THUE-MORSE-STURMIAN WORDS AND CRITICAL BASES FOR TERNARY ALPHABETS

by

Wolfgang Steiner

Abstract

The set of unique β-expansions over the alphabet $\{0,1\}$ is trivial for β below the golden ratio and uncountable above the Komornik-Loreti constant. Generalisations of these thresholds for three-letter alphabets were studied by Komornik, Lai and Pedicini (2011, 2017). We use a class of S-adic words including the ThueMorse sequence (which defines the Komornik-Loreti constant) and Sturmian words (which characterise generalised golden ratios) to determine the value of a certain generalisation of the Komornik-Loreti constant to three-letter alphabets.

\section*{Résumé (Mots de Thue-Morse-Sturm et bases critiques pour les alphabets} ternaires)

L'ensemble des β-développements uniques avec l'alphabet $\{0,1\}$ est trivial pour β au-dessous du nombre d'or et non dénombrable au-dessus de la constante de Komornik-Loreti. Des généralisations de ces seuils pour les alphabets de trois lettres furent étudiées par Komornik, Lai et Pedicini (2011, 2017). Nous utilisons une classe de mots S-adiques comprenant la suite de Thue-Morse (qui définit la constante de Komornik-Loreti) et les mots sturmiens (qui caractérisent les nombres d'or généralisés) pour déterminer la valeur d'une certaine généralisation de la constante de Komornik-Loreti aux alphabets de trois lettres.

1. Introduction and main results

For a base $\beta>1$ and a sequence of digits $u_{1} u_{2} \cdots \in A^{\infty}$, with $A \subset \mathbb{R}$, let

$$
\pi_{\beta}\left(u_{1} u_{2} \cdots\right)=\sum_{k=1}^{\infty} \frac{u_{k}}{\beta^{k}}
$$

[^0]we say that $u_{1} u_{2} \cdots$ is a β-expansion of this number. This paper deals with unique β-expansions over A, that is with
$$
U_{\beta}(A)=\left\{\mathbf{u} \in A^{\infty}: \pi_{\beta}(\mathbf{u}) \neq \pi_{\beta}(\mathbf{v}) \text { for all } \mathbf{v} \in A^{\infty} \backslash\{\mathbf{u}\}\right\}
$$

We know from DK93] that $U_{\beta}(\{0,1\})$ is trivial if and only if $\beta \leq \frac{1+\sqrt{5}}{2}$, where trivial means that $U_{\beta}(\{0,1\})=\{\overline{0}, \overline{1}\}, \bar{a}$ being the infinite repetition of a. Therefore,

$$
\mathcal{G}(A)=\inf \left\{\beta>1:\left|U_{\beta}(A)\right|>2\right\}
$$

is called generalised golden ratio of A. By GS01], the set $U_{\beta}(\{0,1\})$ is uncountable if and only if β is larger than or equal to the Komornik-Loreti constant $\beta_{\mathrm{KL}} \approx 1.787$; we call

$$
\mathcal{K}(A)=\inf \left\{\beta>1: U_{\beta}(A) \text { is uncountable }\right\}
$$

generalised Komornik-Loreti constant of A. (We can replace uncountable throughout the paper by has the cardinality of the continuum.) The precise structure of $U_{\beta}(\{0,1\})$ was described in KKL17. For integers $M \geq 2, \mathcal{G}(\{0,1, \ldots, M\})$ was determined by Bak14, and $U_{\beta}(\{0,1, \ldots, M\})$ was described in KLLdV17, ABBK19.

For $x, y \in \mathbb{R}, x \neq 0$, we have $\left(x u_{1}+y_{1}\right)\left(x u_{2}+y_{2}\right) \cdots \in U_{\beta}(x A+y)$ if and only if $u_{1} u_{2} \cdots \in U_{\beta}(A)$, thus $\mathcal{G}(x A+y)=\mathcal{G}(A)$ and $\mathcal{K}(x A+y)=\mathcal{K}(A)$. Hence, the only two-letter alphabet to consider is $\{0,1\}$. A three-letter alphabet $\left\{a_{1}, a_{2}, a_{3}\right\}$ with $a_{1}<a_{2}<a_{3}$ can be replaced by $\left\{0,1, \frac{a_{3}-a_{1}}{a_{2}-a_{1}}\right\}$ or $\left\{0,1, \frac{a_{3}-a_{1}}{a_{3}-a_{2}}\right\}$. Since $\frac{a_{3}-a_{1}}{a_{2}-a_{1}}$ and $\frac{a_{3}-a_{1}}{a_{3}-a_{2}}$ are on opposite sides of 2 (or both equal to 2), we can restrict to alphabets $\{0,1, m\}$, $m \in(1,2]$. Of course, it is also possible to restrict to $m \geq 2$ as in KLP11] (note that the alphabet $\{0,1, m\}$ can be replaced by $\left\{0,1, \frac{m}{m-1}\right\}$), but we find it easier to work with $m \leq 2$. We write

$$
U_{\beta}(m)=U_{\beta}(\{0,1, m\}), \quad \mathcal{G}(m)=\mathcal{G}(\{0,1, m\}), \quad \mathcal{K}(m)=\mathcal{K}(\{0,1, m\}) .
$$

It was established in KLP11, Lai11, BS17] that the generalised golden ratio $\mathcal{G}(m)$ is given by mechanical words, i.e., Sturmian words and their periodic counterparts; in particular, we can restrict to sequences $\mathbf{u} \in\{0,1\}^{\infty}$. Calculating $\mathcal{K}(m)$ seems to be much harder since this restriction is not possible. Therefore, we study

$$
\mathcal{L}(m)=\inf \left\{\beta>1: U_{\beta}(m) \cap\{0,1\}^{\infty} \text { is uncountable }\right\}
$$

following [KP17, where this quantity was determined for certain intervals. We give a complete characterisation in Theorem 1 below.

To this end, we use the substitutions (or morphisms)

$$
\begin{aligned}
& L: 0 \mapsto 0, \\
& 1 \mapsto 01 \text {, } \\
& M: 0 \mapsto 01, \\
& 1 \mapsto 10, \\
& \begin{aligned}
R: & \mapsto 01, \\
1 & \mapsto 1,
\end{aligned}
\end{aligned}
$$

which act on finite and infinite words by $\sigma\left(u_{1} u_{2} \cdots\right)=\sigma\left(u_{1}\right) \sigma\left(u_{2}\right) \cdots$. The monoid generated by a set of substitutions S (with the usual product of substitutions) is denoted by S^{*}. An infinite word \mathbf{u} is a limit word of a sequence of substitutions $\left(\sigma_{n}\right)_{n \geq 1}$ (or an S-adic word if $\sigma_{n} \in S$ for all $n \geq 1$) if there is a sequence of words $\left(\mathbf{u}^{(n)}\right)_{n \geq 1}$ with $\mathbf{u}^{(1)}=\mathbf{u}, \mathbf{u}^{(n)}=\sigma_{n}\left(\mathbf{u}^{(n+1)}\right)$ for all $n \geq 1$. The sequence $\left(\sigma_{n}\right)_{n \geq 1}$ is called primitive if for each $k \geq 1$ there is an $n \geq k$ such that both words $\sigma_{k} \sigma_{k+1} \cdots \sigma_{n}(0)$ and $\sigma_{k} \sigma_{k+1} \cdots \sigma_{n}(1)$ contain both letters 0 and 1. For $S=\{L, M, R\}$, this means
that there is no $k \geq 1$ such that $\sigma_{n}=L$ for all $n \geq k$ or $\sigma_{n}=R$ for all $n \geq k$. Let \mathcal{S}_{S} be the set of limit words of primitive sequences of substitutions in S^{∞}. Then $\mathcal{S}_{\{L, R\}}$ consists of Sturmian words, and $\mathcal{S}_{\{M\}}$ consists of the Thue-Morse word $0 \mathbf{u}=$ $0110100110010110 \cdots$, which defines the Komornik-Loreti constant by $\pi_{\beta_{\mathrm{KL}}}(\mathbf{u})=1$, and its reflection by $0 \leftrightarrow 1$. We call the elements of $\mathcal{S}_{\{L, M, R\}}$, which to our knowledge have not been studied yet, Thue-Morse-Sturmian words. For details on S-adic and other words, we refer to [Lot02, BD14].

