bruijn
graphs can be defined by the adjacency matrix Ay (1).

Remark 5.4. The generalized De Bruijn graph corresponding to Ar41(1) is
the line graph of the generalized De Bruijn graph corresponding to Ay (1)
(L>r—1).

Remark 5.5. If D is a digraph, £(D) its linegraph and A(D), A(L(D)) the
adjacency matrices, then we have for the characteristic polynomials

X(A(D))(z) = z7Px(A(L(D)))(x)
where ¢ denotes the number of edges and p the number of vertices.
Theorem 5.1. The characteristic polynomial of A (1) is
Y(AL(D) (@) = 29 p(a),

where

p(z) =2" — ax" = asr" T — - —a,_1x — ay

is the characteristic polynomial of a (and of the finite recurrence).
Proof. First we remark that #(B) = G, and for each B € By,
B =(ep-1(i—1),e-2(i —1),...,€(i — 1))

for some i € {0,1,...,G — 1}.
The conditions B’ = 'C' and (np,C) € Bry1 can thus be written for
i,7€4{1,2,...,G} as

(era(i—1),....e0(i — 1)) = (€11 — 1) a1 = 1)) (5.2)
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and
(EL,1(2' — 1),€L,1(j — 1), .. ,eo(j — 1)) S BL+1 (5.3)

respectively.

Therefore the coefficients of Ap (1) = (az('f))léi,jSGL are

Wb _ { 1 if (5.2) and (5.3)
K 0 else

If (5.2) holds, (5.3) is violated only for
L=r— 1, (fT_Q(i - 1), cee ,Eo(i - 1)) = (al, cee ,ar_l),

(er—2(j—1),...,e0(7 — 1)) = (ag,...,ar_1,T)

with a, <z < a;.
Hence we have for L > r

Reon { 1 if (5.2)

K 0 else
and (L) (L)
L L
GivkGr_1,j = %ig o
because of

(er—1(i +kGr—1 —1),ep—2(i + kGp—1 —1),...,e0(i + kGp-1 — 1))
= (ep—1(i = 1)+ kyep—2(i —1),...,e0(i — 1)).

We define a matrix Py, := (pgf))1§¢7j§GL with
. 1 ifi=j
p =021 <Gy, i= kG, k>0
0 else
Hence Pgl = (pz(';L))lgi,ngL is
. 1 ifi=jy
pl(-;)z 1 itj<Gr_1, i=j+kGr-1, k>0 .
0 else
With P, we create a matrix A, = (G;E-L))lgi,ngL which is similar to

Ar(1).
o 1 =PLAP]!
L -—YLALLY
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In the construction of A’; the rows i of A (1) are subtracted of the rows
i+ kG 11 and the columns i+ kG,_1 are added to the columns i. Therefore

ol =0 Vie{Gr+1,Gr+2....,Grhje{1,2,...,GL).

Now we look at the matrix

-1 12 ... G4
Apy = (az(’j Micijecn, = Al (1 5 GL1>
(this notation means the rows and columns 1,2,...,Gr_; of A).

We show that A1 = Ar_1(1), i.e. the two definitions are equivalent.

a!*™" = 1 holds not only when (5.2) holds, but also when

ij

(EL,Q(i — 1), e ,Go(i — 1)) = (GLfl(j + kGL,I), ce ,El(j + kGr_1 — 1))

= (k;’eL—2(j - 1)a .. .,ﬁl(j - 1))
fora k €{0,1,...,a1} with j + kGr—1 < Gr. Therefore

2D _ { 1 if (ep—3(i —1),...,e0(i = 1)) = (ex—2(j = 1),...,e1(j — 1))
" 0 else

For L = r we have to check ag*l) =0 for
(Erfl(i - 1), ce ,Go(i - 1)) = (0, ai,ag, ... ,anl),

(67«,1(]' — 1), PN ,Go(j — 1)) = (0,(12, PN ,aT,l,x)

with a, <z < ay, i.e.
i jrkG,_; =0 (J+EkG—1 <G,).
This is true because we had otherwise
k=€_1+kGr-1—1) =€ 20—1)=a1

and k < a1 because of j + kG,_1 < G,.
We have

X(AL(1))(2) = X(A])(2) = 292711y (A1 (1)) (2)

and hence
X(AL(1)(x) = 292~ 1x (A, 1 (1))(2) (5.4)
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Now we look at A,_1(1). For i < Gy_1,7 < Gy_1 (but not for i = G,_1)

2D { 1 if (6,300 —1),...,e0(i — 1)) = (e,—2(j — 1),...,e1(j — 1))
K 0 else
and (r—1) (r—1)
bt kGyrn,g = Y -

We define the matrix P,_; := (pg_l))lgi’jggpl with

) ifi=j
Pl =8 1 <G i =+ kCra k>0
0 else

Like above A’ _; :=P,_1A,_1(1)P;}| and

V=0 Vie{Gra+1,Gra+2,....Groy — 1} € {1,2,.... Gy ).

a

We build the matrix A,_5 := A’ G g - g::i g:j) , where the numera-

tion of the rows and columns is kept, i.e. A, _o = <a§;_2))i7je{172,~--,Gr—2,Gr—1}'
(Now A,_o cannot be interpreted as adjacency matrix of a generalized

De Bruijn graph.) We have
X(Ar—1(1))(2) = x(A_y) (@) = 291727 I (A, ) (2),
and for ¢ < Gr_2, j < Gr_1

A { 1 if (e a(i—1),...,e0(i — 1)) = (&0-3(j — 1),...,e1(j — 1))
t 0 else

Hence this procedure can be iterated. We define matrices P,_; for
2 <l < r by replacing r — 1 by r — [ in the above definition, and

12 ... G_1 Gy ... Go_
-1 -1 l 1
Arciori= (ProiArP, o) (1 2 ... G:_l_l G:_l G:_l)'
Now we look at Ag:

0 .
Ay = (az(‘j))i,je{Go,Gl,...,Gr_l}a dim(Ag) =7

G1—1

NN S JEE < 3 o
j=1

1)
je{1,2,....Go—1}

je{1,2,....Gg—1}
j#k1G1 Vki<ay

J#k1Ga+kaGy V(ky,ka):
(k1,kg)<(ay,a2), ka<aj
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_ (r=1) _ (r=1)
= Z Gy = Z @i
j€{1,2,....,G_1—1} j€{1,2,....,Gp_1}

J#R1Gr_1+koGr_o+- F+kp_1Gy V(k1,kp_1): €0 (4)#0
(kn kpg1s-- kr_1)<(ay,ag,..., ap_pn) Yne{l,2,..., r—1}

For 1 <1 < r we have
(er—2(G1 —1),...,e0(G; — 1)) =(0,...,0,a1,a9,...,a).
Hence for | <r —1 we have ag, ; = 1 iff
(er—2(j —1),...,e0(7 —1)) =(0,...,0,a1,az,...,a;,x) (0<z<apq).

x = aj41 implies j = G411 and €y(j) = 0, otherwise €g(j) = = + 1.
With (5.3) we have ag,_, j = 1 iff

(er—2(j —1),...,e0(j — 1)) = (az,...,ar-1,) (0 <z <a,).

