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Abstract

We consider the problem of fixed-polynomial lower bounds on the size of arithmetic
circuits computing uniform families of polynomials. Assuming the generalised Riemann
hypothesis (GRH), we show that for all k, there exist polynomials with coefficients in
MA having no arithmetic circuits of size O(nk) over C (allowing any complex constant).
We also build a family of polynomials that can be evaluated in AM having no arithmetic
circuits of size O(nk). Then we investigate the link between fixed-polynomial size circuit
bounds in the Boolean and arithmetic settings. In characteristic zero, it is proved that
NP 6⊂ size(nk), or MA ⊂ size(nk), or NP = MA imply lower bounds on the circuit size of
uniform polynomials in n variables from the class VNP over C, assuming GRH. In positive
characteristic p, uniform polynomials in VNP have circuits of fixed-polynomial size if and
only if both VP = VNP over Fp and ModpP has circuits of fixed-polynomial size.

1 Introduction

Baur and Strassen [3] proved in 1983 that the number of arithmetic operations needed to
compute the polynomials xn1 + . . . + xnn is Ω(n log n). This is still the best lower bound on
uniform polynomials on n variables and of degree nO(1), if uniformity means having circuits
computed in polynomial time.

If no uniformity condition is required, lower bounds for polynomials have been known since
Lipton [12]. For example, Schnorr [17], improving on [12] and Strassen [18], showed for any k
a lower bound Ω(nk) on the complexity of a family (Pn) of univariate polynomials of degree
polynomial in n – even allowing arbitrary complex constants in the circuits. The starting
point of Schnorr’s method is to remark that the coefficients of a polynomial computed by a
circuit using constants α = (α1, . . . , αp) is given by a polynomial mapping in α. Hence, finding
hard polynomials reduces to finding a point outside the image of the mapping associated to
some circuit which is universal for a given size. This method has been studied and extended
by Raz [15].

In the Boolean setting, this kind of fixed-polynomial lower bounds has already drawn a
lot of attention, from Kannan’s result [9] proving that for all k, Σp
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size nk, to Fortnow, Santhanam and Williams [5], delineating the frontier of Boolean classes
which are known to have fixed-polynomial size circuits lower bounds. It might seem easy to
prove similar lower bounds in the algebraic world, but the fact that arbitrary constants from
the underlying field (e.g. C) are allowed prevents from readily adapting Boolean techniques.

Different notions of uniformity can be thought of, either in terms of the circuits computing
the polynomials, or in terms of the complexity of computing the coefficients. For instance,
an inspection of the proof of Schnorr’s result mentioned above shows that the coefficients
of the polynomials can be computed in exponential time. But this complexity is generally
considered too high to qualify these polynomials as uniform.

The first problem we tackle is the existence of hard polynomials (i.e. without small circuits
over C) but with coefficients that are “easy to compute”. The search for a uniform family of
polynomials with no circuits of size nk was pursued recently by Jansen and Santhanam [7].
They show in particular that there exist polynomials with coefficients in MA (thus, uniform
in some sense) but not computable by arithmetic circuits of size nk over Z.1 Assuming
the generalised Riemann hypothesis (GRH), we extend their result to the case of circuits
over the complex field. GRH is used to eliminate the complex constants in the circuits, by
considering solutions over Fp of systems of polynomial equations, for a small prime p, instead
of solutions over C. In fact, the family of polynomials built by Jansen and Santhanam is also
uniform in the following way: it can be evaluated at integer points in MA. Along this line,
we obtain families of polynomials without arithmetic circuits of size nk over C and that can
be evaluated in AM. The arbitrary complex constants prevents us to adapt directly Jansen
and Santhanam’s method and we need to use in addition the AM protocol of Koiran [10] in
order to decide whether a system of polynomial equations has a solution over C.

Another interesting and robust notion of uniformity is provided by Valiant’s algebraic
class VNP, capturing the complexity of the permanent. The usual definition is non-uniform,
but a natural uniformity condition can be required and gives two equivalent characterisations:
in terms of the uniformity of circuits and in terms of the complexity of the coefficients. This is
one of the notions we shall study in this paper and which is also used by Raz [15] (where the
term explicit is used to denote uniform families of VNP polynomials). The second problem we
study is therefore to give an Ω(nk) lower bound on the complexity of an n-variate polynomial
in the uniform version of the class VNP. Note that from Valiant’s criterion, it corresponds to
the coefficients being in GapP, so it is a special case of coefficients that are easy to compute.
Even though MA may seem a small class in comparison with GapP (in particular due to Toda’s
theorem PH ⊆ P#P), the result obtained above does not yield lower bounds for the uniform
version of VNP.

We show how fixed-polynomial circuit size lower bound on uniform VNP is connected to
various questions in Boolean complexity. For instance, the hypothesis that NP does not have
circuits of size nk for all k, or the hypothesis that MA has circuits of size nk for some k,
both imply the lower bound on the uniform version of VNP assuming GRH. Concerning the
question on finite fields, we show an equivalence between lower bounds on uniform VNP and
standard problems in Boolean and algebraic complexity.

