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Abstract. — The set of unique S-expansions over the alphabet {0, 1} is trivial for 8
below the golden ratio and uncountable above the Komornik—Loreti constant. Gen-
eralisations of these thresholds for three-letter alphabets were studied by Komornik,
Lai and Pedicini (2011, 2017). We use a class of S-adic words including the Thue—
Morse sequence (which defines the Komornik—Loreti constant) and Sturmian words
(which characterise generalised golden ratios) to determine the value of a certain
generalisation of the Komornik—Loreti constant to three-letter alphabets.

Résumé (Mots de Thue—Morse—Sturm et bases critiques pour les alphabets
ternaires)

L’ensemble des (-développements uniques avec 1’alphabet {0, 1} est trivial pour
B au-dessous du nombre d’or et non dénombrable au-dessus de la constante de
Komornik—Loreti. Des généralisations de ces seuils pour les alphabets de trois let-
tres furent étudiées par Komornik, Lai et Pedicini (2011, 2017). Nous utilisons une
classe de mots S-adiques comprenant la suite de Thue-Morse (qui définit la con-
stante de Komornik—Loreti) et les mots sturmiens (qui caractérisent les nombres d’or
généralisés) pour déterminer la valeur d’une certaine généralisation de la constante
de Komornik—Loreti aux alphabets de trois lettres.

1. Introduction and main results

For a base > 1 and a sequence of digits ujug--- € A, with A C R, let

oo

U

maluaua ) = 3 o
k=1

2000 Mathematics Subject Classification. — 11A63, 68R15.
Key words and phrases. — beta-expansion, unique expansion, golden ratio, Komornik-Loreti con-
stant, Thue-Morse sequence, Sturmian words, S-adic words.

This work was supported by the Agence Nationale de la Recherche through the project CODYS
(ANR-18-CE40-0007).



2 WOLFGANG STEINER

we say that ujus--- is a S-expansion of this number. This paper deals with unique
B-expansions over A, that is with

Up(A) ={u e A® : wg(u) # ng(v) for all v.e A<\ {u}}.
We know from [DK93] that Ug({0,1}) is trivial if and only if § < 15 where trivial
means that Us({0,1}) = {0,1}, @ being the infinite repetition of a. Therefore,
G(A) =mf{p >1: |Ug(A)| > 2}

is called generalised golden ratio of A. By [GS01], the set Ug({0,1}) is uncountable
if and only if S is larger than or equal to the Komornik—Loreti constant fSkr, ~ 1.787;
we call

K(A) =inf{8 > 1: Ug(A) is uncountable}
generalised Komornik-Loreti constant of A. (We can replace uncountable throughout
the paper by has the cardinality of the continuum.) The precise structure of Ug({0, 1})
was described in [KKL17]. For integers M > 2, G({0,1, ..., M}) was determined by
[Bak14]|, and Us({0,1,...,M}) was described in [KLLdV17, [ABBK19].

For z,y € R, z # 0, we have (zu1 + y1)(zu2 + y2) - - - € Ug(zA + y) if and only if
urug - -+ € Ug(A), thus G(xA +y) = G(A) and K(zA + y) = K(A). Hence, the only
two-letter alphabet to consider is {0,1}. A three-letter alphabet {a1,aq,a3} with
a1 < ag < ag can be replaced by {0, 1, Zz:gi} or {0,1, Zi:g; }. Since 2=t and %
are on opposite sides of 2 (or both equal to 2), we can restrict to alphabets {0, 1, m},
m € (1,2]. Of course, it is also possible to restrict to m > 2 as in [KLP11] (note
that the alphabet {0,1,m} can be replaced by {0, 1, -5 }), but we find it easier to
work with m < 2. We write

Uﬂ(m) = UB({O7 1vm})7 g(m) = g({07 17m})7 IC(m) = ’C({Ov 17m})‘

It was established in [KLP11), Lailll, BS17] that the generalised golden ratio G(m)
is given by mechanical words, i.e., Sturmian words and their periodic counterparts;
in particular, we can restrict to sequences u € {0,1}°°. Calculating K(m) seems to
be much harder since this restriction is not possible. Therefore, we study

