Valiant's model: from exponential sums
 to exponential products

Pascal Koiran Sylvain Perifel

LIP, ENS Lyon

MFCS, August 31, 2006

- Computation of sequences of polynomials by families of arithmetic circuits.
- Polynomial-size circuits: Valiant's class VP.
- Exponential sums of VP families: Valiant's class VNP.
- Computation of sequences of polynomials by families of arithmetic circuits.
- Polynomial-size circuits: Valiant's class VP.
- Exponential sums of VP families: Valiant's class VNP.
\triangleright What about exponential products? $\longrightarrow \mathrm{V} П \mathrm{P}$.
- Computation of sequences of polynomials by families of arithmetic circuits.
- Polynomial-size circuits: Valiant's class VP.
- Exponential sums of VP families: Valiant's class VNP.
\vee What about exponential products? $\longrightarrow \mathrm{V} П \mathrm{P}$.
\vee What if VПP has small circuits (i.e. VP $=\mathrm{V} П \mathrm{P}$)?

1. Arithmetic circuits, Valiant's classes.
2. VПP, definition and first results.
3. Algebraic complexity: BSS classes.
4. Main result:
if VP $=\mathrm{V} П \mathrm{P}$ then $\mathrm{NP}_{(K,+,-,=)}$ has small circuits.

Arithmetic circuits

Variables and constants of K as inputs,,+- and \times gates: a circuit computes a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$.

Definition

- VP: family $\left(f_{n}\right)$ of polynomials computed by a family of polynomial-size arithmetic circuits, and of polynomial degree.

Definition

- VP: family $\left(f_{n}\right)$ of polynomials computed by a family of polynomial-size arithmetic circuits, and of polynomial degree.
- VNP: family $\left(g_{n}\right)$ such that there exists $\left(f_{n}(\bar{x}, \bar{y})\right) \in$ VP satisfying

$$
g_{n}(\bar{x})=\sum_{\bar{\epsilon}} f_{n}(\bar{x}, \bar{\epsilon})
$$

where the summation is taken over $\bar{\epsilon} \in\{0,1\}^{p(n)}$.
Example of VNP family:

$$
\operatorname{per}_{n}\left(x_{1,1}, x_{1,2}, \ldots, x_{n, n}\right)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Definition

- VP: family $\left(f_{n}\right)$ of polynomials computed by a family of polynomial-size arithmetic circuits, and of polynomial degree.
\vee VNP: family $\left(g_{n}\right)$ such that there exists $\left(f_{n}(\bar{x}, \bar{y})\right) \in$ VP satisfying

$$
g_{n}(\bar{x})=\sum_{\bar{\epsilon}} f_{n}(\bar{x}, \bar{\epsilon})
$$

where the summation is taken over $\bar{\epsilon} \in\{0,1\}^{p(n)}$.
Example of VNP family:

$$
\operatorname{per}_{n}\left(x_{1,1}, x_{1,2}, \ldots, x_{n, n}\right)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Guillaume Malod 2003: no bound on the degree.
From now on, VP designates Malod's version.

Definition (VПP)

Family $\left(g_{n}\right)$ such that there exists $\left(f_{n}(\bar{x}, \bar{y})\right) \in$ VP satisfying

$$
g_{n}(\bar{x})=\prod_{\bar{\epsilon}} f_{n}(\bar{x}, \bar{\epsilon})
$$

where the product is taken over $\bar{\epsilon} \in\{0,1\}^{p(n)}$.

Definition (VПP)

Family $\left(g_{n}\right)$ such that there exists $\left(f_{n}(\bar{x}, \bar{y})\right) \in$ VP satisfying

$$
g_{n}(\bar{x})=\prod_{\bar{\epsilon}} f_{n}(\bar{x}, \bar{\epsilon})
$$

where the product is taken over $\bar{\epsilon} \in\{0,1\}^{p(n)}$.
Example

$$
g_{n}(X)=\prod_{i=0}^{2^{n}-1}(X-i)
$$

Then $g_{n}(X)=\prod_{\bar{\epsilon} \in\{0,1\}^{n}} f_{n}(X, \bar{\epsilon})$, where

$$
f_{n}(X, \bar{\epsilon})=X-\sum_{i=1}^{n} \epsilon_{i} 2^{i}
$$

Does VПP equal VP?