The paper is organised as follows. Definitions, in particular of the uniform versions of
Valiant’s classes, and useful known results are given in Section 2. Hard families of polynomials
with easy to compute coefficients, or that are easy to evaluate, are built in Section 3. Finally,

1Even though this result is not stated explicitly in their paper, it is immediate to adapt their proof to our
context.
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conditional lower bounds on uniform VNP are presented in the last section.

2 Preliminaries

Arithmetic circuits

An arithmetic circuit over a field K is a directed acyclic graph whose vertices have indegree
0 or 2 and where a single vertex (called the output) has outdegree 0. Vertices of indegree 0
are called inputs and are labelled either by a variable xi or by a constant α ∈ K. Vertices of
indegree 2 are called gates and are labelled by + or ×.

The polynomial computed by a vertex is defined recursively as follows: the polynomial
computed by an input is its label; a + gate (resp. × gate), having incoming edges from
vertices computing the polynomials f and g, computes the polynomial f + g (resp. fg). The
polynomial computed by a circuit is the polynomial computed by its output gate.

A circuit is called constant-free if the only constant appearing at the inputs is −1. The
formal degree of a circuit is defined by induction in the following way: the formal degree of a
leaf is 1, and the formal degree of a sum (resp. product) is the maximum (resp. sum) of the
formal degree of the incoming subtrees (thus constants “count as variables” and there is no
possibility of cancellation).

We are interested in sequences of arithmetic circuits (Cn)n∈N, computing sequences of
polynomials (Pn)n∈N (we shall usually drop the subscript “n ∈ N”).

Definition 1. Let K be a field. If s : N→ N is a function, a family (Pn) of polynomials over
K is in asizeK(s(n)) if it is computed by a family of arithmetic circuits of size O(s(n)) over
K.

Similarly, size(s(n)) denotes the set of (Boolean) languages decided by Boolean circuits of
size O(s(n)).

Arthur-Merlin classes

A language L is in MA if there exist a polynomial p(n) and A ∈ P such that for all x:{
x ∈ L⇒ ∃y ∈ {0, 1}p(|x|) Prr∈{0,1}p(|x|) [(x, y, r) ∈ A] > 2/3;

x 6∈ L⇒ ∀y ∈ {0, 1}p(|x|) Prr∈{0,1}p(|x|) [(x, y, r) ∈ A] 6 1/3.

A language L is in AM if there exist a polynomial p(n) and A ∈ P such that for all x:{
x ∈ L⇒ Prr∈{0,1}p(|x|) [∃y ∈ {0, 1}p(|x|) (x, y, r) ∈ A] > 2/3;

x 6∈ L⇒ Prr∈{0,1}p(|x|) [∃y ∈ {0, 1}p(|x|) (x, y, r) ∈ A] 6 1/3.

We recall that MA ⊆ AM ⊆ PH.

Counting classes

A function f : {0, 1}? → N is in #P if there exist a polynomial p(n) and a language A ∈ P
such that for all x ∈ {0, 1}?

f(x) = |{y ∈ {0, 1}p(|x|), (x, y) ∈ A}|.
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A function g : {0, 1}? → Z is in GapP if there exist two functions f, f ′ ∈ #P such that
g = f − f ′. The class C=P is the set of languages A = {x, g(x) = 0} for some function
g ∈ GapP. The class ⊕P is the set of languages A = {x, f(x) is odd} for some function
f ∈ #P. We refer the reader to [6] for more details on counting classes.

Theorem 2 (Lund et al. [13, Corollary 8]). If #P has Boolean circuits of polynomial size,
then P#P = MA.

The counting hierarchy CH was introduced in [21]: let C1P = PPP and Ci+1P = PPCiP;
then CH =

⋃
i>0 CiP.

Valiant’s classes and their uniform counterpart

Let us first recall the usual definition of Valiant’s classes.

Definition 3 (Valiant’s classes). Let K be a field. A family (Pn) of polynomials over K is in
the class VPK if the degree of Pn is polynomial in n and (Pn) is computed by a family (Cn)
of polynomial-size arithmetic circuits over K.

A family (Qn(x)) of polynomials over K is in the class VNPK if there exists a family
(Pn(x, y)) ∈ VPK such that

Qn(x) =
∑

y∈{0,1}`n
Pn(x, y)

where `n denotes the length of y in Pn.

The size of x and y is limited by the circuits for Pn and is therefore polynomial. Note
that the only difference between VPK and asizeK(poly) is the constraint on the degree of Pn.
If the underlying field K is clear, we shall drop the subscript “K” and speak only of VP and
VNP. Based on these usual definitions, we now define uniform versions of Valiant’s classes.

Definition 4 (Uniform Valiant’s classes). Let K be a field. A family of circuits (Cn) is called
uniform if the (usual, Boolean) encoding of Cn can be computed in time nO(1). A family of
polynomials (Pn) over K is in the class unif-VPK if it is computed by a uniform family of
constant-free arithmetic circuits of polynomial formal degree.