L(m) =1inf{f > 1: Ug(m)N{0,1}* is uncountable},

following [KP17], where this quantity was determined for certain intervals. We give
a complete characterisation in Theorem [I| below.
To this end, we use the substitutions (or morphisms)

L:00, M: 001, R:0ws 01,
1501, 1+ 10, 11,
which act on finite and infinite words by o(ujus---) = o(uy)o(uz) - --. The monoid

generated by a set of substitutions S (with the usual product of substitutions) is de-
noted by S*. An infinite word u is a limit word of a sequence of substitutions (o, )n>1
(or an S-adic word if o, € S for all n > 1) if there is a sequence of words (u(™),,>,
with u® = u, u® = an(u(”+1)) for all n > 1. The sequence (o,)n>1 is called
primitive if for each k > 1 there is an n > k such that both words o041 - - 0,(0)
and 0011 - 0pn(1) contain both letters 0 and 1. For S = {L, M, R}, this means
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that there is no & > 1 such that o,, = L for all n > k or o, = R for all n > k.
Let Sg be the set of limit words of primitive sequences of substitutions in S°°. Then
Sir,ry consists of Sturmian words, and Sy, consists of the Thue-Morse word Ou =
0110100110010110- - -, which defines the Komornik-Loreti constant by mg,, (u) = 1,
and its reflection by 0 <> 1. We call the elements of S¢z, a7, g}y, which to our knowledge
have not been studied yet, Thue-Morse-Sturmian words. For details on S-adic and
other words, we refer to [Lot02, BD14].

For u € {0,1}* and m € (1, 2], define fy(m) (if u contains at least two ones) and
gu(m) as the unique positive solutions of

Ja(m) 7s ) (sup O(u)) =m  and  (gu(m) — 1)(1 + 7, () (inf O(u))) = m
respectively, where O(ujug---) = {ugugs1---: k > 1} denotes the shift orbit and
infinite words are ordered by the lexzicographic order. For the existence and monotonic-
ity properties of fu(m) and gu(m), see [BS17, Lemmas 3.11 and 3.12] and Lemma [i]
below. We define p, by

fu(pta) = gu(ptu),

ey fulita) = gulita) = B with Bs(sup O(w)) = (8 — 1)(1 + m5(inf O(w)).
The main result of [KLP11] on generalised golden ratios of three-letter alphabets
can be written as

fo@(m) i m € [u,15): bo@)s o € {L, R} M,
9o (m) fm e [u,q) om0 €{L, R} M,
fr(m) i m € [pgr, 2],

14+ m  if m = py, ue Sy py;

cf. [BS17, Proposition 3.18], where substitutions 7, = L"R are used and f, g, i, S are
defined slightly differently. Our main theorem looks similar, but we need {L, M, R}
instead of {L, R}, and the roles of f and g are exchanged.

Theorem 1. — The function £L(m) = inf{8 > 1: Ug(m) N {0,1}*> is uncountable}
is given for 1 <m < 2 by

9o(oy (M) if m € [1,5), to(o10))s 0 € {L, M, R} M,

foory(m) if m € [, a01), toor))s 0 € {L, M, R} M,

gor(m) if m € [pot, 2],

fu(m) if m = pu, u € S(r MRy

The Hausdorff dimension of mg(Ug(m)) is positive for all 8 > L(m).

g(m) =

L(m) =

The graphs of G(m) and £(m) are drawn in Figure [l For example, 0 = M gives

L(m) = goor(m) if m € [pgors 1007) ~ [1.281972,1.46811],
Fis(m) if m € [oor7s, ymg) ~ [1.516574, 1.55496).

Taking o = M?, we have ¢(0) = 0110, o(1) = 1001, and

L(m) = { Yooro110(m) %f m € [1g015110> H11010010170) & [1-47571,1.503114],
friotoor(m) i m € [oo10110T007> H110T007) =~ [1-504152, 1.509304].
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Subintervals of the first three intervals were also given by [KP17].
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FIGURE 1. The critical bases G(m) (below 1++/m, blue) and £L(m) (above
1+ /m, red).