Theorem
 If $\mathrm{V} П \mathrm{P}^{0}=\mathrm{VP}^{0}$ (constant-free classes)
 then $\mathrm{P} /$ poly $=\mathrm{NP} /$ poly.

Theorem
If $\mathrm{V} \mathrm{P}^{0}=\mathrm{VP}^{0}$ (constant-free classes)
then $\mathrm{P} /$ poly $=\mathrm{NP} /$ poly.
Proof.
Take A in NP/poly: family $\left(C_{n}\right)$ of polynomial-size boolean circuits such that

$$
x \in A \Longleftrightarrow \exists y \in\{0,1\}^{p(n)}\left(C_{n}(x, y)=0\right)
$$

Simulate C_{n} by an arithmetic circuit $D_{n} \longrightarrow$ family VP. $x \in A \Longleftrightarrow \prod_{y} D_{n}(x, y)=0 \longrightarrow$ testing a VP^{0} family to zero. Done in BPP (Schwartz 1980), thus in P/poly (Adleman 1978).

- Computation over arbitrary fields K, languages $A \subseteq\left(\bigcup_{n} K^{n}\right)$.
\triangleright Allowed operations:,,$+- \times$ and equality tests.
- Computation over arbitrary fields K, languages $A \subseteq\left(\bigcup_{n} K^{n}\right)$.
\triangleright Allowed operations:,,$+- \times$ and equality tests.
- P_{K} : languages recognized by a family of polynomial-size algebraic circuits.
$\downarrow \mathrm{NP}_{K}$: existential version, i.e. there exists $B \in \mathrm{P}_{K}$ such that

$$
x \in A \Longleftrightarrow \exists y \in K^{p(n)}(x, y) \in B
$$

- Computation over arbitrary fields K, languages $A \subseteq\left(\bigcup_{n} K^{n}\right)$.
\triangleright Allowed operations:,,$+- \times$ and equality tests.
- P_{K} : languages recognized by a family of polynomial-size algebraic circuits.
$\downarrow \mathrm{NP}_{K}$: existential version, i.e. there exists $B \in \mathrm{P}_{K}$ such that

$$
x \in A \Longleftrightarrow \exists y \in K^{p(n)}(x, y) \in B .
$$

- Twenty questions (Shub and Smale): decide whether the input x is in $\left\{0,1, \ldots, 2^{n}-1\right\}$. This problem is in $\mathrm{NP}_{(\mathrm{C},+,-,=)}$ but suspected to be outside of $\mathrm{P}_{\mathbf{C}}$. If $\mathrm{V} \Pi \mathrm{P}=\mathrm{VP}$, it is in P_{C} by computing $\prod_{i=0}^{2^{n}-1}(X-i)$.

Theorem

Any problem in $\mathrm{NP}_{(K,+,-,=)}$ is solved by a family of polynomial-size circuits with,,$+- \times,=$ and VПP gates.

Corollary
If $\mathrm{V} П \mathrm{P}=\mathrm{VP}$ then any problem in $\mathrm{NP}_{(K,+,-,=)}$ is solved by a family of polynomial-size circuits over the field K.

Theorem

Any problem in $\mathrm{NP}_{(K,+,-,=)}$ is solved by a family of polynomial-size circuits with,,$+- \times,=$ and VПP gates.

