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Computation of by families of
arithmetic circuits.

Polynomial-size circuits: Valiant's class VP.
Exponential sums of VP families: Valiant's class VNP.
What about — VIIP.

What if VI1P has small circuits (i.e. VP = VIP)?



1. Arithmetic circuits, Valiant's classes.
2. VP, definition and first results.
3. Algebraic complexity: BSS classes.

4. Main result:

if VP = VTP then NP(K7+7,,:) has small circuits.
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Variables and constants of K as inputs, +, — and x gates:
a circuit computes a feKlxi,...,x.
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VNP: family (gn) such that there exists (f,(x,y)) € VP
satisfying

gn()_() = Z fn()_(a E)

where the summation is taken over € € {0,1}P(").

n
per,(x1,1,X1,2, - -+, Xn,n) = E Hx,-’g(,-).

o€S,i=1
Guillaume Malod 2003:
From now on, VP designates Malod'’s version.
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Family (gn) such that there exists (f,(x,¥)) € VP satisfying
gn(x) =[] f(x,9

where the product is taken over & € {0,1}P(").

i=0
Then gn(X) = H fa(X,€), where
ee{0,1}"

(X, ) =X =D 2.
i=1
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If VITP® = VPO (constant-free classes)
then P /poly = NP /poly.

Take A in NP /poly: family (C,) of polynomial-size boolean
circuits such that

x € A< 3y € {0,1}P"(C,(x, y) = 0).

Simulate C, by an arithmetic circuit D, — family VP.

x € A<= ], Dn(x,y) = 0 — testing a VP? family to zero.
Done in BPP (Schwartz 1980),

thus in P/poly (Adleman 1978).
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Computation over arbitrary fields K, languages A C (|J, K").
Allowed operations: 4+, —, X and

Pk: languages recognized by a family of polynomial-size
algebraic circuits.

NPg: existential version, i.e. there exists B € Pk such that

x € A<= 3y e KP("(x,y) € B.

(Shub and Smale): decide whether the
input x is in {0,1,...,2" —1}. This problem is in
NP(c +,—,—) but suspected to be outside of Pc.
If VTP = VP, it is in Pc by computing H?;al(X — ).
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Any problem in NP . _ _y is solved by a family of
polynomial-size circuits with 4+, —, X, = and VIIP gates.

If VIIP = VP then any problem in NP , _ _y is solved by a
family of polynomial-size circuits over the field K.

Let A € NP(K,JD,’:): there is B € P(K7+’,,:) such that
x € A<= 3Ty € {0,1}*("((x,y) € B) (Koiran 1994).

B is recognized by a family (C,) of circuits with 4+, — and =
gates. Tests made by C,(x, y) are of the form
Yo Aixi = > piyi + . Coefficients < 2poly(n) in absolute value.
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polynomial-size coefficients, they are both in A or both outside of
A. — Arrangement of hyperplanes.

The of x: F=([1H\(J H).

xeH x¢H'

decide whether the cell F of the input x is in A.



Therefore if x and x’ belong to exactly the same hyperplanes with
polynomial-size coefficients, they are both in A or both outside of
A. — Arrangement of hyperplanes.

The of x: F=([1H\(J H).
xeH xgH'
decide whether the cell F of the input x is in A.
Find F.
Algorithm: maintain a search space E containing x.
E— K"
Repeat (while H exists):

by binary search, find the first hyperplane H such that x € H
and ENH#E (VP test: [ eu(x) =0?);

H/EZH
E—ENH.

Output E.
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Decide whether F C Aor F C K"\ A.
Algorithm:

Find a “small” rational point g in F;

decide whether g € A.

The first point is easy from the list of hyperplanes defining F.
The second point is done thanks to a VIP test. Indeed,
ge A< 3ye{0,1}*"(q,y) € B.

(gq,y) € B is decided by circuit C,. The family (C,) is
simulated by a VP family (g,), hence:

geA«<= ][] eanla.y)=0.
ye{0,1}7(0
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What about the other direction: Py = NPy = VP = VIP?
One can define a whole hierarchy by alternating > and [],
and a class VPSPACE containing it.

VEP — VT3P — ...

/V

VP VPSPACE

/

VP —— V[P —— ...

VPSPACE enables to manipulate instead of
hyperplanes, thus taking x into account:

VP = VPSPACE = P¢ = PARc.
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