For $\mathbf{u} \in\{0,1\}^{\infty}$ and $m \in(1,2]$, define $f_{\mathbf{u}}(m)$ (if \mathbf{u} contains at least two ones) and $g_{\mathbf{u}}(m)$ as the unique positive solutions of

$$
f_{\mathbf{u}}(m) \pi_{f_{\mathbf{u}}(m)}(\sup O(\mathbf{u}))=m \quad \text { and } \quad\left(g_{\mathbf{u}}(m)-1\right)\left(1+\pi_{g_{\mathbf{u}}(m)}(\inf O(\mathbf{u}))\right)=m
$$

respectively, where $O\left(u_{1} u_{2} \cdots\right)=\left\{u_{k} u_{k+1} \cdots: k \geq 1\right\}$ denotes the shift orbit and infinite words are ordered by the lexicographic order. For the existence and monotonicity properties of $f_{\mathbf{u}}(m)$ and $g_{\mathbf{u}}(m)$, see BS17, Lemmas 3.11 and 3.12] and Lemma 1 below. We define $\mu_{\mathbf{u}}$ by

$$
f_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)=g_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)
$$

i.e., $f_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)=g_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)=\beta$ with $\beta \pi_{\beta}(\sup O(\mathbf{u}))=(\beta-1)\left(1+\pi_{\beta}(\inf O(\mathbf{u}))\right)$.

The main result of [KLP11] on generalised golden ratios of three-letter alphabets can be written as

$$
\mathcal{G}(m)= \begin{cases}f_{\sigma(\overline{0})}(m) & \text { if } m \in\left[\mu_{\sigma(1 \overline{0})}, \mu_{\sigma(\overline{0})}\right], \sigma \in\{L, R\}^{*} M \\ g_{\sigma(\overline{0})}(m) & \text { if } m \in\left[\mu_{\sigma(\overline{0})}, \mu_{\sigma(0 \overline{1})}\right], \sigma \in\{L, R\}^{*} M, \\ f_{\overline{1}}(m) & \text { if } m \in\left[\mu_{0 \overline{1}}, 2\right] \\ 1+\sqrt{m} & \text { if } m=\mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, R\}}\end{cases}
$$

cf. BS17, Proposition 3.18], where substitutions $\tau_{h}=L^{h} R$ are used and f, g, μ, \mathcal{S} are defined slightly differently. Our main theorem looks similar, but we need $\{L, M, R\}$ instead of $\{L, R\}$, and the roles of f and g are exchanged.

Theorem 1. - The function $\mathcal{L}(m)=\inf \left\{\beta>1: U_{\beta}(m) \cap\{0,1\}^{\infty}\right.$ is uncountable $\}$ is given for $1<m \leq 2$ by

$$
\mathcal{L}(m)= \begin{cases}g_{\sigma(1 \overline{0})}(m) & \text { if } m \in\left[\mu_{\sigma(1 \overline{0})}, \mu_{\sigma(01 \overline{0})}\right], \sigma \in\{L, M, R\}^{*} M \\ f_{\sigma(0 \overline{1})}(m) & \text { if } m \in\left[\mu_{\sigma(10 \overline{1})}, \mu_{\sigma(0 \overline{1})}\right], \sigma \in\{L, M, R\}^{*} M \\ g_{0 \overline{1}}(m) & \text { if } m \in\left[\mu_{0 \overline{1}}, 2\right] \\ f_{\mathbf{u}}(m) & \text { if } m=\mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, M, R\}}\end{cases}
$$

The Hausdorff dimension of $\pi_{\beta}\left(U_{\beta}(m)\right)$ is positive for all $\beta>\mathcal{L}(m)$.
The graphs of $\mathcal{G}(m)$ and $\mathcal{L}(m)$ are drawn in Figure 1. For example, $\sigma=M$ gives

$$
\mathcal{L}(m)= \begin{cases}g_{0 \overline{01}}(m) & \text { if } m \in\left[\mu_{0 \overline{11}}, \mu_{110 \overline{01}}\right] \approx[1.281972,1.46811] \\ f_{1 \overline{10}}(m) & \text { if } m \in\left[\mu_{001 \overline{10}}, \mu_{1 \overline{10}}\right] \approx[1.516574,1.55496] .\end{cases}
$$

Taking $\sigma=M^{2}$, we have $\sigma(0)=0110, \sigma(1)=1001$, and

$$
\mathcal{L}(m)= \begin{cases}g_{001 \overline{010}}(m) & \text { if } m \in\left[\mu_{001 \overline{1110}}, \mu_{1101001 \overline{0110}}\right] \approx[1.47571,1.503114] \\ f_{110 \overline{1001}}(m) & \text { if } m \in\left[\mu_{0010110 \overline{1001}}, \mu_{110 \overline{1001}}\right] \approx[1.504152,1.509304] .\end{cases}
$$

Subintervals of the first three intervals were also given by KP17.

Figure 1. The critical bases $\mathcal{G}(m)$ (below $1+\sqrt{m}$, blue) and $\mathcal{L}(m)$ (above $1+\sqrt{m}$, red).

By KLP11, KP17, we have, for all $m \in(1,2]$,

$$
2 \leq \mathcal{G}(m) \leq 1+\sqrt{m} \leq \mathcal{K}(m) \leq \mathcal{L}(m) \leq g_{1 \overline{0}}(m)=1+m,
$$

with $\mathcal{G}(m)=\mathcal{L}(m)$ if and only if $m \in\left\{\mu_{\sigma(1 \overline{0})}, \mu_{\sigma(0 \overline{1})}\right\}, \sigma \in\{L, R\}^{*} M$, or $m=\mu_{\mathbf{u}}$, $\mathbf{u} \in \mathcal{S}_{\{L, R\}}$. Besides those m, we only know the value of $\mathcal{K}(m)$ for $m=2$ from KL02: $\pi_{\mathcal{K}(2)}(2102012101202102 \cdots)=1$, thus $\mathcal{K}(2) \approx 2.536<\frac{3+\sqrt{5}}{2}=\mathcal{L}(2)$. The functions $\mathcal{G}(m), \mathcal{K}(m)$ and $\mathcal{L}(m)$ are continuous for $m>1$ by [KLP11, KP17; at least for the generalised golden ratio, this also holds for larger alphabets by BS17.

2. Proof of the main theorem

We first prove that $f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)$ and $\mu_{\mathbf{u}}$ are well defined, and we determine monotonicity properties. For convenience, we write $\inf (\mathbf{u})$ for $\inf O(\mathbf{u})$ and $\sup (\mathbf{u})$ for $\sup O(\mathbf{u})$ in the following.

Lemma 1. - Let $m \in(1,2], \mathbf{u}, \mathbf{u}^{\prime} \in\{0,1\}^{\infty}$. Then $g_{\mathbf{u}}(m)$ is well defined. If \mathbf{u} contains at least two ones, then $f_{\mathbf{u}}(m)$ and $\mu_{\mathbf{u}}$ are well defined, and we have

$$
\begin{gathered}
\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right) \geq 2, \\
\beta>1, \beta \pi_{\beta}(\sup (\mathbf{u}))<m \quad \text { if and only if } \beta>f_{\mathbf{u}}(m), \\
\beta>1,(\beta-1)\left(1+\pi_{\beta}(\inf (\mathbf{u}))>m \quad \text { if and only if } \beta>g_{\mathbf{u}}(m),\right. \\
f_{\mathbf{u}}(m)>f_{\mathbf{u}}\left(m^{\prime}\right) \quad \text { and } \quad g_{\mathbf{u}}(m)<g_{\mathbf{u}}\left(m^{\prime}\right) \quad \text { if } m<m^{\prime}, \\
f_{\mathbf{u}}(m)<f_{\mathbf{u}^{\prime}}(m) \quad \text { if } \sup (\mathbf{u})<\sup \left(\mathbf{u}^{\prime}\right) \text { and } f_{\mathbf{u}}(m) \geq 2, \\
g_{\mathbf{u}}(m)>g_{\mathbf{u}^{\prime}}(m) \quad \text { if } \inf (\mathbf{u})<\inf \left(\mathbf{u}^{\prime}\right) \text { and } g_{\mathbf{u}^{\prime}}(m) \geq 2 .
\end{gathered}
$$