By [KLP11), KP17], we have, for all m € (1, 2],
2<G(m) <1+ +vm<K(m)<L(m) < gi5(m) =1+m,

with G(m) = L(m) if and only if m € {u, 15, Hoo1)}> @ € {L, R} M, or m = pu,
u € Syr gy Besides those m, we only know the value of K(m) for m = 2 from
[KLO2]: 7ic(2)(2102012101202102- -+ ) = 1, thus K(2) ~ 2.536 < 3£/5 — £(2). The
functions G(m), K(m) and £L(m) are continuous for m > 1 by [KLP11), KP17]; at
least for the generalised golden ratio, this also holds for larger alphabets by [BS17].

2. Proof of the main theorem

We first prove that f,(m), gu(m) and p, are well defined, and we determine
monotonicity properties. For convenience, we write inf(u) for inf O(u) and sup(u)
for sup O(u) in the following.



THUE-MORSE-STURMIAN WORDS AND CRITICAL BASES 5

Lemma 1. — Let m € (1,2], u,u’ € {0,1}*°. Then gu(m) is well defined. If u
contains at least two ones, then fu(m) and py are well defined, and we have

max(fu(m), gu(m)) = 2,

B >1, Brg(sup(u)) <m if and only if B> fu(m),
B8>1, (B—1)(1+mg(inf(u)) >m if and only if B> gu(m),
fu(m) > fu(m') and  gu(m) < gu(m’) if m <m/,
fu(m) < fw(m) if sup(u) <sup(w’) and fu(m) > 2,
gu(m) > gw(m) if inf(u) < inf(u') and gy (m) > 2.

Proof. — Set hy(x,m) = zm,(v) —m with v = sup(u). Then hy(z,m) is strictly
decreasing in = (for z > 1) and m. If u contains at least two ones, then v also contains
at least two omes, thus lim, 1 hy(z,m) > 2 —m and lim,_ o hy(z,m) = 1 — m.
Therefore, there is, for each m € (1, 2], a unique x,, v > 1 such that hy (2, v, m) =0,
ie., fu(m) = Tpm,v, and we have Smg(sup(u)) < m for 8 > 1if and only if 8 > fu(m).
If m < m/, then we have Zyv > Tpyy, thus fu(m) > fu(m’). If v.< v/ and
x > 2, then we have hy(z,m) < hy/(x,m), thus z,, v < Ty if 5y > 2, hence
fu(m) < fw(m) if sup(u) < sup(u’) and fu(m) = 2.

Let now hy(xz,m) = -5 —7m,(v) —1 with v = inf(u). Since -5 = 7.(m), hy(z,m)
is strictly decreasing in x (for z > 1) and strictly increasing in m. Again, there is, for
each m € (1,2], a unique Z,, v > 1 such that hy(zpmv, m) = 0, ie., gu(Mm) = T v.
We have hy (z,m) < 0 for x > 1 if and only if & > Zp, v, Ty < T v if m <m/, and
hy(x,m) > hy/(x,m) if v < V', x> 2, thus z,,v > Ty if T,y > 2. This proves
the monotonicity properties of g.

Since fy,(m) is strictly decreasing, gy, (m) is strictly increasing, lim,, 1 fu(m) = oo,
fu(2) <2, and g4(2) > 2, we have fy(m) = gu(m) for a unique m € (1,2].

Let 8 = fu(ptu) = gu(ttu), i-e., fmg(sup(u)) = (8 — 1)(1 + wg(inf(u))). We have
sup(u) > linf(u). If equality holds, then 8 = 2. Otherwise, sup(u) starts with
1vy -+ -vk—11 and inf(u) starts with vy - - v—10 for some vy -+ - vp_1, k > 1. Then

m

1
@7

1

k—1 v
(3= D+ mp(int() < (5 (14 3 %) + 5

k—1
Brg(sup(u) > 1+ ﬁ +
=1

thus 8 > 2. By the monotonicity properties that are proved above, this implies that
max(fu(m), gu(m)) > 2 for all m € (1,2]. O

Next we establish relations between fy,(m), gu(m) and u € Ug(m).