A family of polynomials (Qn(x)) over K is in the class unif-VNPK if Qn has n variables
x = x1, . . . , xn and there exists a family (Pn(x, y)) ∈ unif-VPK such that

Qn(x) =
∑

y∈{0,1}`n
Pn(x, y)

where `n denotes the length of y in Pn.

The uniformity condition implies that the size of the circuit Cn in the definition of unif-VP
is polynomial in n. Note that unif-VPK and unif-VNPK only depend on the characteristic
of the field K (indeed, since no constant from K is allowed in the circuits, these classes are
equal to the ones defined over the prime subfield of K).

In the definition of unif-VNP, we have chosen to impose that Qn has n variables because
this enables us to give a very succinct and clear statement of our questions. This is not what
is done in the usual non-uniform definition where the number of variables is only limited by
the (polynomial) size of the circuit.

The well-known “Valiant’s criterion” (see e.g. [4, Proposition 2.20]) is easily adapted to
the uniform case in order to obtain the following alternative characterisation of unif-VNP.
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Proposition 1 (Valiant’s criterion). In characteristic zero, a family (Pn) is in unif-VNP iff
Pn has n variables, a polynomial degree and its coefficients are computable in GapP; that is,
the function mapping (c1, . . . , cn) to the coefficient of Xc1

1 · · ·Xcn
n in Pn is in GapP.

The same holds in characteristic p > 0 with coefficients in “GapP mod p”2.

Over a field K, a polynomial P (x1, . . . , xn) is said to be a projection of a polynomial
Q(y1, . . . , ym) if P (x1, . . . , xn) = Q(a1, . . . , am) for some choice of a1, . . . , am ∈ {x1, . . . , xn}∪
K. A family (Pn) reduces to (Qn) (via projections) if Pn is a projection of Qq(n) for some
polynomially bounded function q.

The permanent polynomial is defined by

pern(x1,1, . . . , xn,n) =
∑
σ

n∏
i=1

xi,σ(i),

where the sum is on all permutations σ ∈ Sn. The family (pern) is known to be VNP-complete
(for projections) over any field of characteristic different from 2. The Hamiltonian Circuit
polynomial is defined by

HCn(x1,1, . . . , xn,n) =
∑
σ

n∏
i=1

xi,σ(i),

where the sum is on all cycles σ ∈ Sn (i.e. on all the Hamiltonian cycles of the complete graph
over {1, . . . , n}). The family (HCn) is known to be VNP-complete (for projections) over any
field [20].

Elimination of complex constants in circuits

The method used to handle polynomial systems over C is based on the theorem below. The
satisfiability of such a system over C is reduced to its satisfiability over small finite fields Fp:
for this we need to assume the generalised Riemann hypothesis. This conjecture is widely
believed to be true and implies precise results on the distribution of prime numbers. The
following theorem shows in particular that if a system of polynomial equations with integer
coefficients has a solution over the complex field then it has a solution modulo a small enough
prime number p. Without the generalised Riemann hypothesis, this number p would be too
large to derive our results. The following theorem is a weakening of [10] adapted to our
purpose.

Theorem 5 (Koiran [10, Theorems 1 and 8]). Let S be a system of polynomial equations

P1(x1, . . . , xn) = 0, . . . , Pr(x1, . . . , xn) = 0

over n unknowns, with coefficients in Z and with the following parameters: r 6 2n
a

for some

a, coefficients with absolute value bounded by 22
na

and for all i, the degree of Pi is at most
2n

a
.
Assume GRH. There exist integers m = nO(a) and x0 = 2n

O(a)
such that the following

holds. Let E be the set of primes p smaller than x0 such that S has a solution modulo p.

• If S is not satisfiable over C, then |E| 6 2m−2;

2This is equivalent to the fact that for all v ∈ Fp, the set of monomials having coefficient v is in ModpP.
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• If S is satisfiable over C, then |E| > m2m.

Furthermore, if S is satisfiable over C, then it is satisfiable over Fp for some 2n
a
< p <

2n
O(a)

.

We shall also need an upper bound on the following problem HN (named after Hilbert’s
Nullstellensatz):

Input A system S = {P1 = 0, . . . , Pm = 0} of n-variate polynomial equations with integer
coefficients, each polynomial Pi ∈ Z[x1, . . . , xn] being given as a constant-free arithmetic
circuit.

Question Does the system S have a solution in Cn?

Theorem 6 (Koiran [11]). Assuming GRH is true, HN ∈ AM.

Let us now state a consequence of VNP having small arithmetic circuits over the complex
field.

Theorem 7 (Bürgisser [4, Corollary 4.6]). Assume GRH. If (pern) ∈ asizeC(nO(1)) then #P
has Boolean circuits of polynomial size.

Finally, we shall need several times the following straightforward consequence of Theo-
rem 7, Theorem 2 and Toda’s theorem.