Proof. - Set $h_{\mathbf{v}}(x, m)=x \pi_{x}(\mathbf{v})-m$ with $\mathbf{v}=\sup (\mathbf{u})$. Then $h_{\mathbf{v}}(x, m)$ is strictly decreasing in x (for $x>1$) and m. If \mathbf{u} contains at least two ones, then \mathbf{v} also contains at least two ones, thus $\lim _{x \rightarrow 1} h_{\mathbf{v}}(x, m) \geq 2-m$ and $\lim _{x \rightarrow \infty} h_{\mathbf{v}}(x, m)=1-m$. Therefore, there is, for each $m \in(1,2]$, a unique $x_{m, \mathbf{v}} \geq 1$ such that $h_{\mathbf{v}}\left(x_{m, \mathbf{v}}, m\right)=0$, i.e., $f_{\mathbf{u}}(m)=x_{m, \mathbf{v}}$, and we have $\beta \pi_{\beta}(\sup (\mathbf{u}))<m$ for $\beta>1$ if and only if $\beta>f_{\mathbf{u}}(m)$. If $m<m^{\prime}$, then we have $x_{m, \mathbf{v}}>x_{m^{\prime}, \mathbf{v}}$, thus $f_{\mathbf{u}}(m)>f_{\mathbf{u}}\left(m^{\prime}\right)$. If $\mathbf{v}<\mathbf{v}^{\prime}$ and $x \geq 2$, then we have $h_{\mathbf{v}}(x, m)<h_{\mathbf{v}^{\prime}}(x, m)$, thus $x_{m, \mathbf{v}}<x_{m, \mathbf{v}^{\prime}}$ if $x_{m, \mathbf{v}} \geq 2$, hence $f_{\mathbf{u}}(m)<f_{\mathbf{u}^{\prime}}(m)$ if $\sup (\mathbf{u})<\sup \left(\mathbf{u}^{\prime}\right)$ and $f_{\mathbf{u}}(m) \geq 2$.

Let now $h_{\mathbf{v}}(x, m)=\frac{m}{x-1}-\pi_{x}(\mathbf{v})-1$ with $\mathbf{v}=\inf (\mathbf{u})$. Since $\frac{m}{x-1}=\pi_{x}(\bar{m}), h_{\mathbf{v}}(x, m)$ is strictly decreasing in x (for $x>1$) and strictly increasing in m. Again, there is, for each $m \in(1,2]$, a unique $x_{m, \mathbf{v}}>1$ such that $h_{\mathbf{v}}\left(x_{m, \mathbf{v}}, m\right)=0$, i.e., $g_{\mathbf{u}}(m)=x_{m, \mathbf{v}}$. We have $h_{\mathbf{v}}(x, m)<0$ for $x>1$ if and only if $x>x_{m, \mathbf{v}}, x_{m, \mathbf{v}}<x_{m^{\prime}, \mathbf{v}}$ if $m<m^{\prime}$, and $h_{\mathbf{v}}(x, m)>h_{\mathbf{v}^{\prime}}(x, m)$ if $\mathbf{v}<\mathbf{v}^{\prime}, x \geq 2$, thus $x_{m, \mathbf{v}}>x_{m, \mathbf{v}^{\prime}}$ if $x_{m, \mathbf{v}^{\prime}} \geq 2$. This proves the monotonicity properties of g.

Since $f_{\mathbf{u}}(m)$ is strictly decreasing, $g_{\mathbf{u}}(m)$ is strictly increasing, $\lim _{m \rightarrow 1} f_{\mathbf{u}}(m)=\infty$, $f_{\mathbf{u}}(2) \leq 2$, and $g_{\mathbf{u}}(2) \geq 2$, we have $f_{\mathbf{u}}(m)=g_{\mathbf{u}}(m)$ for a unique $m \in(1,2$].

Let $\beta=f_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)=g_{\mathbf{u}}\left(\mu_{\mathbf{u}}\right)$, i.e., $\beta \pi_{\beta}(\sup (\mathbf{u}))=(\beta-1)\left(1+\pi_{\beta}(\inf (\mathbf{u}))\right)$. We have $\sup (\mathbf{u}) \geq 1 \inf (\mathbf{u})$. If equality holds, then $\beta=2$. Otherwise, $\sup (\mathbf{u})$ starts with $1 v_{1} \cdots v_{k-1} 1$ and $\inf (\mathbf{u})$ starts with $v_{1} \cdots v_{k-1} 0$ for some $v_{1} \cdots v_{k-1}, k \geq 1$. Then
$\beta \pi_{\beta}(\sup (\mathbf{u})) \geq 1+\sum_{i=1}^{k-1} \frac{v_{i}}{\beta^{i}}+\frac{1}{\beta^{k}},(\beta-1)\left(1+\pi_{\beta}(\inf (\mathbf{u}))\right) \leq(\beta-1)\left(1+\sum_{i=1}^{k-1} \frac{v_{i}}{\beta^{i}}\right)+\frac{1}{\beta^{k}}$,
thus $\beta \geq 2$. By the monotonicity properties that are proved above, this implies that $\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right) \geq 2$ for all $m \in(1,2]$.

Next we establish relations between $f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)$ and $\mathbf{u} \in U_{\beta}(m)$.

Lemma 2. - Let $m \in(1,2], \beta \in(1,1+m]$. For $\mathbf{u} \in\{0,1\}^{\infty}$, we have $\mathbf{u} \in U_{\beta}(m)$ if and only if $0 \mathbf{u} \in U_{\beta}(m)$. For $\mathbf{u} \in 1\{0,1\}^{\infty} \backslash\{1 \overline{0}\}$, $\mathbf{u} \in U_{\beta}(m)$ implies that $\beta \geq \max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right)$, and $\beta>\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right)$ implies that $\mathbf{u} \in U_{\beta}(m)$.

Figure 2. The branching β-transformation T for $\beta=9 / 4, m=3 / 2$.

Proof. - For $\beta \in(1,1+m]$, $\mathbf{u}=u_{1} u_{2} \cdots \in\{0,1, m\}^{\infty}, x \in\left[0, \frac{m}{\beta-1}\right]$, we have $\pi_{\beta}(\mathbf{u})=x$ if and only if $u_{k}=d\left(T^{k-1}(x)\right)$ for all $k \geq 1$, with the branching β transformation
$T:\left[0, \frac{m}{\beta-1}\right] \rightarrow\left[0, \frac{m}{\beta-1}\right], x \mapsto \beta x-d(x), d(x)=\left\{\begin{array}{cl}0 & \text { if } x<\frac{1}{\beta}, \\ 0 \text { or } 1 & \text { if } \frac{1}{\beta} \leq x \leq \frac{m}{\beta(\beta-1)}, \\ 1 & \text { if } \frac{m}{\beta(\beta-1)}<x<\frac{m}{\beta}, \\ 1 \text { or } m \text { if } \frac{m}{\beta} \leq x \leq \frac{1}{\beta}+\frac{m}{\beta(\beta-1)}, \\ m & \text { if } x>\frac{1}{\beta}+\frac{m}{\beta(\beta-1)},\end{array}\right.$
see Figure 2, We thus have

$$
\mathbf{u} \in U_{\beta}(m) \Longleftrightarrow \pi_{\beta}\left(u_{k} u_{k+1} \cdots\right) \notin\left[\frac{1}{\beta}, \frac{m}{\beta(\beta-1)}\right] \cup\left[\frac{m}{\beta}, \frac{1}{\beta}+\frac{m}{\beta(\beta-1)}\right] \text { for all } k \geq 1
$$

For $\mathbf{u} \in\{0,1\}^{\infty} \backslash\{\overline{0}\}$, this means that $\beta>2$ and

$$
\pi_{\beta}\left(u_{k} u_{k+1} \cdots\right)<\frac{m}{\beta}, \pi_{\beta}\left(u_{k+1} u_{k+2} \cdots\right)>\frac{m}{\beta-1}-1 \text { for all } k \geq 1 \text { such that } u_{k}=1,
$$

see [BS17, Lemma 3.9], i.e.,

$$
\beta \pi_{\beta}(\sup (\mathbf{u})) \leq m \leq(\beta-1)\left(1+\pi_{\beta}\left(\inf _{1}(\mathbf{u})\right)\right)
$$

where $\inf _{1}\left(u_{1} u_{2} \cdots\right)=\inf \left\{u_{k+1} u_{k+2} \cdots: k \geq 1, u_{k}=1\right\}$, with strict equalities if the supremum and infimum are attained. This shows that $\mathbf{u} \in U_{\beta}(m)$ if and only if $0 \mathbf{u} \in U_{\beta}(m)$. Note that $\inf _{1}(\mathbf{u}) \neq \inf (\mathbf{u})$ implies that $\inf (\mathbf{u})=\mathbf{u}$, hence we have $\inf _{1}(\mathbf{u})=\inf (\mathbf{u})$ when \mathbf{u} starts with 1 . Then, by Lemma 1, $\mathbf{u} \in U_{\beta}(m)$ implies that $\beta \geq \max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right)$, and $\beta>\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right)$ implies that $\mathbf{u} \in U_{\beta}(m)$.