Therefore we have ©
0
agn = A+1

for1 <l<r.
For 1 <m <r —1 we have
ag],)gm = 5l+1,m
To show this, we have to look at ag,;, where
(er—2(j—1),...,e0( — 1)) = (k1, ..« krem, @1, ., Q)

=(0,...,0,a1,...,a;,) (0<zx<ap1)

forl <r—1.
For m > 1+ 1 all these ag,; =0, for m =1+ 1 only ag,q,, = 1.
For m < [+ 1 we must have

(ET—Q(j - ]-)7 760(j - 1)) = (07"')0)(11)' - Al41—m, A1, - - - 7a’m)

=(0,...,0,a1,...,a;,x).
Then
(al+2—ma s ,(I[) = ((11, s 7am*1)

and a;41 < ap, because of (2.6). With = < a;41 we have a,,, =z = a;41 and
J = Giy1. ag,G,,, = 1 has no influence on ag,q,,, because the column G4
is never added to another column in the construction of Aj.
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Forl=7r—1, 1 <m <r we have to look at ag,_,; where
(r—2(G = 1)sevvvc0(G = 1)) = (ktyeees Ky L, )

= (ag,...,ar—1,) (0<x<a).

For a, < x < a1 we have ag, ,; = 0, because (5.3) does not hold. For
0 <z < a, we get a contradiction with

((l]_,. "aam) = (ar—m+la~ "aar—].)x) < (ar—m+la~ "aar) < (ala" . 7am)'

Therefore all ag, ,c,, =0for 1 <m <r.
Hence A has the form

ai 1 0 0
a9 0 1

Ay = : 0
Do 1
a 0 - - 0

and the characteristic polynomial of A,_1(1) is
XA, () (z) =297 (z" —ayz" T —agx" 2 — - — a1z —ay).
With (5.4) the theorem is proved.

In the special case of g-ary expansions x(Ar(1))(z) = 27 ~1(z — q).
Ezample 5.3. (a1,a2) = (1,1) (Fibonacci numbers)

G0:17 G1:2, G2:3
82 - {(070)7 (07 1)7 (170)}

1 0 0 1 1 0 1 0 0 1 1 0

0O 1 0 0 0 1 01 0|=]1P01

-1 0 1 1 1 0 1 0 1 0 0 O
Py As P!



(2,0,1)

Ezample 5.4. (a1, az,a3)

1, Gi=3, Go=7, G3=15

Go =

Bs ={(0,0,0),(0,0,1),(0,0,2),(0,1,0),(0,1,1), (0,1, 2),(0,2,0),(1,0,0),

(1,0,1),(1,0,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(2,0,0)}

1110000O0O0O0OO0OO0O0O0O
00011100O0O0O0O0O0O0OO
000O0O0OO0O1O0O0O0OO0OO0OO0OTG 0O
00000O0O0OO0O1T11O0O0GO0GO0OO0
00 000O0OO0OO0OO0OO0OT1TT1IT1O0GO0
0000O0OO0OO0OO0OO0OO0OO0OO0OO0OT1TPO0
000O0OO0OO0O0OO0OO0OO0OO0OO0OT©O01

1110000O0O0OO0OO0CO0GO0GO0OO
000111O0O0O0O0O0O0O0TGO0O
000O0O0OO0O1O0O0OO0OO0OO0OO0OTG 0O
0000O0OO0OO0O111O0O0O0TGO0O0
0000O0OO0OO0OO0OO0OO0OT1TT11O00O0
0000O0OO0OO0OO0OO0OO0OO0OO0OO0OT1TO0
000O0OO0OO0OO0OOO0OO0OOO0OO0OT©O01

1110000O0O0O0OO0OO0O0GO0OO0

As =

SO OO OO o oo oo oo o H
S O OO OO OO OO o oo HO
s elBelelBeoleoleolelBeoleleolaell el
S OO O OO OO OO o O OO
S OO OO OO OO O HO O OO
S OO OO OO OO HO OO oo
SO DO DD OO OO H O OO o oo
D OO OO OO HOODODOOoO OO
—
OOOOOOlOOOOOOIlO
—
S OO OO H OO oo oo IIOO
—
OOOOlOOOOOOIlOOO
OOOlOOOOOOﬂTOOOO
—
001000000I|00000
—

O —H O O OO oo IlOOOOOO

— —

I

—

Hm

A
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11100000O0O0OO0OO0OO0OO0OOQO
0001110O0O0O0O0O0O0TO0OO
0000O0OO0O1O0O0O0OO0OO0O®O0OTO0OO
111000011 1000°O00O0
00011100O0O01T1T1TO0GO0
000O0OO0OO0O1O0O0OO0OO0OO0OO0OT1TQ 0
10000O0O0OO0OO0OOOO0OO0OO0OT1
000O0O0OO0OO0OOOOOO0OO0O®O0OQ 0
000O0OOOOOOOO®O0OO0OTG 0O 0
000O0OO0OO0OO0OOOOOO0OO0OT® 0O
000O0OOOOOOOO®OO0OTO 0O 0
0000O0OO0OO0OO0OO0OO0OO0OO0OT®O0OT®O0OO
000O0OOO0OOOOOO®O0OO0OT®O0OQ 0
0000O0OO0OO0OO0OO0OO0OO0OO0O®O0OS®O0OO

000O0OO0OO0OOOOOOO0OO0OT® 0O

P3;A3P;! =

1110000
0001110
0 00 0O0O01

1110000
0001110
000 0O0OCO01

1000000

Ay =

0000

0
0
1
0

0000

0000

10 0 0
0100

00 01

0

1110000
1111110
00 0O0O0O01
0 00O0O0OO 0O O
000 O0O0OO0OO
0 00O0O0OO 0O

1000000

PyA,P; !
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1 0 0 0 1 110 1 0 0 O 21 10
-1 1 0 0 1 1 1 0 1100_0000
0O 010 0 0 0 1 00101 |[0O0O0OT1
0O 0 0 1 1 0 0 O 0 0 01 1 0 0 O
241 Ay P;l

2 1 0

Ap=1 0 0 1

1 00

X(As)(z) = 22 x(Ap)(z) = 2" (2® — 22% — 1)

5.2 Non-simple a-Numbers

Let a be a non-simple a-number, i.e.