Lemma 2. — Letm € (1,2], B € (1,1 +m]. Foru € {0,1}°, we have u € Ug(m)
if and only if Ou € Ug(m). For u € 1{0,1}* \ {10}, u € Us(m) implies that
B > max(fu(m), gu(m)), and 8 > max(fu(m), gu(m)) implies that u € Ug(m).
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_m_
Bs—1
FIGURE 2. The branching S-transformation T for 8 = 9/4, m = 3/2.

Proof. — For € (1,1 +m], u = wuz--- € {0,1,m}*>, z € [0, 3%;], we have
mg(u) = = if and only if uy = d(T* 1(z)) for all k > 1, with the branching S-
transformation
0 ife<y,
LY m
OOI‘l%fB’,Snl'Sﬂ(Til’r)n,
z— Bz —d(x), d(z) = 1 ?fm<ﬂf<g»
1OrmlfF§1$§E7n+W,
m iz >5+ 550

T [0, 2] — [0, 525,

see Figure 2] We thus have

uc Ug(m) < mg(uptps1---) ¢ [%, ) Y[ % + 5oyl for all k > 1.
For u € {0,1}* \ {0}, this means that 8 > 2 and
ma(UpUpt1 -+ ) < %, T3 (Upt1 Ut -+ ) > % — 1 for all £ > 1 such that uy =1,
see [BS17, Lemma 3.9], i.e.,
Bmg(sup(u)) <m < (8 —1)(1 + ms(inf, (),

where infy (ujug - --) = inf{ugprupqa--- @ k > 1,u, = 1}, with strict equalities if
the supremum and infimum are attained. This shows that u € Ug(m) if and only
if Ou € Ug(m). Note that inf;(u) # inf(u) implies that inf(u) = u, hence we have
inf; (u) = inf(u) when u starts with 1. Then, by Lemma[l} u € Ug(m) implies that
B > max(fu(m), gu(m)), and g > max(fu(m), gu(m)) implies that u € Ug(m). O



THUE-MORSE-STURMIAN WORDS AND CRITICAL BASES 7

To calculate fy(m) and gy(m), it is crucial to determine inf(u) and sup(u). Simi-
larly to infy(ujug - -+ ) = inf{ugrupqa---: k> 1,up =1}, set

supg(uiug - -+ ) = sup{up1uky2 - k> 1,u, = 0}.
Lemma 3. — For allu € {0,1}*°, we have
inf(L(u)) = L(inf(u)), inf(R(u)) = R(inf(u)), O0sup(L(u)) = L(sup(u)).
If inf(u) = inf; (u), then inf(M(u)) = 0M (inf(u)). If sup(u) = sup,(u), then
sup(R(u)) = LR(sup(u)), sup(M(u)) = 1M (sup(u)).

For each o € {L,M,R}*, there is a suffix w of o(1) such that inf(c(u)) =
inf(o(u)) = wo(inf(u)) for all u € {0,1}>° with inf(u) = inf; (u).

For each o € {L,M,R}*M U {L, M, R}*R, there is a suffit w of c(0) such that
supg(o(u)) = sup(o(u)) = wo(sup(u)) for all u € {0,1}>° with sup(u) = sup,y(u).

For each o € {L,M,R}*L, there is a prefiz w of o(0) such that wsupy(c(u)) =
wsup(o(u)) = o(sup(u)) for all u € {0,1}>° with sup(u) = supy(u).

Proof. — The first statements follow from the facts that L, M, R are order-preserving
on infinite words and that inf(u) = inf;(u), sup(u) = sup,(u) mean that 1inf(u),
Osup(u) are in the closure of O(u).

We claim that, for each o € {L, M, R}*, there is a suffix lw of o(1) such that
infy (o(u)) = inf(o(u)) = wo(inf(u)) for all u € {0,1}*° with inf(u) = infy (u). If 1w
is a suffix of ¢(1), then 1L(w), 10M (w) and 1R(w) are suffixes of Lo(1), Mo(1) and
Ro (1) respectively. Therefore, this claim holds for Lo, Mo and Ro when it holds for
o. Since it holds for ¢ = id, it holds for all o € {L, M, R}*.