Corollary

If $\mathrm{V} П \mathrm{P}=\mathrm{VP}$ then any problem in $\mathrm{NP}_{(K,+,-,=)}$ is solved by a family of polynomial-size circuits over the field K.
Proof (of the theorem).
Let $A \in \mathrm{NP}_{(K,+,-,=)}$: there is $B \in \mathrm{P}_{(K,+,-,=)}$ such that

$$
x \in A \Longleftrightarrow \exists y \in\{0,1\}^{p(n)}((x, y) \in B) \text { (Koiran 1994). }
$$

B is recognized by a family $\left(C_{n}\right)$ of circuits with,+- and $=$ gates. Tests made by $C_{n}(x, y)$ are of the form $\sum \lambda_{i} x_{i}=\sum \mu_{i} y_{i}+\gamma$. Coefficients $<2^{\text {poly }(n)}$ in absolute value.

Therefore if x and x^{\prime} belong to exactly the same hyperplanes with polynomial-size coefficients, they are both in A or both outside of A. \longrightarrow Arrangement of hyperplanes.

$$
\text { The cell of } x: F=\left(\bigcap_{x \in H} H\right) \backslash\left(\bigcup_{x \notin H^{\prime}} H^{\prime}\right) \text {. }
$$

Goal: decide whether the cell F of the input x is in A.

Therefore if x and x^{\prime} belong to exactly the same hyperplanes with polynomial-size coefficients, they are both in A or both outside of A. \longrightarrow Arrangement of hyperplanes.

$$
\text { The cell of } x: F=\left(\bigcap_{x \in H} H\right) \backslash\left(\bigcup_{x \notin H^{\prime}} H^{\prime}\right) \text {. }
$$

Goal: decide whether the cell F of the input x is in A.
First step: Find F.
Algorithm: maintain a search space E containing x.
$>E \leftarrow K^{n}$.
> Repeat (while H exists):

- by binary search, find the first hyperplane H such that $x \in H$ and $E \cap H \neq E$
(VПP test: $\left.\prod_{H / E \nsubseteq H} \varphi_{H}(x)=0 ?\right)$;
- $E \leftarrow E \cap H$.
- Output E.

Second step: Decide whether $F \subseteq A$ or $F \subseteq K^{n} \backslash A$.

Algorithm:

- Find a "small" rational point q in F;
\vee decide whether $q \in A$.

Second step: Decide whether $F \subseteq A$ or $F \subseteq K^{n} \backslash A$.

Algorithm:

- Find a "small" rational point q in F;
\vee decide whether $q \in A$.

The first point is easy from the list of hyperplanes defining F.

Second step: Decide whether $F \subseteq A$ or $F \subseteq K^{n} \backslash A$.

Algorithm:

- Find a "small" rational point q in F;
\vee decide whether $q \in A$.

The first point is easy from the list of hyperplanes defining F.
The second point is done thanks to a VПP test. Indeed,

$$
q \in A \Longleftrightarrow \exists y \in\{0,1\}^{p(n)}(q, y) \in B .
$$

$(q, y) \in B$ is decided by boolean circuit C_{n}. The family $\left(C_{n}\right)$ is simulated by a VP family $\left(g_{n}\right)$, hence:

$$
q \in A \Longleftrightarrow \prod_{y \in\{0,1\}^{\rho(n)}} g_{n}(q, y)=0
$$

Current and future work

\vee What about the other direction: $\mathrm{P}_{K}=\mathrm{NP}_{K} \Rightarrow \mathrm{VP}=\mathrm{V} \Pi \mathrm{P}$?
\vee What about the other direction: $\mathrm{P}_{K}=\mathrm{NP}_{K} \Rightarrow \mathrm{VP}=\mathrm{V} \Pi \mathrm{P}$?

- One can define a whole hierarchy by alternating \sum and Π, and a class VPSPACE containing it.

- VPSPACE enables to manipulate hypersurfaces instead of hyperplanes, thus taking \times into account:

$$
\mathrm{VP}=\mathrm{VPSPACE} \Longrightarrow \mathrm{P}_{\mathrm{C}}=\mathrm{PAR}_{\mathrm{C}}
$$

1. Arithmetic circuits, Valiant's classes.
2. VПP, definition and first results.
3. Algebraic complexity: BSS classes.
4. Main result:
if VP $=\mathrm{V} П \mathrm{P}$ then $\mathrm{NP}_{(K,+,-,=)}$ has small circuits.