(an+m+17 An4+m+2, - - ) = (an+17 an+2; - - )

for some integers m, n and m, n minimal with this property.
As above let B; denote the set

By = {(e_1(i),e1-2(3),...,e0(i)) : i < Gy},

F be a function F': Bj41 — R (with F(0,0,...,0) =0) and

sp(n) =Y F(j(n), €qi-1(n),. ., ¢5(n)).

J20

Now we may assume that [ = km > n +m — 1 for some k € N. (If we
are interested in [ 41 subsequent digits with [ < km then we consider a new
function F : By,,11 — R that does not depend on the first (km — 1) digits.)

Lemma 5.2. For alll € N we can find an integer L > [ such that
(aj,ajﬂ, ce ,aL+1) < (al, ag, ... ,aL_j+2) Vj € {2, 3,...,L+ 1} (5.5)

Proof. 1f (5.5) holds for L := [, we are finished. Otherwise we have a j < [+1
such that

(ajv Aj+1s--- 7al+1) = (a17a27 CERE) a‘l—j-‘r2)
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and an integer g > [ + 1 such that

(aj,aj_H, ‘e ,Cl,g_l) = (al, as, ... ,ag_j)
and
(ajaaj+17---aag) <:(a17a27--'7ag—j+1)-

If (5.5) holds for L := g — 1, we are finished. Otherwise we have a j' < g
such that

(aj’)ajurl? ey ag) = (al, ag, ... ,ag,j/+1).
For j' > j, we have
(aj/, Ajryly - ,ag) < (aj/,]qu, Qjr— 425y ag_j+1) < (al, ag, ..., ag,j/+1>.

Therefore j' < j. We can find ¢’ > g such that
(ajr,ajq1,...,a9-1) = (a1,a2,...,aq_j),

(aj’a Ajr41y--- ,(Ig) < (CLl, az, ..., ag—j/'f'l)

and repeat this procedure.
Since j > j' > 7" > ... > 1, we find a L that satisfies (5.5) after a finite
number of steps. O

Remark 5.6. If (5.5) holds for L, it holds for L + m since
(aj, Qjtlye-- ,CLL+m+1) = (aj,m, Aj—m+1; - - - ,CLL+1) Vj € {L—|—2, L+3,..., L+m+1}
and, with induction, for L + km.
Now we consider the functions
af(z) = Z Z5r () (B € Br).
n<Gj,(ej_1(n),....ej_r(n))=B

Lemma 5.3. Let L satisfy (5.5) and L > km > n+ m — 1. Then the
functions aJB, j > L, B € By, are (recursively) given by

CICENED RO R

ceBy: 'C=B,
(nB,CIEBL 11

agah-..,aL)(Z) _ Z ajCLl(Z) Zﬁ(al,C)_ Z bJD,Lfl(Z) ZA(al,.‘.,aL+1,D)7
C=(ag,...,ar,,n,), DeCrm
np<ar41
(5.6)
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where
Cim :=1{D € Bim : D > (ar+42,0143, .., 0L+km+1)},

bP(2) = > Zr )

i<Gy: (€51(4)s s _m (1))=D,
(ﬁjfl(i) ..... eg(i))>(ar 42, a‘L+j+1)

and
A(b1,02,...,0041,D) := sp(n1) — sp(n2)
with
D:(C17C27"‘7€km)7 61(”1)261(n2):0V22km+L—|—1
(€km+r(n1); €kmyrr1(n1), ..., €0(n1)) = (01,02,...,0041,C1,C25 - -+, Chm)s

(€km+r1(n2), €km+r41(n2), ..., €0(n2)) = (0,...,0,¢1,C2, - -, Ckm)-

The functions bf)(z), j > km, D € Cyy, are recursively given by

af(2) if D> (ar42,---50L+km+1)
bD(z) — BEBL: (7717--~777km):D
J Z bjE;km(Z)ZA(Or“)07aL+21“'?aL+km+11E) Zf D — (aL+2’ ey aL—l—km—i—l)
Eeclﬂn

Proof. The proof of the first equation is the same as that of Lemma 5.1. We
just have to check

(173, ej_g(n), ceey 60(71),0, .. ) < (CLl,CLQ, .. ) (57)

for C' = (ej—2(n),...,€j—r-1(n)), 'C = B', (n8,C) € Br41.
(5.7) can only be violated, if (ng,C) = (a1,...,ar+1) (which implies
B = (ay,...,ar)).

a‘gal,...,aL)(Z) _ Z ZSF(Sojflw"vSOO) _

(05 —1,--20):
(pj—1s-pj—p)=(a1,--ap), ¢j_p_1<ap41,
(¢j—2,p0)€EBj 1

Z 250 ($i—190) (5 Q)

((pj71 ..... ©0):
(pj—1s-pjp)=(a1,--ap), ¢j_p_1=ap41,
(P52 po)EB;_1,
(¢j—L—2:90)>(aL12:a5)

where, with p; = 0 Vi > j,

SE(@j—1,---,%0) = ZF(goiH(n), o pi(n)).
1>0
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The first sum of (5.8) is equal to the first sum of (5.6) (see lemma 5.1 and
consider (5.5)). The patterns of the second sum of (5.8) are exactly those of
the first sum which do not satisfy (p;_1,...,¢0) € B;. Because of (5.5) the
patterns (¢j—r—2,...,%0) which appear in the second sum of (5.8) are not
influenced by the digits in front of them. Therefore this sum is equal to the
second sum of (5.6).