Corollary 1. Assume GRH. If (pern) ∈ asizeC(nO(1)), then PH = MA.

3 Hard polynomials with coefficients in MA

We begin with lower bounds on polynomials with coefficients in PH before bringing them
down to MA.

Hard polynomials with coefficients in PH

Theorem 8. Assume GRH is true. For any constant k, there is a family (Pn) of univariate
polynomials with coefficients in {0, 1} satisfying:

• deg(Pn) = nO(1) (polynomial degree);

• the coefficients of Pn are computable in PH, that is, on input (1n, i) we can decide in
PH if the coefficient of xi is 1;

• (Pn) is not computed by arithmetic circuits over C of size nk.

Proof. Fix k. By Schnorr [17], there exists a sequence of univariate polynomials with coeffi-
cients in {0, 1}, degree d = n3k and without circuits of size nk over C.

As we explain in the next paragraph, the problem CS of whether a polynomial
∑d

i=0 aiX
i

given by its integer coefficients (in binary) has an arithmetic circuit of size nk over C belongs
to PH. Then, as in Kannan’s proof [9], we can define in PHCS the smallest tuple of coefficients
(a0, . . . , ad) ∈ {0, 1}d+1 (in the lexicographic order) such that

∑d
i=0 aiX

i has no arithmetic
circuit of size nk over C. This gives the family (Pn) of the theorem.
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Let us now show that CS ∈ PH. If C(X,α1, . . . , αt) is an arithmetic circuit using constants
α1, . . . , αt ∈ C, we call its skeleton the circuit C(X,u1, . . . , ut) where the constants α1, . . . , αt
are replaced with different formal variables u1, . . . , ut. The polynomial

∑d
i=0 aiX

i is com-
puted by an arithmetic circuit of size nk over C if and only if there exist a circuit skeleton
C(X,u1, . . . , ut) of size nk and α1, . . . , αt ∈ C for which the coefficients of C(X,α1, . . . , αt)
are a0, . . . , ad. Computing the homogeneous components of C gives circuits Ci(u1, . . . , ut)
(0 6 i 6 d) of size O(dnk) for the coefficients of X0, X1, . . . , Xd in C(X,u1, . . . , ut). The
system {Ci(u1, . . . , ut) = ai : 0 6 i 6 d} with unknowns u1, . . . , ut has a solution over C if
and only if

∑d
i=0 aiX

i is computed by some instantiation of the skeleton C(X,u1, . . . , ut). By
Theorem 6, if we assume GRH then deciding if this system has a solution is in AM. Hence,
CS ∈ NPAM ⊆ PH.

Alternatively, one could show the existence of n-variate polynomials, with 0-1 coefficients
in PH, with total degree O(k) and without circuits of size nk over C.

Hard polynomials with coefficients in MA

Allowing n variables and degree nO(1), we can even obtain lower bounds for polynomials with
coefficients in MA.

Corollary 2. Assume GRH is true. For any constant k, there is a family (Pn) of polynomials
on n variables, of degree nO(1), with coefficients in {0, 1} computable in MA, and such that
(Pn) 6∈ asizeC(nk).

Proof. If the permanent family (pern) does not have circuits of polynomial size over C, con-
sider the following variant with n variables: per′n(x1, . . . , xn) = perb

√
nc(x1, . . . , xb

√
nc2). This

is a family whose coefficients are in P (hence in MA) and without circuits of size nk.
On the other hand, if the permanent family (pern) has circuits of polynomial size over C,

then PH = MA under GRH by Corollary 1. Therefore the family of polynomials of Theorem 8
has its coefficients in MA.

Hard polynomials that can be evaluated in AM

A family of polynomials (Pn(x1, . . . , xn)) is said to be evaluable in AM if

{(a1, . . . , an, i, b) | the i-th bit of Pn(a1, . . . , an) is b} ∈ AM,

where a1, . . . , an, i are integers given in binary and b ∈ {0, 1}.
What is the relationship between polynomials with easy-to-compute coefficients and poly-

nomials that are easy to evaluate? For univariate polynomials with a polynomial degree and
integer coefficients of polynomial size, these two notions can be related as follows. For a
complexity class C, if a polynomial is evaluable in C, the bits of its coefficients are in PC by
interpolation. Conversely, if the bits of its coefficients are in C, the polynomial can be evalu-
ated in PC. For multivariate polynomials, it seems there is no implication between these two
notions. Some polynomials have easy-to-compute coefficients but are believed to be hard to
evaluate: this is the case of the permanent. Conversely, although it seems difficult to produce
an example of an easy-to-evaluate polynomial with hard-to-compute coefficients, there are
easy-to-evaluate polynomials whose partial coefficients are hard: for example, the coefficient
of x1 . . . xn in

∏n
i=1

∑n
j=1 yi,jxj is the permanent of the matrix (yi,j).
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In the next proposition, we show how to obtain hard polynomials which can be evaluated in
AM. The method is based on Santhanam [16] and Koiran [11]. The protocol described below
heavily relies on the technique used in [11, Theorem 2] to prove that HN ∈ AM. However,
this two-round protocol is not used as a black box since the system of equations considered
in our proof is of exponential size and handled implicitly.