To calculate $f_{\mathbf{u}}(m)$ and $g_{\mathbf{u}}(m)$, it is crucial to determine $\inf (\mathbf{u})$ and $\sup (\mathbf{u})$. Similarly to $\inf _{1}\left(u_{1} u_{2} \cdots\right)=\inf \left\{u_{k+1} u_{k+2} \cdots: k \geq 1, u_{k}=1\right\}$, set

$$
\sup _{0}\left(u_{1} u_{2} \cdots\right)=\sup \left\{u_{k+1} u_{k+2} \cdots: k \geq 1, u_{k}=0\right\}
$$

Lemma 3. - For all $\mathbf{u} \in\{0,1\}^{\infty}$, we have

$$
\inf (L(\mathbf{u}))=L(\inf (\mathbf{u})), \quad \inf (R(\mathbf{u}))=R(\inf (\mathbf{u})), \quad 0 \sup (L(\mathbf{u}))=L(\sup (\mathbf{u}))
$$

If $\inf (\mathbf{u})=\inf _{1}(\mathbf{u})$, then $\inf (M(\mathbf{u}))=0 M(\inf (\mathbf{u}))$. If $\sup (\mathbf{u})=\sup _{0}(\mathbf{u})$, then

$$
\sup (R(\mathbf{u}))=1 R(\sup (\mathbf{u})), \quad \sup (M(\mathbf{u}))=1 M(\sup (\mathbf{u}))
$$

For each $\sigma \in\{L, M, R\}^{*}$, there is a suffix w of $\sigma(1)$ such that $\inf _{1}(\sigma(\mathbf{u}))=$ $\inf (\sigma(\mathbf{u}))=w \sigma(\inf (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\inf (\mathbf{u})=\inf _{1}(\mathbf{u})$.

For each $\sigma \in\{L, M, R\}^{*} M \cup\{L, M, R\}^{*} R$, there is a suffix w of $\sigma(0)$ such that $\sup _{0}(\sigma(\mathbf{u}))=\sup (\sigma(\mathbf{u}))=w \sigma(\sup (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\sup (\mathbf{u})=\sup _{0}(\mathbf{u})$.

For each $\sigma \in\{L, M, R\}^{*} L$, there is a prefix w of $\sigma(\overline{0})$ such that $w \sup _{0}(\sigma(\mathbf{u}))=$ $w \sup (\sigma(\mathbf{u}))=\sigma(\sup (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\sup (\mathbf{u})=\sup _{0}(\mathbf{u})$.

Proof. - The first statements follow from the facts that L, M, R are order-preserving on infinite words and that $\inf (\mathbf{u})=\inf _{1}(\mathbf{u}), \sup (\mathbf{u})=\sup _{0}(\mathbf{u})$ mean that $1 \inf (\mathbf{u})$, $0 \sup (\mathbf{u})$ are in the closure of $O(\mathbf{u})$.

We claim that, for each $\sigma \in\{L, M, R\}^{*}$, there is a suffix $1 w$ of $\sigma(1)$ such that $\inf _{1}(\sigma(\mathbf{u}))=\inf (\sigma(\mathbf{u}))=w \sigma(\inf (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\inf (\mathbf{u})=\inf _{1}(\mathbf{u})$. If $1 w$ is a suffix of $\sigma(1)$, then $1 L(w), 10 M(w)$ and $1 R(w)$ are suffixes of $L \sigma(1), M \sigma(1)$ and $R \sigma(1)$ respectively. Therefore, this claim holds for $L \sigma, M \sigma$ and $R \sigma$ when it holds for σ. Since it holds for $\sigma=\mathrm{id}$, it holds for all $\sigma \in\{L, M, R\}^{*}$.

Next we claim that, for each $\sigma \in\{L, M, R\}^{*}\{M, R\}$, there is a suffix $01 w$ of $\sigma(0)$ such that $\sup _{0}(\sigma(\mathbf{u}))=\sup (\sigma(\mathbf{u}))=1 w \sigma(\sup (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\sup (\mathbf{u})=\sup _{0}(\mathbf{u})$. This holds for $\sigma \in\{M, R\}$. If $01 w$ is a suffix of $\sigma(0)$, then $01 L(w), 01 M(1 w)$ and $01 R(1 w)$ are suffixes of $L \sigma(0), M \sigma(0)$ and $R \sigma(0)$ respectively. Therefore, this claim holds for all $\sigma \in\{L, M, R\}^{*}\{M, R\}$.

Finally we claim that, for each $\sigma \in\{L, M, R\}^{*} L$, there is a prefix $w 0$ of $\sigma(\overline{0})$ such that $w 0 \sup _{0}(\sigma(\mathbf{u}))=w 0 \sup (\sigma(\mathbf{u}))=\sigma(\sup (\mathbf{u}))$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ with $\sup (\mathbf{u})=$ $\sup _{0}(\mathbf{u})$. This holds for $\sigma=L$. If $w 0$ is a prefix of $\sigma(\overline{0})$, then $L(w 0) 0, M(w) 0$ and $R(w) 0$ are prefixes of $L \sigma(\overline{0}), M \sigma(\overline{0})$ and $R \sigma(\overline{0})$ respectively. Therefore, this claim holds for all $\sigma \in\{L, M, R\}^{*} L$.

Now we can prove that Theorem 1 gives an upper bound for $\mathcal{L}(m)$, cf. Figure 3 .
Proposition 1. - Let $m \in(1,2]$. We have

$$
\mathcal{L}(m) \leq \begin{cases}g_{\sigma(1 \overline{0})}(m) & \text { if } m \geq \mu_{\sigma(1 \overline{0})}, \sigma \in\{L, M, R\}^{*} M \\ f_{\sigma(0 \overline{1})}(m) & \text { if } m \leq \mu_{\sigma(0 \overline{1})}, \sigma \in\{L, M, R\}^{*} M \\ g_{0 \overline{1}}(m) & \text { if } m \geq \mu_{0 \overline{1}}, \\ g_{\mathbf{u}}(m) & \text { if } m \geq \mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, M, R\}} \\ f_{\mathbf{u}}(m) & \text { if } m \leq \mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, M, R\}}\end{cases}
$$

If β is above this bound, then the Hausdorff dimension of $\pi_{\beta}\left(U_{\beta}(m)\right)$ is positive.

Figure 3. A schematic picture for $\sigma \in\{L, R\}^{*} M$. For $\sigma \in\{L, M, R\}^{*} M$, the situation is similar, except for $\mathcal{G}(m)$ and $1+\sqrt{m}$.