The equation for b]D(z), D > (ap42,---,ap+km+1) is clear. For
D = (ar+42,...,60L+km+1) We have to consider Remark 5.6 and that
(AL4km+2s- -+ s QL4 2kmt1) = (AL42y -, L kmt1)- 0

Corollary 5.2. The vector

aj(z) = (ai*(2),... ,afGL (2),6511(2), ... b7 (2), .. b (), b (2))T

M := #(Chm), Bi = (ep—1(i —1),...,€0(i — 1))
Dl = (aL+27---7aL+km+1)7 sy DM = (ala"‘aak‘m)

satisfies the matrix recursion
aj(z) = Ar(z)aj1(z) (> 1)
where Ar(z) = (a:j(2))1<ij<G,+LM 1S given by

Z’Q(WBVBJ') /sz’ j < GL) /Bj = B;
—MerarinDiocp—-nam) ifi=Gr, j>Gr+(L—-1)M
MO 088420000 kmt1, D -G~ (hm—1) ) ifi=Gr+1, j<Gp+kmM,
j>Gr+ (km—1)M
1 ifGL+2<i<Gr+ M,
Di—cy = (m,- - em) (B;)
ori>Gr+ M, j=i—M
0 otherwise

ai,j(z) =
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Hence, if L > km, A (1) has the form

0O --- 0
A 0 0
L 0O --- 0
-1 .. -1
0 0 1T - 1
0 1 1 0 0 0
. 0 . 0 0
0o 0 - 0 :
0 0 1 1 0 0
0 Ey | 0 0
0 0 | By 0

where A is the matrix A (1) corresponding to the simple a-number with
a-expansion (a1, as,...,ar,ar+1 +1,0,...,0).
A (1) has the form

0O --- 0
Apm 0 0 0 ... 0
1 . -1
0 0 T - 1
0 1 1 0 0 0
. 0 R IR 0 .
o o - 0 :
0 0 1 1 0 0
0 Ey | O 0
0 0 | By 0

Theorem 5.2. The characteristic polynomial of Ar(1) is
X(AL(D)(x) = p(x) (@FD™ 4 2072m gy gOr M =kmon o (5.)

where

1

n+m _an_"_m)_(xn_almn_ __an>

_ alxn—i—m—l _

p(x) = (z

is the characteristic polynomial of c.
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Proof. First we construct a matrix A’ = (a};)1<i j<G,+1 With
X(AL(D)(2) = x(A")(z) 2"M7E.
To get A’, we define Pj, = (pg?)>1§i7j§GL+LM, 0 <h < L, with
p =1vi <G+ LM,

pgl2+hM+1,j =1VYj:Gr+hM+1<j<Gp+ (h+1)M.
Then

A'-—A<12 . GL+1GL+M+1 ... GL+(L—1)M+1)
T 12...G+1GL+M+1 ... GL+(L-1)M+1

where B
A :=P¢P,...P, A, P P;1.. P

A’ has the form

0
A 0 ;
L 0
-1
0 0 1 1|0 01 0 0 0
0
0 Er 1 :
0
if L > km and
0
Ay, 0 :
F 0
-1
0 0 1 110 0 1
0
0 Er_y :
0
if L =km.
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Since Ay is the matrix A (1) corresponding to the simple a-number

with a-expansion (a1,as2,...,ar,ar+1 + 1,0,...,0), it can be transformed
to
ai 10 - 0
as 0 1 ’ :
) . 0
ay, o1
art1+1 0 o oo 0

(see proof of Theorem 5.1). In the transformation the last row is never
added to or subtracted from another row. Because of this and the fact that
a;j =0V: < G, j > G, we can apply this transformation to the whole
matrix A’ and get the (2L 4 1) x (2L + 1)-matrix A” which has the form

a 1 [0 S |
as 0o 1 :
ay, 1 0 0
arg1+1 0 o .- 0 0 e 0 —1
Yo yioc0 0 y—1 0 0 1 0 0
0 0 1 0 ce 0
0 0 1 0
and
a9 0 ’
ar, : T | 0 0
ar+1+1 0 -+ ... 0 0 0 -1
yo yl P “ e ylfl O 0 1
0 0 1 o --- 0
0 0 1 0
respectively.



The y;, 0 < j < L, are given by y; := #(D;) with

Dj = {B = (7717"' an) €BL: (nlv"'vnkm) > (aL+2a"' vaL+km+1)v
ML—j+1,---5mL) = (a1, .-, a5), MLy1-h,--->1L) # (a1,...,an) Vh > j}
Lemma 5.4. The yr_j, 0 < j < L, are recursively given by

AL4j+1 if1<j<km
YL =1, Yyo—j = D> Yr—j+han — { Ar414km +1 if j=km
h=1 0 if 7 > km

Proof. yr, = 1 is obvious.
If B=(m,...,nL) € Dr—j, let h > 1 be maximal with the property
B=(m,...,0j—h,Q1,-.,Qn—1,7;,01,...,0L—j)
Then
(N1s - s Mj—ny a1, ..y ap—jn) € Dr_jyn.
If we take (61,...,0;—n,a1,...,a5—j4+n) € Dp—jyn, 1 < h < j, then

(771,... ,UL) = (91,. . .,Gj,h,al,...,ah,l,nj,al,.. . ,a,L_j) S ,lej

iff n; <apand (m1,...,%km) > (@L+2,- -5 GL1km+1)-
If j > km, the definition of (1, ..., nr) guarantees that the last condition
holds. If 5 < km, it guarantees

(.- mi-1) > (aLg2,. .., aLyj).
Therefore (91, ..., Mkm) > (AL42,- - QL +km+1) 18 violated iff
J<km, (m,...,nj—1) = (ar+2,---,arL+j), Nj < GL4j+1
or
jg=km, (m,...,nj-1) = (ars2,-.-,0145)s Mem < QLpkm+1-

O

We calculate y(A”) by developping det(zI—A") at the columns (2L+1)
and (L + km + 1):

x(A")(z) = abhm (ka(xLH —apzt — - —apr—ap — 1)+
( 1) ( )L+km+1+L+2(:pL+1 _ CL1$L — s —arT —ar41 — 1)) +
( 1) ( )2L+1+L+1det(AL)
_ xL km( km 1)(xL+1 _ ale — - —apr —apy; — 1) — det(AL)
— Lk ™ (g (k—1)m +x(k—2)m+...+1)(;pm_1)
(xL+1 —azt — —apr—apy1 — 1) — det(AL)
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where Aj, 1 < j <L, is the matrix

r—a; -1 0 - - 0
—as x —1 :
A, = 0 0
: : . .0
—a; o - 0 =z -1
_yO _yl .. .. oo _y‘j
A _ L L—1 A -
det(Ar) = —yr(z” —az” " —---—ar) +det(Ar_1) =