Lemma 1 (Kabanets and Impagliazzo [8]). The language

L = {(C, n, p) : the arithmetic circuit C computes pern over Fp}

belongs to coRP.

Theorem 9. Assume GRH is true. For any constant k, there is a family (Pn) of polynomials
on n variables, with coefficients in {0, 1}, of degree nO(1), evaluable in AM and such that
(Pn) 6∈ asizeC(nk).

Proof. We adapt the method of Santhanam [16] to the case of circuits with complex constants.
If the permanent has polynomial-size circuits over C, then PH = MA by Corollary 1.

Hence the family of polynomials of Theorem 8 is evaluable in MA ⊆ AM.
Otherwise, call s(n) the minimal size of a circuit over C for pern. The n-tuple of variables

(x1, . . . , xn) is split in two parts (y, z) in the unique way satisfying 0 < |y| 6 |z| and |z| a
power of two. Remark therefore that |y| can take all the values from 1 to |z| depending on n.
We now define the polynomial Pn(y, z):{

Pn(y, z) = per√|y|(y) if |y| is a square and s(
√
|y|) 6 n2k

Pn(y, z) = 0 otherwise.

The variables z are only used as padding to bring down the complexity of the permanent
below n2k.

Let us first show that (Pn) does not have circuits of size nk. By hypothesis there exist
infinitely many n such that s(n) > (3n2)2k: let n0 be one of them and take m the least power
of two such that s(n0) 6 (m+n20)

2k, which implies m > 2n20. Let n1 = m+n20: by definition of
(Pn), we have Pn1(y, z) = pern0

(y). By definition of m, s(n0) > (m/2+n20)
2k > (n1/2)2k > nk1.

This means that pern0
, and hence Pn1 , does not have circuits of size nk1.

We now show that (Pn) can be evaluated in AM. We give an MAMA protocol which is
enough since MAMA = AM (see [2]).

Recall that the variables x = (x1, . . . , xn) of Pn are split into (y, z) as above. If |y| is not
a square, then Pn(x) = 0 and Arthur will accept if and only if b = 0. We now assume |y| is a
square and let t =

√
|y|.

In the protocol, Merlin will send a constant-free circuit C(y, u) of size s 6 n2k where
|y| = t2 and u is a tuple of variables. From this circuit we define a system of polynomial
equations

S =
{
C(ε, u) = pert(ε) : ε ∈ {0, . . . , 2s}|y|

}
,

where the unknowns are u.
If the variables u can be replaced by complex numbers α such that C(y, α) computes the

permanent over the complex field, then S is obviously satisfiable. Conversely, if S is satisfiable,
there exists α ∈ C|u| such that C(y, α) computes the permanent over {0, . . . , 2s}|y|; since the
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degree of the polynomial computed by the circuit C(y, α) is at most 2s, C(y, α) is equal to
the permanent by interpolation (e.g. Schwartz-Zippel lemma).

The system S has the following parameters: the number of variables is |u| which is at most
s, the degree of each equation is bounded by 2s, the number of equations is 2O(s|y|) = 2O(s2)

and the absolute value of each coefficient is 22
sO(1)

. Hence, by Theorem 5, there are integers
m = sO(1) and x0 = 2s

O(1)
such that the following holds. Let E be the set of primes p smaller

than x0 such that S has a solution modulo p.

• If S is not satisfiable over C, then |E| 6 2m−2;

• If S is satisfiable over C, then |E| > m2m.

Testing if |E| is large or small will be done via the following probabilistic argument from [11].
For an integer p 6 x0, let p̂ ∈ F2

log x0 denote the binary representation of p. For some matrices
Aj over F2 of size m× log x0, the predicate φ(A1, . . . , Am) is defined as

∃p0, p1, . . . , pm ∈ E : ψ(A1, . . . , Am, p0, . . . , pm)

where

ψ(A1, . . . , Am, p0, . . . , pm) ≡
m∧
j=1

(Aj p̂0 = Aj p̂j ∧ p0 6= pj) .

If Aj are seen as hashing functions, the predicate φ above expresses that there are enough
collisions between elements of E. It is proved in [11] that if |E| 6 2m−2, the probability that
φ(A1, . . . , Am) holds is at most 1/2 when the matrices Aj are chosen uniformly at random,
whereas it is 1 when |E| > m2m. Checking if pj ∈ E will be done by testing if a circuit
computes the permanent over Fpj .

We are now ready to explain the MAMA protocol to evaluate the family (Pn). Let
(a1, . . . , an, i, b) be the input. As for (x1, . . . , xn), we split (a1, . . . , an) into (a′, a′′) such
that |a′| = |y| = t2. The protocol is the following:

• Merlin sends a constant-free circuit C(y, u) of size s 6 n2k where u is a tuple of variables.
The circuit C(y, u) is the skeleton of a circuit supposedly computing pert over C (that
is, there is a way to replace the formal variables u with elements from C such that the
circuit computes pert).