Proof. - Let $\sigma \in\{L, M, R\}^{*}$. For all $h \geq 1$, $\mathbf{v} \in 1\left\{0(01)^{h}, 0(01)^{h+1}\right\}^{\infty}$, we have

$$
\inf (\sigma(\mathbf{v})) \geq \inf \left(\sigma\left(\overline{10(01)^{h-1} 0}\right)\right) \quad \text { and } \quad \sup (\sigma(\mathbf{v})) \leq \sup \left(\sigma\left(\overline{(01)^{h+1} 0}\right)\right)
$$

by Lemma 3 with

$$
\inf \left(\sigma\left(\overline{10(01)^{h-1} 0}\right)\right) \rightarrow \inf (\sigma M(1 \overline{0})), \sup \left(\sigma\left(\overline{(01)^{h+1} 0}\right)\right) \rightarrow \sup (\sigma M(\overline{0})) \quad(h \rightarrow \infty)
$$

Therefore, we have for each $\beta>\max \left(f_{\sigma M(\overline{0})}(m), g_{\sigma M(1 \overline{0})}(m)\right)$ some $h \geq 1$ such that $\sigma\left(\left\{0(01)^{h}, 0(01)^{h+1}\right\}^{\infty}\right) \subseteq U_{\beta}(m)$. If $m \geq \mu_{\sigma M(1 \overline{0})}$, then $f_{\sigma M(\overline{0})}(m)=f_{\sigma M(1 \overline{0})}(m) \leq$ $g_{\sigma M(1 \overline{0})}(m)$, thus $U_{\beta}(m) \cap\{0,1\}^{\infty}$ is uncountable (and has the cardinality of the continuum) for all $\beta>g_{\sigma M(1 \overline{0})}(m)$, i.e., $\mathcal{L}(m) \leq g_{\sigma M(1 \overline{0})}(m)$. By symmetry, sequences in $\sigma\left(\left\{1(10)^{h}, 1(10)^{h+1}\right\}^{\infty}\right)$ give that $\mathcal{L}(m) \leq f_{\sigma M(0 \overline{1})}(m)$ for $m \leq \mu_{\sigma M(0 \overline{1})}$. Similarly, sequences in $1\left\{01^{h}, 01^{h+1}\right\}^{\infty}$ give that $\mathcal{L}(m) \leq g_{0 \overline{1}}(m)$ for $m \geq \mu_{0 \overline{1}}$.

Let now \mathbf{u} be a limit word of a primitive sequence $\left(\sigma_{n}\right)_{n \geq 1} \in\{L, M, R\}^{\infty}$, and set $\sigma_{n}^{\prime}=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$. Then $\inf \left(\sigma_{n}^{\prime}(1 \overline{0})\right) \leq \inf (\mathbf{u}) \leq \inf \left(\sigma_{n}^{\prime}(10 \overline{1})\right)$ for all $n \geq 1$, thus $\inf \left(\sigma_{n}^{\prime}(1 \overline{0})\right) \rightarrow \inf (\mathbf{u})$ and (by symmety) $\sup \left(\sigma_{n}^{\prime}(0 \overline{1})\right) \rightarrow \sup (\mathbf{u})$ as $n \rightarrow \infty$. Therefore, for each $\beta>\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right)$ there is $n \geq 1$ such that $\sigma_{n}^{\prime}(\mathbf{v}) \in U_{\beta}(m)$ for all $\mathbf{v} \in\{0,1\}^{\infty} \backslash\{\overline{0}, \overline{1}\}$, hence $\mathcal{L}(m) \leq g_{\mathbf{u}}(m)$ for $m \geq \mu_{\mathbf{u}}$ and $\mathcal{L}(m) \leq f_{\mathbf{u}}(m)$ for $m \leq \mu_{\mathbf{u}}$.

If $\{v, w\}^{\infty} \subseteq U_{\beta}(m)$, then by Hut81 we have $\operatorname{dim}_{H}\left(\pi_{\beta}\left(U_{\beta}(m)\right)\right) \geq r$, with $r>0$ such that $\beta^{-|v| r}+\beta^{-|w| r}=1$, where $|v|$ and $|w|$ denote the lengths of v and w.

For the lower bound, we use Lemma 5 below, which tells us that, if the orbit of a sequence satisfies inequalities that hold for all non-trivial images of $\sigma \in\{L, M, R\}^{*}$, then it is eventually in the image of σ. In particular, with $\sigma=M^{n}, n \geq 0$, this yields that $U_{\beta}(\{0,1\})$ is countable for all β less than the Komornik-Loreti constant; cf. GS01. First we show that the conditions of Lemma 3 are satisfied for a suffix.

Lemma 4. - Let $\mathbf{u} \in\{0,1\}^{\infty}$ with $\mathbf{u} \neq 0^{k} \overline{1}$ and $\mathbf{u} \neq 1^{k} \overline{0}$ for all $k \geq 0$. There is a suffix \mathbf{v} of \mathbf{u} such that $\inf (\mathbf{v})=\inf _{1}(\mathbf{v})=\inf _{1}(\mathbf{u})$ and $\sup (\mathbf{v})=\sup _{0}(\mathbf{v})=\sup _{0}(\mathbf{u})$.

Proof. - If $\inf (\mathbf{u})=\inf _{1}(\mathbf{u})$ and $\sup (\mathbf{u})=\sup _{0}(\mathbf{u})$, then we can take $\mathbf{v}=\mathbf{u}$. Otherwise, assume that $\inf (\mathbf{u}) \neq \inf _{1}(\mathbf{u})$, the case $\sup (\mathbf{u}) \neq \sup _{0}(\mathbf{u})$ being symmetric. Then we have $\inf (\mathbf{u})=\mathbf{u}=0^{k} 01 \mathbf{u}^{\prime}$ for some $k \geq 0, \mathbf{u}^{\prime} \in\{0,1\}^{\infty} \backslash\{\overline{1}\}$,

$$
\sup _{0}(\mathbf{u})=\sup _{0}\left(01 \mathbf{u}^{\prime}\right)=\sup \left(01 \mathbf{u}^{\prime}\right), \inf _{1}(\mathbf{u})=\inf _{1}\left(01 \mathbf{u}^{\prime}\right)=\inf _{1}\left(1 \mathbf{u}^{\prime}\right)=\inf \left(1 \mathbf{u}^{\prime}\right)
$$

If $\inf _{1}\left(01 \mathbf{u}^{\prime}\right) \neq \inf \left(01 \mathbf{u}^{\prime}\right)$, then $\mathbf{u}^{\prime}=1^{n} 01 \mathbf{u}^{\prime \prime}$ with $n \geq 0, \mathbf{u}^{\prime \prime}>\mathbf{u}^{\prime}$, which implies that $\sup _{0}(\mathbf{u})=\sup _{0}\left(1 \mathbf{u}^{\prime}\right)=\sup \left(1 \mathbf{u}^{\prime}\right)$. Hence, we can take $\mathbf{v}=01 \mathbf{u}^{\prime}$ or $\mathbf{v}=1 \mathbf{u}^{\prime}$.
Lemma 5. - Let $\mathbf{u} \in\{0,1\}^{\infty}, \sigma \in\{L, M, R\}^{*}$, with $\inf (\mathbf{u}) \geq \inf (\sigma(1 \overline{0})), \sup (\mathbf{u}) \leq$ $\sup (\sigma(0 \overline{1}))$. Then \mathbf{u} ends with $\sigma(\mathbf{v})$ for some $\mathbf{v} \in\{0,1\}^{\infty}$ or with $\sigma^{\prime}(\overline{0}), \sigma^{\prime} \in$ $\{L, M, R\}^{*} M, \sigma \in \sigma^{\prime}\{L, M, R\}^{*}$.

Proof. - The statement is trivially true when σ is the identity. Suppose that it holds for some $\sigma \in\{L, M, R\}^{*}$, let $\varphi \in\{L, M, R\}$ and $\mathbf{u} \in\{0,1\}^{\infty}$ with $\inf (\mathbf{u}) \geq$ $\inf (\varphi \sigma(1 \overline{0})), \sup (\mathbf{u}) \leq \sup (\varphi \sigma(0 \overline{1}))$.

If $\varphi=L$, then $\sup (\mathbf{u}) \leq \overline{10}$, thus every 1 in \mathbf{u} is followed by a 0 , hence $\mathbf{u}=L(\mathbf{v})$ or $\mathbf{u}=1 L(\mathbf{v})$ for some $\mathbf{v} \in\{0,1\}^{\infty}$. Similary, if $\varphi=R$, then $\inf (\mathbf{u}) \geq \overline{01}$, hence $\mathbf{u}=R(\mathbf{v})$ or $\mathbf{u}=0 R(\mathbf{v})$ for some $\mathbf{v} \in\{0,1\}^{\infty}$. If $\varphi=M$, then $\inf (\mathbf{u}) \geq 0 \overline{01}$ and $\sup (\mathbf{u}) \leq 1 \overline{10}$. Hence, for all $k \geq 1,0(01)^{k}$ as well as $1(10)^{k}$ is always followed in \mathbf{u} by 01 or 10 . Since \mathbf{u} contains 001 or 110 if $\mathbf{u} \notin\{M(\overline{0}), M(\overline{1})\}$, we obtain that \mathbf{u} ends with $M(\mathbf{v})$ for some $\mathbf{v} \in\{0,1\}^{\infty}$.