= —yrat + (ayr —yr_1)x" 7 4 (agyr + aryr1 — yr_o)zt 2

+- 4 (apyr + -+ a1y — yo)

= —zl+ aL+2$L_1 + -+ aL+kme_km+1 + (ap4kmy1 + 1):EL_km
_ _fokm(ka o QL+2ka71 — = AL4kmT — QL4km+1 — 1)
_ _fokm(l,(kfl)m 4ot 1)(xm — aL+2xm71 — = 0L+m+1 — 1)
Hence
X(AH)(IE) .’EL km( (k—1)m + x(k—2)m N 1)
( Lbmal _gpglbtm o ap — 1) = (@F — a2t - —ap — 1))
- p2LAl—km— "(x (k—1)m + p(k=2)m + -+ Dp(z)
Therefore

VAD)() = aCrL-THEM=-Ly (AT (4)
:L’GL+LM—km—”(ﬂL’(k_1)m +ak=Dm gy Dp()

and the theorem is proved. O

Remark 5.7. The roots of z(k=Dm 4 2(k=2)m 4 ... 1+ 1 are km-th roots of
unity.

5.3 The Conjugates of «

We look at the conjugates of an a-number « with respect to its characteristic
polynomial (see Section 2.4).
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Using the notation employed in Section 2.4, we define the transformation
T(x) = (ax) which sends [0,1) onto itself. Then, with 7°(x) = x, induc-
tively T7(1) = T ({a)) for n > 1, consequently T7(1) = (aT™ (1)) and
e_n(a) = [T ({a))] = [@T™(1)]. Therefore a, = e_,11(a) = [T 1(1)].

Hence the characteristic polynomial is

p(z) =a" = [aa" ™ = [T (1)]a""? = - = [aT"7(1)]

and

pla) = (@ [l 0T (L) [T (1)) -
(a" = [o)z" ! = [aT(1)]a" 2 — - = [aT" (1))

respectively.

Lemma 5.5. The conjugates aq,aa, . .., Qr—1(Qntm—1) of o with respect to

its characteristic polynomial are roots of

plx) =2 P+ 72" 24+ T*(1)a" 2 + - + T7H(1) (5.10)
and
ple) = @ T)a™ 2 4 T ()™ e 4 T () —
(@' + T2 + T (12" 2 + -+ T (1)) (5.11)
respectively.

Proof. We show p(x)(z — a) = p(z). If a is a simple a-number, then the
coefficient of 27, 1 < j < r — 1, of the left hand side polynomial is

T9(1) — T 77 11) = (T 77H1)) — aT" 77 = —[aT" 7Y
and the constant coefficient is
—aT" (1) = —[aT"71(1)]

since ‘
[T (1)] = aje1 = 0Vj >

and therefore 77 (1) = 0.
For non-simple a-numbers we can make a similar reasoning. The con-
stant coefficient is then

—aT™ (1) 4 aT™ (1) = —[aT™ (1)) + [aT™ (1))
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since

(@™ 1(1) = [T (1)]) = (T (1) = [T (1)

= (o™ (L) — (TN (1) = T (1) = T(1) = 0

(0T (1)] = aj41 = ajemsr = [@T7F™(1)] V) > n).

O

Proposition 5.1. The conjugates of an a-number o with respect to the
characteristic polynomial have absolute value less than .

Proof. If « is a simple a-number, set

s
g(z) :=1—2a"p(a™) = > ajal.
j=1

If |z| > «, then

gzl < g(ja71]) < gla™h) =1

and p(z) # 0. If |z| = a, = # «, this is assured by

g™ < g(ja™ ) =1
since a1 # 0.

If o is a non-simple a-number, set, for |z| > 1,

and, for |z] < 1,

gla) =1 f@™ ) =3 aa’.
j=1

Then, for the same reasons as above, the roots of f(x) have absolute
value less than « for x # a.

If we set

pr(z)

plx)(1+ 2™ + 22 4 - 4 g my,
then

pk(l’) — (xn-i-km - alxn—i-km—l L an+km) - (xn _ alxn—l

C—ap).

40



With qi(z) := 27" *™pp(x) we have

o ai An+km 1 ai an
w) ==y Lt

and, for |z| > 1, gx(z) — f(z) as k — 0.

Therefore f(x) = 0 is a necessary condition for p(z) = 0, |z| > 1 and
the roots of p(x) have absolute value less than « for x # a.

Since « is simple root of p(z) (p(«) > 0), the proposition is proved. [

Proposition 5.2. The conjugates of o with respect to the characteristic
polynomial have absolute value less than 2.

Proof. If x € C is a conjugate with |z| > 1 and « is a non-simple a-number,
then

‘xn-i-m—l_i_T(l)wn-‘rm—Q_i_. X '_'_Tn-i-m—l(l)’ — |xn—1+T(1)xn—2+' X -—i—Tn_l(l)‘.
Hence
(Jo™ = D" + T(1)2" 2 -+ TN < 2™ 4+ 1,

1

2" P T2 2 4+ T ()] < 2

and

| - 1 +|x|n—1 -1 _ |$|n—1
Tzl -1 fal -1 a1

lz|" 1 < HT (D)2 24 T (1)

[ =1

If x € C is a conjugate with |z| > 1 and « is a non-simple a-number,
then

2"t = T2 + T*(1)2" 2 + - + T (1)
|ZE‘T_1 -1 |x|r—1

[ =1 [ -1

ol £ R 1 Lo SRR

Therefore |z| < 2 in both cases. O

a resembles thus a Pisot number which is an algebraic integer greater
than 1, with conjugates of maximum absolute value less than 1.
The proofs of Lemma 5.5 and Proposition 5.2 are due to Parry [34].

Proposition 5.3. If the «-expansion (ai,as,...,a,,0,...) satisfies
ay > as > ... > a. >0, then « is a Pisot number.
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Proof. We use the following two lemmas:

Lemma 5.6. If (a1,as,...,a,) satisfies ay > as > ... > a, >0, then
I1>T) >T*1) > >T 1) >0
Proof. We assume T"!(1) < T"(1). This implies
an = [T (1)] < [T ()] = anta
and consequently a,, = a,+1. Hence
(1) = (@T"1(1) < (aT"(1)) = T™(1).