• Arthur sends to Merlin random matrices A1, . . . , Am over F2.

• Merlin sends prime integers p0, . . . , pm together with constants αpj ∈ F|u|pj for C, for all
0 6 j 6 m. He also sends a prime number p > t!M t (where M is the largest value in

a′ = (a1, . . . , at2)) and constants αp ∈ F|u|p for C.

• Arthur checks that ψ(A1, . . . , Am, p0, . . . , pm) is true. Then he checks that all pj and p
are primes and that the circuits C(y, αpj ) and C(y, αp) compute the permanent modulo
p0, . . . , pm, p using Lemma 1. If any of these tests fails, Arthur accepts iff b = 0.
Otherwise, he computes C(a′, αp) and accepts iff its i-th bit is equal to b.

If s(|y|) 6 n2k, then Pn(y, z) = pert(y). We show that Merlin can convince Arthur with
probability 1. Merlin sends a correct skeleton C: since |E| > m2m, there are prime integers
p0, . . . , pm ∈ E such that ψ(A1, . . . , Am, p0, . . . , pm) holds. Merlin sends such numbers pj
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together with the correct constants for the circuit C to compute the permanent modulo pj .
He also sends p with the correct constants for the permanent modulo p: p and the constants
are guaranteed to exist by Theorem 5. In the fourth round, all the verifications are satisfied
with probability 1 and Arthur computes the permanent modulo p (which is larger than the
permanent of the input) and therefore gives the right answer.

On the other hand, if s(|y|) > n2k then |E| 6 2m−2. Whatever Merlin sends as prime
numbers pj , the probability (over the matrices Aj) that all pj belong to E and produce a
collision is at most 1/2. Since the error when testing if pj ∈ E can be made as small as
we wish (testing if C(y, αpj ) computes pert(y) mod pj is done in coRP by Lemma 1), the
probability that the whole protocol gives the wrong answer in this case is bounded by 2/3.

4 Conditional lower bounds for uniform VNP

Recall that by definition, the n-th polynomial of a family in unif-VNP has exactly n variables
(as opposed the usual definition of VNP where it is nO(1)), which makes the results in this
section non trivial.

In characteristic zero

In this whole subsection we assume GRH is true. Our main result is that if for all k, C=P
has no circuits of size nk, then the same holds for unif-VNP (in characteristic zero). For the
clarity of exposition, we first prove the weaker result where the assumption is on the class NP
instead.

Lemma 2. If there exists k such that unif-VNP ⊆ asizeC(nk), then there exists ` such that
NP ⊆ size(n`).

Proof. Let us assume that unif-VNP ⊆ asizeC(nk). Let L ∈ NP. There is a polynomial q
and a polynomial time computable relation φ : {0, 1}∗ × {0, 1}∗ → {0, 1} such that for all
x ∈ {0, 1}n, x ∈ L if and only if ∃y ∈ {0, 1}q(n) φ(x, y) = 1.

We define the polynomial Pn by

Pn(X1, . . . , Xn) =
∑

x∈{0,1}n

 ∑
y∈{0,1}q(n)

φ(x, y)

 n∏
i=1

Xxi
i (1−Xi)

1−xi .

Note that for x ∈ {0, 1}n, Pn(x) is the number of elements y in relation with x via φ. By
Valiant’s criterion (Proposition 1), the family (Pn) belongs to unif-VNP in characteristic 0.
By hypothesis, there exists a family of arithmetic circuits (Cn) over C computing (Pn), with
Cn of size t = O(nk).

Let α = (α1, . . . , αt) be the complex constants used by the circuit Cn: then Pn(X1, . . . , Xn)
= Cn(X1, . . . , Xn, α). Take one unknown Yi for each αi and one additional unknown Z, and
consider the following system S:{ (∏

x∈L∩{0,1}n Cn(x, Y )
)
· Z = 1

Cn(x, Y ) = 0 for all x ∈ {0, 1}n \ L.

Let β =
(∏

x∈L∩{0,1}n Cn(x, α)
)−1

. Then (α, β) is a solution of S over C.

10



The system S has t + 1 = O(nk) unknowns. The degree of Cn(x, Y ) is bounded by 2t;

hence the degree of S is at most 2O(nk). Moreover, the absolute value of the coefficients of the

polynomials in S is bounded by 22
O(nk)

. Since the system S has the solution (α, β) over C,

by Theorem 5 it has a solution over Fp for p = 2n
O(k)

. (Note that introducing one equation
Cn(x, Y )Zx = 0 for each x ∈ L∩ {0, 1}n in the system S instead of the single equation above
would not work since it would require to introduce an exponential number of new variables
Zx.)

