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Introduction

I Computation of sequences of polynomials by families of

arithmetic circuits.

I Polynomial-size circuits: Valiant’s class VP.

I Exponential sums of VP families: Valiant’s class VNP.

I What about exponential products? −→ VΠP.

I What if VΠP has small circuits (i.e. VP = VΠP)?
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Outline

1. Arithmetic circuits, Valiant’s classes.

2. VΠP, definition and first results.

3. Algebraic complexity: BSS classes.

4. Main result:

if VP = VΠP then NP(K ,+,−,=) has small circuits.



Arithmetic circuits
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Variables and constants of K as inputs, +, − and × gates:

a circuit computes a polynomial f ∈ K [x1, . . . , xn].



Valiant’s classes

Definition

I VP: family (fn) of polynomials computed by a family of

polynomial-size arithmetic circuits, and of polynomial degree.

I VNP: family (gn) such that there exists (fn(x̄ , ȳ)) ∈ VP
satisfying

gn(x̄) =
∑

ε̄

fn(x̄ , ε̄)

where the summation is taken over ε̄ ∈ {0, 1}p(n).

Example of VNP family:

pern(x1,1, x1,2, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi ,σ(i).

Guillaume Malod 2003: no bound on the degree.

From now on, VP designates Malod’s version.
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VΠP

Definition (VΠP)

Family (gn) such that there exists (fn(x̄ , ȳ)) ∈ VP satisfying

gn(x̄) =
∏
ε̄

fn(x̄ , ε̄)

where the product is taken over ε̄ ∈ {0, 1}p(n).

Example

gn(X ) =
2n−1∏
i=0

(X − i)

Then gn(X ) =
∏

ε̄∈{0,1}n

fn(X , ε̄), where

fn(X , ε̄) = X −
n∑

i=1

εi2
i .
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Does VΠP equal VP?

Theorem
If VΠP0 = VP0 (constant-free classes)

then P/poly = NP/poly.

Proof.
Take A in NP/poly: family (Cn) of polynomial-size boolean

circuits such that

x ∈ A⇐⇒ ∃y ∈ {0, 1}p(n)(Cn(x , y) = 0).

Simulate Cn by an arithmetic circuit Dn −→ family VP.

x ∈ A⇐⇒
∏

y Dn(x , y) = 0 −→ testing a VP0 family to zero.

Done in BPP (Schwartz 1980),

thus in P/poly (Adleman 1978).
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BSS complexity

I Computation over arbitrary fields K , languages A ⊆ (
⋃

n Kn).

I Allowed operations: +, −, × and equality tests.

I PK : languages recognized by a family of polynomial-size

algebraic circuits.

I NPK : existential version, i.e. there exists B ∈ PK such that

x ∈ A⇐⇒ ∃y ∈ Kp(n)(x , y) ∈ B.

I Twenty questions (Shub and Smale): decide whether the

input x is in {0, 1, . . . , 2n − 1}. This problem is in

NP(C,+,−,=) but suspected to be outside of PC.

If VΠP = VP, it is in PC by computing
∏2n−1

i=0 (X − i).
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Transfer theorem

Theorem
Any problem in NP(K ,+,−,=) is solved by a family of

polynomial-size circuits with +, −, ×, = and VΠP gates.

Corollary

If VΠP = VP then any problem in NP(K ,+,−,=) is solved by a

family of polynomial-size circuits over the field K.

Proof (of the theorem).

Let A ∈ NP(K ,+,−,=): there is B ∈ P(K ,+,−,=) such that

x ∈ A⇐⇒ ∃y ∈ {0, 1}p(n)((x , y) ∈ B) (Koiran 1994).

B is recognized by a family (Cn) of circuits with +, − and =

gates. Tests made by Cn(x , y) are of the form∑
λixi =

∑
µiyi + γ. Coefficients < 2poly(n) in absolute value.
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Therefore if x and x ′ belong to exactly the same hyperplanes with

polynomial-size coefficients, they are both in A or both outside of

A. −→ Arrangement of hyperplanes.

The cell of x : F = (
⋂
x∈H

H) \ (
⋃

x 6∈H′

H ′).

Goal: decide whether the cell F of the input x is in A.

First step: Find F .

Algorithm: maintain a search space E containing x .

I E ← Kn.

I Repeat (while H exists):
I by binary search, find the first hyperplane H such that x ∈ H

and E ∩ H 6= E (VΠP test:
∏

H/E 6⊆H

ϕH(x) = 0?);

I E ← E ∩ H.

I Output E .
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Second step: Decide whether F ⊆ A or F ⊆ Kn \ A.

Algorithm:

I Find a “small” rational point q in F ;

I decide whether q ∈ A.

The first point is easy from the list of hyperplanes defining F .

The second point is done thanks to a VΠP test. Indeed,

q ∈ A⇐⇒ ∃y ∈ {0, 1}p(n)(q, y) ∈ B.

(q, y) ∈ B is decided by boolean circuit Cn. The family (Cn) is

simulated by a VP family (gn), hence:

q ∈ A⇐⇒
∏

y∈{0,1}p(n)

gn(q, y) = 0.
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Current and future work

I What about the other direction: PK = NPK ⇒ VP = VΠP?

I One can define a whole hierarchy by alternating
∑

and
∏

,

and a class VPSPACE containing it.

V∏P

V∑P V∏∑P

V∑∏P

VP

...

...

VPSPACE

I VPSPACE enables to manipulate hypersurfaces instead of

hyperplanes, thus taking × into account:

VP = VPSPACE =⇒ PC = PARC.
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Thank you!

1. Arithmetic circuits, Valiant’s classes.

2. VΠP, definition and first results.

3. Algebraic complexity: BSS classes.

4. Main result:

if VP = VΠP then NP(K ,+,−,=) has small circuits.
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