We can repeat this consideration and get T"71(1) < T7(1) = 0. Then
a, = [@T"~1(1)] = 0 which is not allowed. O

Lemma 5.7. ¢(z) :=ap+a1z+---+apz™. Ifag >a1 >as >--->a, >0,
then all roots of q(x) have absolute value bigger than 1.

Proof. Let £ be a root of g(x). Clearly £ # 1.
Assume €| <1, £ # 1. We have

(1—2)q(z) = ap—(ag — ay) xz— (ay — ag) 2° — - = (Ap_1 — ap) " — apz™ ™,
[ —— —_——
>0 >0 >0
hence
(L= 8)q(§)] > ao — (a0 — a1) — (a1 —az) =+ — (an—1 — an) — an =0
and £ cannot be a root of g(x).
Therefore |£] > 1. O

We set g(z) := 2" 1p(z71), ie.
qz) =1+ Tz +T*()a? 4+ -+ T (1)2" .

With Lemma 5.6, ¢(x) satisfies the conditions of Lemma 5.7 and all roots
of g(z) have absolute value bigger than 1. Therefore all roots of p(x) have
absolute value less than 1. OJ

Corollary 5.3. If (a1,aq,...,a,) satisfies a1 > ag > ... > a, > 0, the
characteristic polynomial is irreducible in Z[x].

42



Proof.
p(e) = (z — a)(& — on)(& — a3) ... (z — ar_1)
If
(z— i) (@ —ai) ... (2 —ay) € Zle] (1 <i; <r—1),

then

k k
HO&Z'J.GZ, ]Haij\<1.
Jj=1 Jj=1

r—1
Therefore o;; = 0 for a j € {1,2,...,k} and a, = o [[ a; = 0 which is not
i=1

allowed. 0

Remark 5.8. In general, the characteristic polynomial is not irreducible. E.g.

2® =3zt —22% — 20 — 3 = (23 — 222 — 5z — 3)(2? —x +1).

5.4 Expected Value and Variance

Lemma 5.8. Let G(t,z) = det(tI— A (2)) be the characteristic polynomial
of the matrix Ap(z). Then there exists a (complex) neighbourhood of z =1
such that G(t,z) = 0 has a unique solution t = a(z) of mazimal modulus.
Furthermore, the function a(z) is analytic in this neighbourhood.

Proof. Since the eigenvalues of A (1) are a (which is simple) and (dimA-1)

complex numbers 3; with max |3;| < «, there exists a neighourhood of z = 1
max |3;|+a
2

one eigenvalue is contained in the circle [t — af < %’W Hence, the

equation G(t,z) = 0 has a unique solution ¢t = a(z) of maximal modulus.
Since « is a simple root of G(¢,1) = 0 we also have

such that (dimAj — 1) eigenvalues of A (z) are bounded by and

0

— 1)|¢= .
£ Gl Dlizg # 0

Hence, by the implicit function theorem, there exists a neighbourhood of
z = 1 such that a(z) is analytic, too. O

Corollary 5.4. There exists a neighbourhood of z = 1 such that for every
block B € By,

af(2) = a®(2)a(z) + O(a1 =)

as j — 00, where § > 0 and a®(2) is a properly chosen analytic function.
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Now we look at the function cy(z) (= Y 2°7(™). By the preceding
n<N
corollary we know the following:

Lemma 5.9. The asymptotic behaviour of cyg;(2), j > 0, 1 < n < ay,
locally around z = 1 is given by

ena, (2) = Cy(2)a(z)? + O(all=97)
as j — oo, where Cy(z) is a properly chosen analytic function with
Cn(l) =

Proof. We just have to add up over all aJBH(z) with blocks B € By with
np = 1 and observe that ¢,q, (1) = nGj. |

The next recurrence will help to extend this property to general N.

Lemma 5.10. Suppose that N = nGy + N', k > L, with 1 < n < ay and
N' < Gy, and let By = (€;—1(N),...,ex—r(N)) be the block of digits of N
preceding n = ex(N). Then

en(2) = ey, (2) + eni(2) 2*BN), (5.12)
Proof. For n < N’ we have

sp(n+nGg) = sp(n) + k(n, BN).
Hence, (5.12) follows immediately. O

Obviously, we have

/

and

(1) (1) (D))
VXy=-2X 2 ( 2 > :
NTTN TN N
Therefore we need expressions for ¢y (1) and ¢(1).

Lemma 5.11. Suppose that the digital representation of N with respect to
Gj is given by

M
m=1

with Gj, > Gj, > -+ > Gj,, and 0, > 0. Then there exist k., depending
on N such that

M
en(z) = Z Z"men.a, (2) (5.13)
m=1

and |km| < Dm for some constant D > 0.
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Proof. We just have to apply Lemma 5.10 recursively. Furthermore
|km| < Dm with

D= max |k(n, B)|.
(U13)63L+1‘ (n. B)|

Corollary 5.5. With the same notation as in Lemma 5.11 we have

M !
N = 3 (st € 1)+ 5 ) G+ O
and
M
= Y (Ko = Vi + 260G, (1) + O (1)) G,
m=1
d o'(1) p oy @ (@) a’(1) -
+mZ:1 (2’{m77m (1) + C (1) a(l) + a(l) 77m> ]mGjm
M 0/(1)2 B
+y (nm]m G — 1)—2> G;, + O(N'79)
m=1 a(l)

for some 6 > 0.

