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Motivations

I New compression algorithms for structured documents (XML):
behaviour depending on the current tag
→ use of a stack to push and pop tags.

I Very simple algorithms→ pushdown automata.

I Easy to compress and decompress.
Practical tests: better performances than zip (Lempel-Ziv).

I Need for a theoretical study.



Motivations

I New compression algorithms for structured documents (XML):
behaviour depending on the current tag
→ use of a stack to push and pop tags.

I Very simple algorithms→ pushdown automata.

I Easy to compress and decompress.
Practical tests: better performances than zip (Lempel-Ziv).

I Need for a theoretical study.



Motivations

I New compression algorithms for structured documents (XML):
behaviour depending on the current tag
→ use of a stack to push and pop tags.

I Very simple algorithms→ pushdown automata.

I Easy to compress and decompress.
Practical tests: better performances than zip (Lempel-Ziv).

I Need for a theoretical study.



Outline

1. Introduction (LZ, FS)

2. Pushdown compression

3. Pushdown beats LZ

4. LZ beats pushdown

5. Conclusion



Outline

1. Introduction (LZ, FS)

2. Pushdown compression

3. Pushdown beats LZ

4. LZ beats pushdown

5. Conclusion



Compression

I Lossless compression.

I Compressor: injective and computable function
f : {0, 1}∗ → {0, 1}∗.

I Compression ratio on a finite word x:

ρf (x) =
|f(x)|

|x |
.

Compression ratio on an infinite sequence S:

ρf (S) = lim sup
n→∞

ρf (S[1..n]).
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Lempel-Ziv

Text to be compressed:

0 1 2 3 4 5 6 7 8 9 10

ε/

0

/

1

/

0 0

/

0 1

/

0 1 1

/

1 0

/

1 0 0

/

1 0 0 0

/

0 0 1

/

1 1

Compression result:

ε;(0, 0);(0, 1);(1, 0);(1, 1);(4, 1);(2, 0);(6, 0);(7, 0);(3, 1);(2, 1)

Lemma

I If p is the number of phrases, then |LZ(x)| = p log p.

I For all x, the compression ratio ρLZ(x) satisfies

log |x |
√
|x |
≤ ρLZ(x) ≤ 1 + o(1).
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Finite-state compression (1)

Finite-state transducer: finite-state automaton that outputs letters
at each transition
→ function f : {0, 1}∗ → {0, 1}∗.

0 / ε

1 / 01

0 / 0

1 / 011

00 7→ 0, 01 7→ 01, 1 7→ 011.

Example: 00 00 01 1 1 00 7→ 0 0 01 011 011 0.

Finite-state compressor: injective finite-state transducer (taking
into account the final state).
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Finite-state compression (2)

For a finite-state compressor C: compression ratio of an infinite
sequence S

ρC(S) = lim sup
n→∞

|C(S[1..n])|

n
.

Finite-state compression ratio:

ρFS(S) = inf
C∈FS

ρC(S).
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LZ better than FS

Theorem (Lempel, Ziv, 1979)

On every infinite sequence S ∈ {0, 1}N, Lempel-Ziv is better than
any finite-state compressor, that is,

ρLZ(S) ≤ ρFS(S).
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Pushdown transducers

Pushdown compressor = finite-state transducer with a stack.

The transition is done according both to the symbol read and to the
topmost symbol of the stack.

Each transition either pushes or pops symbols from the stack.

PD compression ratio: ρPD(S) = infC∈PD ρC(S).

Two variants: with or without endmarkers
→ C(x) or C(x#) (enables to empty the stack).
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Example

Proposition

Let S = 0∞.

I The compression ratio on S of a finite-state compressor with
k states is ≥ 1/k .

I There exists a pushdown compressor with k states whose
compression ratio on S is ≤ 1/k 2 (with endmarkers).

Proof.



Example

Proposition

Let S = 0∞.

I The compression ratio on S of a finite-state compressor with
k states is ≥ 1/k .

I There exists a pushdown compressor with k states whose
compression ratio on S is ≤ 1/k 2 (with endmarkers).

Proof.

1. Let C be a FS compressor with k states.

Then C must output at least one symbol every k letters.

Otherwise there would exist u such that for all i0 ≤ i ≤ i0 + k ,
all the u[1..i] have the same image.

Since there are only k states, this contradicts injectivity.



Example

Proposition

Let S = 0∞.

I The compression ratio on S of a finite-state compressor with
k states is ≥ 1/k .

I There exists a pushdown compressor with k states whose
compression ratio on S is ≤ 1/k 2 (with endmarkers).

Proof.

2. Let C be the following pushdown compressor on input 0n:

I it pushes 0n/k on the stack (by counting modulo k );

I at the end it pops the stack and outputs one symbol every k
(by counting modulo k ).

�



Remarks

I Same result as FS for pushdown without endmarkers.

I LZ on S = 0∞ has compression ratio 0. . .

I but FS also!

ρFS(S) = inf
C∈FS

ρC(S) ≤ 1/k for all k .
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Pushdown beats LZ

Theorem

There exists a sequence S such that

ρPD(S) = 1/2 (without endmarkers)

and
ρLZ(S) = 1.