Consider such a prime number p and (α′, β′) a solution of the system S over Fp. By
definition of S, when the circuit Cn is evaluated over Fp, the following is satisfied:{

∀x ∈ L ∩ {0, 1}n, Cn(x, α′) 6= 0,

∀x ∈ {0, 1}n \ L, Cn(x, α′) = 0.

Computations over Fp can be simulated by Boolean circuits, using log2 p bits to represent an
element of Fp, and O(log2 p) gates to simulate an arithmetic operation. This yields Boolean
circuits of size n` for ` = O(k) to decide the language L.

Theorem 10. Assume GRH is true. Suppose one of the following conditions holds:

1. NP 6⊂ size(nk) for all k;

2. C=P 6⊂ size(nk) for all k;

3. MA ⊂ size(nk) for some k;

4. NP = MA.

Then unif-VNP 6⊂ asizeC(nk) for all k.

Proof. The first point is proved in Lemma 2.
The second point subsumes the first since coNP ⊆ C=P. It can be proved in a very similar

way. Indeed consider L ∈ C=P and f ∈ GapP such that x ∈ L ⇐⇒ f(x) = 0, and its
associated family of polynomials

Pn(X1, . . . , Xn) =
∑

x∈{0,1}n
f(x)

n∏
i=1

Xxi
i (1−Xi)

1−xi

as in the proof of Lemma 2. Then for all x ∈ {0, 1}n, Pn(x) = 0 iff x ∈ L. The family (Pn)
belongs to unif-VNP and thus, assuming unif-VNP ⊂ asizeC(nk), has arithmetic circuits (Cn)
over C of size t = O(nk). Constants of C are replaced with elements of a small finite field by
considering the system: {

Cn(x, Y ) = 0 for all x ∈ L ∩ {0, 1}n(∏
x∈{0,1}n\LCn(x, Y )

)
· Z = 1.

The end of the proof is similar.
For the third point, let us assume unif-VNP ⊂ asizeC(poly). Then the uniform family (pern)

has circuits of polynomial size over C. Therefore under GRH, PH = MA by Corollary 1. This
implies MA 6⊂ size(nk) for all k since PH 6⊂ size(nk) for all k [9].

For the last point, assume NP = MA. If NP is without nk-size circuits for all k, then the
conclusion comes from the first point. Otherwise MA has nk-size circuits for some k and the
conclusion follows from the previous point.

11



For any constant c, the class PNP[nc] is the set of languages decided by a polynomial time
machine making O(nc) calls to an NP oracle. It is proven in [5] that NP ⊂ size(nk) implies
PNP[nc] ⊂ size(nck

2
). Hence, it is enough to assume fixed-polynomial lower bounds on this

larger class PNP[nc] for some c to get fixed-polynomial lower bounds on unif-VNPC.

An unconditional lower bound in characteristic zero

In this part we do not allow arbitrary constants in circuits. We consider instead circuits with
−1 as the only scalar that can label the leaves. For s : N→ N, let asize0(s(n)) be the family of
polynomials computed by families of unbounded degree constant-free circuits of size O(s(n))
(in characteristic zero). Note that the formal degree of these circuits are not polynomially
bounded: hence, large constants produced by small arithmetic circuits can be used.

We first need a result of [1]. Let PosCoefSLP be the following problem: on input (C, i)
where C is a constant-free circuit with one variable x and i is an integer, decide whether the
coefficient of xi in the polynomial computed by C is positive.

Theorem 11 (Allender et al. [1]). PosCoefSLP is in CH.

The following result extends Theorem 2 to CH.

Lemma 3. If #P has polynomial size circuits, then CH = MA.

Proof. If #P has circuits of polynomial size, then by Theorem 2, C1P = PPP = P#P = MA.
Assume we have proved CiP = MA: then Ci+1P = PPCiP = PPMA. But PPPH = PPP

by [19] (see also [6, Corollary 4.17]). Hence Ci+1P = PPP = MA. It follows that CH = MA.

Theorem 12. unif-VNP 6⊂ asize0(n
k) for all k.

Proof. If the permanent family does not have constant-free arithmetic circuits of polynomial
size, then the variant with n variables per′n(x1, . . . , xn) = perb

√
nc(x1, . . . , xb

√
nc2) matches the

statement.
Otherwise #P has polynomial size circuits, hence CH = MA by Lemma 3. For a given

constant-free circuit C computing a univariate polynomial P =
∑d

i=0 aix
i, its “sign condition”

is defined as the series (bi)i∈N where bi ∈ {0, 1}, bi = 1 iff ai > 0.

Note that for some constant α, there are at most 2n
αk

different sign conditions of constant-
free circuits of size nk (at most one per circuit). Hence there exists a sign condition

(b0, . . . , bnαk , 0, 0, . . . )

such that any polynomial with such a sign condition is not computable by constant-free
circuits of size nk. We define b0, . . . , bnαk to be the lexicographically first such bits.

We can express these bits as the first in lexicographic order such that for every constant-
free circuit C, there exists i such that:

bi = 0 iff the coefficient of xi in C is positive.