We can assume that $\mathbf{v} \in\{\overline{0}, \overline{1}\}$ or $\inf _{1}(\mathbf{v})=\inf (\mathbf{v})$ and $\sup _{0}(\mathbf{v})=\sup (\mathbf{v})$, by Lemma 4. If $\mathbf{v} \neq \overline{0}$, then we cannot have $\inf (\mathbf{v})<\inf (\sigma(1 \overline{0}))$ because this would imply that $\inf (\varphi(\mathbf{v}))<\inf (\varphi \sigma(1 \overline{0}))$ by Lemma 3. Similarly, we obtain that $\sup (\mathbf{v}) \leq$ $\sup (\sigma(1 \overline{0}))$ if $\mathbf{v} \neq \overline{1}$. If $\mathbf{v}=\overline{0}, \varphi \in\{L, R\}$, then $\inf (\varphi(\overline{0})) \geq \inf (\varphi \sigma(1 \overline{0}))$ implies that $\inf (\sigma(\overline{0}))=\overline{0}$, thus $\mathbf{v}=\sigma(\overline{0})$. Similarly, if $\mathbf{v}=\overline{1}$ and $\varphi \in\{L, R\}$, then $\sup (\varphi(\overline{1})) \leq \sup (\varphi \sigma(0 \overline{1}))$ implies that $\sup (\sigma(0 \overline{1}))=\overline{1}$, thus $\mathbf{v}=\sigma(\overline{1})$. If $\mathbf{v} \in\{\overline{0}, \overline{1}\}$, $\varphi=M$, then \mathbf{u} ends with $M(\overline{0})$ since $M(\overline{1})=1 M(\overline{0})$. Therefore, \mathbf{u} ends with $\varphi \sigma(\mathbf{v})$ or with $\sigma^{\prime}(\overline{0}), \sigma^{\prime} \in\{L, M, R\}^{*} M, \varphi \sigma \in \sigma^{\prime}\{L, M, R\}^{*}$.

We obtain the following lower bound for $\mathcal{L}(m)$, cf. Figure 3 .
Proposition 2. - Let $m \in(1,2]$. We have $\mathcal{L}(m) \geq g_{0 \overline{1}}(m)$ and

$$
\mathcal{L}(m) \geq \begin{cases}g_{\sigma(1 \overline{0})}(m) & \text { if } m \leq \mu_{\sigma(01 \overline{0})}, \sigma \in\{L, M, R\}^{*} \\ f_{\sigma(0 \overline{1})}(m) & \text { if } m \geq \mu_{\sigma(10 \overline{1})}, \sigma \in\{L, M, R\}^{*}, \\ g_{\mathbf{u}}(m) & \text { if } m \leq \mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, M, R\}} \\ f_{\mathbf{u}(m)} & \text { if } m \geq \mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{\{L, M, R\}}\end{cases}
$$

Proof. - For all $\mathbf{v} \in 1\{0,1\}^{\infty} \backslash\{\overline{1}\}$, we have $\inf (\mathbf{v}) \leq 0 \overline{1}$. Then $\mathbf{v} \in U_{\beta}(m)$ implies that $\beta \geq g_{0 \overline{1}}(m)$ by Lemma 2 , hence $\mathcal{L}(m) \geq g_{0 \overline{1}}(m)$.

Suppose that $U_{\beta}(m) \cap\{0,1\}^{\infty}$ is uncountable for $\beta<g_{\sigma(1 \overline{0})}(m), m \leq \mu_{\sigma(01 \overline{0})}$, $\sigma \in\{L, M, R\}^{*} M$, thus $\beta<g_{\sigma(01 \overline{0})}(m) \leq f_{\sigma(01 \overline{0})}(m)$. Then $U_{\beta}(m)$ contains an aperiodic sequence $\mathbf{v} \in 1\{0,1\}^{\infty}$, with $f_{\mathbf{v}}(m)<f_{\sigma(01 \overline{0})}(m)$ and $g_{\mathbf{v}}(m)<g_{\sigma(1 \overline{0})}(m)$
by Lemma 2, thus $\inf (\mathbf{v})>\inf (\sigma(1 \overline{0}))$ and $\sup (\mathbf{v})<\sup (\sigma(01 \overline{0}))$ by Lemma 1 . By Lemma $5, \mathbf{v}$ ends with $\sigma\left(\mathbf{v}^{\prime}\right)$ for some (aperiodic) $\mathbf{v}^{\prime} \in\{0,1\}^{\infty}$, contradicting that $\sup (\mathbf{v})<\sup (\sigma(01 \overline{0}))$. Symetrically, we get that $\mathcal{L}(m) \geq f_{\sigma(0 \overline{1})}(m)$ for $m \geq \mu_{\sigma(10 \overline{1})}$.

If \mathbf{u} is a limit word of a primitive sequence $\left(\sigma_{n}\right)_{n \geq 1} \in\{L, M, R\}^{\infty}$, then we have $\mu_{\sigma_{n}^{\prime}(01 \overline{0})} \rightarrow \mu_{\mathbf{u}}$ for $\sigma_{n}^{\prime}=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ as $n \rightarrow \infty$, thus $\beta<g_{\mathbf{u}}(m), m \leq \mu_{\mathbf{u}}$ implies that $\beta<\min \left(g_{\sigma_{n}^{\prime}(01 \overline{0})}(m), f_{\sigma_{n}^{\prime}(01 \overline{0})}(m)\right)$ for some $n \geq 1$, and we obtain as in the previous paragraph that $U_{\beta}(m) \cap\{0,1\}^{\infty}$ is at most countable. Therefore, we have $\mathcal{L}(m) \geq g_{\mathbf{u}}(m)$ and, similarly, $\mathcal{L}(m) \geq f_{\mathbf{u}}(m)$ for $m \geq \mu_{\mathbf{u}}$.

Propositions 1 and 2 prove the formula for $\mathcal{L}(m)$ in Theorem 1. It remains to show that this covers all $m \in(1,2]$.

For the characterisation of $\mathcal{G}(m)$, in [BS17, Proposition 3.3] the partition

$$
(\overline{0}, 0 \overline{1})=\mathcal{S}_{\{L, R\}} \cup \bigcup_{\sigma \in\{L, R\}^{*}}[\sigma(0 \overline{01}), \sigma(\overline{01})]
$$

for intervals of sequences in $\{0,1\}^{\infty}$ is used, which is a consequence of the partition

$$
(\overline{0}, 0 \overline{1})=L((\overline{0}, 0 \overline{0})) \cup[0 \overline{01}, \overline{01}] \cup R((\overline{0}, 0 \overline{1}))
$$

We have to refine these partitions. For $\boldsymbol{\sigma}=\left(\sigma_{n}\right)_{n \geq 1} \in\{L, M, R\}^{\infty}$, set

$$
\begin{gathered}
I_{\boldsymbol{\sigma}}= \begin{cases}\{\inf (\mathbf{u}): \mathbf{u} \text { is a limit word of } \boldsymbol{\sigma}\} & \text { if } \boldsymbol{\sigma} \text { is primitive }, \\
\left\{\inf \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(1 \overline{0})\right)\right\} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M, n \geq 1, \\
{\left[\inf \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(10 \overline{1})\right), \inf \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(\overline{1})\right)\right]} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{R}, n \geq 1, \\
\emptyset & \text { otherwise },\end{cases} \\
J_{\boldsymbol{\sigma}}= \begin{cases}\{\sup (\mathbf{u}): \mathbf{u} \text { is a limit word of } \boldsymbol{\sigma}\} & \text { if } \boldsymbol{\sigma} \text { is primitive }, \\
{\left[\sup \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(\overline{0})\right), \sup \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(01 \overline{0})\right)\right]} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{L}, n \geq 1, \\
\left\{\sup \left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}(0 \overline{1})\right)\right\} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{R}, n \geq 1, \\
\emptyset & \text { otherwise. }\end{cases}
\end{gathered}
$$

Note that, for a primitive sequence $\boldsymbol{\sigma}, \inf (\mathbf{u})$ as well as $\sup (\mathbf{u})$ does not depend on the limit word \mathbf{u}. We order sequences in $\{L, M, R\}^{\infty}$ lexicographically.