Proof. We just apply that ¢,q,(2) and its derivatives are given by

ey (2) = Cy(z)a(z)! + O =),
C:]Gj(z) = (z)a(z) Cy(2)ja (2)a (z)j_1+(’)(a(1—5)j),
e, (2) = C”(z)a(z) +2C)(2)ja (2)a(z)/ !
Cp(2)ja (2)a(2)) ™1 + Cy(2)i( — e/ (2)%a(z) 2 + O(al' =)

in a sufficiently small neighbourhood of z = 1 and for some § > 0. Note
that by Cauchy’s formula, the absolute value of the derivative of an analytic
function f in some circle |z — 1| < R can be essentially bounded by max | f|

in a slightly larger circle |z — 1| < R+ e. O
Theorem 5.3.
1 log N
EXy=— = O(1 5.14
N=5 > sa(n) Mloga +0(1) (5.14)
n<N
and ) oo N
VXy=— ~EXy)? =022 100
v =y X (ol ~ BN = ot T O
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where

/ 1 " 1
« «

Proof. Let us start with EXy. Firstly, we have

(1

EXy = N]\(f )
1 a’(1)
= — mim + Cl (1 m gy ) G + O
a 1) 18 o/ (1) ,
1
+5 2o (R + G (1)) G, + O(N™).
m 1
Now note that
J1 J1 o )
S0 — GG € 137Gy = O3 jo ) = O(a) = O(N)
m=1 §=0 §=0
and that
M M

> kmltmGy, <Y DmayGj,, = O(N).

m=1 m=1
Hence,

/(1)
EXy =7 O(1).
N =J1 (D) +0(1)
Finally, since j; = log N/loga + O(1) the representation (5.14) for EXy
follows.
For the variance VX we have to be a little bit more careful. Let us
start with the full expansion of

M
Nk (D) + (1) = (1) = N3 (k2 + 26mC), (1) + Cp, (1) +Ci (1)) G,

m=1
(1) & )
N D S L (1)imC
a(l) —
a 1 M M
ol Zl i + Gy, (1) Gy, kZ e
m= =1



M O/l ) 0/(1) 0/(1)2
N mzzl< o) a(1)2>‘7’”an“”
IS i~ S8 (£ )
o) 2oy i =g iyz | 2 e

2

M
- (Z (Hmnm + C;]m(l))Gjm> + O(Nz_é),

Now we apply the estimates
M
m=1

M
Zmme%wm<MQm=ow% Q%m<mwcu)
m=1

0<i<ai
jl_jm nm = O(N)7
m=1
and
M M 2 M
N Z jT%Ianjm - (Z jmanjm> = Z Jm(m *jk)nmnijmij
m=1 m=1 k,m=1
M
= > (m = 30)(Gm — 1) = Gk — 501Gy, G, = O(N?)
k,m=1

and directly obtain

o (a’(1) (1) d(1)?
VA= @m+am‘mw»wm'

As above, j; =log N/loga + O(1) and so the theorem is proved. O

5.5 Global Limit Law

With help of Lemma 5.9 and Lemma 5.10 we can prove asymptotic normality

of Xn. Observe that

1 . .
NCN(ezt) _ EetiN

is the characteristic function of Xy.
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Proposition 5.4. Suppose that 02 # 0 and set uy = EXy and 03 = VXy.
Then for every e > 0 we have uniformly for |t| < (log N)'/?~¢

e_it“N/UN%cN(eit/UN) =e /24 O((log N)~1/?te), (5.15)

Proof. Set f(z) = loga(e?) in an open neighbourhood of z = 0. Then we

have

; e 242 3
a(ezt) — ettt /24+0(|t| )7

with = f/(0) = o/(1)/a and % = f"(0) = o"(1)/a + p — p? (see Theo-
rem 5.3). Hence, by using Lemma 5.9

e, (€) = Gy =712 QU 4 0 (o1-0)
J

in an open neighbourhood of t=0in R.

Now suppose that N = Z NGy, with j1 > jo > --- > jyr and 1, > 0

m

is the G-ary expansion of N Then by Lemma 5.11
CN(eit) — Z canjm (eit)eimm

M
_ Z anjmez‘jmut—jmaztz/Qeo(m\t|+jm|t|3) n O(N(l—‘s)),

m=1

Now observe that

it it
— = 1+O( ) )
and that L
et fon — o—it(u/o)i 2 (1+0GT )
Hence
EetXn—nn)/on e_it.U‘N/UN%CN(eit/UN)
1 M
— P2 Z” G, lt(Jm—Jl)/(Uﬂl )= (Gm—31)t2/(251)
m 1

m 1/2 9, 31, :1/2
. O (mltl/t/ >+ /ir-+e1 /3 )+O(N_5)'
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Let € > 0 be a (small) real number and let 7 be defined by j; > j1—j] > jr41-
Then 7/2 < j; — jr < ji and consequently

e—1/2 e— .—1/2
EeitXn—pn)/on  _ 12/ i Mﬁo(\tloﬁ e i )
m=1 N

m=1+1

M
1O ( S Lmﬁjm) +O(N7?)

e_t2/ze<9(It\oji‘”2+t2ji‘1+lt\3jf”2) + O(a).
Since j; = (logN)/(loga) + O(1) this implies (5.15) directly for
|t| < (log N)/3. Furthermore, since
/20U < et — oY
for (log N)¥/? < |t| < (log N)Y/?~¢ and a sufficiently small ¢ > 0 we finally
obtain the full version of (5.15). O

We use Proposition 5.4 to prove the following theorem.

Theorem 5.4. If 0> # 0, then for every e > 0

—2 44+ 0 ((log N)~1/2+e)
(5.16)

1 1 z
N|{n < N:sp(n) < EXy+zVXy} = \/—2?/_006

uniformly for all real x as N — oo.

Proof. Set
An(t) = e~ t?/2 _ Reit(Xn—un)/on

Then by Esseen’s inequality [15, p. 32] we have

1 1 (7 _ip 1 (T |AN()
—{n < N: <EXNn+2VX :—/ 2P dt+0 —+/ ’dt .
i sr(n) NtaVAN} =70 | e (T I
We choose T' = (log N)'/2~¢ and use the estimate
4 1 .
e*Zt”N/"NNcN(e”/UN) =1+0(t)

for |t| < (log N)~2. Combining this with Proposition 5.4 we directly get

1A
/ N(t)‘ g = / AN(t)‘ dtJr/ AN(t)‘ gt

-l ti<(ogN)=2| 1 (log N)—2<ftl<T | ¢

= 0 ((logN)_l/z’La(loglog N)) :

Hence, (5.16) follows. O
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5.6 Local Limit Law

In order to prove a local limit law for X, we need more precise information
on the behaviour of ¢,g; (2).

Proposition 5.5. Suppose that « is a simple a-number and that
d=gcd{k(n,B): Be€Bryi1}=1.
Then there exist € > 0 and § > 0 such that
ey (") = Cylea(e) + O (a1-07) (5.17)
uniformly for |t| < e, where Cy(2) and o(z) are as in Lemma 5.9, and
e, (€") = O (al1=2) (5.18)
uniformly for e < |t| <.