Next we claim that, for each o € {L, M, R}*{M, R}, there is a suffix 0lw of
o(0) such that supy(o(u)) = sup(o(u)) = lwo(sup(u)) for all u € {0,1}*° with
sup(u) = supg(u). This holds for ¢ € {M,R}. If 0lw is a suffix of ¢(0), then
01L(w), 01M (1w) and 01R(1w) are suffixes of Lo(0), Mc(0) and Ro(0) respectively.
Therefore, this claim holds for all o € {L, M, R}*{M, R}.

Finally we claim that, for each o € {L, M, R}* L, there is a prefix w0 of o(0) such
that w0supy(o(u)) = wOsup(o(u)) = o(sup(u)) for all u € {0,1}>° with sup(u) =
supg(u). This holds for o = L . If w0 is a prefix of ¢(0), then L(w0)0, M (w)0 and
R(w)0 are prefixes of Lo(0), Mo (0) and Ro(0) respectively. Therefore, this claim
holds for all ¢ € {L, M, R}*L. O

Now we can prove that Theorem [I| gives an upper bound for £(m), cf. Figure
Proposition 1. — Let m € (1,2]. We have
9o(15)(m) if m > 15, 0 € {L, M, R}* M,
fory(m) —if m < pgr), 0 € {L, M, R}* M,
L(m) < 9 gg7(m) if m > por,
Ju(m) if m 2> pu, w € S MR}
fu(m) if m < piu, w € Sqp v R)-
If B is above this bound, then the Hausdorff dimension of ng(Ug(m)) is positive.
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fo 0T

f0(016)

Ho(10) Ho(010) Ho@) Ho(10T) Ho(01)

FIGURE 3. A schematic picture for o € {L, R}*M. For o € {L, M, R}" M,
the situation is similar, except for G(m) and 1 + /m.

Proof. — Let o € {L, M, R}*. For all h > 1, v € 1{0(01)",0(01)"*1}°° we have
inf(o(v)) > inf(c(10(01)*=10)) and sup(o(v)) < sup(c((01)*+10))

by Lemma [3] with

inf(o(10(01)"=10)) — inf(oc M (10)), sup(a((01)"*+10)) — sup(cM(0)) (h — o).
Therefore, we have for each 8 > max(f, ;@) (M), 9y ar(15)(m)) some h > 1 such that
a({0(01)",0(01)"*1}>) € Ug(m). If m > p, 15, then fopr)(m) = forram)(m) <
9om1m)(m), thus Ug(m) N {0,1}> is uncountable (and has the cardinality of the
continuum) for all 8 > 9o M (10) (m), ie., L(m) < 9o M (10) (m). By symmetry, sequences
in o({1(10)",1(10)"1}°°) give that L(m) < f, 1) (m) for m < pi, 5. Similarly,
sequences in 1{01",01"+1}° give that £(m) < g,7(m) for m > p,7-

Let now u be a limit word of a primitive sequence (o,)n>1 € {L, M, R}*, and
set o/, = 0102+ 0,. Then inf(0},(10)) < inf(u) < inf(o},(101)) for all n > 1,
thus inf(o7,(10)) — inf(u) and (by symmety) sup(o/,(01)) — sup(u) as n — oo.
Therefore, for each 8 > max(fy(m), gu(m)) there is n > 1 such that o], (v) € Ug(m)
for all v € {0,1}>\ {0,1}, hence L£L(m) < gu(m) for m > py and L(m) < fu(m) for
m < [y

If {v,w}*> C Ug(m), then by [Hut81] we have dimgy (7g(Ug(m))) > r, with r > 0
such that =1°I" 4 g=1*I" = 1, where |v| and |w| denote the lengths of v and w. O

For the lower bound, we use Lemma [5| below, which tells us that, if the orbit of a
sequence satisfies inequalities that hold for all non-trivial images of o € {L, M, R}*,
then it is eventually in the image of o. In particular, with ¢ = M"™, n > 0, this
yields that Ug({0,1}) is countable for all 8 less than the Komornik—Loreti constant;
cf. [GSO01]. First we show that the conditions of Lemma [3| are satisfied for a suffix.
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Lemma 4. — Let u € {0,1}> with u # 01 and u # 1¥0 for all k > 0. There is a
suffix v of u such that inf(v) = inf;(v) = inf;(u) and sup(v) = sup,(v) = supy(u).