Lemma 6. - In $\{0,1\}^{\infty}$, we have

$$
(\overline{0}, 0 \overline{1})=\bigcup_{\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}} I_{\boldsymbol{\sigma}} \quad \text { and } \quad(1 \overline{1}, \overline{1})=\bigcup_{\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}} J_{\boldsymbol{\sigma}} .
$$

If $\boldsymbol{\sigma}<\boldsymbol{\sigma}^{\prime}$, then $\mathbf{v}<\mathbf{v}^{\prime}$ for all $\mathbf{v} \in I_{\boldsymbol{\sigma}}, \mathbf{v}^{\prime} \in I_{\boldsymbol{\sigma}^{\prime}}$, and for all $\mathbf{v} \in J_{\boldsymbol{\sigma}}, \mathbf{v}^{\prime} \in J_{\boldsymbol{\sigma}^{\prime}}$.
Proof. - We clearly have $I_{\boldsymbol{\sigma}} \subset(\overline{0}, 0 \overline{1})$ for all $\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}$. For all $\sigma \in$ $\{L, M, R\}^{*}$, Lemma 3 gives that $\inf (\sigma(1 \overline{0}))=\inf (\sigma L(1 \overline{0})), \inf (\sigma L(10 \overline{1}))=$ $\inf (\sigma M(\overline{1}))$, and we have $M(\overline{1})=R(1 \overline{0}), R(10 \overline{1})=10 \overline{1}$, thus

$$
\begin{aligned}
& (\inf (\sigma(1 \overline{0})), \inf (\sigma(10 \overline{1})))=(\inf (\sigma L(1 \overline{0})), \inf (\sigma L(10 \overline{1}))) \\
& \cup\{\inf (\sigma M(1 \overline{0}))\} \cup(\inf (\sigma M(1 \overline{0})), \inf (\sigma M(10 \overline{1}))) \\
& \cup[\inf (\sigma M(10 \overline{1})), \inf (\sigma M(\overline{1}))] \cup(\inf (\sigma R(1 \overline{0})), \inf (\sigma R(10 \overline{1})))
\end{aligned}
$$

(in this order). Inductively, we obtain that the sets $I_{\boldsymbol{\sigma}}$ are ordered by the lexicographical order on $\{L, M, R\}^{\infty}$. Moreover, the union of sets $I_{\boldsymbol{\sigma}}$ with $\boldsymbol{\sigma}$ ending in $M \bar{L}$ or $M \bar{R}$ covers $(\inf (1 \overline{0}), \inf (10 \overline{1}))=(\overline{0}, 0 \overline{1})$, except for points lying in the intersection of nested intervals $\bigcap_{n \geq 1}\left(\inf \left(\sigma_{1} \cdots \sigma_{n}(1 \overline{0})\right), \inf \left(\sigma_{1} \cdots \sigma_{n}(10 \overline{1})\right)\right)$ for some $\boldsymbol{\sigma}=\left(\sigma_{n}\right)_{n \geq 1} \in\{L, M, R\}^{\infty}$. Since $\sigma_{1} \cdots \sigma_{n}(\overline{0})$ is close to $\sigma_{1} \cdots \sigma_{n}(0 \overline{1})$ for large n, these intervals tend to some $\mathbf{v} \in\{0,1\}^{\infty}$. If $\boldsymbol{\sigma}$ is primitive, then $I_{\boldsymbol{\sigma}}=\{\mathbf{v}\}$. If $\sigma_{n+1} \sigma_{n+2} \cdots$ is \bar{L} or \bar{R}, then we have $\mathbf{v}=\inf \left(\sigma_{1} \cdots \sigma_{n}(1 \overline{0})\right)$ or $\mathbf{v}=\inf \left(\sigma_{1} \cdots \sigma_{n}(10 \overline{1})\right)$, which are not in the intersection.

The proof for $(1 \overline{0}, \overline{1})=\bigcup_{\boldsymbol{\sigma} \in\{L, M, R\} \infty} J_{\boldsymbol{\sigma}}$ is similar, with

$$
\begin{aligned}
& (\sup (\sigma(01 \overline{0})), \sup (\sigma(0 \overline{1})))=(\sup (\sigma L(01 \overline{0})), \sup (\sigma L(0 \overline{1}))) \\
& \cup[\sup (\sigma M(\overline{0})), \sup (\sigma M(01 \overline{0}))] \cup(\sup (\sigma M(01 \overline{0})), \sup (\sigma M(0 \overline{1}))) \\
& \cup\{\sup (\sigma M(0 \overline{1}))\} \cup(\sup (\sigma R(01 \overline{0})), \sup (\sigma R(0 \overline{1}))) .
\end{aligned}
$$

Hence, the $J_{\boldsymbol{\sigma}}$ are also ordered by the lexicographical order on $\{L, M, R\}^{\infty}$.
Proposition 3. - We have the partition

$$
\left(1, \mu_{0 \overline{1}}\right)=\left\{\mu_{\mathbf{u}}: \mathbf{u} \in \mathcal{S}_{\{L, M, R\}}\right\} \cup \bigcup_{\sigma \in\{L, M, R\}^{*} M}\left(\left[\mu_{\sigma(1 \overline{0})}, \mu_{\sigma(01 \overline{0})}\right] \cup\left[\mu_{\sigma(10 \overline{1})}, \mu_{\sigma(0 \overline{1})}\right]\right)
$$

Proof. - For $m \in\left(1, \mu_{0 \overline{1}}\right), \boldsymbol{\sigma} \in\{L, M, R\}^{\infty}$, let

$$
\begin{aligned}
& I_{\boldsymbol{\sigma}}^{\prime}(m)= \begin{cases}\left\{g_{\mathbf{u}}(m): \mathbf{u} \text { is a limit word of } \boldsymbol{\sigma}\right\} & \text { if } \boldsymbol{\sigma} \text { is primitive }, \\
\left\{g_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(1 \overline{0})}(m)\right\} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{L}, n \geq 1, \\
{\left[g_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(\overline{1})}(m), g_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(10 \overline{1})}(m)\right]} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{R}, n \geq 1, \\
\emptyset & \text { otherwise },\end{cases} \\
& J_{\boldsymbol{\sigma}}^{\prime}(m)= \begin{cases}\left\{f_{\mathbf{u}}(m): \mathbf{u} \text { is a limit word of } \boldsymbol{\sigma}\right\} & \text { if } \boldsymbol{\sigma} \text { is primitive }, \\
{\left[f_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(\overline{0})}(m), f_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(01 \overline{0})}(m)\right]} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{L}, n \geq 1, \\
\left\{f_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}(0 \overline{1})}(m)\right\} & \text { if } \sigma_{n} \sigma_{n+1} \cdots=M \bar{R}, n \geq 1, \\
\emptyset & \text { otherwise } .\end{cases}
\end{aligned}
$$

By Lemmas 1 and 6, we have

$$
\left(1, g_{1 \overline{0}}(m)\right)=\bigcup_{\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}} I_{\boldsymbol{\sigma}}^{\prime}(m) \quad \text { and } \quad\left(1, f_{0 \overline{1}}(m)\right)=\bigcup_{\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}} J_{\boldsymbol{\sigma}}^{\prime}(m) .
$$