Proof. Obviously, (5.17) follows from Lemma 5.9 for some ¢ > 0.

For the proof of (5.18) we just have to observe that d = 1 implies that
all solutions t of G(t,z) = det(tI — AL(z)) = 0 for z = €, 0 < p < 27, are
strictly bounded by a.

If |z] = 1 then all entries of Az (z) are complex numbers whose abolute
values are bounded by those of A (1). Hence by [33, theorem 2.1, p. 36] all
eigenvalues [ of Ay (z) are bounded by |3| < a. Furthermore, || = « if and
only if there exists a complex number A with |[A\| = 1 and a diagonal matrix
D = diag(Ap) pes, with complex numbers Ap with |Ag| = 1 such that

Ar(z)=ADA(1)D™ L.

Without loss of generality we may assume that Agg...o = 1.

We now show that in this case we have A = 1 and Ag = 1 for all
B € Bp, i.e. Ap(z) = Ap(1). First observe that agp...0,00.-0(2) = 1 for all
z. Thus, A = 1. More generally, if ap c(2) = ap,c(1) = 1 then A\p = A¢.
Obviously, we have ap c(z) = ap,c(1) = 1if B’ ='C and np = 0. Thus, if
B = (m,...,nr) is any block in B, then we can consider the sequence

Bo = (0,0,...,O), B1 = (O,...,O,’I’]l), BQ = (O,...,O,?]l,ng), ey BL,1 =B
and can conclude that
1=Ag,=AB, == AB.

However, if d = 1 then for every ¢, 0 < ¢ < 2, there exists (¢, B) € Br4+1
with e (B) £ 1. Consequently, if d = 1 then all eigenvalues (3 of Ay (e®)
are strictly bounded by |3] < «a. O
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Remark 5.9. If d > 1 then we have Ar(z) = A(1) if and only if z is a d-th
root of unity, and therefore we get a periodic structure, i.e. a local limit law
for every residue class of d.

With help of Proposition 5.5 it is possible to derive asymptotic expan-
sions for the coefficients

eng = |{n < N :sp(n) =k}
of
CN(Z) = ZCN’ka

k>0

for N =nGj, 1 <n < Q, via saddle point approximations.

Proposition 5.6. We have

_ G _(k—gp)’ 172
C?]Gj,k’ - \/27‘[’]7 (exp ( 2]0_2 + O(] )

uniformly for all j, k > 0.

Proof. We again use Cauchy’s formula

1 o
oGk = %/_ﬂ anj(eZt)e Rt gt

Since

[ les, (et =0 (a1-97) = 0(G,/i)
e<ltj<n 7 !

we just have to evaluate

1 , A 1 A A
I:—/ g, (e e_”“dt+—/ ena, (€M e dt = I + I,
2 Sy 1) 2 Sz ™) L

where 0 < v < %. From a(e®) = aettt=o"2/2+0(tF) it follows that there

exists a constant ¢ > 0 such that |a(e’)| < e=* for |t| < e. Hence,

st [ o (6175) ~0 () 0 =) ~0i6
Finally,

1 o . .
no= o—f Cy(1)ad e In=R=I7 22 (14 Ot + [t])) dt + O (al'=)7)
™ Ji<i—

o1



27T |>jfu

= i/ C,y(1)ad tin=R=io*2/2 gy 4 0 </|t Cy(1)ade 17"/ dt)

+0 </|t<jl' Cn(l)ajefja2t2/2(j|t|3 + |t|)dt> Lo (a(lfé)j)
= Mexp <_(k’i2—j—j5)2> + O(ozj/j)
. Y
_ % <_<’f2];2ﬂ>> 0@/,

O

Proposition 5.6 and Lemma 5.11 can be used to prove the following
theorem.

Theorem 5.5. If a is a simple a-number, 0> # 0, F just attains integer
values and

d=gcd{k(e,B): (¢,B) € Bry1} =1,

then for every e >0

_ 2
‘{TL < N : SF(’I’L) = /{:}| = 277-]X/AXN <6Xp <_(]€2‘/_]1—;?;\][\7)> + O((logN)—l/Z—i-e))

uniformly for all non-negative integers k as N — oo.

M
Proof. As in the proof of Proposition 5.4 we suppose that N = > n,,Gj,,
m=1

(with j1 > jo > -+ > jap and 71, > 0) is the G-ary expansion of N.
Furthermore, let ¢ > 0 be a (small) real number and let 7 be defined by
j‘r > jl _]f > j7+1~ Then by (5'13)

CNE = Z CﬂmG‘jmyk—Km
- U
m
= Z Canjmvk_Km + (9
m=1 l=7+1 ]l

NMmS g, (k — Rm — JmN)Q

= Zmexp<— T >+O(Gj1/j1)~
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If m<7and |k—pun| = (’)(jll/2 log 71) then

(k= pn)® (k= fm = Jmit)?
203, 2jmo?
(k_:U’N)Q_(k_’im_jm:u)Z . 2 1 1
= k — m — Jm a. 92 o5 9
20%, + (k= Fm = jmp) 20%  2jmo?

= 0 (j7 Y 10851) +0 (7" ogn)?).

where we have used uy = jiu + O(1), 0% = j10? + O(1), and Ky, = O(m).
Hence, from

J1+ 0(1) (k - ,uN)2 (k — Km — jm:U’)Q _ e—1/2 .

Im

we obtain

(k- MN)2> > nmﬁjm (140 (57 1021)) + O(Gy. /1)
m=0

N
N k - 2 £— .
= <exp (—(24%1\7)> +0 (]1 1/2 10%]1)) .
\/271'0]2\, ON

If |k — un| > j11/2 log j1 then we have for m < k

N2
172 log j1
Can]‘m7k—’im =0 (ajm]l / exp <_%>>

= 0 (aj’"jl_l)

which finally gives

. Mo q.
g = O((oﬂljll)JrO( > f/’g)
m=7+1 Jm
= O(Gj/5)
O

Remark 5.10. The case d > 1 can be treated in a similar way. (See Re-
mark 5.9.) However, for the sake of shortness and simplicity we just formu-
lated Theorem 5.5 for d = 1.

Remark 5.11. It is an open problem if corresponding theorems to Theo-
rem 5.4 and Theorem 5.5 hold for real numbers « which are not a-numbers
and simple a-numbers respectively. The case L = 0 is discussed in [11].
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