Proof. — If inf(u) = inf; (u) and sup(u) = sup,(u), then we can take v = u. Oth-
erwise, assume that inf(u) # inf;(u), the case sup(u) # supy(u) being symmetric.
Then we have inf(u) = u = 001u’ for some k > 0, u’ € {0,1}> \ {1},

supy(u) = supy(01u’) = sup(01u’), inf;(u) = inf; (01u’) = inf; (1u’) = inf(1u’).

If inf; (01u’) # inf(01u’), then u’ = 1"01u” with n > 0, u” > u’, which implies that
supg(u) = supy(1lu’) = sup(lu’). Hence, we can take v = 01u’ or v = 1u’. O

Lemma 5. — Let u € {0,1}* o € {L, M, R}*, with inf(u) > inf(c(10)), sup(u) <
sup(c(01)). Then u ends with o(v) for some v € {0,1}>° or with ¢'(0), o' €
(L,M,R}*M, o € o'{L, M, R}*.

Proof. — The statement is trivially true when o is the identity. Suppose that
holds for some o € {L, M, R}*, let ¢ € {L,M,R} and u € {0,1}* with inf(u)
inf(p0(10)), sup(w) < sup(o (0T)).

If ¢ = L, then sup(u) < 10, thus every 1 in u is followed by a 0, hence u = L(v)
or u = 1L(v) for some v € {0,1}°°. Similary, if ¢ = R, then inf(u) > 01, hence
u = R(v) or u = 0R(v) for some v € {0,1}>°. If ¢ = M, then inf(u) > 001 and
sup(u) < 110. Hence, for all k& > 1, 0(01)* as well as 1(10)* is always followed in u
by 01 or 10. Since u contains 001 or 110 if u ¢ {M(0), M (1)}, we obtain that u ends
with M (v) for some v € {0,1}°.

We can assume that v € {0,1} or infi(v) = inf(v) and sup,(v) = sup(v), by
Lemma {4l If v # 0, then we cannot have inf(v) < inf(c(10)) because this would
imply that inf(¢(v)) < inf(po(10)) by Lemma Similarly, we obtain that sup(v) <
sup(c(10)) if v # 1. If v = 0, ¢ € {L, R}, then inf(p(0)) > inf(¢c(10)) implies
that inf(o(10)) = 0, thus v = ¢(0). Similarly, if v = 1 and ¢ € {L,R}, then
sup(¢(1)) < sup(po(01)) implies that sup(o(01)) = 1, thus v = o(1). If v € {0,1},
© = M, then u ends with M (0) since M (1) = 1M (0). Therefore, u ends with ¢o(v)

or with 0/(0), o/ € {L, M, R}*M, 9o € o'{L, M, R}*. O

IV =

We obtain the following lower bound for £(m), cf. Figure
Proposition 2. — Let m € (1,2]. We have L(m) > gy7(m) and
90(16)(m) me < Mg(olﬁ)a oc {L7 M7 R}*7
fo'(OT) (m) me Z :u(r(lOT)’ S {L7 M7 R}*7

Gu(m) if m < pu, w € S MR},
Ju(m) if m > pu, € S¢r 0 Ry

L(m) >

Proof. — For all v € 1{0,1}* \ {1}, we have inf(v) < 01. Then v € Ug(m) implies
that 8 > ggr(m) by Lemma[2] hence £(m) > ggz(m).