The idea

Pushdown compresses palindromes with ratio ' 1/2. . .

but LZ not always.

→ build a sequence of the form

S = u1ū1u2ū2 . . .

with well-chosen words ui (here ū stands for the mirror of u).
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but LZ not always.

→ build a sequence of the form

S = u1ū1u2ū2 . . .

with well-chosen words ui (here ū stands for the mirror of u).



Proof

Let En ⊂ {0, 1}n be the set of words of size n that are not
palindromes. Let u1, . . . , u|En |/2 be |En |/2 words of En such that
∀i, j, ui , ūj . Then

u1 . . . u|En |/2 ū|En |/2 . . . ū1

is LZ-incompressible but 1/2-PD-compressible.
→ repeat this for all sizes n to obtain the infinite sequence S. �
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LZ beats pushdown

Theorem

There exists a sequence S such that

ρLZ(S) = 0

and
ρPD(S) = 1 (with endmarkers).



The idea

LZ compresses repetitions very well (ratio tends to 0). . .

but pushdown not always.

I Show that some repetitions are not compressed by pushdown
(→ pumping lemma);

I build a sequence of the form

S = un1
1 un2

2 . . .

for well chosen ui and ni .
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LZ and repetitions

Lemma

Let u be a word.
The compression ratio of LZ on un is O( log n

√
n

) (and thus tends to 0
when n → ∞).

Proof.
For all k , there are at most |u| different words of size k in un.
Call p the number of phrases in the parsing of un by LZ algorithm.
Let tk be the number of phrases of size k . We have:

|un | =
∑
k≥1

tk ≥
p/|u|∑
k=1

k |u| ≥
p2

2|u|
.

Thus p = O(
√

n) and |LZ(x)| = p log p. �
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PD and repetitions

Let C be a pushdown compressor.

Suppose there is a pumping lemma: on input uvnw, C has each
time the same behaviour on v.

If v is not compressible, then C(uvnw) ≥ n|v |,
thus ρC(uvnw)→ 1.



Pumping lemma

Theorem

Let A be a pushdown transducer (working without endmarkers).
There exist two constants α, β > 0 such that all word w can be cut
in three pieces w = tuv satisfying:

I |u| ≥ bα|w |βc;

I if C(tuv) = xyz then C(tun) = xyn.
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Transducers: proof (1)

I Lifetime of a column: never go below its top symbol.

I Equivalent columns: c′ in the lifetime of c and same state/top
symbol.

. . .

Z

(1)

Z

...

Y

. . .

Z Z ′

...

Z

. . .

Z ′
W

Z ′

. . .

State: q1 q2 q3 q1

(2)

. . .

Lifetime of column (1)

Lifetime of column (2)
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Transducers: proof (2)

I p: number of pairs state/top symbol;

I k : max number of symbols pushed by one rule;

I L(p, k , d): maximum lifetime of a column during which no pair
of equivalent columns are at distance ≥ d.

I L(p + 1, k , d) = d + kdL(p, k , d).

Distance < d of c

d − 1

Z0 Z0

Y1

...

Ydk

. . .

Z0

Y1

...

Ydk−1
. . .

Z0

Y1 . . .
Z0

c c1 c2 cdk

Lifetime of c
Lifetime of c1 c1, . . . , cdk−1 Lifetime of cdk

≤ L(p, k , d)

≤ L(p, k , d)
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The endmarker

Theorem

Let A be a pushdown transducer (working with endmarkers).
There exist two constants α, β > 0 such that all word w can be cut
in three pieces w = tuv satisfying:

I |u| ≥ bα|w |βc;

I there are five words x, x′, y, y′, z such that
C(tunv#) = xynzy′nx′.

Remark.
The same is true with an initially nonempty stack.



LZ beats PD

Theorem

There exists a sequence S such that

ρLZ(S) = 0 and ρPD(S) = 1 (with endmarkers).

Proof.
Let wi be a sufficiently big Kolmogorov-random word
→ cut it in three pieces wi = tiuivi , with ui big enough (thus
incompressible), according to the i-th pushdown transducers. Then

S = t1un1
1 t2un2

2 . . .

(for sufficiently large integers ni) is LZ-compressible but not
PD-compressible. �



LZ beats PD

Theorem

There exists a sequence S such that

ρLZ(S) = 0 and ρPD(S) = 1 (with endmarkers).

Proof.
Let wi be a sufficiently big Kolmogorov-random word
→ cut it in three pieces wi = tiuivi , with ui big enough (thus
incompressible), according to the i-th pushdown transducers. Then

S = t1un1
1 t2un2

2 . . .

(for sufficiently large integers ni) is LZ-compressible but not
PD-compressible. �



Outline

1. Introduction (LZ, FS)

2. Pushdown compression

3. Pushdown beats LZ

4. LZ beats pushdown

5. Conclusion



Summary

I Introduction of pushdown compression.

I Strictly better than finite-state compression.

I Better than Lempel-Ziv on some sequences (palindromes:
compression ratio 1/2 instead of 1).

I Worse than Lempel-Ziv on some sequences (repetitions:
compression ratio 1 instead of 0).
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Future work

I Lower bound on the compression ratio of a PD compressor
with k states with endmarkers?

I Better separation for “PD beats LZ”?
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