Therefore they can be computed in PHPosCoefSLP, hence in CH by Theorem 11, hence in MA
since CH = MA. By reducing the probability of error in the MA protocol, this means that
there exists a polynomial-time function a : {0, 1}? → {0, 1} such that:{

∃y
∑

r a(i, y, r) > (1− 2−|y|−1)N if bi = 1

∀y
∑

r a(i, y, r) 6 2−|y|−1N if bi = 0,

12



where y and r are words of polynomial size, and where N = 2|r|. Now, the following polyno-
mial family:

Pn(x) =

nαk∑
i=0

((∑
y,r

a(i, y, r)
)
−N/2

)
xi

is in unif-VNP and has sign condition (b0, . . . , bnαk , 0, 0, . . . ).

In positive characteristic

This subsection deals with fixed-polynomial lower bounds in positive characteristic. The
results are presented in characteristic 2 but they hold in any positive characteristic p (replacing
⊕P with ModpP). We recall that the permanent family is not VNP-complete in characteristic
2. That is why we use the Hamiltonian circuit family (HCn) instead.

Lemma 4. Consider the polynomial

P (X1, . . . , Xn) =
∑

y1,...,yp∈{0,1}

C(X1, . . . , Xn, y1, . . . , yp)

where C is an arithmetic circuit of size s computing a polynomial of total degree at most d
(with respect to all the variables X1 . . . , Xn, y1, . . . , yp). Then P is a projection of HC(sd)O(1).

Proof. This lemma follows from a careful inspection of the proof of VNP-completeness of the
Hamiltonian circuit polynomial given in Malod [14]. We give some more details below.

From the fact that VNP = VNPe [4, Theorem 2.13], we can write P as a Boolean sum of
formulas, i.e.

P (X1, . . . , Xn) =
∑

z1,...,zq∈{0,1}

F (X1, . . . , Xn, z1, . . . , zq).

Moreover, q = sO(1) and an inspection of the proof of VNP = VNPe given in [14] shows that
the size of the formula F is (sd)O(1). By [14, Lemme 8], a formula is a projection of the
Hamiltonian circuit polynomial of linear size. This yields

P (X1, . . . , Xn) =
∑

z1,...,zq∈{0,1}

HCs′(a1, . . . , as′)

where s′ = (sd)O(1) and ai ∈ {X1, . . . , Xn, z1, . . . , zq,−1, 0, 1}. At last, in order to write this
exponential sum as a projection of a not too large Hamiltonian circuit, a sum gadget of size
O(q) and O(s′) XOR gadgets of size O(1) are needed [14, Théorème 7]. Hence, the polynomial
P is a projection of HC(sd)O(1) .

Theorem 13. The following are equivalent:

• unif-VNPF2 ⊂ asizeF2(nk) for some k;

• VPF2 = VNPF2 and ⊕P ⊂ size(nk) for some k.

Proof. Suppose that unif-VNPF2 ⊂ asizeF2(nk). Then the Hamiltonian polynomials (HCn) (in
n2 variables) have O(n2k) size circuits and thus VP = VNP over F2. Let L ∈ ⊕P and the
corresponding function f ∈ #P so that

x ∈ L ⇐⇒ f(x) is odd.

13



Consider the sequence of polynomials Pn ∈ F2[X1, . . . , Xn] associated to L:

Pn(X1, . . . , Xn) =
∑

x∈{0,1}n
f(x)

n∏
i=1

Xxi
i (1−Xi)

1−xi .

This family belongs to unif-VNP over F2. Hence, Pn has O(nk) size circuits. It can be
simulated by a Boolean circuit of the same size within a constant factor, and yields O(nk)
size circuits for L. Hence ⊕P ⊂ size(nk).

For the converse, suppose that ⊕P ⊂ size(nk) and VPF2 = VNPF2 , and let (Pn) ∈
unif-VNPF2 . We can write

Pn(X1, . . . , Xn) =
∑

m1,...,mn∈{0,...,d}

φ(m1, . . . ,mn)
n∏
i=1

Xmi
i

where d is a bound on the degree of each variable of Pn. Since the coefficients of Pn belong
to ⊕P, they can be computed by Boolean circuits of size O(ñk) with ñ = n log n (by our
hypothesis on circuit size for ⊕P languages and the fact that the function φ takes n log d
bits).

These Boolean circuits can in turn be simulated by (Boolean) sums of arithmetic circuits
of size and formal degree O(ñk) by the usual method (see e.g. the proof of Valiant’s criterion
in [4]).

Hence we have written Pn =
∑

m̃ ψ(m̃)Xm̃, i.e. Pn is a sum over O(ñk) variables in F2

of an arithmetic circuit ψ of size O(ñk), and the degree of ψ is O(ñk). By Lemma 4, Pn
is a projection of HCñO(k) . By hypothesis, the uniform family (HCn) has O(nk) arithmetic

circuits. Hence, (Pn) has arithmetic circuits of size nO(k2).
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