Suppose that Ug(m) N {0,1}* is uncountable for 8 < g,5,(m), m < p,o15):
o € {L,M,R}*M, thus 8 < g,5(m) < f,15(m). Then Ug(m) contains an
aperiodic sequence v € 1{0,1}*, with fv(m) < fy(o15)(m) and gv(m) < g, (5 (m)
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by Lemma [2| thus inf(v) > inf(o(10)) and sup(v) < sup(c(010)) by Lemma [I| By
Lemma 5] v ends with o(v’) for some (aperiodic) v/ € {0,1}°°, contradicting that
sup(v) < sup(c(010)). Symetrically, we get that L£(m) > f,g7)(m) for m > p,o1)-
If u is a limit word of a primitive sequence (o,,),>1 € {L, M, R}*, then we have
lgr (010) — Hu for o}, = 0102-+-0n as n — oo, thus 8 < gu(m), m < py implies
that 8 < min(g,/ (015)(m), fo: (015)(m)) for some n > 1, and we obtain as in the
previous paragraph that Ug(m) N {0,1}* is at most countable. Therefore, we have
L(m) > gu(m) and, similarly, £(m) > fu(m) for m > py,. O

Propositions (1| and [2] prove the formula for £(m) in Theorem [1} It remains to show
that this covers all m € (1, 2].
For the characterisation of G(m), in [BS17, Proposition 3.3] the partition

0.00) =Sy U | [0(00D), o(0D)
ce{L,R}*
for intervals of sequences in {0, 1} is used, which is a consequence of the partition
(0,01) = L((0,01)) U [001,01] U R((0,01)).
We have to refine these partitions. For o = (0p,)n>1 € {L, M, R}, set

{inf(u) : u is a limit word of o} if o is primitive,
{inf(o102---0,(10))} if 0p,0p 1 =ML, n>1,
) [inf(o102 - - - 0,(101)), inf (0109 - - - 0, (1))]  if 0popyr---= MR, n > 1,

1] otherwise,
{sup(u) : u is a limit word of o} if o is primitive,

7 - [sup(o102 -+ 0,(0)),sup(o102 -+ - 0,(010))] if opopir -+ = Mz, n>1,

7 {sup(oi09 - - 0,(01))} if ooy -=MR, n>1,

0 otherwise.

Note that, for a primitive sequence o, inf(u) as well as sup(u) does not depend on
the limit word u. We order sequences in {L, M, R} lexicographically.

Lemma 6. — In {0,1}*°, we have
(0,01) = U I and (10,7)= U 7.
oc{L,M,R}> oe{L,M,R}>

Ifo <o, thenv <V forallv €Iy, v € Io, and for allv € J5, V' € Jo.

Proof. — We clearly have I, C (0,01) for all ¢ € {L,M,R}*. For all ¢ €
{L,M,R}*, Lemma 3 gives that inf(c(10)) = inf(cL(10)), inf(cL(101)) =
inf(cM(10)), and we have M (1) = R(10), R(101) = 101, thus
(inf(0(10)), inf(0(101))) = (inf(c L(10)), inf(c L(101)))
U {inf(c M (10))} U (inf(c M (10)), inf (e M (101)))
U [inf(c M (101)),inf (o M (1))] U (inf(c R(10)), inf (0 R(101)))
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(in this order). Inductively, we obtain that the sets I, are ordered by the lexi-
cographical order on {L, M, R}>°. Moreover, the union of sets I, with o ending
in ML or MR covers (inf(10),inf(101)) = (0,01), except for points lying in the
intersection of nested intervals (), <, (inf(oq - - - 0,,(10)),inf(oq - - - 6,,(101))) for some
o = (0p)n>1 € {L,M,R}*>. Since oy ---0,(0) is close to oy ---0,(01) for large n,
these intervals tend to some v € {0,1}*°. If o is primitive, then I, = {v}. If
Oni10ni2- -+ is L or R, then we have v = inf(oy - - - 0,,(10)) or v = inf(oy - - - 0,,(101)),
which are not in the intersection.
The proof for (10,1) = UUG{L,JW,R}OO Jo is similar, with

(sup(c(010)), sup(e(01))) = (sup(cL(010)), sup(oL(01)))
U [sup(a M (0)), sup(o M (010))] U (sup(c M (010)), sup(c M (01)))
U {sup(c M (01))} U (sup(c R(010)), sup(c R(01))).
Hence, the J, are also ordered by the lexicographical order on {L, M, R}*°. O