(Note that $f_{\mathbf{u}}(m)$ is close to $f_{\mathbf{u}^{\prime}}(m)$ if $\sup (\mathbf{u})$ is close to $\sup \left(\mathbf{u}^{\prime}\right), g_{\mathbf{u}}(m)$ is close to $g_{\mathbf{u}^{\prime}}(m)$ if $\inf (\mathbf{u})$ is close to $\inf \left(\mathbf{u}^{\prime}\right)$.) If $\boldsymbol{\sigma}<\boldsymbol{\sigma}^{\prime}$, then we have $\beta>\beta^{\prime}$ if $\beta \in I_{\boldsymbol{\sigma}}^{\prime}(m)$, $2 \leq \beta^{\prime} \in I_{\boldsymbol{\sigma}^{\prime}}^{\prime}(m)$, and $\beta<\beta^{\prime}$ if $2 \leq \beta \in J_{\boldsymbol{\sigma}}^{\prime}(m), \beta^{\prime} \in J_{\boldsymbol{\sigma}^{\prime}}^{\prime}(m)$, by Lemmas 1 and 6 . Since $\max \left(f_{\mathbf{u}}(m), g_{\mathbf{u}}(m)\right) \geq 2$ for all $\mathbf{u} \in\{0,1\}^{\infty}$ and $\inf (\sigma M(1 \overline{0})) \leq \inf (\sigma M(\overline{0}))$, $\sup (\sigma M(0 \overline{1})) \geq \sup (\sigma M(\overline{1}))$ for all $\sigma \in\{L, M, R\}^{*}$, we have $I_{\boldsymbol{\sigma}}^{\prime}(m) \subset[2, \infty)$ or $J_{\boldsymbol{\sigma}}^{\prime}(m) \subset[2, \infty)$ for all $\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}$. Therefore, we have $I_{\boldsymbol{\sigma}}^{\prime}(m) \cap J_{\boldsymbol{\sigma}}^{\prime}(m) \neq \emptyset$ for some $\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}$. If $\boldsymbol{\sigma}$ is primitive, this means that $m=\mu_{\mathbf{u}}$. If $\sigma_{n} \sigma_{n+1} \cdots=$ $M \bar{L}$, then we have $g_{\sigma_{1} \cdots \sigma_{n}(1 \overline{0})}(m) \in\left[f_{\sigma_{1} \cdots \sigma_{n}(\overline{0})}(m), f_{\sigma_{1} \cdots \sigma_{n}(01 \overline{0})}(m)\right]$, which means that
$m \in\left[\mu_{\sigma_{1} \cdots \sigma_{n}(1 \overline{0})}, \mu_{\sigma_{1} \cdots \sigma_{n}(01 \overline{0})}\right]$, see Figure 3. Similarly, if $\sigma_{n} \sigma_{n+1} \cdots=M \bar{R}$, then we have that $m \in\left[\mu_{\sigma_{1} \cdots \sigma_{n}(10 \overline{1})}, \mu_{\sigma_{1} \cdots \sigma_{n}(0 \overline{1})}\right]$.
Proof of Theorem 1. - This is a direct consequence of Propositions 1, 2 and 3 .

3. Final remarks and open questions

By KLP11, BS17, Kwo18, there are simple formulas for $\mu_{\sigma(1 \overline{0})}, \mu_{\sigma(\overline{0})}$ and $\mu_{\sigma(0 \overline{1})}, \sigma \in\{L, R\}^{*} M$, and for $\mu_{\mathbf{u}}, \mathbf{u} \in \mathcal{S}_{L, R}$. This is because, for $\mathbf{u} \in\{\sigma(1 \overline{0}), \sigma(0 \overline{1})\}$, $\sigma \in\{L, R\}^{*} M$, or $\mathbf{u} \in \mathcal{S}_{L, R}$, we have $\inf (\mathbf{u})=0 \mathbf{v}, \sup (\mathbf{u})=1 \mathbf{v}$ for some \mathbf{v}, thus $(\beta-1)\left(1+\pi_{\beta}(0 \mathbf{v})\right)=(\beta-1)^{2}=\beta \pi_{\beta}(1 \mathbf{v})$, where $\beta>1$ is defined by $\pi_{\beta}(20 \mathbf{v})=1$, which gives that $\mu_{\mathbf{u}}=(\beta-1)^{2}$. For $\mathbf{u}=\sigma(\overline{0})$, we have $\inf (\mathbf{u})=\overline{0 w 1}, \sup (\mathbf{u})=\overline{1 w 0}$, with $\sigma(0)=0 w 1$, and

$$
(\beta-1)\left(1+\pi_{\beta}(\overline{0 w 1})\right)=(\beta-1) \beta \pi_{\beta}(\overline{10 w})=\frac{(\beta-1)^{2} \beta^{|\sigma(0)|}}{\beta^{|\sigma(0)|}-1}=\beta \pi_{\beta}(\overline{1 w 0})
$$

where $\beta>1$ is defined by $\pi_{\beta}(20 w \overline{0})=1$ and $|\sigma(0)|$ is the length of $\sigma(0)$, hence $\mu_{\sigma(\overline{0})}=(\beta-1)^{2} \beta^{|\sigma(0)|} /\left(\beta^{|\sigma(0)|}-1\right)$. Are there similar formulas for $\sigma \in\{L, M, R\}^{*} M$?

In BS17, Kwo18, it was proved that the Hausdorff dimension of $\left\{\mu_{\mathbf{u}}: \mathbf{u} \in \mathcal{S}_{L, R}\right\}$ is 0 , using that the number of balanced words grows polynomially. What is the complexity of $\mathcal{S}_{L, M, R}$?

As mentioned in the Introduction, we know the generalised Komornik-Loreti constant $\mathcal{K}(m)$ only for $m=2$ and when $\mathcal{G}(m)=1+\sqrt{m}=\mathcal{K}(m)=\mathcal{L}(m)$. This is due to the fact that it is usually difficult to study maps with two holes; see Figure 2 (For $m=2$, we can use the symmetry of the map T, and for $\mathcal{L}(m)=1+\sqrt{m}$, we can restrict to sequences in $\{0,1\}^{\infty}$.) New ideas are needed for the general case.

Finally, Sturmian holes are key ingredients in [Sid14, where supercritical holes for the doubling map are studied. Do our Thue-Morse-Sturmian sequences also play a role in this context?

References

[ABBK19] R. Alcaraz Barrera, S. Baker \& D. Kong - "Entropy, topological transitivity, and dimensional properties of unique q-expansions", Trans. Amer. Math. Soc. 371 (2019), no. 5, p. 3209-3258.
[Bak14] S. BAKER - "Generalized golden ratios over integer alphabets", Integers 14 (2014), p. Paper No. A15, 28.
[BD14] V. Berthé \& V. Delecroix - "Beyond substitutive dynamical systems: S-adic expansions", in Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, p. 81-123.
[BS17] S. BAKER \& W. Steiner - "On the regularity of the generalised golden ratio function", Bull. Lond. Math. Soc. 49 (2017), no. 1, p. 58-70.
[DK93] Z. DARÓCZY \& I. KÁtai - "Univoque sequences", Publ. Math. Debrecen 42 (1993), no. 3-4, p. 397-407.
[GS01] P. GLENDINNING \& N. Sidorov - "Unique representations of real numbers in non-integer bases", Math. Res. Lett. 8 (2001), no. 4, p. 535-543.
[Hut81] J. E. Hutchinson - "Fractals and self-similarity", Indiana Univ. Math. J. 30 (1981), no. 5, p. 713-747.
[KKL17] V. Komornik, D. Kong \& W. Li - "Hausdorff dimension of univoque sets and Devil's staircase", Adv. Math. 305 (2017), p. 165-196.
[KL02] V. Komornik \& P. Loreti - "Subexpansions, superexpansions and uniqueness properties in non-integer bases", Period. Math. Hungar. 44 (2002), no. 2, p. 197218.
[KLLdV17] D. Kong, W. Li, F. Lü \& M. de Vries - "Univoque bases and Hausdorff dimension", Monatsh. Math. 184 (2017), no. 3, p. 443-458.
[KLP11] V. Komornik, A. C. Lai \& M. Pedicini - "Generalized golden ratios of ternary alphabets", J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, p. 1113-1146.
[KP17] V. Komornik \& M. Pedicini - "Critical bases for ternary alphabets", Acta Math. Hungar. 152 (2017), no. 1, p. 25-57.
[Kwo18] D. Kwon - "Sturmian words and Cantor sets arising from unique expansions over ternary alphabets", Ergodic Theory Dynam. Systems (2018), p. 1-28.
[Lai11] A. C. Lai - "Minimal unique expansions with digits in ternary alphabets", Indag. Math. (N.S.) 21 (2011), no. 1-2, p. 1-15.
[Lot02] M. Lothaire - Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002.
[Sid14] N. Sidorov - "Supercritical holes for the doubling map", Acta Math. Hungar. 143 (2014), no. 2, p. 298-312.

[^1]
[^0]: 2000 Mathematics Subject Classification. - 11A63, 68R15.
 Key words and phrases. - beta-expansion, unique expansion, golden ratio, Komornik-Loreti constant, Thue-Morse sequence, Sturmian words, S-adic words.

 This work was supported by the Agence Nationale de la Recherche through the project CODYS (ANR-18-CE40-0007).

[^1]: Wolfgang Steiner, Université de Paris, IRIF, CNRS, F-75013 Paris, France
 E-mail: steiner@irif.fr