Proposition 3. — We have the partition

(L por) = {pu = we Spp v ry U U ([p“a(lﬁ)?uo(Olﬁ)] U [Ha(loi)aﬂa(oi)])'
oc€{L,M,R}* M

Proof. — For m € (1, ug7), o € {L, M, R}, let

{gu(m) : uis a limit word of &}  if o is primitive,
I‘/,(m) _ {gala'gwa'n(la) (m)} if OnOn+41 """ = M£7 n > ]-7
[gfrlo'z~»-0'n(T) (m)’ gUlUQ"'U'-,L(IOT) (m)] if OnOn+41 " = MR7 n = 1a
0 otherwise,
{fu(m) : uis alimit word of o}  if o is primitive,
J/ (m) — [falo'g-uan(ﬁ)(m)’falo'z---on(Ola)(m)] if OnOn+1 """ :Mﬁan > 17
7 {f0'10'2"'0'n,(0T)(m)} if OnOn+1 " :MR, n Z ].,
0 otherwise.

By Lemmas [I] and [6] we have
(L, g15(m)) = U I,(m) and (1, fo(m)) = U Jo(m).

oc{L,M,R}> oc{L,M,R}>

(Note that fu(m) is close to fu (m) if sup(u) is close to sup(u’), gu(m) is close to
gw (m) if inf(u) is close to inf(u’).) If & < o, then we have § > g’ if g € I (m),
2<p eI, (m),and B < p'if2< B e J.(m), B € J. . (m), by Lemmasand@
Since max(fy(m),gu(m)) > 2 for all u € {0,1}* and inf(cM(10)) < inf(cM(0)),
sup(oM(01)) > sup(cM (1)) for all o € {L, M, R}*, we have I/ (m) C [2,00) or
JI(m) C [2,00) for all o € {L, M, R}*°. Therefore, we have I (m) N J. (m) # ( for
some o € {L, M, R}>. If ¢ is primitive, this means that m = py. If opopy1--- =
ML, then we have g, ., 15)(m) € [fo, .0 @ (M) fo, .0 (015) ()], which means that
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m € [/tm,,,dn(la),/utal.,,(,n(mﬁ)], see Figure Similarly, if 0,0,41--- = MR, then we
have that m € [Nalman(loT)» ual,,,an((ﬁ)]. O

Proof of Theorem[]] — This is a direct consequence of Propositions and O

3. Final remarks and open questions

By [KLP1I, BS17, [Kwol8], there are simple formulas for j, 5, #,@ and
Iy (o1)s © € {L, RY* M, and for piy, u € St . This is because, for u € {o(10),(01)},
o € {L,R}*M, or u € S; g, we have inf(u) = Ov, sup(u) = 1v for some v, thus
(B—1)(1 +m(0v)) = (B—1)2 = Brs(1lv), where 8 > 1 is defined by 75(20v) = 1,
which gives that p, = (8 — 1)2. For u = ¢(0), we have inf(u) = Owl, sup(u) = 1w0,
with o(0) = Owl, and

_ . — 1)2ple0)] o
(8 = )1+ 7y @0D) = (6~ ma(100) = TP — gy 1am),

where 8 > 1 is defined by 73(20w0) = 1 and |o(0)| is the length of o(0), hence
@) = (B— 1)2p191/(3le(1 —1). Are there similar formulas for o € {L, M, R}*M?

In [BS17, Kwo18], it was proved that the Hausdorff dimension of {yy, : u € Sg r}
is 0, using that the number of balanced words grows polynomially. What is the
complexity of Sz, ar.r?

As mentioned in the Introduction, we know the generalised Komornik—Loreti con-
stant K(m) only for m = 2 and when G(m) =1+ /m = K(m) = L(m). This is due
to the fact that it is usually difficult to study maps with two holes; see Figure |2l (For
m = 2, we can use the symmetry of the map T, and for £L(m) = 1 + /m, we can
restrict to sequences in {0,1}*°.) New ideas are needed for the general case.

Finally, Sturmian holes are key ingredients in [Sid14], where supercritical holes
for the doubling map are studied. Do our Thue-Morse—Sturmian sequences also play
a role in this context?
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